

January 17, 2024

Mr. Tony Peterson Waste and Materials Management Program Wisconsin Department of Natural Resources Eau Claire Service Center 1300 W. Clairemont Avenue Eau Claire, WI 54701

Subject: Dairyland Power Cooperative – Alma Off-Site Disposal Facility Phase IV Landfill Plan of Operation Modification for Initial Permitting of Coal Combustion Residuals (CCR) Landfills – Addendum 1, Town of Belvidere, Buffalo County, Wisconsin (License #4126)

Dear Mr. Peterson:

On behalf of Dairyland Power Cooperative (DPC), this letter provides responses to the Wisconsin Department of Natural Resources (WDNR)'s April 26, 2023 Incompleteness Determination (Incompleteness Letter) for the Plan of Operation Approval Modification for Initial Permitting of CCR Landfills at the DPC Alma Off-Site Disposal Facility, Phase IV Landfill (Phase IV Landfill). This is Addendum 1 to the January 30, 2023 Plan of Operation Modification for the Phase IV Landfill (January 2023 Plan Mod).

This addendum is presented in the form of a letter such that each item requiring additional information is shown in bold text followed by DPC's response. If additional materials are needed to supplement the textual response, these supplemental materials are provided within attachments to this Addendum 1.

Attachment 1 contains the certification statement for this Addendum. **Attachment 2** provides the Incompleteness Letter prepared by the WDNR.

1. Section NR 504.04(4)(b), Wis. Adm Code: Provide a revised endangered species or critical habitat demonstration narrative that includes a statement about the existence of potential habitat for the threatened snail species within the approved liner areas Cell 4 Module A, and Module B.

<u>Response</u>: The following is a revision to paragraph 3 of Section 2.4 of the January 2023 Plan Mod.

The WDNR also requires habitat surveys for the snail species. Based on a review of aerial imagery, approved liner areas Cell 4 Module A and Module B were forested along steep slopes prior to tree clearing activities occurring before 2008 and between 2011 and 2015. Cell 4 Module A and Module B approved liner areas presently contain forested areas, grassed steep southeast-facing and southwest-facing slopes, and landfill access routes. Potentially suitable habitat may be present along grassed steep southeast and southwest-facing slopes as a result of anthropogenic activities modifying the natural landscape. Prior to disturbing areas where potential snail habitat occurs during liner construction activities, DPC will have a qualified individual perform a snail habitat survey. If snail habitat is found and would need to be impacted, DPC will contact the WDNR Endangered Resources Utility Liaison to discuss how to avoid impacts or to apply for an Incidental Take Permit, as per the requirement listed in the ER review letter.

2. Section NR 504.04(4)(c), Wis. Adm. Code: Provide a copy of the facility's Wisconsin Pollutant Discharge Elimination System (WPDES) permit and a copy of the facilities most recent stormwater pollution prevention plan (SWPPP).

<u>Response</u>: The Alma Offsite Stormwater Pollution Prevent Plan (SWPPP) is included in **Attachment 3**. The document was last updated in January 2023. The Alma Offsite facility does not have a Wisconsin Pollutant Discharge Elimination System (WPDES) permit as the facility does not discharge liquids other than stormwater from the facility, nor does the facility have a wastewater treatment plant on-site.

Associated with the management and inspections related to storm water, DPC requests to decrease the frequency of stormwater inspection following storm events. As noted in the January 2023 Plan Mod, the storm water infrastructure features were built to accommodate the 100-year, 24-hour storm event at the time of design, which exceeds the required 25-year, 24-hour event required by s. NR 504.12(2). Currently the Phase IV Landfill is approved to operate under the requirement of conducting post-storm inspections following rain events over 1 inch in 24 hours. The Phase IV Landfill has been in operation since 2001 and the numerous inspections conducted over this time have shown that these small regularly occurring rain events do not negatively impact the final cover or stormwater management system. DPC requests that the frequency for post-storm event inspections be decreased to require inspections following storm events over of 2 inches or greater in a 24-hour period; as observations made during stormwater inspections after 2-inch rain events indicate that the final cover and stormwater management features have not been negatively impacted by this magnitude of storm event.

3. Section NR 504.06, Wis. Adm. Code: Provide the information required for the design and construction of the liner and leachate collection and removal system.

a. Section NR 504.06(3)(c) and (k), Wis. Adm. Code: Clarify if the geomembrane installation will adhere to the requirements of these code cites.

<u>Response</u>: As noted in Section 3.2.2.3 of the January 2023 Plan Mod, "placement of the geomembrane will comply with the requirements of s. NR 504.06(3)(a-k)". This reference includes (c) and (k) noted above.

In addition, this section of the January 2023 Plan Mod includes a reference to Section 4.6.4 of the 2000 Plan of Operation which was included in Appendix F.1. The referenced text indicates that geomembrane will be installed with panels orientated perpendicular to the contours on slopes in excess of 10H:1V (or 10%), which meets the requirements of s. NR 504.06(3)(c). In addition, the referenced text details that anchor trenches will be constructed at the top of the slope for the liner to secure the geomembrane during installation, which is located along the perimeter of the landfill, and the geomembrane will be seamed completely to the end of the panels to minimize tears to start along the seams placed in the anchor trench, which meets the requirements of s. NR 504.06(3)(k).

b. Section NR 504.06(5)(j), Wis. Adm. Code: Provide a revised leachate removal system which includes a sump and side slope riser design.

<u>Response</u>: The existing removal system was approved by the WDNR during the initial permitting of the Phase IV Landfill. An exemption to s. NR 504.06(5)(j) was approved for the Phase IV Landfill in the May 2001 Conditional Plan of Operation Approval Letter for the Phase IV Landfill (Grant of Exemptions #2) provided in Appendix B of the January 2023 Plan Mod. Each of the existing liner areas constructed at the facility has utilized a gravity drain system that penetrates the base of the landfill. As part of the construction of Cell 3A in March 2013, a dual encased pipe terminating at the future Cell 4 liner penetration location was installed in the southern perimeter berm of the Phase IV Landfill. This pipe was capped and marked and will connect the future Cell 4 leachate collection system to the Phase IV Landfill leachate transfer system utilizing gravity to convey leachate from Cell 4 to the transfer system.

Details relating to this design have been provided in the construction drawings for Cell 1, Cell 2A and Cell 3A and in the 2000 Plan of Operation. Details from the 2000 Plan of Operation were included in Appendix F.2 of the January 2023 Plan Mod.

c. Section NR 504.06(5)(I), Wis. Adm. Code: Regarding the leachate transfer lines, clarify whether the upslope end of the secondary pipe is sealed and the downslope end is open to allow any collected liquid to flow into the manhole.

<u>Response</u>: Leachate transfer manholes and leachate transfer lines associated with the Phase IV landfill were constructed during the development of Cell 1, Cell 2A and Cell 3A. The manhole and transfer line servicing Cell 4 was constructed during development of Cell 3A to avoid the need for excavating deep trenches in the south berm of the Phase IV Landfill during the development of Cell 4. Given that these features are existing infrastructure, discussion relating to the design of the manholes was limited in the January 2023 Plan Mod.

In Section 3.2.3.3 of the January 2023 Plan Mod, it was noted that the concrete manholes were designed to allow for the monitoring of the interstice between the casing (outer) and the carrier (inner) pipe. Detail 2 on Plan Sheet 18 from the 2000 Plan of Operation, which was provided in Appendix F.2 of the January Mod, indicates that a watertight seal was to be installed between the inside and outside pipe on the downslope side of the manhole, a similar seal is not shown on the upslope side of the manhole. This allows DPC to monitor for leaks in the carrier pipe and for liquids in the casing pipe to flow into the manhole for collection.

Watertight seals were installed during construction on the downslope side of the manhole for Manholes 1-6 as detailed in the construction drawings for Cell 1 and 3A. The downslope in Manhole 7 does not contain a watertight seal based on documentation drawings for Cell 3A.

d. Section NR 504.06(5)(p), Wis. Adm. Code: Provide a discussion of the measures to be taken to prevent accidental discharge at the loadout station and provide the required specifications for the leachate loadout station design.

<u>Response</u>: As noted in the January 2023 Plan Mod, the loadout station was installed and utilized prior to the permitting of the Phase IV landfill. The existing loadout station is located near the maintenance building and allows for manually top-loading tanker trucks with leachate from the leachate collection tank.

The existing loadout station receives leachate from the existing leachate tank and is comprised of a manhole with a sump, pump, controls and overhead loadout piping. The entire loadout area is covered with asphalt pavement. An asphalt curb located on the downslope side of the loadout area directs potential spills that could occur during loadout operations to an inlet and into the loadout manhole's sump. The manhole's sump would contain spilled liquid until it can be pumped into a tanker truck. If sufficient volume is spilled, liquid in the manhole sump would rise and flow to the leachate collection tank via the outer pipe of the double walled leachate transfer pipe that is routed from the tank through the manhole. Photos showing the curbing and inlet to the manhole pit along with the leachate loadout station are provided in **Attachment 4**.

During leachate loadout, DPC and/or its subcontractors will physically monitor the loadout of the leachate into the top loaded trucks. As per the current operation, leachate loadout cannot occur until a tanker truck is located at the station and the loadout pump is manually activated. The level within the tanker truck will be monitored while the truck is being filled to confirm that the tanker truck does not overtop. Phase IV Landfill's Leachate loading procedure is provided in **Attachment 4**.

4. Section NR 504.07, Wis. Adm. Code: Provide the information required for the design and construction of the final cover.

a. Section NR 504.07(4)(a)12 through 15, Wis. Adm. Code: Provide the soil barrier layer specifications and clarify if its construction will adhere to the requirements of these code cites.

<u>Response</u>: A final cover system that utilized a soil barrier layer was approved in the 2001 Plan of Operation Conditional approval letter. This cover system consisted of (from bottom to top): 2-foot soil barrier layer, geosynthetic clay liner (GCL), 40 mil geomembrane, 1-foot granular drainage layer, 1.5 feet general fill rooting zone, and 6 inches of topsoil; however, following a 2004 plan modification, this final cover configuration was replaced with an alternate final cover system that did not include a soil barrier layer.

As noted in Section 3.3.1 of the January 2023 Plan Mod, a 2004 plan modification was approved with an alternate final cover system that consisted of (from bottom to top) 2-feet of moisture conditioned and compacted "select" fly ash, 40-mil geomembrane, 1-foot drainage layer, 1.5-foot general soil cover layer (rooting zone), and 6 inches of topsoil. This cover system was used to construct the first three final cover events. It is DPC's understanding that the final cover system contained in the approved 2004 Plan

Modification will not be acceptable for future final cover construction events. Therefore, future final cover construction events will utilize the final cover system that was approved in the 2001 Plan of Operation Conditional Approval letter and discussed in the preceding paragraph. The final cover design that has been installed to date will not be revised and will remain as constructed.

Soil barrier layer requirements for the final cover system will be consistent with the liner system soil barrier layer requirements presented in the 2001 Plan of Operation Conditional Approval letter (referenced as the low permeability layer in the January 2023 Plan Mod and 2001 Plan of Operation). Details pertaining to the installation of the soil barrier layer (in reference to the base liner system) were previously provided in Section 3.2.2.1 of the January 2023 Plan Mod and will be followed for the final cover system as well.

Soil barrier layer will consist of the following requirements:

- Consist of soil types with Unified Soil Classification System classes of ML, CL, CH, SM, or SC or dual-classification of these soils. The upper 1 foot shall have a maximum particle diameter less than 1 inch and have at least 80% by weight pass the No. 60 screen and a P200 content of 40% of greater (s. NR 504.07[4][a][12]).
- Placement of the soil barrier layer would comply with s. NR 504.07(4)(a)(14-15) as detailed in Section 4.6.1 of Appendix F.1. This section detailed that the low permeability layer would have a minimum thickness of 2 feet. Compaction of the material would meet the following requirements:
 - As noted in Section 4.6.1 of Appendix F.1: Compaction will be achieved by use of a sheepsfoot compactor with a minimum static weight of 30,000 pounds, or an equivalent piece of equipment (s. NR 504.07[4][a][14]).
 - Compaction will meet a minimum of 90 percent of the modified proctor density as noted in the Construction Quality Assurance Plan (CQA Plan) provided in Appendix G of the January 2023 Plan Mod.
- Placement of the soil barrier layer will be placed in lifts no greater than 12 inches following compaction using footed compaction equipment with feet at least 6 inches long. Each lift shall be disked or otherwise mechanically processed prior to compaction to break up clods and allow for moisture content adjustment. Clod sizes will not exceed 2 inches in diameter (s. NR 504.07[4][a][13]).

The CQA Plan was updated to indicate that the soil barrier layer (i.e. "low permeability layer") will be applicable to the final cover system as well as the liner system. This is included in **Attachment 5**.

b. Section NR 504.07(6)(b), (7), and (8), Wis. Adm. Code: Re-evaluate the final cover perimeter storm water drain system design and provide the specifications and application rates for fertilizer and mulch addition to topsoil.

<u>Response</u>: The responses pertaining to the final cover stormwater drain system and fertilizer/mulch are provided below.

Stormwater Drain System – The existing and approved perimeter final cover drainage design includes a minimum 4-inch diameter drainpipe that is located along the diversion berms and toe of final cover slope near the perimeter berm of the proposed landfill as shown in Details 2 and 4 on Plan Sheet 19 in Appendix F.2. Coarse aggregate fill meeting the same gradation as the leachate collection drainage layer (minimum hydraulic conductivity of 1×10^{-2} cm/s) will be placed around the piping, which meets s. NR 504.07(6)(b). The October 2000 Plan of Operation Section 3.11.4 (Appendix F.2 of the January 2023 Plan Mod) proposed that the pipes located in trenches in the perimeter berm will follow the same slope as the top of berm and discharge through pipes located at 500-foot intervals around the landfill. Whereas pipes located in areas where the top of berm is flat will be sloped at 2 percent and discharge through pipes spaced at -200-foot intervals.

However, during construction of the existing final cover areas, a maximum 200-foot spacing for the final cover drainage outlets was used. This spacing meets the requirements of s. NR 504.07(6)(b). This will continue for future final cover construction events. **Attachment 6** contains the layout and details from the first three final cover construction events.

Fertilizer and Mulch – Specifications on the mulch and fertilizer are not required per the code reference. Topsoil will be tested prior to placement to confirm fertilizer requirements. Seeding, fertilizer, mulching methods and rates will be consistent with methods and rates utilized during previous final cover construction events, unless topsoil testing indicates otherwise. Seed mix and fertilizer will be applied at a rate of approximately 2 pounds of seed and 7 pounds of fertilizer per 1,000 square feet. Seed mix and fertilizer may be applied simultaneously via a hydroseeder, particularly along slopes. Current recommended fertilizer consists of 16% nitrogen, 6% phosphoric acid, and 24% soluble potash; however, this will be confirmed prior to placement of topsoil. Mulch will be applied to the seeded area at a rate of at least 1.5 tons per acre and will consist of either oat or wheat straw.

c. Section NR 504.12(3)(a)5, Wis. Adm. Code: Specify the hydraulic conductivity standard of the soil barrier layer material to be used in construction of the liner and provide justification for the assumptions made for the liquid flow rate calculation for the soil barrier layer.

<u>Response</u>: Section NR 504.12(3)(a)(5) corresponds with the base liner of the landfill, as such the responses provided will be focused on the base liner system. Per s. NR 504.12(3)(a)(5), a GCL and soil barrier layer may be used in place of the clay layer of the composite liner per s. NR 504.06(7). Section NR 504.06(7) requires that the underlain soil barrier layer must be a minimum of 2 feet thick and meet the specifications

of s. NR 504.07(4)(a)12 to 17. The requirements in s. NR 504.07(4)(a) 12 to 17 do not include a hydraulic conductivity requirement. The only requirements pertain to particle size and the classification of the material, which are detailed in Section 3.2.2.1 of the January 2023 Plan Mod.

Appendix H.1 of the January 2023 Plan Mod included the required liquid flow rate calculation. This calculation compared the flow through the alternative liner system (GCL and soil barrier layer) to the flow through 2 feet of compacted clay. Only the hydraulic conductivity of the GCL was evaluated in the previously provided flow rate calculation. As noted in the footnotes of the provided calculation, the hydraulic conductivity of the GCL used in the calculation was based on previous testing conducted during construction. To further justify the hydraulic conductivity used for the GCL, **Attachment 7** contains the conformance testing results from the previous construction events which show that the GCL hydraulic conductivity used in the flow rate calculation.

The calculation accounts for only the hydraulic conductivity of the GCL because (1) there is no requirement from WDNR on the hydraulic conductivity of the soil barrier layer, (2) discussion of alternative liner system in the preamble of the Federal Register, which promulgated the requirements for CCR landfills, details that a lower component liner alternative was noted as the GCL not GCL plus another soil material, and (3) including the hydraulic conductivity of the soil barrier layer would reduce the average hydraulic conductivity of the system, as detailed below.

If the hydraulic conductivity in the flow rate equation for the alternate liner system was weighted to account for the 2 feet of soil barrier layer material, due to the greater thickness of the soil barrier layer material than the GCL thickness, the soil barrier layer would need to have a hydraulic conductivity on a similar scale as the compacted clay liner requirements (10^{-7} cm/s) This would likely be unattainable for some of the soil types allowed by s. NR 504.07(4)(a)(12) for the soil barrier layer and would defeat the benefit of using a GCL alternative liner system.

5. Section NR 507.15(3), Wis. Adm. Code: Provide the following information for general environmental monitoring requirements.

a. Section NR 507.15(3)(a), Wis. Adm Code: Provide a more detailed discussion on the known or suspected contaminant pathways and how the proposed CCR groundwater monitoring system is designed to cover all the pathways.

<u>Response</u>: If contaminants were released from the Phase IV Landfill they would migrate downward through the unsaturated zone until encountering the water table. Once dissolved in groundwater, contaminants will migrate in the direction of groundwater flow. Therefore, monitoring wells installed at the downgradient waste boundary are positioned to detect a release to groundwater from the Phase IV Landfill. As detailed in Section 4.2 of the January 2023 Plan Mod, the groundwater monitoring system includes three water table wells (W-100R, W-105, and W-106) and one piezometer (W-100AR) located downgradient of the Phase IV Landfill. The monitoring wells and piezometer provide both horizontal and vertical coverage for detecting a potential release. There are no

> wetlands or waterways between the landfill and the downgradient monitoring wells; therefore, there is no risk of groundwater being intercepted by surface water pathways prior to reaching the downgradient monitoring wells.

b. Section NR 507.15(3)(b), Wis. Adm Code: Provide site-specific technical data on the below listed items and provide additional discussion on how that information was considered when deciding the number, spacing, and depths of monitoring wells that are part of the proposed CCR groundwater monitoring system.

i. Aquifer Thickness.

<u>Response</u>: As discussed in Section 4.1 of the January 2023 Plan Mod, the saturated thickness of the uppermost aquifer includes up to 20 feet of sandy soil and approximately 400 feet of Cambrian sandstone. Due to the predominance of horizontal flow in layered sedimentary systems caused by anisotropy (i.e., horizontal hydraulic conductivity is always greater than vertical hydraulic conductivity in layered geologic units), and the predominantly vertical flow of a potential release through the unsaturated zone, the monitoring system design includes monitoring wells screened at the water table, which is the most likely location to detect a release from the Phase IV Landfill.

In addition, downward vertical gradients indicate the potential for vertical flow in the shallow portion of the aquifer. This potential for downward vertical flow warrants a downgradient piezometer to monitor groundwater quality below the water table. As discussed in Section 4.2 of the January 2023 Plan Mod, the groundwater monitoring system includes a piezometer (W-100AR) located downgradient of the Phase IV Landfill.

ii. Groundwater flow rate.

<u>Response</u>: The groundwater flow rate in the sand and gravel unit of the uppermost aquifer has previously been calculated to be approximately 370 feet per year as noted in the Groundwater Monitoring Program (GWMP) for Compliance with the Federal Coal Combustion Residual Rule report (TRC, 2017). This calculation is based on measured horizontal hydraulic gradients of 0.05 foot per foot (ft/ft), assumed effective porosity of 20%, and geometric mean hydraulic conductivity of 1.4×10^{-3} cm/s. The groundwater flow rate in the sandstone is expected to be slower than in the sand and gravel due to lower mean hydraulic conductivity of 1.1×10^{-3} cm/s. Assuming the same horizontal hydraulic gradient and effective porosity, the groundwater flow rate in the sandstone is approximately 285 feet per year. Monitoring wells W-100R, W-100AR, W-105, and W-106 are located near the downgradient waste boundary, thus these wells are designed to detect a release from the landfill quickly after the release reaches the downgradient waste boundary.

iii. Seasonal and temporal fluctuations in groundwater flow.

<u>Response</u>: Groundwater flow maps for the Phase IV Landfill have been prepared and included in the annual groundwater monitoring reports since the 2018 Annual Groundwater Monitoring Report (TRC, 2018). The water table maps in the annual reports use water level data for September of the year preceding the report date, beginning with the 2018 report. In addition, GWMP for Compliance with the Federal Coal Combustion Residual Rule report (TRC, 2017) included a water table map generated using data from March 2015.

Based on a review of these water table maps, there is very little temporal fluctuation in groundwater flow. All water table maps for the Phase IV Landfill show groundwater flowing south in the down-valley direction and generally converging toward W-100R and W-105. A comparison of the Marsh 2015 water table map to the September water table maps for subsequent years also shows consistency in the flow pattern between March and September; therefore, there is no significant seasonal variation. Because the shallow groundwater flow pattern consistently shows flow toward the downgradient wells, the well network design is appropriate for detecting a release from the Phase IV Landfill.

iv. Hydraulic conductivities, porosities and effective porosities for the saturated and unsaturated geologic units overlying the uppermost aquifer and materials comprising the uppermost aquifer, and materials comprising the lower boundary of the uppermost aquifer.

<u>Response</u>: As detailed above, the geometric mean hydraulic conductivity of the sand and gravel is 1.4×10^{-3} cm/s and the geometric mean hydraulic conductivity of the sandstone is 1.1×10^{-3} cm/s. Both units are assumed to have an effective porosity of 20% for the groundwater velocity calculation; however, the effective porosity of these units could range up to 30%. Total porosity in sand and sandstone is generally not significantly higher than the effective porosity and is likely also in the range of 20% to 30%.

As the uppermost aquifer includes the Cambrian sandstone formations, the confining unit defining the lower boundary of the uppermost aquifer consists of Precambrian igneous and metamorphic rocks that underlie the Cambrian sandstone formations. These Precambrian rocks are expected to have very low values for effective porosity and hydraulic conductivity.

The monitoring well network is designed to monitor the sand and gravel and sandstone units, which are the permeable formations at this site.

c. Section NR 507.15(3)(b), Wis. Adm. Code: Provide a groundwater flow map for the site that includes at a minimum the proposed CCR wells, other groundwater monitoring wells, the landfill footprint, and groundwater flow direction.

<u>Response</u>: The groundwater flow map for the September 2022 groundwater sampling event is included in **Attachment 8**.

d. Section NR 507.15(3)(i), Wis. Adm. Code: Provide baseline groundwater monitoring data for copper, manganese, silver, zinc, and field temperature in the CCR Wells.

<u>Response</u>: Baseline groundwater monitoring data for copper, manganese, silver, zinc, and field temperature for the CCR wells are included in **Attachment 9**.

e. Section NR 507.15(3)(k), Wis. Adm. Code: Provide a statement for the owner/operator to notify the department in writing within 60 days of completing sampling and analysis at any CCR well when a groundwater standard has been attained or exceeded in accordance with s. NR 507.15(3)(k), Wis. Adm. Code.

<u>Response</u>: In accordance with s. NR 507.15(3)(k), the owner/operator will notify the department in writing within 60 days of completing sampling analysis at any CCR well when a groundwater standard is attained or exceeded. The Phase IV Landfill has not had a confirmed statistically significant increase (SSI) under the federal CCR monitoring program.

6. Section NR 507.16(1), Wis. Adm. Code: Provide the following information for the sampling plan.

a. Section NR 507.16(1)(a), Wis. Adm. Code: Provide an updated Site Monitoring Locations map that includes the leachate tank and retention pond.

<u>Response</u>: An updated Site Monitoring Locations map is included in the Environmental Sampling and Analysis Plan (ESAP) provided in **Attachment 10**. A label for the leachate tank has been added to the map. The two sedimentation basins associated with this facility are also shown on the Site Monitoring Locations map. The retention pond language has been removed from the ESAP as no retention pond is associated with the license for landfill 4126.

b. Section NR 507.16(1)(c), Wis. Adm. Code: Provide revised procedures for field measurements for the items listed below.

i. A detailed order in which wells should be sampled if the groundwater has been impacted by regulated or other activities.

<u>Response</u>: Section 3.0 of the ESAP states that the wells will generally be sampled from upgradient to downgradient. If wells are determined to be impacted by regulated or other activities, impacted wells shall be sampled after unimpacted wells have been sampled. The ESAP has been modified to indicate that if more than one well is determined to be impacted by a given substance, the order of sampling of impacted wells will be from the well with the lowest concentration of contaminant to the well with the highest concentration of contaminant.

ii. The procedures and types of equipment to determine turbidity, odor, and color.

<u>Response</u>: The procedure for determining turbidity and color of groundwater samples in the field is to visually observe the sample bottles after filling and noting any turbidity (yes or no) or color on the field sheet. It is not recommended to directly smell groundwater samples; therefore, the procedure for noting sample odor is to note on the field sheet (yes or no) if an odor is detected in the ambient air while the groundwater samples are being collected.

Section NR 507.16(1)(c)(3) does not require specification of equipment for determining turbidity, odor, and color; however, "equipment" for these consists of the eyes and nose of the sampler.

c. Section NR 507.16(1)(d), Wis. Adm. Code: Provide an update to the equipment cleaning process that includes procedures to clean purging equipment between wells.

<u>Response</u>: As detailed in the ESAP, the wells are purged using dedicated pumps. The only equipment with the potential to cause cross-contamination of laboratory samples between wells is the water level measurement device. Section 3.1.7 of the ESAP specifies the procedure for cleaning the water level measurement device between wells. Section 3.1.7 of the ESAP has been modified to indicate that non-dedicated purging equipment will also be cleaned between wells if it is used during a sampling event.

d. Section NR 507.16(1)(e), Wis. Adm. Code: Provide revised procedures for obtaining samples from wells that include the following

i. The volume of sample required for analysis.

<u>Response</u>: The ESAP has been modified to indicate that the anticipated total sample volume is approximately one-half liter per well.

ii. The rate of flow when sampling, when applicable.

<u>Response</u>: The ESAP has been modified to specify that the flow rate during sampling will be the same or less than the flow rate used while purging the well, and in all cases less than a half-liter per minute.

e. Section NR 507.16(1)(f), Wis. Adm Code: Provide revised procedures for establishing field quality assurance and quality control that include procedures for and the frequency at which field blanks will be collected and processed.

<u>Response</u>: The ESAP specifies that the rate of collection of field blanks (i.e., equipment blanks) will be one per sampling event if non-dedicated and/or non-disposable field sampling equipment is used. The ESAP also specifies that in such a case, the field blank will be collected by passing reagent grade water through decontaminated field equipment. The ESAP has been modified to specify that the equipment blank water will

> be collected into laboratory-supplied sample bottles and analyzed for the same parameters as the groundwater samples.

As stated in the ESAP, the anticipated purging and sampling procedures use only dedicated and disposable equipment; therefore, field blanks will not be collected under typical sampling conditions. The WDNR's Groundwater Sampling Desk Reference (WDNR, 1996) states that "field blanks are not required if dedicated sampling equipment or disposable sampling equipment is used."

7. Section NR 514.045(1)(c)1 through 3, Wis. Adm. Code: Provide a demonstration addressing the stability items of this section.

<u>Response</u>: The Location Restrictions Demonstration was previously provided in Appendix D of the January 2023 Plan Mod and summarized in Section 2.2 of the main text of the January 2023 Plan Mod. Section NR 514.045(1)(c) includes three demonstration requirements to determine that the Phase IV Landfill is not located within an unstable area. These demonstration requirements are: (1) on-site or local soil conditions that may result in significant differential settling, (2) on-site or local geologic or geomorphic features, and (3) on-site or local human-made feature or events both surface and subsurface. The Phase IV Landfill demonstrated compliance with each of these per the following:

• **On-site or local soil conditions that may result in significant differential settling** – Settlement and differential settlement is typically caused by extensive deposits of soft, finegrained soils located below the subbase of the landfill. Based on the geotechnical exploration that was conducted as part of the Feasibility Report in May 1997, the CCR landfill is not located in soil condition that may cause significant differential settling. The onsite soils consisted of silt and lean clay overlying silty sand and sand, weathered bedrock (sandstone or dolomite), and sandstone. In areas the silty sand/sand extended from the existing ground surface to bedrock. These observations do not generally suggest an unstable foundation.

Based on standard penetration testing (SPT) conducted during the time of the soil borings, the fine-grained loess material (silt and clay) generally consisted of medium stiff to stiff relative densities. Beneath the Phase IV Landfill, the fine-grained material was generally silt. Soft/loose clay and silt were observed in isolated pockets along the perimeters or at elevations above or near subbase grades, but it is not anticipated that these will impact settlement of the facility as they are underlain by medium dense to dense soils. In addition, based on the SPT blow counts the silty sand and sand are categorized as primarily medium dense to dense. Soils at these relative densities along with appropriate preparation of the subgrade, generally would not be susceptible to significant differential settlement for the Landfill. Cross sections and select wells logs completed during the Feasibility Report were included in Appendix D of the January 2023 Plan Mod. Additional boring logs completed at the time of the Feasibility Report are included in **Attachment 11**.

• **On-Site or local geologic or geomorphic features** – As detailed in Appendix D of the January 2023 Plan Mod and above, geologic or geomorphic features that are unstable were not encountered during the exploration for the Phase IV Landfill. The subsurface consisted of primary silts and silty sand and sand underlain by weathered bedrock and bedrock. The bedrock consisted of sandstone. Karst systems were not encountered during the exploration. Faults were not observed within the rock cores and no faults have been identified to have occurred in the area in the past 1.6 million years as noted in the updated Earthquake Fault Map summarized in Section 2.2 of the January 2023 Plan Mod. In addition, the Phase IV Landfill is not located within a seismic impact zone. These geologic features provide a stable foundation for the Phase IV Landfill.

As noted in Section 2.5 of Appendix D of the January 2023 Plan Mod, global stability analyses were performed during the 2000 Plan of Operation. The analysis indicated acceptable factors of safety for the critical slopes. These global stability analyses were previously included in Appendix D and Appendix F.7 of the January 2023 Plan Mod.

- On-site or local human-made feature or events both surface and subsurface As described in Section 2.2 and shown in the cross sections presented of Appendix D of the January 2023 Plan Mod, the Phase IV Landfill is not located on human-made features or events that would be considered unstable. The facility was designed and constructed to efficiently manage storm water and leachate. The base liner was constructed at grades greater than 5 feet above the highest noted groundwater level. Based on the analyses, the existing Landfill and future lateral expansions are not considered unstable.
- 8. Section NR 514.07(1)(i) and (j), Wis. Adm. Code: Provide updated construction quality control and assurance plans that include the placement of the 2-foot soil barrier layer of the final cover.

<u>Response</u>: An updated Construction Quality Control and Assurance Plan (CQA Plan) is provided in **Attachment 5**.

9. Section NR 514.07(10), Wis. Adm. Code: Provide additional information for the operational plans required for the CCR landfill.

a. Section NR 514.07(10)(b)3, Wis. Adm. Code: Provide an updated run-on and runoff control system plan that includes construction procedures and a schedule for construction of the storm water control structures.

<u>Response</u>: Information pertaining to construction procedures and a schedule for construction of the storm water control structures was provided in Section 5.2 of the January 2023 Plan Mod and included in Sections 2.2.2 and 2.3.2 of Appendix K of the January 2023 Plan Mod.

The information from Section 5.2 was incorporated into the Run-on and Run-off Control System Plan provided in **Attachment 12**. No other changes to the Run-on and Run-off Control System Plan have been made. General updates to the Run-on and Run-off Control System Plan will be completed in 2026 as part of the 5-year update.

b. Section NR 514.07(10)(c)6, Wis. Adm. Code: Provide the anticipated schedule of final cover construction activities including the year and number of acres of each construction event.

<u>Response</u>: Section NR 514.07(10)(c)(6) requires that a "schedule for the completion of all closure activities, including an estimate of the year in which all closure activities for the CCR landfill will be completed. The schedule shall provide sufficient information to describe the sequential steps that will be taken to close the CCR landfill, including identification of major milestones such as coordinating with other agencies and obtaining other necessary approvals or permits, installation of the final cover system, and the estimated timeframes to complete each step or phase of CCR landfill closure. If the estimated timeframes to complete closure exceed the timeframes specified under s. NR 506.083 (3) (a), the plan shall include the site-specific information, factors and considerations that support any time extension." Section NR 506.083 references the completion of closure activities, i.e. when the entire landfill is closed, and does not refer to intermediate closure events while operations are still active.

Phasing of the Phase IV Landfill was provided in the 2000 Plan of Operation with phasing drawings provided in Appendix F.2 of the January 2023 Plan Mod. However, determining when each intermediate closure event will occur is not practicable as it is based on the filling rates which are variable and dependent on the amount of CCR waste that is generated and the amount of the CCR waste that can be beneficially reused/sold.

Table 1 of Appendix P of the January 2023 Plan Mod provided an estimated schedule for the completion of all closure activities (Phase IV Landfill becomes inactive and completely closed) as required by s. NR 514.07(10)(c)(6) and that met the timeframes detailed in s. NR 506.083. Table 1 indicated that final closure is currently estimated to be initiated in 2057, and 124 days is estimated to be required to cover the potential largest final cover area of the Phase IV Landfill (approximately 12.4 acres) along with completing the notification of completion of closure and deed notation and notification. This table provides estimated timelines for each step of the final cover process and their anticipated durations as required by s. NR 514.07(10)(c)(6).

c. Section NR 514.07(10)(d)1.d., Wis. Adm. Code: Provide a statement that the groundwater monitoring system will be maintained and monitored in accordance with ch. NR 507, Wis. Adm. Code.

<u>Response</u>: Section 2.3.5 of the Post Closure Care Plan from the January 2023 Plan Mod (Appendix Q) indicates that the groundwater system will be maintained throughout the postclosure period. In addition, the system will be sampled as outlined in the ESAP, which was developed in compliance with ch. NR 507. A code reference to ch. 507 was added into the Post Closure Care Plan and the updated plan is included in **Attachment 13**.

d. Section NR 514.07(10)(d)2, Wis. Adm. Code: Provide the name of the person or office to contact about the facility during long-term care.

<u>Response</u>: The contact person or office for the long-term care of the Phase IV Landfill was previously specified in Section 2.2 of the Post Closure Plan provided in Appendix Q

of the January 2023 Plan Mod. The information provided included the title of the person that should be contacted along with an address, phone number, and email address.

10. Sections NR 520.07(2) and (3), Wis. Adm. Code: Provide updated cost estimates for closure and long- term care as needed to reflect above items.

Response: Updated closure and post-closure costs are provided in Appendix 14.

11. Provide a chronological listing of all previous department issued plan of operation and modification approvals, including expedited plan modifications, along with a listing of their approval conditions, indicating the status (active, completed or superseded) of each condition.

<u>Response</u>: Per s. NR 514.07(6m), a plan of operation for any proposed landfill that includes a vertical or horizontal overlay onto an existing facility shall include a summary of the applicable conditions, approvals, or orders issued by the WDNR in chronological order, indicating which are active and subject to compliance and the status of each condition. This was not included in the January 2023 Plan Mod for the following reasons:

- The Phase IV Landfill is an existing facility with no horizontal or vertical expansion proposed.
- This request was not identified as a requirement in the s. NR 514.045 for the Plan of Operation Plan Modification for Initial Permitting.
- As noted in s. NR 514.045(1) the January 2023 submittal was a Plan of Operation Modification, not a new Plan of Operation. Section NR 514.07(6m), which governs the request in WDNR's Comment 11, applies to new Plans of Operation not modifications to existing Plans of Operation.

As this is not required per ch. NR 514 for Plan Modifications or for the Plan Modification for Initial Permitting of CCR landfills, DPC will not be assembling this information. Approval letters associated with the Phase IV Landfill were provided as Appendix B in the January 2023 Plan Mod for WDNR's convenience.

12. Please note that the proposed final cover alternative which includes 2-ft of moisture conditioned and compacted fly ash overlain by a geomembrane does not meet code requirements and therefore will not be approved.

<u>Response</u>: The proposed final cover alternative was previously approved by the WDNR via the Plan Modification submitted in January 2004 and provided in full in Appendix J.1 of the January 2023 Plan Mod. The associated approval letter was included in Appendix B of the January 2023 Plan Mod. If the January 2004 alternative final cover will not approved for future final cover events, the final cover system provided in the 2001 Plan of Operation Approval Letter consisting of 2-foot soil barrier layer, GCL, geomembrane, 1-foot drainage layer, 1.5-foot rooting zone layer, and 6-inch topsoil layer will be utilized as detailed in the response to Comment 4a.

Proposed Preventive Action Limits (PALs) and Alternative Concentration Limits (ACLs)

In addition to the above responses to WDNR comments, this Addendum includes proposed PALs and ACLs. Consistent with NR 507 and the WDNR 2007 guidance document "How to Calculate Preventive Action Limits (PALs) and Alternative Concentration Limits (ACLs) for Solid Waste Facilities", PALs were calculated for the following indicator parameters for CCR monitoring wells: alkalinity, calcium, hardness, total dissolved solids (TDS), specific conductance, and lithium. PAL calculations were based on eight rounds of background groundwater quality data collected in 2022-2023 or 2015-2017. PALs for these indicator parameters were calculated as the greater of: 1) the mean of at least eight values plus three standard deviations, or 2) the mean of at least eight values plus the increment specified in s. NR 140.20, Table 3. Selected values for PALs were rounded up to two significant digits as specified in the WDNR guidance. Proposed PALs are summarized in **Table 1**. The PAL calculations are summarized in **Attachment 15**. Previously approved PALs for hardness and alkalinity at the CCR wells were based on filtered samples, and therefore, are not applicable to the CCR monitoring program.

Baseline groundwater data were reviewed to determine if monitoring parameters exceed existing NR 140 groundwater standards at CCR wells. Nitrate plus nitrite as nitrogen was detected at concentrations exceeding the NR 140 PAL in six of the CCR wells. Due to these exceedances, ACLs were calculated for nitrate plus nitrite as nitrogen at the six CCR wells where exceedances were identified. ACLs were calculated as the mean concentration of the eight baseline sampling events, plus two standard deviations, as outlined in the 2007 WDNR guidance document referenced above. Values for ACLs were rounded up to two significant digits as specified in the WDNR guidance. Proposed ACLs are summarized in **Table 2**. The ACL calculations are summarized in **Attachment 15**.

Per s. NR 140.28(1)(a), the WDNR may not approve a facility where a PAL has been exceeded unless an exemption is granted. Therefore, in accordance with s. NR 140.28 and s. NR 507.29, DPC is requesting an exemption for PAL exceedances for nitrate plus nitrite as nitrogen at W-100R, W-100AR, W-101, W-105, W-106, and W-107. Because the highest concentrations of nitrate plus nitrite as nitrogen are found in the upgradient wells, the nitrogen in groundwater appears to be coming from an upgradient source, most likely upgradient agricultural land use. Per NR s. 140.28(3)(a), the department may grant an exemption for background nitrate exceeding the PAL if the facility is designed to achieve the lowest possible concentration for that substance which is technically and economically feasible and the existing or anticipated increase in the concentration of the substance does not present a threat to public health or welfare. The facility is designed to achieve the lowest possible concentration that substance the lowest possible concentration that is technically and economically feasible, and there is no anticipated increase in nitrate plus nitrite as nitrogen in groundwater resulting from the facility.

DPC and TRC trust that we have provided the information requested by the Department. Additional copies of this Addendum 1 have been distributed according to the attached distribution list.

Request for Additional Waste Stream in Phase IV Landfill

In addition to the information requested by the Department, DPC requests approval to accept a new waste stream for a limited time into the Phase IV Landfill as part of this Plan Modification. The new waste stream is anticipated to be a limited time occurrence correlating with and consisting of waste from the removal of the EJ Stoneman Landfill in Cassville, Wisconsin. To support this request, detailed

information on the waste type and quantity, anticipated schedule, and management procedures is provided in **Attachment 16**.

DPC is requesting that the WDNR review and provide an approval for the Phase IV Landfill. Please feel free to contact Leif Tolokken at (608) 386-2675 or me at (608) 622-9382 with questions regarding this document.

Sincerely,

TRC

old W. Marta

Todd Martin Principal Project Manager

cc: See attached Distribution List

List of Enclosures

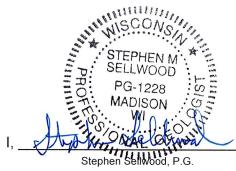
- Attachment 1: Addendum Certification Statement
- Attachment 2: WDNR Incompleteness Determination for the Plan of Operation Approval Modification for Initial Permitting of Coal Combustion Residuals (CCR) Landfill for the Dairyland Power Cooperative Alma Off-Site Disposal Facility, Phase IV Landfill (License #4126), dated April 26, 2023
- Attachment 3: Site Specific Storm Water Pollution Prevention Plan
- Attachment 4: Loadout Station
- Attachment 5: Construction Quality Assurance Plan
- Attachment 6: Final Cover Construction Stormwater Drainage Piping
- Attachment 7: Previous GCL Conformance Testing
- Attachment 8: Water Table Map
- Attachment 9: Baseline Groundwater Monitoring Data
- Attachment 10: Revised Environmental Sampling and Analysis Plan
- Attachment 11: Additional Information for s. NR 514.045(c) Demonstration
- Attachment 12: Revised Run-On and Run-Off Systems Plan
- Attachment 13: Revised Post Closure Care Plan
- Attachment 14: Revised Closure and Post-Closure Costs
- Attachment 15: PAL and ACL Calculations
- Attachment 16: Additional Waste Stream Request

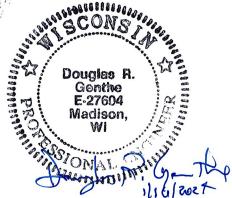
Distribution List

Recipient	Hard Copy	Electronic Copy ⁽¹⁾
Anthony Peterson Wisconsin Department of Natural Resources 141 NW Barstow Street #180 Waukesha, WI 53188	1	Yes
Matthew Bachman Wisconsin Department of Natural Resources 1300 W Clairemont Ave Eau Claire, WI 54701	1	Yes
Leif Tolokken Dairyland Power Cooperative 3200 East Avenue South La Crosse, WI 54601		Yes
Don Loock Dairyland Power Cooperative S2180 State Hwy 35 Alma, WI 54610		Yes
BreAnne Kahnk TRC 999 Fourier Drive, Suite 101 Madison, WI 53717		Yes

Footnotes:

⁽¹⁾ Electronic copies to be sent via an e-mail link.


Attachment 1


Addendum Certification Statement

Certification Statement

hereby certify that I am a licensed professional engineer in the Douglas R. Genthe, P.E.

State of Wisconsin in accordance with the requirements of ch. A-E 4, Wis. Adm. Code; that this document has been prepared in accordance with the Rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 500 to 538, Wis. Adm. Code."

hereby certify that I am a licensed professional geologist

in the State of Wisconsin in accordance with the requirements of Chapter GHSS 2, Wisconsin Administrative Code; that the preparation of this document has not involved any unprofessional conduct as detailed in Chapter GHSS 5, Wisconsin Administrative Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in Chapters NR 500 to NR 538, Wisconsin Administrative Code.

Attachment 2

WDNR Incompleteness Determination for the Plan of Operation Approval Modification for Initial Permitting of Coal Combustion Residuals (CCR) Landfill for the Dairyland Power Cooperative Alma Off-Site Disposal Facility, Phase IV Landfill (License #4126), dated April 26, 2023

Tony Evers, Governor Adam N. Payne, Secretary Telephone 608-266-2621 Toll Free 1-888-936-7463 TTY Access via relay - 711

April 26, 2023

FID: 606043900 Buffalo County SW/ Correspondence

Mr. Leif Tolokken Dairyland Power Cooperative JPM Station 500 Old State Highway 35 Alma, WI 54610

Subject: Incompleteness Determination for the Plan of Operation Approval Modification for Initial Permitting of Coal Combustion Residuals (CCR) Landfill for the Dairyland Power Cooperative Alma Off-Site Disposal Facility, Phase IV Landfill (License #4126)

Dear Mr. Tolokken:

The Department of Natural Resources (department) has reviewed for completeness the plan of operation modification for initial permitting of a CCR Landfill ("the plan"), submitted on behalf of Dairyland Power Cooperative (DPC), by TRC Companies for the Dairyland Power Cooperative Alma Off-Site Disposal Facility, Phase IV Landfill. The plan includes a report and set of plan sheets titled: "Plan Modification for Initial Permitting of CCR Landfills, Alma Off-site Disposal Facility, Phase IV Landfill", dated and received by the department on January 30, 2023.

The department has determined the plan is not complete since the minimum requirements of chs. NR 500 to 520, Wis. Adm. Code, have not been met in accordance with s. NR 514.045, Wis. Adm. Code. The department understands the complexity of the new CCR rules and its implementation and will be available to discuss the following items while you work to prepare the addenda to your initial submittal.

The following information must be provided in order for the department to issue a determination that the plan is complete:

- 1. Section NR 504.04(4)(b), Wis. Adm Code: Provide a revised endangered species or critical habitat demonstration narrative that includes a statement about the existence of potential habitat for the threatened snail species within the approved liner areas Cell 4 Module A, and Module B.
- 2. Section NR 504.04(4)(c), Wis. Adm. Code: Provide a copy of the facility's Wisconsin Pollutant Discharge Elimination System (WPDES) permit and a copy of the facilities most recent stormwater pollution prevention plan (SWPPP).
- 3. Section NR 504.06, Wis. Adm. Code: Provide the information required for the design and construction of the liner and leachate collection and removal system.

- a. Section NR 504.06(3)(c) and (k), Wis. Adm. Code: Clarify if the geomembrane installation will adhere to the requirements of these code cites.
- b. Section NR 504.06(5)(j), Wis. Adm. Code: Provide a revised leachate removal system which includes a sump and side slope riser design.
- c. Section NR 504.06(5)(l), Wis. Adm. Code: Regarding the leachate transfer lines, clarify whether the upslope end of the secondary pipe is sealed and the downslope end is open to allow any collected liquid to flow into the manhole.
- d. Section NR 504.06(5)(p), Wis. Adm. Code: Provide a discussion of the measures to be taken to prevent accidental discharge at the loadout station and provide the required specifications for the leachate loadout station design.
- 4. Section NR 504.07, Wis. Adm. Code: Provide the information required for the design and construction of the final cover.
 - a. Section NR 504.07(4)(a)12 through 15, Wis. Adm. Code: Provide the soil barrier layer specifications and clarify if its construction will adhere to the requirements of these code cites.
 - b. Section NR 504.07(6)(b), (7), and (8), Wis. Adm. Code: Re-evaluate the final cover perimeter storm water drain system design and provide the specifications and application rates for fertilizer and mulch addition to topsoil.
 - c. Section NR 504.12(3)(a)5, Wis. Adm. Code: Specify the hydraulic conductivity standard of the soil barrier layer material to be used in construction of the liner and provide justification for the assumptions made for the liquid flow rate calculation for the soil barrier layer.
- 5. Section NR 507.15(3), Wis. Adm. Code: Provide the following information for general environmental monitoring requirements.
 - a. Section NR 507.15(3)(a), Wis. Adm Code: Provide a more detailed discussion on the known or suspected contaminant pathways and how the proposed CCR groundwater monitoring system is designed to cover all the pathways.
 - b. Section NR 507.15(3)(b), Wis. Adm Code: Provide site-specific technical data on the below listed items and provide additional discussion on how that information was considered when deciding the number, spacing, and depths of monitoring wells that are part of the proposed CCR groundwater monitoring system.
 - i. Aquifer Thickness.
 - ii. Groundwater flow rate.
 - iii. Seasonal and temporal fluctuations in groundwater flow.
 - iv. Hydraulic conductivities, porosities and effective porosities for the saturated and unsaturated geologic units overlying the uppermost aquifer and materials comprising the uppermost aquifer, and materials comprising the confining unit defining the lower boundary of the uppermost aquifer.

- c. Section NR 507.15(3)(b), Wis. Adm. Code: Provide a groundwater flow map for the site that includes at a minimum the proposed CCR wells, other groundwater monitoring wells, the landfill footprint, and groundwater flow direction.
- d. Section NR 507.15(3)(i), Wis. Adm. Code: Provide baseline groundwater monitoring data for copper, manganese, silver, zinc, and field temperature in the CCR Wells.
- e. Section NR 507.15(3)(k), Wis. Adm. Code: Provide a statement for the owner/operator to notify the department in writing within 60 days of completing sampling and analysis at any CCR well when a groundwater standard has been attained or exceeded in accordance with s. NR 507.15(3)(k), Wis. Adm. Code.
- 6. Section NR 507.16(1), Wis. Adm. Code: Provide the following information for the sampling plan.
 - a. Section NR 507.16(1)(a), Wis. Adm. Code: Provide an updated Site Monitoring Locations map that includes the leachate tank, and retention pond.
 - b. Section NR 507.16(1)(c), Wis. Adm. Code: Provide revised procedures for field measurements for the items listed below.
 - i. A detailed order in which wells should be sampled if the groundwater has been impacted by regulated or other activities.
 - ii. The procedures and types of equipment to determine turbidity, odor, and color.
 - c. Section NR 507.16(1)(d), Wis. Adm. Code: Provide an update to the equipment cleaning process that includes procedures to clean purging equipment between wells.
 - d. Section NR 507.16(1)(e), Wis. Adm. Code: Provide revised procedures for obtaining samples from wells that include the following
 - i. The volume of sample required for analysis.
 - ii. The rate of flow when sampling, when applicable.
 - e. Section NR 507.16(1)(f), Wis. Adm Code: Provide revised procedures for establishing field quality assurance and quality control that include procedures for and the frequency at which field blanks will be collected and processed.
- 7. Section NR 514.045(1)(c)1 through 3, Wis. Adm. Code: Provide a demonstration addressing the stability items of this section.
- 8. Section NR 514.07(1)(i) and (j), Wis. Adm. Code: Provide updated construction quality control and assurance plans that include the placement of the 2-foot soil barrier layer of the final cover.
- 9. Section NR 514.07(10), Wis. Adm. Code: Provide additional information for the operational plans required for the CCR landfill.

- a. Section NR 514. 07(10)(b)3, Wis. Adm. Code: Provide an updated run-on and run-off control system plan that includes construction procedures and a schedule for construction of the storm water control structures.
- b. Section NR 514. 07(10)(c)6, Wis. Adm. Code: Provide the anticipated schedule of final cover construction activities including the year and number of acres of each construction event.
- c. Section NR 514.07(10)(d)1.d., Wis. Adm. Code: Provide a statement that the groundwater monitoring system will be maintained and monitored in accordance with ch. NR 507, Wis. Adm. Code.
- d. Section NR 514.07(10)(d)2, Wis. Adm. Code: Provide the name of the person or office to contact about the facility during long-term care.
- 10. Sections NR 520.07(2) and (3), Wis. Adm. Code: Provide updated cost estimates for closure and long-term care as needed to reflect above items.
- 11. Provide a chronological listing of all previous department issued plan of operation and modification approvals, including expedited plan modifications, along with a listing of their approval conditions, indicating the status (active, completed or superseded) of each condition.
- 12. Please note that the proposed final cover alternative which includes 2-ft of moisture conditioned and compacted fly ash overlain by a geomembrane does not meet code requirements and therefore will not be approved.

This incompleteness determination is not a denial of the plan, but merely indicates that additional information is needed for the department to determine the plan is complete. Submittal of this information does not ensure approval, nor does it preclude the department from requiring additional information if continued review indicates it is needed.

If you have any questions regarding this letter, please contact Tony Peterson at (715) 491-8546 or <u>anthony.peterson@wisconsin.gov</u>, or Matthew Bachman at (608) 512-3233 or <u>matthew.bachman@wisconsin.gov</u>.

Sincerely,

Lutur

John Morris, Professional Soil Scientist, Regional Supervisor Northern and West Central Regions Waste and Materials Management Program

 cc: Brian Kalvelage – Dairyland Power Cooperative (brian.kalvelage@dairylandpower.com) BreAnne Kahnk – TRC Companies (bkahnk@trccompanies.com) Todd Martin – TRC Companies (twmartin@trccompanies.com) Tony Peterson – DNR/WA (anthony.peterson@wisconsin.gov) Matthew Bachman – DNR/WA (matthew.bachman@wisconsin.gov) Joseph Lourigan – DNR/WA (joseph.lourigan@wisconsin.gov) Malena Grimm – DNR/WA (malena.grimm@wisconsin.gov) Attachment 3

Site Specific Storm Water Pollution Prevention Plan

Cover Sheet

Storm Water Pollution Prevention Plan (SWPPP) Alma Offsite

Environmental Department Controlled Document ----Water Quality----

Last Review/Revision Date: 1/12/2023

	Review/Revis	ion History	
Reviewed or Revised By	Date	Reviewed or Revised By	Date
Mike Peters	9/18/09		
Mike Peters	12/10/18		
Mike Peters	10/11/19		
Andy Thomes	1/29/21		
Andy Thomes	12/17/21		
Andy Thomes	1/12/23		
· · · · · · · · · · · · · · · · · · ·			

Storm Water Pollution Prevention Plan (SWPPP)

Dairyland Power Cooperative

Alma Offsite Site

September 18, 2009

Alma Offsite Storm Water Pollution Prevention Plan Distribution List

Name/Title/Work Location	Document Location
Don Loock / Mgr, Alma Fuels/ Alma Site	Working copy
Ty Johnson / Mechanical Foreperson/ Alma Offsite	Working copy
Janet Cleveland / Craig Leverance/ Performance Tech /	Working copy
JPM	
Andy Thomes / Water Compliance Specialist / La Crosse	Working original copy
Admin.	
Andy Thomes / Water Compliance Specialist / La Crosse	Alma Offsite Env. Comp.
Admin.	Manual and in p8

List current as of 1/12/2023.

Addendum

Included text in site description to reflect Phase IV construction and additional storm water basins.B. Kowalski9/7/00Added another potential storm water contamination source (ash spillage from trucks on way to landfill cell).B. Kowalski9/7/00Added BMP practice (ash spillage from trucks when hauling ash to landfill cell).B. Kowalski9/7/00Updated SWPP Plan distribution list.B. Kowalski9/7/00Updated farmatted distribution list.B. Kowalski1/9/02Updated team membership list.B. Kowalski1/9/02Updated site manager, updated distribution list, added observation point for temporary sed basin for Cell 2A, updated inspection forms.B. Kowalski6/5/06Updated distribution list, updated landfill cells narrative, added soil borrow sites to Facility Site Description, added observation points for soil borrow sites, updated inspection formsM. Peters9/18/09Updated distribution and team member lists, removed mention of Alma 1-5 throughout document, updated plan to current ash processing conditions, added signature page for Brian Treadway, and updated Appendices B and C to current conditions.M. Peters1/2/10/18Updated personnel infoA Thomes1/20/21	Item/Text Added or Changed	Reviewer	Date
spillage from trucks on way to landfill cell).B. Kowalski9/7/00Added BMP practice (ash spillage from trucks when hauling ash to landfill cell).B. Kowalski9/7/00Updated SWPP Plan distribution list.B. Kowalski9/7/00Reformatted distribution list.B. Kowalski1/9/02Updated team membership list.B. Kowalski1/9/02Updated site manager, updated distribution list, added observation point for temporary sed basin for Cell 2A, updated inspection forms.B. Kowalski6/5/06Updated distribution list, updated landfill cells narrative, added soil borrow sites to Facility Site Description, added observation points for soil borrow sites, updated inspection formsM. Peters9/18/09Updated distribution and team member lists, removed mention of Alma 1-5 throughout document, updated plan to current ash processing conditions, added signature page for Brian Treadway, and updated Appendices B and C to current conditions.M. Peters12/10/18Updated distribution and team member lists.A Thomes1/20/21	1	B. Kowalski	9/7/00
landfill cell).B. Kowalski9/7/00Updated SWPP Plan distribution list.B. Kowalski9/7/00Reformatted distribution list.B. Kowalski1/9/02Updated team membership list.B. Kowalski1/9/02Updated site manager, updated distribution list, added observation point for temporary sed basin for Cell 2A, updated inspection forms.B. Kowalski6/5/06Updated distribution list, updated landfill cells narrative, added soil borrow sites to Facility Site Description, added observation points for soil borrow sites, updated inspection formsM. Peters9/18/09Updated distribution and team member lists, removed mention of Alma 1-5 throughout document, updated plan to current ash processing conditions, added signature page for Brian Treadway, and updated Appendices B and C to current conditions.M. Peters12/10/18Updated distribution and team member lists.A Thomes1/20/21	-	B. Kowalski	9/7/00
Reformatted distribution list.B. Kowalski1/9/02Updated team membership list.B. Kowalski1/9/02Updated site manager, updated distribution list, added observation point for temporary sed basin for Cell 2A, updated inspection forms.B. Kowalski6/5/06Updated distribution list, updated landfill cells narrative, added soil borrow sites to Facility Site Description, added observation points for soil borrow sites, updated inspection formsM. Peters9/18/09Updated distribution and team member lists, removed mention of Alma 1-5 throughout document, updated plan to current ash processing conditions, added signature page for Brian Treadway, and updated Appendices B and C to current conditions.M. Peters12/10/18Updated distribution and team member lists.A Thomes1/20/21		B. Kowalski	9/7/00
Reformatted distribution list.B. Kowalski1/9/02Updated team membership list.B. Kowalski1/9/02Updated site manager, updated distribution list, added observation point for temporary sed basin for Cell 2A, updated inspection forms.B. Kowalski6/5/06Updated distribution list, updated landfill cells narrative, added soil borrow sites to Facility Site Description, added observation points for soil borrow sites, updated inspection formsM. Peters9/18/09Updated distribution and team member lists, removed mention of Alma 1-5 throughout document, updated plan to current ash processing conditions, added signature page for Brian Treadway, and updated Appendices B and C to current conditions.M. Peters1/2/10/18Updated distribution and team member lists.A Thomes1/20/21	Updated SWPP Plan distribution list.	B. Kowalski	9/7/00
Updated site manager, updated distribution list, added observation point for temporary sed basin for Cell 2A, updated inspectionB. Kowalski6/5/06Updated distribution list, updated landfill cells narrative, added soil borrow sites to Facility Site Description, added observation points for soil borrow sites, updated inspection formsM. Peters9/18/09Updated distribution and team member lists, removed mention of Alma 1-5 throughout document, updated plan to current ash processing conditions, added signature page for Brian Treadway, and updated Appendices B and C to current conditions.M. Peters12/10/18Updated distribution and team member lists.A Thomes1/20/21		B. Kowalski	1/9/02
point for temporary sed basin for Cell 2A, updated inspection forms.B. Kowalski6/5/06Updated distribution list, updated landfill cells narrative, added soil borrow sites to Facility Site Description, added observation points for soil borrow sites, updated inspection formsM. Peters9/18/09Updated distribution and team member lists, removed mention of Alma 1-5 throughout document, updated plan to current ash processing conditions, added signature page for Brian Treadway, and updated Appendices B and C to current conditions.M. Peters12/10/18Updated distribution and team member lists.A Thomes1/20/21	Updated team membership list.	B. Kowalski	1/9/02
soil borrow sites to Facility Site Description, added observation points for soil borrow sites, updated inspection formsM. Peters9/18/09Updated distribution and team member lists, removed mention of Alma 1-5 throughout document, updated plan to current ash processing conditions, added signature page for Brian Treadway, and updated Appendices B and C to current conditions.M. Peters12/10/18Updated distribution and team member lists.A Thomes1/20/21	point for temporary sed basin for Cell 2A, updated inspection	B. Kowalski	6/5/06
Alma 1-5 throughout document, updated plan to current ash processing conditions, added signature page for Brian Treadway, and updated Appendices B and C to current conditions.M. Peters12/10/18Updated distribution and team member lists.A Thomes1/20/21	soil borrow sites to Facility Site Description, added observation	M. Peters	9/18/09
Updated distribution and team member lists. A Thomes 1/20/21	Updated distribution and team member lists, removed mention of Alma 1-5 throughout document, updated plan to current ash processing conditions, added signature page for Brian Treadway,	M. Peters	12/10/18
Updated personnel info A Thomes 12/17/21		A Thomes	1/20/21
	Updated personnel info	A Thomes	12/17/21

Table Of Contents

<u>I</u>	Page
Introduction	1
Storm Water Pollution Prevention Plan	
Pollution Prevention Individual. Facility Site Description and Drainage Base Map. Summary of Existing Sampling Data and Observations. Potential Sources of Storm Water Contamination. Status of Non-Storm Water Discharges to Storm Sewer. Source Area Control Best Management Practices. Residual Pollutants. Storm Water Treatment Best Management Practices. Facility Monitoring Plan. SWPPP Implementation Schedule. Signature.	2 3 4 4 4 4 4 4 5
Appendices	
A. Storm Water Pollution Prevention Team B. Site Base Maps C. Inspection Forms	9

Introduction

Storm water regulations were published by the Environmental Protection Agency in 1990. The State of Wisconsin has authority to administer these regulations under NR 216. NR 216 defines the conditions under which storm water associated with industrial activity can be discharged to the waters of the State of Wisconsin. A WPDES Storm Water Permit is required to discharge storm water. One of the requirements of the permit is a Storm Water Pollution Prevention Plan.

Storm Water Pollution Prevention Plan(SWPPP)

Pollution Prevention Individual

Ty Johnson, Mechanical Foreperson, is the SWPPP coordinator for the Alma Offsite. This individual has the responsibility to coordinate the development, evaluation, maintenance, and amendment of the SWPPP with the assistance of corporate Environmental Water and Waste Management Department and the Alma Offsite Site Storm Water Pollution Prevention Team. See Appendix A for Team members.

Facility Site Description and Drainage Base Map

The Alma Offsite is a licensed coal ash landfill site. It is located in Buffalo County south of Alma, Wisconsin along and northeast of state highway 35. The site is located within a coulee(valley) and has an elevation of 770 - 875 feet above mean sea level(MSL). The main features of the site are as follows:

1. Ash processing building.

Coal ash is brought to the site from Dairyland power plant sites in Alma(JPM) and Genoa(G-3), Wisconsin. Bottom ash is transported from the power plant site directly to the landfill. G-3 fly ash is brought to the site in semitrailer trucks, pneumatically unloaded, processed(conditioned), and loaded onto dump trucks for placement in the landfill. JPM fly ash is processed(conditioned) at JPM silos, and loaded onto dump trucks for placement in the landfill.

2. Landfill cells.

The existing landfill area is divided into four phases. The first three phases have been filled and closed. Storm water from outside the landfill proper boundary is directed around the landfill boundary so that none of this water comes in contact with coal ash and site activities.

Construction of the Phase IV landfill began in 2001 and will consist of 6 cells, each of which will be built one at a time. As of December 2018, the first three cells (Cell 1, 2A, and 2B) have been filled and capped. Cell 3A and 3B are constructed and are currently in use. Storm water that will contact ash will be directed to a leachate collection system and to a holding tank for either use in the ash conditioning process or used as make-up water in the JPM bottom ash dewatering system. Storm water that falls within the cell, that has not contacted ash, will be directed to one of two storm water runoff basins to settle out the suspended solids before discharge to the intermittent stream that runs through the site. 3. Soil borrow sites.

The Alma Offsite contains two soil borrow sites that are used periodically. Soil excavated from the borrow sites will be used as capping material for the landfill cells associated with Phase IV. Storm water associated with the soil borrow sites will be managed per the requirements of WPDES Nonmetallic Mining Operations General Permit WI-0046515-5 which was received for the borrow sites.

4. Storm water runoff pond.

A storm water runoff pond is located on the site to capture runoff from the immediate area surrounding the ash processing building. This water is used in the ash conditioning process. Water from this pond has never and is not anticipated to be discharged to surface water.

The Phase IV landfill has two storm water runoff basins. The basins collect storm water from within each cell that has not contacted ash. The basins will provide settling of suspended solids before discharge to the intermittent stream that runs through the site.

The drainage base map is located in Appendix B. The map indicates drainage patterns and potential contaminant sources. This map will be updated as the landfill cells are filled and closed.

Summary of Existing Sampling Data or Observations

There is some water quality data for the storm water runoff pond. Because this water is collected and not discharged, there will be no further discussion of the data. This data is mentioned to inform agency personnel or other interested parties that it exists. The data for the runoff pond is maintained by the Environmental Water and Waste Management Department. No other observations which characterize storm water quality or identify storm water contamination sources exist.

Potential Sources of Storm Water Contamination

Potential sources of contaminated storm water are as follows:

aboveground fuel oil tank used oil barrels ash unloading area ash loading area transformers soil erosion ash spillage from trucks on way to landfill cell Potential pollutants resulting from contact with these sources include:

suspended solids(ash fines, soil), trace metals(e.g. iron, zinc), petroleum VOCs(e.g. DRO), and oil and grease.

Status of Non-storm Water Discharges to the Storm Sewer

This site has no non-storm water discharges to the storm sewer system.

Source Area Control Best Management Practices

Petroleum AST has berm to capture leaks and is completely enclosed.

The site perimeter is graded to retain storm water runoff to the site, with the exception of those areas which are not a part of active operations per the landfill Plan of Operation. Erosion in the landfill area is monitored and repaired as needed per the landfill Plan of Operation and/or Closure Plan.

The transformers are checked daily as site supervisors make their rounds of the site. The ash unloading and loading areas are paved and sloped to a storm water collection drain and/or the runoff pond. Note: storm water from these sources is directed to the runoff pond.

Ash that may fall off of trucks in the ash loading area is picked up to minimize storm water contact and fugitive dust conditions.

Processed ash is loaded on the dump trucks to minimize spillage from the trucks during transport to the landfill cell.

Used oil barrels are placed on top of spill pallets.

Training for site personnel will be conducted annually via GPI Learn to maintain an awareness of storm water pollution prevention.

Residual Pollutants

No residual pollutants should leave the site except rain events which will exceed the 25year, 24-hour storm events. The two storm water collection drains are designed to overflow to a nearby intermittent stream under extreme rain events as approved by the Bureau of Solid Waste when the landfill site was constructed. Under these events residual pollutants would consist of suspended solids and trace metals. No activities at this facility would contribute to BOD.

Storm Water Treatment Best Management Practices

Source BMPs should be sufficient to control potential storm water pollutants at this site.

Facility Monitoring Plan

The facility monitoring plan shall include the following:

1. Evaluations of non-storm water discharges

a. end of pipe screening twice per year(January, July)

2. Evaluation of storm water discharges

a. annual facility site compliance inspection(January)
b. quarterly visual observations of storm water leaving the site. (Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec)

Inspection forms can be found in Appendix C.

SWPPP Implementation Schedule

Evaluation of non-storm water and storm water discharges will begin in 1997. BMPs identified in the SWPPP are already in place. No further action is warranted at this time.

Signature

Name: George Miller Title: Site Manager

Signature:_____

I certify under penalty of law that this document and attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information contained in the plan. Based on my inquiry of the person, or persons, who manage the system, or those persons directly responsible for gathering the information; the information contained in this document is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for providing false information, including the possibility of fine and imprisonment. In addition, I certify under penalty of law that, based upon inquiry of persons directly under my supervision, to the best of my knowledge and belief, the provisions of this document adhere to the provisions of the storm water permit for the development and implementation of a Storm Water Pollution Prevention Plan and that the plan will be complied with.

(Revision Recertification)

Signature

Name: Brian Treadway Title: Site Manager

Signature: Brion Jreaker

I certify under penalty of law that this document and attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information contained in the plan. Based on my inquiry of the person, or persons, who manage the system, or those persons directly responsible for gathering the information; the information contained in this document is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for providing false information, including the possibility of fine and imprisonment. In addition, I certify under penalty of law that, based upon inquiry of persons directly under my supervision, to the best of my knowledge and belief, the provisions of this document adhere to the provisions of the storm water permit for the development and implementation of a Storm Water Pollution Prevention Plan and that the plan will be complied with.

7

Appendix A

Alma Offsite SWPPP Team Members

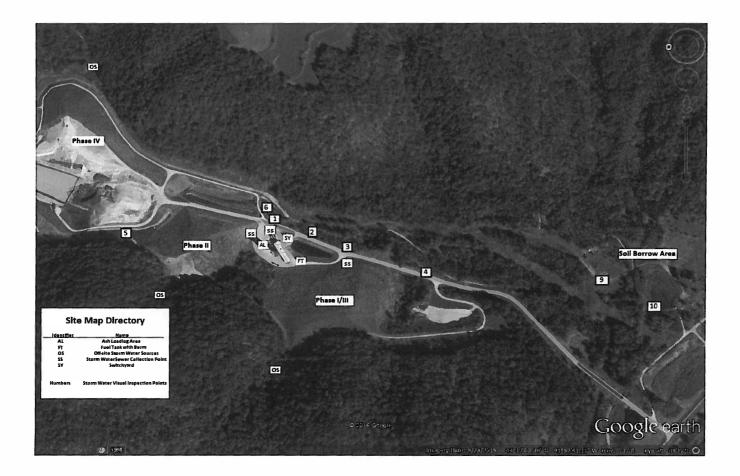
Alma Offsite SWPPP Team Members

Team Leader:

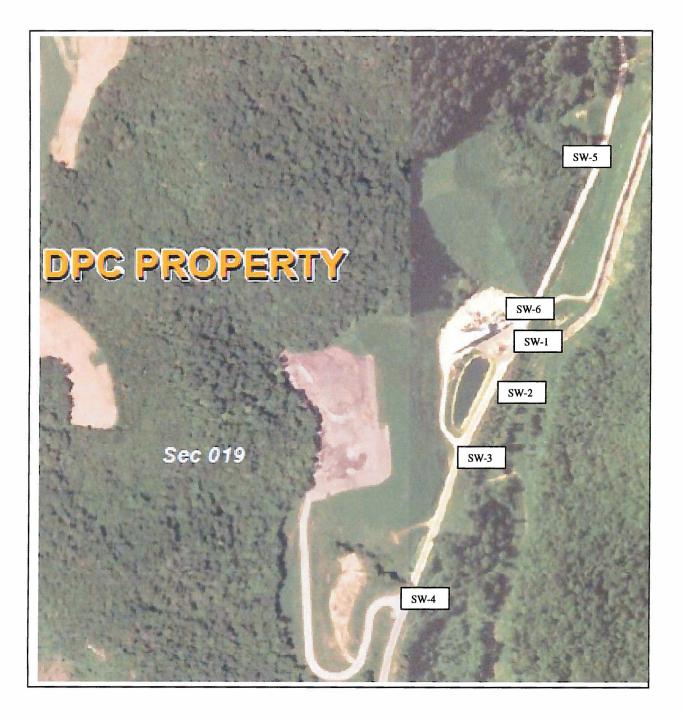
Ty Johnson

Members

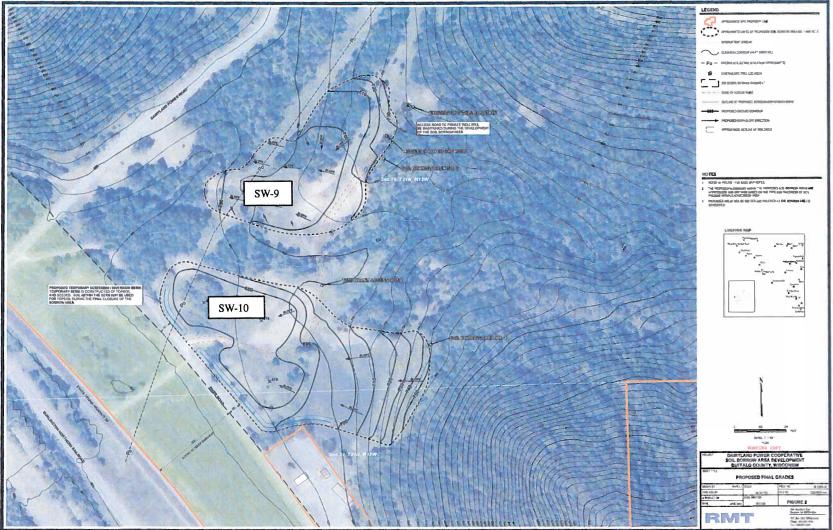
Don Loock Janet Cleveland Craig Leverance


Advisor

Andy Thomes


Appendix B

Site Base Maps


.

Alma Offsite Map including Quarterly Inspection Locations

Quarterly Inspection Locations SW-1 thru SW-6

2:03C8 Palls ACCERCICA 19807 June 16/2/2008 13:59 34

Quarterly Inspection Locations SW-9 and SW-10

Appendix C

Inspection Form

2

State of Wisconsin Department of Natural Resources		Quarterly Visu Form 3400 – 176A (I		on – Field Sheet			
This form is for your own use and should be kept as part of your Storm Water Pollution Prevention Plan. It does not have to be submitted to the Department unless requested. If false information from quarterly visual inspections is reported to the Department, you could be subject to penalties up to \$10,000 pursuant to s. 283.91(4), Wis. Stats.							
Use one form per outfall.	Use one form per outfall.						
Quarterly visual inspections at each storm water discharge outfall on your site can be a valuable assessment tool and are required by the Tier 1 and Tier 2 Industrial Storm Water General Permits. This inspection should be performed when sufficient runoff occurs during daylight hours. Try to make observations within the first 30 minutes after runoff begins discharging from the outfall, or as soon as practical, but no later than 60 minutes. If you find visible pollution, note the probable source and list any possible Best Management Practices that could be used to reduce or eliminate the problem.							
Make any necessary changes to your Storm W	ater Pollution Pr	evention Plan as needed.					
Facility Name Dairyland Power Cooperative <i>A</i>	Alma Offsite						
Street Address		City	State	ZIP Code			
State Highway 35 and River Ro	oad	Alma	WI	54610			
Name of Person Conducting Inspection			Inspection Dat	te			
Employer Dairyland Power Cooperative			Telephone Nu	mber			
Outfall Number (make reference to site map)	Description of C	outfall (e.g., ditch, concrete p	pipe, grassed swa	le, etc.)			
SW-1	-	e located northeast					
Time of Rainfall Event Time of Visual Inspe		: Amount of rainfall at time	of observation (n	earest tenth of an inch)			
Describe your observations. An easy way to co discharged from the facility and visually inspec sheen or any other visual indicators of storm w	ct the water. Inclu	de any observations of color	, odor, turbidity,	floating solids, foam, oil			
Color: Clear Red	Yellow	Brown	Other:				
Odor: 🛛 None 🗆 Mus	ty 🛛 Sewage	Rotten Egg	Other:				
Clarity: Clear Clou	idy D Opaque	Suspended Solids	Other:				
Floatables:	m 🛛 Garbage	e 🛛 Oily Film	Other:				
Deposits/Stains: Clear Red	☐ Yellow	Brown	Other:				
Comments:							
2							
This outfall could not be evaluated during this	quarter due to the	following reason:					

State of Wisconsin Department of Natural Resources	Quarterly Visual Form 3400 – 176A (R 3/		n – Field Sheet			
This form is for your own use and should be kept as part of your Storm Water Pollution Prevention Plan. It does not have to be submitted to the Department unless requested. If false information from quarterly visual inspections is reported to the Department, you could be subject to penalties up to \$10,000 pursuant to s. 283.91(4), Wis. Stats.						
Use one form per outfall.						
Quarterly visual inspections at each storm water discharge outfall on your site can be a valuable assessment tool and are required by the Tier 1 and Tier 2 Industrial Storm Water General Permits. This inspection should be performed when sufficient runoff occurs during daylight hours. Try to make observations within the first 30 minutes after runoff begins discharging from the outfall, or as soon as practical, but no later than 60 minutes. If you find visible pollution, note the probable source and list any possible Best Management Practices that could be used to reduce or eliminate the problem.						
Make any necessary changes to your Storm Water Pollution Prev	vention Plan as needed.					
Facility Name Dairyland Power Cooperative Alma Offsite						
	City	State	ZIP Code			
	Alma	WI	54610			
Name of Person Conducting Inspection		nspection Date	10.010			
Employer Dairyland Power Cooperative	т	elephone Num	ber			
	tfall (e.g., ditch, concrete pipe,	grassed swale	, etc.)			
SW-2 End of pipe	that exits the Runoff	Pond. (se	e map)			
Time of Rainfall Event Time of Visual Inspection Optional: A	Amount of rainfall at time of o	bservation (nea	arest tenth of an inch)			
Describe your observations. An easy way to conduct this inspectio discharged from the facility and visually inspect the water. Include sheen or any other visual indicators of storm water pollution and th	e any observations of color, od	or, turbidity, fl	oating solids, foam, oil			
Color: Clear Red Yellow	Brown	Other:				
Odor: None Musty Sewage	Rotten Egg	Other:				
Clarity: Clear Cloudy Opaque	□ Suspended Solids □	Other:				
Floatables: None Foam Garbage	Oily Film	Other:				
Deposits/Stains: Clear Red Yellow	Brown	Other:				
Comments:						
This outfall could not be evaluated during this quarter due to the fol	llowing reason:					

State of Wisconsin	Quarterly Visual Inspection – Field Sheet
Department of Natural Resources	Form 3400 – 176A (R 3/01)

This form is for your own use and should be kept as part of your Storm Water Pollution Prevention Plan. It does not have to be submitted to the Department unless requested. If false information from quarterly visual inspections is reported to the Department, you could be subject to penalties up to \$10,000 pursuant to s. 283.91(4), Wis. Stats.

Use one form per outfall.

Quarterly visual inspections at each storm water discharge outfall on your site can be a valuable assessment tool and are required by the Tier 1 and Tier 2 Industrial Storm Water General Permits. This inspection should be performed when sufficient runoff occurs during daylight hours. Try to make observations within the first 30 minutes after runoff begins discharging from the outfall, or as soon as practical, but no later than 60 minutes. If you find visible pollution, note the probable source and list any possible Best Management Practices that could be used to reduce or eliminate the problem.

Make any necessary changes to your Storm Water Pollution Prevention Plan as needed.

Facility Name							
Dairyland Po	wer Coope	rative A	Ima Offsite				
Street Address				City		State	ZIP Code
State Highwa	y 35 and R	iver Roa	ad	Alma		WI	54610
Name of Person Conducting Inspection					Ins	pection D	ate
Employer					Te	lephone N	lumber
Dairyland Power Cooperative							
Outfall Number (make reference to site map) Description of Outfall (e.g., ditch, concrete pipe, grassed swale, etc.)							
SW-3			End of pipe	e located southwest	of t	he Rur	noff Pond. (see
			map)				
Time of Rainfall Ev	ent Time of V	isual Inspec		Amount of rainfall at time of	of obs	servation (nearest tenth of an inch)
		iouur mopoe	optional				
Describe your observations. An easy way to conduct this inspection is to use a glass jar to collect a sample of the storm water being discharged from the facility and visually inspect the water. Include any observations of color, odor, turbidity, floating solids, foam, oil sheen or any other visual indicators of storm water pollution and the probable sources of any observed storm water contamination.							
Color:	Clear	Red	☐ Yellow	Brown		Other:	
Odor:	□ None	Must	y 🛛 Sewage	Rotten Egg		Other:	
Clarity:	Clear		ly 🛛 Opaque	□ Suspended Solids		Other:	
Floatables:	□ None	☐ Foam	Garbage	Oily Film		Other:	
Deposits/Stains:	Clear	Red	☐ Yellow	Brown		Other:	
Comments:							
This outfall could no	t be evaluated d	uring this a	uarter due to the f	ollowing reason:			
				C			

State of Wisconsin Department of Natural Resources	Quarterly Visual Inspection – Field Sheet Form 3400 – 176A (R 3/01)						
This form is for your own use and should be kept as part of your Storm Water Pollution Prevention Plan. It does not have to be submitted to the Department unless requested. If false information from quarterly visual inspections is reported to the Department, you could be subject to penalties up to \$10,000 pursuant to s. 283.91(4), Wis. Stats.							
Use one form per outfall.							
Quarterly visual inspections at each storm water discharge outfall on your site can be a valuable assessment tool and are required by the Tier 1 and Tier 2 Industrial Storm Water General Permits. This inspection should be performed when sufficient runoff occurs during daylight hours. Try to make observations within the first 30 minutes after runoff begins discharging from the outfall, or as soon as practical, but no later than 60 minutes. If you find visible pollution, note the probable source and list any possible Best Management Practices that could be used to reduce or eliminate the problem.							
Make any necessary changes to your Storm Water Pollution P	revention Plan as needed.						
Facility Name Dairyland Power Cooperative Alma Offsite							
Street Address	City State ZIP Code						
State Highway 35 and River Road	Alma WI 54610						
Name of Person Conducting Inspection	Inspection Date						
Employer Dairyland Power Cooperative	Telephone Number						
Outfall Number (make reference to site map) Description of (Dutfall (e.g., ditch, concrete pipe, grassed swale, etc.)						
	mediately south of Phase III. (see map)						
Time of Rainfall Event Time of Visual Inspection Optional	: Amount of rainfall at time of observation (nearest tenth of an inch)						
discharged from the facility and visually inspect the water. Inclu	tion is to use a glass jar to collect a sample of the storm water being de any observations of color, odor, turbidity, floating solids, foam, oil the probable sources of any observed storm water contamination.						
Color: Clear Red Yellow	Brown Other:						
Odor: 🛛 None 🗆 Musty 🗆 Sewage	□ Rotten Egg □ Other:						
Clarity: Clear Cloudy Opaque	Suspended Solids Other:						
Floatables: 🛛 None 🗆 Foam 🖾 Garbag	e 🛛 Oily Film 🔹 Other:						
Deposits/Stains: Clear Red Yellow	Brown Other:						
Comments:							
This outfall could not be evaluated during this quarter due to the	following reason:						
	-						

State of Wisconsin	Quarterly Visual Inspection – Field Sheet
Department of Natural Resources	Form 3400 – 176A (R 3/01)

This form is for your own use and should be kept as part of your Storm Water Pollution Prevention Plan. It does not have to be submitted to the Department unless requested. If false information from quarterly visual inspections is reported to the Department, you could be subject to penalties up to \$10,000 pursuant to s. 283.91(4), Wis. Stats.

Use one form per outfall.

Quarterly visual inspections at each storm water discharge outfall on your site can be a valuable assessment tool and are required by the Tier 1 and Tier 2 Industrial Storm Water General Permits. This inspection should be performed when sufficient runoff occurs during daylight hours. Try to make observations within the first 30 minutes after runoff begins discharging from the outfall, or as soon as practical, but no later than 60 minutes. If you find visible pollution, note the probable source and list any possible Best Management Practices that could be used to reduce or eliminate the problem.

Make any necessary changes to your **Storm Water Pollution Prevention Plan** as needed.

Dairyland Pov	wer Coope	rative A	lma Offsite			
Street Address				City	State	ZIP Code
State Highway	v 35 and R^{i}	iver Rog	be	Alma	WI	54610
Name of Person Con					Inspection Da	
Employer	~				Telephone Nu	mber
Dairyland Pov						
Outfall Number (mak	ke reference to s		-	utfall (e.g., ditch, concrete p		
SW-5			Half-culver	t located at base of	? Phase II, n	orth side. (see
			map)			
Time of Rainfall Eve	nt Time of V	isual Inspec		Amount of rainfall at time	of observation (n	earest tenth of an inch)
Describe your observations. An easy way to conduct this inspection is to use a glass jar to collect a sample of the storm water being discharged from the facility and visually inspect the water. Include any observations of color, odor, turbidity, floating solids, foam, oil sheen or any other visual indicators of storm water pollution and the probable sources of any observed storm water contamination.						
Color:	Clear	🛛 Red	☐ Yellow	Brown	Other:	
Odor:	□ None	Musty	y 🛛 Sewage	Rotten Egg	Other:	
Clarity:	Clear		ly Dopaque	Suspended Solids	Other:	
Floatables:	□ None	□ Foam	Garbage	Oily Film	Other:	
Deposits/Stains:	Clear	□ Red	☐ Yellow	Brown	Other:	
Comments: This outfall could not	t be evaluated d	uring this ou	uarter due to the fo	ollowing reason.		
I HIS OUTTALL COULD NOT	t de evaluated d	uring this qu	uarter due to the fo	bilowing reason:		

State of Wisconsin Department of Natural F	Resources			Quarterly Visu Form 3400 – 176A (1	-	tion – Field Sheet	
This form is for your own use and should be kept as part of your Storm Water Pollution Prevention Plan. It does not have to be submitted to the Department unless requested. If false information from quarterly visual inspections is reported to the Department, you could be subject to penalties up to \$10,000 pursuant to s. 283.91(4), Wis. Stats.							
Use one form per outfall	1.						
Quarterly visual inspections at each storm water discharge outfall on your site can be a valuable assessment tool and are required by the Tier 1 and Tier 2 Industrial Storm Water General Permits. This inspection should be performed when sufficient runoff occurs during daylight hours. Try to make observations within the first 30 minutes after runoff begins discharging from the outfall, or as soon as practical, but no later than 60 minutes. If you find visible pollution, note the probable source and list any possible Best Management Practices that could be used to reduce or eliminate the problem.							
	inges to your	Storm Wa	ater Pollution Pr	evention Plan as needed.			
Facility Name Dairyland Powe	r Cooper	ative A	lma Offsite				
Street Address		anven	inna Orișite	City	State	ZIP Code	
State Highway 3	5 and Riv	ver Ro	ad	Alma	WI	54610	
Name of Person Conduc	ting Inspection	on			Inspection I	Date	
Employer Dairyland Powe	r Cooper	ative			Telephone N	Number	
Outfall Number (make r			-	outfall (e.g., ditch, concrete p			
SW-6				vert located at base	of Phase l	IV Sedimentation	
Time of Rainfall Event	Time of Mi		Basin # 1. (see map) Amount of rainfall at time	-f -hti	(accurate to the of an inch)	
The of Ramfall Event	Time of Vis	suar mspe	cuon Optional	Amount of raintain at time	of observation	(nearest tenth of an inch)	
discharged from the faci	lity and visua	ally inspec	t the water. Inclu	ion is to use a glass jar to co de any observations of color the probable sources of any	, odor, turbidit	y, floating solids, foam, oil	
Color:	Clear	🛛 Red	☐ Yellow	Brown	Other:		
Odor:	None	Must	y 🛛 Sewage	Rotten Egg	Other:		
Clarity:	Clear	Cloue	dy D Opaque	Suspended Solids	Other:		
Floatables:	None	☐ Foan	n 🛛 Garbage	e 🛛 Oily Film	Other:		
	Clear	Red	☐ Yellow	Brown	Other:		
Comments:							
This outfall could not be	evaluated du	ring this q	uarter due to the f	following reason:			

State of Wisconsin	Quarterly Visual Inspection – Field Sheet
Department of Natural Resources	Form 3400 – 176A (R 3/01)

This form is for your own use and should be kept as part of your Storm Water Pollution Prevention Plan. It does not have to be submitted to the Department unless requested. If false information from quarterly visual inspections is reported to the Department, you could be subject to penalties up to \$10,000 pursuant to s. 283.91(4), Wis. Stats.

Use one form per outfall.

Quarterly visual inspections at each storm water discharge outfall on your site can be a valuable assessment tool and are required by the Tier 1 and Tier 2 Industrial Storm Water General Permits. This inspection should be performed when sufficient runoff occurs during daylight hours. Try to make observations within the first 30 minutes after runoff begins discharging from the outfall, or as soon as practical, but no later than 60 minutes. If you find visible pollution, note the probable source and list any possible Best Management Practices that could be used to reduce or eliminate the problem.

Make any necessary changes to your Storm Water Pollution Prevention Plan as needed.

	Facility Name Dairyland Power Cooperative Alma Offsite							
Street Address		City	State	ZIP Code				
State Highway 35 and River Ro	bad	Alma	WI	54610				
Name of Person Conducting Inspection			Inspection Dat	the second s				
NA	NĂ							
Employer			Telephone Nu	mber				
Dairyland Power Cooperative								
Outfall Number (make reference to site map) Description of Outfall (e.g., ditch, concrete pipe, grassed swale, etc.)								
SW-7	End of culv	vert located at base	of Phase IV	Sedimentation				
	Basin # 2. (see map)						
Time of Rainfall Event Time of Visual Inspe	ction Optional:	: Amount of rainfall at time of	of observation (n	earest tenth of an inch)				
NA NA								
Describe your observations. An easy way to co								
discharged from the facility and visually inspect sheen or any other visual indicators of storm w								
Color: Clear Red	Yellow	Brown	Other:					
Odor: 🛛 None 🗆 Mus	ty 🛛 Sewage	Rotten Egg	Other:					
Clarity: Clear Clou	idy Dopaque	□ Suspended Solids	Other:					
Floatables: I None I Foar	n 🛛 Garbage	e 🛛 Oily Film	Other:					
Deposits/Stains: Clear Red	☐ Yellow	Brown	Other:					
Comments:								
	-							
This inspection location has not	been constru	ucted.						
This outfall could not be evaluated during this	quarter due to the f	following reason:						

State of Wisconsin Department of Natural Resources	Quarterly Visual Form 3400 – 176A (R 3/0		– Field Sheet				
This form is for your own use and should be kept as part of your Storm Water Pollution Prevention Plan. It does not have to be submitted to the Department unless requested. If false information from quarterly visual inspections is reported to the Department, you could be subject to penalties up to \$10,000 pursuant to s. 283.91(4), Wis. Stats.							
Use one form per outfall.							
Quarterly visual inspections at each storm water discharge outfall on your site can be a valuable assessment tool and are required by the Tier 1 and Tier 2 Industrial Storm Water General Permits. This inspection should be performed when sufficient runoff occurs during daylight hours. Try to make observations within the first 30 minutes after runoff begins discharging from the outfall, or as soon as practical, but no later than 60 minutes. If you find visible pollution, note the probable source and list any possible Best Management Practices that could be used to reduce or eliminate the problem.							
Make any necessary changes to your Storm Water Pollution	n Prevention Plan as needed.						
Facility Name Dairyland Power Cooperative Alma Off	site						
Street Address	City	State	ZIP Code				
State Highway 35 and River Road	Alma	WI	54610				
Name of Person Conducting Inspection NA	I	spection Date					
Employer		elephone Numb	ber				
Dairyland Power Cooperative							
SW-8 End of	of Outfall (e.g., ditch, concrete pipe, culvert located at base of ntation Basin for Cell 2A.	Phase IV 7	Femporary				
	onal: Amount of rainfall at time of ob						
Describe your observations. An easy way to conduct this in discharged from the facility and visually inspect the water. sheen or any other visual indicators of storm water pollution	Include any observations of color, odd	or, turbidity, flo	ating solids, foam, oil				
Color: Clear Red Ye	low Brown D	Other:					
Odor:	vage 🛛 Rotten Egg 🔲	Other:					
Clarity: Clear Cloudy Op	aque 🛛 Suspended Solids 🗖	Other:					
Floatables: 🛛 None 🗆 Foam 🗆 Ga	bage 🛛 Oily Film 🛛	Other:					
Deposits/Stains: Clear Red Ye	llow 🛛 Brown 🗌	Other:					
Comments:							
This inspection location has not been cor	structed.						
195							
This outfall could not be evaluated during this quarter due to	the following reason:						

4th Quarter

State of Wisconsin Department of Natu	ral Resources			Quarterly Visu Form 3400 – 176A (R	-	oectio	n – Field Sheet	
This form is for your own use and should be kept as part of your Storm Water Pollution Prevention Plan. It does not have to be submitted to the Department unless requested. If false information from quarterly visual inspections is reported to the Department, you could be subject to penalties up to \$10,000 pursuant to s. 283.91(4), Wis. Stats.								
Use one form per ou	Use one form per outfall.							
Quarterly visual inspections at each storm water discharge outfall on your site can be a valuable assessment tool and are required by the Tier 1 and Tier 2 Industrial Storm Water General Permits. This inspection should be performed when sufficient runoff occurs during daylight hours. Try to make observations within the first 30 minutes after runoff begins discharging from the outfall, or as soon as practical, but no later than 60 minutes. If you find visible pollution, note the probable source and list any possible Best Management Practices that could be used to reduce or eliminate the problem. Make any necessary changes to your Storm Water Pollution Prevention Plan as needed.								
Facility Name	<u>enangee to jou</u>							
Dairyland Po	wer Coope	rative Aln	na Offsite					
Street Address State Highwa	v 35 and P	iver Road		City Alma	Sta W		ZIP Code 54610	
Name of Person Cor				Anna		ion Date		
	. .							
Employer	a				Telepho	one Num	lber	
Dairyland Por Outfall Number (ma			marintian of O	utfall (a a ditab concrete a		ad avala	ata)	
SW-9	ike reference to	•	-	utfall (e.g., ditch, concrete p v area number 2. (s e			, etc.)	
Time of Rainfall Eve	ent Time of V	isual Inspectio		Amount of rainfall at time of			arest tenth of an inch)	
discharged from the	facility and visu	ually inspect the	e water. Includ	ion is to use a glass jar to cold de any observations of color, the probable sources of any o	odor, turl	bidity, fl	oating solids, foam, oil	
Color:	Clear	Red	□ Yellow	Brown	Othe	r:		
Odor:	□ None	☐ Musty	Sewage	Rotten Egg	□ Othe	er:		
Clarity:	Clear		D Opaque	□ Suspended Solids	□ Othe	er:		
Floatables:	□ None	☐ Foam	Garbage	Oily Film	□ Othe	er:		
Deposits/Stains:	Clear	Red	Yellow	Brown	Othe	er:		
Comments:								
This outfall could no	ot be evaluated of	luring this quar	ter due to the f	ollowing reason:				

State of Wisconsin	Quarterly Visual Inspection – Field Sheet
Department of Natural Resources	Form 3400 – 176A (R 3/01)

This form is for your own use and should be kept as part of your Storm Water Pollution Prevention Plan. It does not have to be submitted to the Department unless requested. If false information from quarterly visual inspections is reported to the Department, you could be subject to penalties up to \$10,000 pursuant to s. 283.91(4), Wis. Stats.

Use one form per outfall.

Quarterly visual inspections at each storm water discharge outfall on your site can be a valuable assessment tool and are required by the Tier 1 and Tier 2 Industrial Storm Water General Permits. This inspection should be performed when sufficient runoff occurs during daylight hours. Try to make observations within the first 30 minutes after runoff begins discharging from the outfall, or as soon as practical, but no later than 60 minutes. If you find visible pollution, note the probable source and list any possible Best Management Practices that could be used to reduce or eliminate the problem.

Make any necessary changes to your **Storm Water Pollution Prevention Plan** as needed. Facility Name

Dairyland Power Cooperative A	lma Offsite			
Street Address	City		State	ZIP Code
State Highway 35 and River Ro	ad Al	ma	WI	54610
Name of Person Conducting Inspection		spection Date		
Employer		T	elephone Nun	nber
Dairyland Power Cooperative				
Outfall Number (make reference to site map)	•	(e.g., ditch, concrete pipe,	•	e, etc.)
SW-10		ea number 1. (see		
Time of Rainfall Event Time of Visual Inspe	ction Optional: Amo	ount of rainfall at time of ot	bservation (ne	arest tenth of an inch)
Describe your observations. An easy way to co				
discharged from the facility and visually inspec				
sheen or any other visual indicators of storm w	ater pollution and the pr	obable sources of any obse	erved storm wa	ater contamination.
Color: Clear Red	Yellow	Brown	Other:	
Odor: 🛛 None 🗖 Must	y 🛛 Sewage	Rotten Egg	Other:	
Clarity: Clear Clou	dy 🛛 Opaque	Suspended Solids	Other:	
Floatables: INone Foar	n 🛛 Garbage	Oily Film	Other:	
Deposits/Stains: Clear Red	Yellow	Brown	Other:	
Comments:				
This outfall could not be evaluated during this of	uarter due to the follow	ing reason:		

Semi-Annual, Non-Storm Water Discharge Field Sheet **Dairyland Power Cooperative – Alma Offsite**

Evaluation Scope: Pick a dry day to perform the evaluation, preferably several days after the most recent rain. Go to each outfall location and look for the presence of water. Fill out the form below and explain any "yes" answers.

		Method Used		orm Water esent?	
Outfall Number	Evaluation Date	to Evaluate Outfall	Yes	No	Comments
SW-1		visual			
SW-2		visual			
SW-3		visual			
SW-4		visual			
SW-5		visual			
SW-6		visual			
SW-7	NA	visual			Does not exist yet.
SW-8	NA	visual			Does not exist yet.
SW-9		visual			
SW-10		visual			

Print Name: ______ Signature: ______

Explain any "yes" answers below:

Annual Facility Site Compliance Inspection Report (AFSCI)

For Storm Water Discharge Associated With Industrial Activity Under Wisconsin Pollutant Discharge Elimination System (WPDES) Permit Form 3400-176 (R 3/05)

Page 35 of 33

Notice: This form is authorized by s. NR 216.29(2), Wis. Adm. Code. Submittal of a completed form to the Department is mandatory for industrial facilities covered under a tier 1 storm water general permit. Facilities covered under a tier 1 permit are not required to submit AFSCI reports after submittal of the second AFSCI report, unless so directed by the department. However, these inspections and quarterly visual inspections shall still be conducted and results shall be kept on site for department inspection. Facilities covered under a tier 2 storm water general, industry-specific general or individual permit shall keep the results of their AFSCI and quarterly visual inspections on site for department inspection. Facilities may result in fines up to \$25,000 per day pursuant to s. 283.91, Wis. Stats. Personally identifiable information on this form may be used for other water quality program purposes.

Facility Information

Facility Name

Dairyland Power Cooperative Alma Off-site

Street Address State Hwy 35 and River Road	City Alma	State WI	ZIP Code 54610
County	Facility Contact Person		
Buffalo	Ty Johnson		
Signature	and the second		

This form must be signed by an official representative of the permitted facility, in accordance with s. 216.29(8), Wis. Adm. Code.

IF THIS FORM IS NOT SIGNED, OR IS FOUND TO BE INCOMPLETE, IT WILL BE RETURNED

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature of Authorized Representative		Date	Signed	
Type or print name George Miller	Position Title Site Manager			
Company Name		Telej	phone Num	iber
Dairyland Power Cooperative			608-68	85-6610
Mailing Address	City		State	ZIP Code
500 Old State Highway 35	Alma		WI	54610

The first level of storm water monitoring consists of a comprehensive annual facility site compliance inspection (AFSCI) to determine if your facility is operating in compliance with your Storm Water Pollution Prevention Plan (SWPPP). You should use the results of this inspection to determine the extent to which your SWPPP needs to be updated to prevent pollution from new source areas, as well as to correct any inadequacies that the plan may have in handling existing source areas. This first level of monitoring is addressed in Section III of this Annual Report.

The second level of storm water monitoring consists of quarterly visual observations of storm water leaving the site during runoff events caused by snow-melt or rainfall. This is a practical, low cost tool for identifying obvious contamination of storm water discharges, and can also help identify which practices are ineffective. The goal of quarterly inspections is to obtain results from a set of four inspections that are distributed as evenly as possible throughout the year and which depict runoff quality during each of the four seasons. This second level of monitoring is addressed in Section IV of this Annual Report.

	DNR Use Only
FID	
FIN	

Annual Facility Site Compliance Inspection

The Annual Facility Site Compliance Inspection shall be adequate to verify that; your Storm Water Pollution Prevention Plan (SWPPP) remains current, potential pollution sources at your facility are identified, the facility site map and drainage map remain accurate, and Best Management Practices prescribed in your SWPPP are being implemented, properly operated, and adequately maintained. Name of Person Conducting Inspection Inspection Inspection Date

Employer Telephone Number Dairyland Power Cooperative

Your inspection should start with a review of your written SWPPP kept at your facility. The SWPPP should be amended if, through these inspections, you find that the provisions in your SWPPP are ineffective in controlling contaminated storm water from being discharged from your facility.

Has your SWPPP been updated to include current Non-Storm Water Discharge Evaluation results?	🗆 N/A	🗌 No	Yes
Has your SWPPP been amended for any new construction that would effect the site map or drainage conditions at the facility?	□ N/A	🗌 No	☐ Yes
Has your SWPPP been amended for any changes in facility operations that could be identified as new source areas for contamination of storm water?	□ N/A	🗌 No	Yes
Are there any materials at the facility that are handled, stored, or disposed in a manner to allow exposure to storm water that are not currently addressed in your SWPPP?	□ N/A	🗌 No	Yes
Are there any maintenance or material handling activities conducted outdoors that have not been addressed in your SWPPP?	□ N/A	🗌 No	🗌 Yes
Are outside areas kept in a neat and orderly condition?	🗆 N/A	🗌 No	Yes
Are regular housekeeping inspections made?	□ N/A	🗌 No	Yes
Do you see spots, pools, puddles, or other traces of oils, grease, or other chemicals on the ground?	□ N/A	🗌 No	Yes
Are particulates on the ground from industrial operations or processes being controlled?	□ N/A	🗌 No	Yes
Do you see leaking equipment, pipes or containers?	🗌 N/A	🗌 No	Yes
Do drips, spills, or leaks occur when materials are being transferred from one source to another?	□ N/A	🗌 No	Yes
Are drips or leaks from equipment or machinery being controlled?	□ N/A	🗌 No	C Yes
Are cleanup procedures used for spilled solids?	□ N/A	🗌 No	Yes
Are absorbent materials (floor dry, kitty litter, etc.) regularly used in certain areas to absorb spills?	□ N/A	🗌 No	C Yes
Can you find discoloration, residue, or corrosion on the roof or around vents or pipes that ventilate or drain work areas?	□ N/A	🗌 No	☐ Yes
Are Best Management Practices implemented to reduce or eliminate contamination of storm water from source areas at the facility?	□ N/A	🗌 No	☐ Yes
Are Best Management Practices adequately maintained?	□ N/A	🗌 No	Yes
Are there significant changes that will have to made to your SWPPP to correct any inadequacies that the plan may have to effectively control a discharge of contaminated storm water from your facility?	□ N/A	🗌 No	Yes

Comments:

As of 1/7/2018:

- 1. Mississippi River at Alma is 303(b) listed as Impaired Water Body for Total Phosphorus, Mercury, PCBs, and PFOs. Activities at the Alma Offsite should not contribute any of the chemicals of concern in the storm water runoff.
- 2. Mississippi River at Alma has no TMDL's Listed. Waumandee Creek Watershed, which includes the Cochrane Ditch "Rose Valley" Subwatershed is located east and south of the Offsite, and does have an approved TMDL for Sediment, however the Offsite is not located within the watershed.

Quarterly Visual Inspection Reports

Quarterly Visual Inspections at each storm water discharge outfall on your site can be a valuable assessment tool and are required by the Tier 1, Tier 2, and Nonmetallic Mining Industrial Storm Water General Permits. These inspections should be performed when sufficient runoff occurs during daylight hours. Try to make observations within the first 30 minutes after runoff begins discharging from the outfall or soon thereafter as practical, but no later than 60 minutes. If you find visible pollution, note the probable source and list any possible Best Management Practices that could be used to reduce or eliminate the problem. Make any necessary changes to your Storm Water Pollution Prevention Plan as needed. If you were unable to evaluate an outfall during a specific quarter, this should be indicated along with a reason as to why this could not be done.

Date of Inspection					
1st Quarter	2nd Quarter	3rd Quarter	4th Quarter		
NA	NA	NA	NA		
NA	NA	NA	NA		
		1st Quarter 2nd Quarter Image: State of the state o	NA NA		

Briefly summarize what you found when conducting your Quarterly Visual Inspections. (Include any observations of color, odor, turbidity, floating solids, foam, oil sheen, or any other indications of storm water pollution and the probable sources of any observed storm water contamination.)

Attachment 4

Loadout Station

Loadout Station Photo Log

Photographic Log

			notographic Log	
	Client Name:		Site Location:	Project No.:
Dairylar	nd Power Coope	rative	Phase IV Landfill Loadout Station	525154.000
Photo No.	Date			
01	11/16/2023			
Description View of loadout station, curb, and inlet to Pond Water Pump/Leachate Tank Discharge Pit.				
Photo No. 02	Date 11/16/2023			
Description View of curb a				

Photographic Log

	Client Name:		Site Location:	Project No.:
Dairylar	nd Power Coope	rative	Phase IV Landfill Loadout Station	525154.000
Photo No.	Date			
03	11/16/2023			
Description View of inlet to	o manhole/pit.			

Loading Procedure

AOS Procedure Manual

1.9.1.1 Alma Offsite Leachate Loading Procedure

Volume 09: Environmental Controls, Waste Collection and Treatment / Section 01: Waste Water Revision No: 0

Last Review/Revision Date: 09/20/23

Page 1 of 4

RECORD AND CONTROL OF INITIAL ISSUE, REVISIONS & PERIOD REVIEWS					
REVISION NO.	PREPARED BY OR REVIEWED BY	ADMINISTRATIVE SUPERVISOR	APPROVED & ISSUED EFFECTIVE DATE OF ISSUE		
	SIGNATURE / DATE	SIGNATURE / DATE	SIGNATURE / DATE		
0	Don Loock 9/20/2023	Diana Baker 00/00/00	Name 00/00/00		

AOS Procedure Manual 1.9.1.1 Alma Offsite Leachate Loading Procedure

Volume 09: Environmental Controls, Waste Collection and Treatment / Section 01: Waste Water Revision No: 0 Last Review/Revision Date: 09/20/23 Page

Page 2 of 4

Review/Revision History:

Date:Action:09/20/2023Rev. 0: Written by Don Loock, new procedure.

AOS Procedure Manual 1.9.1.1 Alma Offsite Leachate Loading Procedure

Volume 09: Environmental Controls, Waste Collection and Treatment / Section 01: Waste Water Revision No: 0 Last Review/Revision Date: 09/20/23 Page

Page 3 of 4

1.0 PURPOSE

1.1 To establish a procedure for loading leachate at the Alma Offsite.

2.0 PREREQUISITES

2.1 None

3.0 <u>REFERENCES</u>

3.1 Alma Offsite Loading Leachate Qual Card

4.0 **DEFINITIONS**

- 4.1 AOS: Alma Offsite
- 4.2 Leachate: Water that has percolated through the ash in the Alma Offsite landfill requiring proper usage and disposal.
- 4.3 WWTP: Abbreviation for Waste Water Treatment Plant
- 4.4 CCR: Coal Combustion Residuals
- 4.5 Ash Landfill: Landfill containing Coal Combustion Residuals (CCR)
- 4.6 Monofil Landfill: landfills that are intended to be used for only one type of waste, in this case CCR's.

5.0 <u>RESPONSIBILITIES</u>

5.1 JPM or AOS qualified personnel are responsible for performing this procedure.

6.0 REQUIREMENTS / PROCEDURE

- 6.1 Determine if leachate is destined for WWTP, Ash Mixing, or dust control within the landfill footprint only.
- 6.2 Determine which vehicle will be utilized for leachate hauling dependent upon usage.
 - 6.2.1 Leachate destined for a WWTP and/or ash mixing it is preferred to use semi-tanker truck.
 - 6.2.2 Leachate is to be used for dust control within the landfill area only, the AOS water truck is preferred.

Electronic copy is the controlled copy. Hard copy valid for 1 day only from 12/29/2023 12:36 PM

AOS Procedure Manual

1.9.1.1 Alma Offsite Leachate Loading Procedure

Volume 09: Environmental Controls, Waste Collection and Treatment / Section 01: Waste Water Revision No: 0

Last Review/Revision Date: 09/20/23

Page 4 of 4

- 6.3 Align truck inlet or manhole with downspout and ensure downspout is correctly placed inside either truck inlet or downspout.
- 6.4 Check leachate tank level.
- 6.5 Go to Leachate/Pond Pump Control Panel. Turn the Leachate switch to the "ON" position.
- 6.6 Visually monitor truck during loading process.
- 6.7 Turn the Leachate switch to the "OFF" position on the Leachate/Pond Pump Control Panel when truck is loaded.
 - 6.7.1 Semi-Tanker: the gauge reads 6,900 gallons.
 - 6.7.2 Water Truck: the site gauge on water truck bulkhead shows Full.

7.0 <u>RECORDS</u>

- 7.1 Document gallons loaded.
 - 7.1.1 If leachate is taken to a WWTP or ash mixing, document gallons on whiteboard located in AOS office.
 - 7.1.2 If water to be utilized for dust suppression, document gallons on Fugitive Dust Log located in AOS office.

7.1.2.1 Form 7778 - AOS Fugitive Dust Plan Inspection Log

8.0 ATTACHMENTS

8.1 None

Attachment 5

Construction Quality Assurance Plan

CQA Plan

Dairyland Power Cooperative Alma Off-Site Disposal Facility Phase IV Landfill Town of Belvidere, Wisconsin

July 2003 Revised February 2007, January 2024

Prepared For:

Dairyland Power Cooperative 3200 East Avenue South La Crosse, Wisconsin 54601

Prepared By:

TRC 999 Fourier Dr., Suite 101 Madison, Wisconsin 53717

TABLE OF CONTENTS

REVIS	ION HIS	STORY	vi					
1.0	INTRO	DUCTION	1					
	1.1	Project Background	. 1					
	1.2	Purpose and Scope	. 1					
	1.3	Quality Assurance and Quality Control	. 1					
	1.4	General Testing Requirements	2					
2.0		ROLES, RESPONSIBILITIES, AND QUALIFICATIONS	3					
	2.1	CQA Officer	3					
	2.2	Resident Project Representative (RPR)	3					
	2.3	Soil Testing Laboratory	3					
	2.4	Geosynthetics Testing Laboratory/Laboratories	3					
	2.5	Construction Contractor	4					
	2.6	Geosynthetics Installers	4					
3.0	PREC	ONSTRUCTION ACTIVITIES	6					
	3.1	Preconstruction Meeting	6					
	3.2	Preconstruction Submittal	7					
	3.3	Preinstallation Meeting	7					
4.0	GENE	RAL CONSTRUCTION OBSERVATION AND DOCUMENTATION	9					
	4.1	Progress Meetings	9					
	4.2	Daily Reports	9					
	4.3	Forms, Checklists, and Data Sheets1	10					
	4.4	Problem/Deficiency Identification and Corrective Action1	10					
	4.5	Photographic Documentation1	11					
	4.6	Surveying1	11					
5.0	SOIL E	BARRIER LAYER 1	2					
	5.1	General1	12					
	5.2	Procedures and Observation1	12					
	5.3	Sampling Requirements and Acceptance Criteria 1						
		5.3.1 Field Testing1						
		5.3.1.1 Field Testing Acceptance Criteria1						
		5.3.2 Laboratory Testing						
		5.3.2.1 Undisturbed Sample Analysis1						
		5.3.2.2 Representative Sample Analysis1						
		5.3.2.3 Laboratory Testing Acceptance Criteria1						
	5.4	Thickness Documentation1						
6.0		RAL SOIL 1						
	6.1	General						
	6.2	Procedures and Observation						

	6.3	Sampling Requirements and Acceptance Criteria			17
		6.3.1 Field Testing			17
			6.3.1.1	Field Testing Acceptance Criteria	17
		6.3.2	Laborato	bry Testing	17
			6.3.2.1	Representative Sample Analysis	17
			6.3.2.2	Laboratory Testing Acceptance Criteria	18
	6.4	Thickr	iess Docui	mentation	18
7.0	GRA	GRANULAR SOIL			
	7.1	General			19
	7.2	Proce	Procedures and Observation		
	7.3	Sampling Requirements and Acceptance Criteria			20
		7.3.1 Field Testing			
		7.3.2	Laborato	bry Testing	20
			7.3.2.1	Laboratory Testing Acceptance Criteria	20
	7.4	Thickr	ness Docui	mentation	21
8.0	TOPS	TOPSOIL			
	8.1	Gener	al		22
	8.2	Procedures and Observation			22
	8.3	Sampling Requirements and Acceptance Criteria			22
	8.4	Surveying			22
9.0	GEO	EOMEMBRANE			
	9.1	General			23
	9.2	Preinstallation			23
		9.2.1	Manufacturing		23
			9.2.1.1	Material Specifications	23
			9.2.1.2	Quality Control Requirements	24
			9.2.1.3	Manufacturer's Certification	
		9.2.2	Delivery	, Handling, and Storage of Geomembrane Rolls	33
	9.3	Installa			34
		9.3.1	Testing Requirements		34
			9.3.1.1	Test Methods	34
			9.3.1.2	Role of Testing Laboratory	35
			9.3.1.3	Procedures For Determining Geomembrane Roll Test Failures	35
		9.3.2	Earthwo	rk	
		9.3.3	Placement		
			9.3.3.1	Location and Panel Layout Drawing	36
			9.3.3.2	Installation Techniques	
			9.3.3.3	Weather Conditions	
			9.3.3.4	Damages	37

		9.3.4	Defects	and Repairs	37
			9.3.4.1	Identification	37
			9.3.4.2	Evaluation	38
			9.3.4.3	Repair Procedures	38
			9.3.4.4	Examination of Repairs	38
			9.3.4.5	Large Wrinkles	39
		9.3.5		s In Contact With Geomembranes - Anchor Trench System and	
				ng	
	9.4		•		
		9.4.1		eam Layout	
		9.4.2		g Equipment	
			9.4.2.1	Dual Hot Wedge Process	
			9.4.2.2	Extrusion Fillet Process	
		9.4.3		equirements	
			9.4.3.1	Personnel Qualifications	41
			9.4.3.2	Weather Conditions	41
			9.4.3.3	Overlapping and Temporary Bond	
			9.4.3.4	Trial Seams	42
			9.4.3.5	Seam Preparation	43
			9.4.3.6	General Seaming Procedure	44
		9.4.4	Nondest	ructive Testing	44
			9.4.4.1	Air Pressure Testing	45
			9.4.4.2	Vacuum Box Test	47
		9.4.5	Destruct	ive Seam Testing	48
			9.4.5.1	Location and Sampling Frequency	48
			9.4.5.2	Sampling Procedure	48
			9.4.5.3	End-of-Seam Sampling	49
			9.4.5.4	Field Test Methods	49
			9.4.5.5	Laboratory Test Methods	52
			9.4.5.6	Role of Testing Laboratory	53
			9.4.5.7	Procedures For Determining Destructive Seam Test Failures	53
	9.5	Post-in	stallation		54
	9.6	Leak L	ocation To	esting	54
		9.6.1	Electrica	I Resistivity Contractor Requirements	54
		9.6.2	Test Pro	cedure	54
		9.6.3	Reports		55
10.0	GEOT	EXTIL	=		56
	10.1	Genera	al		56
	10.2	Preinst	allation		56

		10.2.1	Manufacturing	
			Delivery, Handling, and Storage of Geotextile Rolls	
	10.3		tion	
		10.3.1	Placement	60
		10.3.2	Seams and Overlaps	61
	10.4	Post-in	stallation	61
		10.4.1	Final Examination	61
		10.4.2	Placement of Soil Materials	61
11.0	GEOS	SYNTHE		62
	11.1	Introdu	ction	62
	11.2		allation	
		11.2.1	Manufacturer's Quality Control Plan (MQCP)	62
			11.2.1.1 Bentonite Supplier	
			11.2.1.2 Geotextile Manufacturer	
			11.2.1.3 GCL Manufacturer	62
		11.2.2	Materials	64
		11.2.3	GCL Delivery, Handling, and Storage	64
			Submittals	
	11.3	Installa	tion	66
		11.3.1	Testing Requirements	66
			11.3.1.1 Role of Testing Laboratory	66
			11.3.1.2 Procedure For Determining GCL Roll Test Failures	67
		11.3.2	Required Equipment	67
		11.3.3	Surface/Subgrade Preparation	68
		11.3.4	Deployment	68
		11.3.5	Seaming	69
		11.3.6	Patches/Repairs	69
		11.3.7	Penetration Seals	69
		11.3.8	Covering GCL	70
			11.3.8.1 Geosynthetics	70
			11.3.8.2 Soil	70
		11.3.9	Submittals	71
	11.4	Post-in	stallation	71
		11.4.1	Final Examination	71
		11.4.2	Submittals	71
12.0	PIPIN	G		72
	12.1	Genera	al	72
	12.2	Preinst	allation	72
		12.2.1	Manufacturing	72
			12.2.1.1 High-Density Polyethylene Material Specifications	72

12.2.1.2 Polyvinyl Chloride Material Specifications	72
12.2.1.3 Fabricator	72
12.2.2 Delivery, Handling, and Storage of Piping	72
Installation	73
12.3.1 Connections	73
12.3.1.1 HDPE Pipe	73
12.3.1.2 PVC Pipe	73
12.3.2 Placement	73
12.3.3 Damage	74
Post-Installation	74
	 12.2.1.2 Polyvinyl Chloride Material Specifications

TABLES

Table 9-1:	HDPE Geomembrane – Smooth Test Frequency and Acceptance Criteria	25
Table 9-2:	HDPE Geomembrane – Textured Test Frequency and Acceptance Criteria	27
Table 9-3:	LLDPE Geomembrane – Smooth Test Frequency and Acceptance Criteria	29
Table 9-4:	LLDPE Geomembrane – Textured Test Frequency and Acceptance Criteria	31
Table 9-5:	Geomembrane Air Pressure Testing Standards and Acceptance Values ⁽¹⁾	46
Table 9-6:	60-mil HDPE Geomembrane Seam Acceptance Criteria	50
Table 9-7:	40-mil LLDPE Geomembrane Seam Acceptance Criteria	51
Table 10-1:	Geotextile Tests and Test Methods	57
Table 10-2:	Geotextile Tests, Test Methods, and Acceptance Criteria	58
Table 11-1:	GCL Material Tests, Test Methods, and Acceptance Criteria	63

REVISION HISTORY

Revision Number	Revision Date	Section Revised	Summary of Revisions
01	01/2024	1-12	Revised text; included final cover in soil barrier layer testing, and updated geosynthetics

1.0 Introduction

1.1 **Project Background**

This plan presents the Construction Quality Assurance (CQA) Plan for the Dairyland Power Cooperative (DPC) Phase IV Ash Disposal Facility (Phase IV Landfill). The Phase IV Landfill consists of approximately 32.1 acres and is owned by DPC. This site is in the NE ¼ of the NE ¼ of Section 19 and portions of Sections 18 and 20, T21N, R12W Town of Belvidere, Buffalo County, Wisconsin. This CQA Plan is intended to be a "working" document that is updated to reflect changes in specific materials, installation practices, industry standards, or tests and testing methods as the site develops.

1.2 **Purpose and Scope**

The purpose of this CQA Plan is to address the quality assurance procedures and requirements for the construction at the Phase IV Landfill, including earthen materials and synthetic materials. Extreme care and detailed documentation are required in the selection and installation of soil materials and the production and installation of the synthetic materials used in waste containment applications.

The scope of this plan includes general CQA requirements regarding the roles, responsibilities, and qualifications of parties involved; the preconstruction activities; and the general inspection and documentation procedures. Specifically, this CQA Plan establishes requirements for construction procedures and observation, field and laboratory testing frequencies and methods, and acceptance criteria for each component of the composite liner and cover. Testing and acceptance criteria are based on Chapter NR 500, Wisconsin Administrative Code (WAC), requirements where applicable. Geomembrane testing and acceptance criteria are based on the Geosynthetic Research Institute (GRI) and American Society for Testing and Materials (ASTM) standards, and on current acceptable industry standards and practice.

The CQA Plan addresses the construction of the following systems within the landfill facility:

- Composite Liner
- Leachate collection system
- Composite final cover
- Perimeter Berms
- Access Roads
- Surface water management system

1.3 Quality Assurance and Quality Control

Quality assurance and quality control are defined as follows:

• <u>Quality Assurance</u> - A planned and systematic pattern of means and actions designed to provide adequate confidence that materials or services meet contractual and regulatory requirements. This is typically performed to confirm for the purchaser, Owner, and/or regulatory agencies that delivered materials or services are of desired quality.

• <u>Quality Control</u> - Those actions that provide a means to measure and regulate the characteristics of a material or service to meet contractual and regulatory requirements. This typically is performed by, or for, the provider of materials or services as a control mechanism on the quality of the provider's efforts.

In the context of this manual, the terms are further defined as follows:

- <u>Quality Assurance</u> refers to the means and actions employed by the CQA Officer to document conformity of the systems' installation with the CQA Plan and the construction plans and specifications. Quality assurance is primarily provided by an independent third party (consultant or laboratory) under the oversight of the CQA Officer.
- <u>Quality Control</u> refers to those actions taken by the Manufacturer, Fabricator, or Contractor/Installer to provide materials and workmanship that meet the requirements of the CQA Plan and the construction plans and specifications. Some testing efforts required by this CQA Plan may serve as both quality control and quality assurance measures.

1.4 General Testing Requirements

This CQA Plan includes references to test procedures of the American Society for Testing and Materials (ASTM) and the Geosynthetics Research Institute (GRI). Test procedure references are always to the latest approved version up to the date of this document, unless specifically stated otherwise in this document.

Tests will be performed in strict accordance with the referenced test procedure and the description included in this CQA Plan, unless indicated otherwise. Deviations to test procedures called out in this CQA Plan must be approved, in writing, by the CQA Officer prior to commencement of work.

2.0 CQA Roles, Responsibilities, and Qualifications

2.1 CQA Officer

The CQA Officer will supervise and be responsible for observation, testing, and related construction documentation as described in this CQA Plan. The CQA Officer will be responsible for preparing the construction documentation report to certify substantial compliance with appropriate sections of Chapter NR 500. The CQA Officer will be a Professional Engineer registered in the State of Wisconsin.

The CQA Officer may delegate daily observation and documentation, testing, and sampling duties to a qualified technician or engineer with experience in the assigned aspect of construction who will serve as the Resident Project Representative (RPR). Although these duties may be delegated, the CQA Officer will retain the responsibility for these activities.

2.2 Resident Project Representative (RPR)

The RPR will carry out daily observation, testing, and sampling duties under the direct supervision of the CQA Officer as required by NR 516.04. The RPR will be a qualified technician or engineer with experience in the assigned aspect of construction. The RPR will observe and document construction and installation procedures. The RPR will prepare daily summary reports and will routinely transmit these to the CQA Officer. The RPR will notify the CQA Officer of problems or deviations from the CQA Plan or construction plans and specifications. Reporting, documentation, and resolution of problems and deficiencies will be carried out as described in Section 4. The RPR will not have authority to approve design or specification changes without the consent of the CQA Officer.

2.3 Soil Testing Laboratory

The Soil Testing Laboratory retained will be experienced in landfill construction soil testing, the ASTM standards, and other applicable standards. The selected laboratory will be required to be responsive to the project needs by providing test results within reasonable time frames. This will include providing verbal communication on the status of ongoing tests and immediate communication of test results as needed to facilitate ongoing construction. Such information may include hydraulic conductivity test data, maximum dry density and optimum moisture content values, and borrow source characterization data. Final laboratory reports will be certified by the soil testing laboratory and submitted to the CQA Officer.

2.4 Geosynthetics Testing Laboratory/Laboratories

The Geosynthetics Testing Laboratory/Laboratories will have experience in testing geosynthetics in accordance with standards developed by ASTM, GRI, and other applicable test standards. The selected laboratory/laboratories will be required to be responsive to the project needs by providing test results within reasonable time frames. Final laboratory reports will be certified by the geosynthetics testing laboratory/laboratories and will be submitted to the CQA Officer.

2.5 Construction Contractor

The Construction Contractor's role will be to furnish earthwork, construction, and piping installation, and to provide overall construction responsibility for the completion of the landfill facility. The Construction Contractor will be experienced in solid waste landfill construction, knowledgeable about low-permeability soil liner construction techniques, and familiar with geosynthetic installations. The term "Contractor" is used interchangeably with "Construction Contractor" in this CQA Plan.

2.6 Geosynthetics Installers

The Geosynthetics Installer is the company hired by the Construction Contractor or owner to install the geosynthetic components referenced in this manual and to perform the nondestructive seam testing of the geomembrane as required by this CQA Plan. The term "Installer" is used throughout this CQA Plan when reference is made to the tasks and responsibilities of a Geosynthetics Installer.

The Installer will be trained and qualified to install the various geosynthetic components covered by this CQA plan. The Installer of the geomembranes will be approved and/or licensed by the Manufacturer.

Prior to confirmation of any contractual agreements, the Installer of the geomembrane and geosynthetic clay liner (GCL) will provide the CQA Officer with the following written information, which must be approved by the CQA Officer:

- Corporate background information.
- Installation capabilities.
 - _ Information on equipment and personnel
 - _ Quality control manual for installation
- A list of at least 10 completed facilities, totaling a minimum of 2,000,000 square feet for which the Installer has completed the installation of polyethylene geomembrane. For each installation, the following information will be provided:
 - Name and purpose of facility, its location, and date of installation
 - Name of owner, project manager, designer, manufacturer, and fabricator (if any)
 - Thickness and type of polyethylene geomembrane and the surface area of the installed geomembrane
- A list of at least 10 completed facilities, totaling a minimum of 1,000,000 square feet for which the Installer has completed the installation of GCL. For each installation, the following information will be provided:
 - Name and purpose of facility, its location, and date of installation
 - Name of owner, project manager, designer, manufacturer, and fabricator (if any)
 - Type of GCL and the surface area of the installed GCL

The Installer will provide a copy of the field tensiometer certification, indicating the date on which the tensiometer was calibrated prior to the start of seaming operations. The Installer is responsible for delays caused to the project until tensiometer certification is delivered to the RPR.

Tensiometers used in the state of Wisconsin are required to be calibrated within 3 months prior to the start of geomembrane installation. The Installer is responsible for meeting this requirement, and must supply a copy of the certification at the time of mobilization to the job site.

Personnel performing geomembrane seaming operations will be qualified by experience or by successfully passing seaming tests for the seaming methods to be used. At least one seamer will have experience seaming a minimum of 2,000,000 square feet of polyethylene geomembrane using the same type of seaming apparatus in use at the site. The most experienced seamer, the "master seamer," will provide direct supervision, as required, over less experienced seamers. No field seaming will take place without an experienced seamer (meeting the seaming criteria stated above) being present.

The Installer will provide the CQA Officer with a list of proposed seaming and testing personnel, and their professional records, prior to installation of the geosynthetics. This document will be reviewed by the CQA Officer. Any proposed seaming personnel deemed insufficiently experienced will not be accepted by the CQA Officer or will be asked to pass a seaming test.

The Installer will designate one representative as the Superintendent, who will represent the Installer at all site meetings and who will be responsible for acting as the Installer's spokesperson on-site. This Superintendent will be prequalified for this role, based on experience, management ability, and authority.

3.0 **Preconstruction Activities**

3.1 **Preconstruction Meeting**

Prior to commencement of each phase of liner or final cover construction at the landfill facility, a preconstruction meeting will be held. This meeting will include the parties involved in the earthwork construction, including the CQA Officer or designated representative, the RPR, the Construction Contractor, and the Owner.

The purpose of this meeting is to begin the planning and coordination of construction tasks; to identify potential problems that might cause difficulties and delays in construction; to properly interpret the design intent by the Contractor(s); and to present the CQA Plan to the parties involved. It is important that the rules regarding tasks such as testing, repairs, inspections, be known and accepted by each party.

Specific topics considered for this meeting include the review of following:

- Critical design details of the project, including the plans and specifications.
- Measures for surface water runoff and runon diversion control, including sump locations, siltation control, and pumping requirements.
- Appropriate modifications to the CQA Plan; develop project-specific addendums (if necessary).
- The responsibilities of each party.
- Lines of authority and communication.
- Methods for documenting and reporting and for distributing documents and reports.
- Requirements of the soil testing laboratory and the geosynthetics testing laboratory regarding sample sizes, methods of collection, and shipment. Also, review turn times for sample data and their implications on the construction schedule, pending receipt of acceptance data.
- The number and locations of the tests required for soil and geosynthetic components.
- Precautions to be taken to maximize bonding between lifts of compacted soil.
- The method for splicing segments of the compacted soil liner and cover.
- Precautions to be taken to minimize desiccation cracking of the subbase layer surfaces.
- Methods of subbase layer surface preparation and approval prior to GCL placement.
- The time schedule for all operations.
- Procedures for deployment of materials over completed GCL and geomembranes emphasizing protection of both layers. Specific discussion will address the deployment of textured geomembrane over the GCL and the deployment of select granular fill on the sidewalls.
- Where the site survey benchmarks are located, and review methods for maintaining vertical and horizontal control.
- Permit documentation requirements.

- The survey documentation tables and plans that identify the locations where survey documentation information is required.
- Material storage locations and general conditions relative to construction.
- Set up a time and place for regular construction progress meetings.

The meeting will be documented by the RPR or CQA Officer, and minutes will be distributed to all parties involved in the construction project.

3.2 **Preconstruction Submittal**

A preconstruction report will be prepared for each phase of construction of the composite liner and each phase of the composite final cover. The preconstruction report will be submitted to the WDNR a minimum of 15 days prior to the preinstallation meeting, refer to Section 3.3. The preconstruction submittal will include the following information required under s. NR 516.04(5), including the following items:

- Revisions and detail diagrams incorporating all changes between the Owner, installer, and the quality assurance contractor.
- Identification of the manufacturer of the geosynthetics used in construction, manufacturer qualifications, technical specifications for each item, and results of the manufacturer's quality control tests for products supplied to the project.
- Results of a shear test conducted, in accordance with ASTM D5321 on the soils and geosynthetic materials selected for use in construction of the liner and the final cover.
- A Quality Control Plan which provides all information specified in s. NR 514.07(1)(i), as well as the identification of the installation contractor, contractor qualifications, and on-site supervisory staff.
- A Quality Assurance Plan which provides all information specified in s. NR 514.07(1)(j), as well as identification of the professional engineer and qualified technician who will be providing quality assurance and a summary of their qualifications and related work experience.

3.3 **Preinstallation Meeting**

Prior to commencement of the geomembrane installation for each phase of construction of the composite liner and final cover, a preinstallation meeting will be held in accordance with s. NR 516.04(4). This meeting will include the parties involved in the construction, including the appropriate WDNR district or central staff the CQA Officer or designated representative the RPR, the Construction Contractor, the Installer, and the Owner.

The purpose of this meeting is to begin the planning and coordination of geosynthetic installation tasks, identify potential problems that might cause difficulties and delays during the installation, to properly interpret the design intent, and to present the CQA Plan to all the parties involved. It is important that the rules regarding testing, repairs, etc., be known and accepted by each party.

Specific topics considered for this meeting include the following:

- Review critical design details of the project, including the plans and specifications.
- Review measures for surface water controls and pumping requirements.
- Clarify or confirm design changes.
- Confirm acceptability of selected geosynthetic materials.
- Clarify construction concepts or practices required by the approved plans and preinstallation submittal.
- Make appropriate modifications to the CQA Plan; develop project-specific addendums (if necessary).
- Review the responsibilities of each party.
- Review lines of authority and communication.
- Review methods for documenting and reporting and for distributing documents and reports.
- Establish rules for writing on the geomembrane (*i.e.*, who is authorized to write, what can be written, and in which color); and outline procedures for packaging and storing archive samples.
- Review GCL and geomembrane panel and seam layout diagrams and numbering systems.
- Establish procedures for use of the geomembrane welding apparatus.
- Establish appropriate intervals for geomembrane seamers to record operating and ambient data.
- Finalize geomembrane field cutout sample sizes.
- Review geosynthetic repair procedures.
- Review the time schedule for all operations.
- Establish procedures for deployment of materials over completed GCL and geomembranes emphasizing protection of both layers. Specific discussion will address the deployment of textured geomembrane over the GCL and the deployment of select granular fill on the sideslopes.
- Review permit documentation requirements.

The meeting will be documented by the RPR or CQA Officer, and minutes will be distributed to all parties involved in the construction project.

4.0 General Construction Observation and Documentation

This section describes progress meetings, general documentation procedures to be implemented, including the use of forms, the identification and resolution of problems or deficiencies, and photographic documentation.

4.1 **Progress Meetings**

Progress meetings will be held regularly at the work area. At a minimum, the meeting will be attended by field supervisory and CQA personnel. The purposes of the meeting are as follows:

- Review health and safety issues.
- Review the work activity since the last progress meeting.
- Discuss the Contractor's and Installer's personnel and equipment assignments.
- Review the work schedule.
- Discuss possible problems.
- Review new test data.
- Review data documentation requirements.

The meetings will be documented by a person designated at the beginning of the meeting, and minutes will be transmitted to all appropriate parties involved in the construction project.

4.2 Daily Reports

A daily summary report will be prepared by the CQA Officer, or the RPR under direct supervision of the CQA Officer, for each day of activity and will include the following information:

- Date, project name, location, report preparer's name, and the names of representatives on-site performing CQA under the supervision of the CQA Officer.
- Time work starts and ends each construction workday, along with the duration and reason for work stoppages (*e.g.*, weather delay, equipment shortage, labor shortage, unanticipated conditions encountered).
- Data on weather conditions, including temperature, humidity, wind speed and direction, cloud cover, and precipitation.
- Construction Contractor's work force, equipment in use, and materials delivered to, or removed from, the job site.
- Chronological description of work in progress, including locations and type of work performed.
- Summary of meetings held and a list of those in attendance.
- A description of materials used and references or results of testing and documentation.
- Discussion of problems/deficiencies identified, and corrective actions taken as described in Subsection 4.4. (Problem/Deficiency Identification and Corrective Action).
- Identification/List of laboratory samples collected, marked, and delivered to laboratories, or clear reference to the document containing such information.

- An accurate record of calibrations, recalibrations, or standardizations performed on field testing equipment, including actions taken because of recalibrations, plus the results of other data recording, such as geomembrane seam barrel temperature.
- Subgrade acceptance reports submitted by the Geosynthetic Installer.

Field data sheets containing the following information, as necessary, will be prepared daily by each representative:

- Test or sample location and elevation.
- Type of documentation (e.g., field moisture/density test).
- Procedures used.
- Test data (e.g., Proctor value).
- Test results.
- Personnel involved in the documentation and sampling activities.
- Signature of the person performing the documentation.

4.3 Forms, Checklists, and Data Sheets

Additional forms may be developed during the project to provide specific needs, such as geomembrane or GCL CQA documentation, or simply to improve the efficiency of data collection. New forms will be approved by the CQA Officer prior to their use.

4.4 **Problem/Deficiency Identification and Corrective Action**

Problem and/or deficiency identification and corrective action will be documented in the daily report when a construction material or activity is observed or tested that does not meet the requirements set forth in this CQA Plan. The daily report should clearly reference other reports, photographs, or forms that contain data or observations leading to the determination of a problem or deficiency. Problem and/or deficiency identification and corrective action documentation may include the following information:

- A description of the problem or deficiency, including reference to supplemental data or observations responsible for determining the problem or deficiency.
- The location of the problem or deficiency, including how and when the problem or deficiency was discovered, and an estimate of how long the problem or deficiency has existed.
- An opinion as to the probable cause of the problem or deficiency.
- A recommended corrective action for resolving the problem or deficiency. If the corrective
 action has already been implemented, then the observations and documentation to show
 that the problem or deficiency has been resolved should be included. If the problem or
 deficiency has not been resolved by the end of the day upon which it was discovered, then
 the report will clearly state that it is an unresolved problem or deficiency. Subsequent
 daily reports will indicate the status of problems or deficiencies until they are resolved.

If the problem or deficiency has not been resolved, then the CQA Officer and the RPR will discuss the necessary corrective actions. The CQA Officer will work with the Owner and Construction

Contractor to implement actions as necessary to resolve the problem or deficiency. A description of such problems or deficiencies and corrective actions implemented will be provided in the Construction Documentation Report.

The CQA Officer, working with the Owner and Construction Contractor, will determine if the problem or deficiency is an indication of a situation that might require changes to the plans and specifications and/or the CQA Plan. Revisions to the plans or specifications or the CQA Plan must be approved by the CQA Officer and the site Owner after consultation with the WDNR. Documentation of the WDNR's concurrence and/or conditions regarding proposed changes will be incorporated into the Construction Documentation Report.

4.5 **Photographic Documentation**

Photographs will be taken to document observations, problems, deficiencies, corrective actions, and work in progress. Photographs will be in print format or digital and will be filed in chronological order in a permanent protective file or electronic file by the CQA Officer or the RPR.

The following information will be documented in the daily report or a logbook for each photograph:

- Date and time.
- Orientation description (e.g., looking south).
- Subject matter description.
- Unique identifying number .

4.6 Surveying

Documentation surveying requirements for each composite liner or cover component are described in their respective report sections. Required surveying will be performed by personnel experienced in construction surveying. Surveys will be based on survey control points previously established at the site. Elevations will be based on mean sea level (M.S.L.) datum, and coordinates will be based on the Wisconsin State Plane Coordinate System. The location of field tests and samples will be recorded. Generally, these locations can be determined by reference to nearby construction stakes or markings; however, if such convenient reference is not readily available, the CQA Officer or the designated RPR will be responsible to provide or request survey control.

5.0 Soil Barrier Layer

5.1 General

This section includes the quality assurance requirements for placement, backfilling, and compaction of the compacted select 2-foot soil barrier layer (also known as low-permeability subbase soil layer). The soil barrier layer will be used in the following manner:

- Constructing the landfill liner.
- Constructing the final cover.

The soil barrier layer material will be generally obtained from on-site excavations of loess material. If onsite sources are not available during liner or final cover construction, off-site approved borrow sources may be used. Field tests and soil sample types will be recorded in the daily construction reports (see Subsection 4.2) including locations (by coordinates or survey point reference number) and elevation or lift number of field tests and laboratory sample points.

5.2 **Procedures and Observation**

The RPR will observe the soil barrier layer construction activities and will document relevant observations to support certification of the following requirements:

- The RPR will confirm the subbase is acceptable and ready for soil barrier layer placement prior to placement of the soil barrier layer over the subbase. Procedures for determining subbase acceptance are discussed in Subsection 6.2.
- The RPR will confirm the uniformity of the excavated or imported soil to be used as the soil barrier layer. Soil placement will be monitored for segregation and removal of unsuitable material and for changes in soil type, color, texture, and moisture content.
- The Construction Contractor will segregate and/or remove unsuitable materials, such as soil not meeting acceptance criteria, boulders, cobbles, and organic material. Due to the thin and laterally discontinuous nature of the loess material, special care will be taken during the excavation of the soil barrier layer. As determined necessary during construction, the cleanest loess deposits will be segregated for use in the final lift (below the GCL). In addition, a provision for screening will be included in the technical specifications to allow processing of the loess material if the material specifications cannot otherwise be achieved.
- The RPR will observe the placement of the soil barrier layer and will measure field densities and moisture contents, using methods described in Subsection 5.3 (Sampling Requirements and Acceptance Criteria), to document that the soil is in substantial conformance with the placement specifications and that soil placement has been conducted in a manner to achieve a uniform, homogeneous mass.
- The RPR will backfill voids created by nuclear density gauge (NDG) probes or as the result of Shelby tube samples with granular bentonite, or a bentonite-soil mixture.

- The RPR will document areas of unacceptable density or moisture content, as defined by Subsection 5.3 (Sampling Requirements and Acceptance Criteria). The Contractor will perform corrective action that will consist of the moisture-conditioning of the soil and/or additional compactive effort, as necessary. Methods for moisture-conditioning soil are described below. The RPR will retest the area, following corrective actions.
- The Contractor will place each lift of barrier layer material in approximate 1-foot lifts.
- The RPR will obtain documentation to verify that compaction equipment has a minimum static weight of 30,000 pounds or has a minimum static weight of 15,000 pounds that is capable of vibrating to produce a minimum dynamic compaction force of 30,000 pounds.
- The RPR will verify that compaction equipment used to compact the barrier layer has compaction feet a minimum of 6 inches long.
- If necessary, surfaces of liner to receive successive lifts of soil barrier material will be moisture-conditioned either by scarification and addition of water where desiccated, or by discing and air drying where saturated to promote effective bonding of lifts. Following scarification, water will be applied with a spray bar applicator or equivalent method to achieve uniform distribution.
- Soil placement will be performed in a manner to achieve continuous and complete keying together of low-permeable layer construction areas. Stepped joints will be utilized to connect lateral segments of soil barrier layer construction.
- No frozen soil will be used to construct the soil barrier layer. Frozen soil in the compaction work area will be removed.
- Stones and other penetrating objects 1 inch or larger from the upper one-foot or protruding from the surface of the final lift of soil barrier layer will be removed to avoid puncturing the GCL and/or geomembrane. The RPR will observe the liner during this process and will document the removal of stones and other objects by the Contractor. Voids made by the removal of stones will be filled with soil barrier layer or bentonite, and the entire liner surface will be rolled with a smooth-drum compactor by the Contractor.
- Preconstruction planning will be undertaken to sequence construction activities to minimize the length of time any portion of the soil barrier layer surface will be exposed prior to receiving protective cover. Protective cover will be provided by the installation of the GCL and the geomembrane.

5.3 Sampling Requirements and Acceptance Criteria

This section describes the required analyses, methods, sample frequencies, and acceptance limits. Field and laboratory sampling frequencies are based on the area or volume of material placed, as specified in s. NR 516.07. The RPR will perform field tests and will collect soil samples for laboratory analysis. The RPR will record the field sample locations in the daily construction reports or field data sheets as record construction data, including locations and lift locations of the laboratory sample points.

5.3.1 Field Testing

The following field testing methods will be used by the RPR during construction:

Parameter	Method		
Moisture content	ASTM D3017		
Field density	ASTM D2922 Method B		

Field density and moisture content tests will be performed in accordance with NR 516.07(2m)(b)(1) using a nuclear density gauge on a 100-foot grid pattern for each 1-foot thickness of compacted soil barrier layer placed. The testing grid pattern will be offset on each subsequent layer of tests. In confined areas where compaction equipment is hindered or hand compaction is necessary, a minimum of two field density and moisture content tests will be performed for each 1-foot thickness of low-permeable soil placed.

5.3.1.1 Field Testing Acceptance Criteria

Acceptance criteria for field density will require soil compaction to a minimum of 90 percent of the Modified Proctor (ASTM D1557) maximum dry density. Moisture content requirements will be at least wet of optimum. The acceptable range will be based on Proctor moisture-density relationships and compaction versus permeability relationships.

5.3.2 Laboratory Testing

Routine laboratory testing of the soil barrier layer will be performed on samples from the soil borrow area and on the in-place soil samples collected by the RPR. Samples for determining inplace properties will be collected by pushing Shelby tubes. Soil characteristics will be determined from representative samples and from Shelby tube samples.

5.3.2.1 Undisturbed Sample Analysis

One undisturbed sample will be taken for each acre or less for every 1-foot thickness of soil placed and will be submitted to the Soil Testing Laboratory.

The following analyses will be performed on all undisturbed samples obtained:

Parameter	Test Method
Moisture content and dry density	ASTM D2216

5.3.2.2 Representative Sample Analysis

Representative (grab) samples will be obtained based on three criteria. First, an initial sample will be obtained from the borrow source and analyzed prior to construction. This will confirm soil characteristics and provide an initial maximum dry density and optimum moisture content for field moisture/density testing. Second, routine samples will be obtained for every 1,500 cubic yards placed. Third, if changes in physical appearance or soil characteristics are observed, a sample will be obtained and analyzed. The maximum dry density and optimum moisture content values

used for compaction testing may be adjusted during liner construction based on the results of the above sampling.

The following laboratory analyses will be performed on all representative samples obtained:

Parameter	Test Method
Moisture-density relationship using Modified/Standard Proctor compaction	ASTM D1557 ^(a, b) / ASTM D698 ^(a, b)
Grain-size analysis	ASTM D422 ^(c)
Atterberg Limits	ASTM D4318

Notes:

^(a) Five-point Proctor analysis required for first and second sampling criteria.

(b) A one-point Proctor analysis may be utilized for representative samples collected for the third sampling criteria (apparent changes in soil quality) to verify applicability of previously analyzed moisture-density relationships. If the result does not verify applicability, then a five-point analysis will be performed in accordance with the first sampling criteria.

^(c) Distribution to be reported through 0.002 mm particle size

5.3.2.3 Laboratory Testing Acceptance Criteria

The following acceptance criteria will apply to the compacted low permeability soil.

- A minimum 80 percent by weight that passes the No. 60 screen and 40 percent by weight that passes the 200 sieve.
- Compacted to at least 90% Modified Proctor density.
- Meets USCS classifications of either: ML, CL, CH, SM, or SC.
- The upper foot of the barrier layer will have a maximum particle diameter of 1-inch and the lower 1-foot of the barrier layer will have a maximum particle diameter of 4 inches.

5.4 Thickness Documentation

For the base liner: The top and bottom of the soil barrier layer grades will be surveyed on a 50-foot grid pattern (same location for the top and bottom of barrier layer) and at other key locations (e.g., breaks in slope, toe of slopes, top of slope, limits of construction) to determine that minimum as-constructed soil barrier layer thicknesses were achieved.

In the alignment for leachate collection lines, bottom and top of liner elevations of the trench will be surveyed at 25-foot intervals (maximum 50-foot intervals if a total station, laser equipment, or survey quality global positioning system equipment is used).

For the final cover system: The bottom of the final cover barrier layer (top of waste) will be surveyed on a maximum 100-foot grid pattern (maximum 50-foot grid pattern if the final cover construction is less than 4 acres) and at key locations on the final cover. Key locations include breaks in grade, top of slopes, and limits of final cover construction. The barrier layer thickness will be determined at top of waste surveyed locations and reported in a tabular fashion in the Construction Documentation Report.

The soil barrier layer thickness will be determined at surveyed locations and reported in a tabular fashion. The minimum acceptable liner/final cover thickness will be 2 feet (-0.0/+0.1 foot) vertical.

6.0 General Soil

6.1 General

This section includes the quality assurance requirements for placement, compaction, and grading of general soil (i.e., general fill). General soil may be any inorganic soil. General soil will be used in the construction of the following landfill components:

- Final cover
- Access roads
- Landfill perimeter berms

Field tests, soil sample types, and survey measurements will be recorded in the daily summary reports (see Subsection 4.2) as record construction data, including locations (by coordinates) and elevations of lifts of field tests and laboratory sample points.

6.2 **Procedures and Observation**

The RPR will observe general soil placement activities and will document relevant observations to support certification of the following requirements:

- The RPR will periodically observe loads of general fill for general conformance to material specifications and may randomly sample loads. The RPR will perform routine conformance sampling as defined in Subsection 6.3.2.
- No frozen soil will be used for backfilling. Any frozen soil in the compaction work area will be removed.
- Loose lift thickness for general soil compaction will not exceed 18 inches.
- General soil used as structural fill (e.g., access roads and perimeter landfill berms) will be placed with a compacted effort to achieve a minimum of 90 percent or 95 percent of the maximum dry density as determined by the Modified or Standard Proctor test, respectively.
- Unacceptable compaction density, as defined above, will be reported to the CQA Officer by the RPR. Corrective action will consist of moisture-conditioning of the soil and/or additional compactive effort as necessary.
- The RPR will confirm the subbase is acceptable and ready for soil barrier layer material placement prior to placement over the subbase. The RPR will notify the Engineer of any soft appearing areas of the subbase during subbase development and prior to soil barrier layer placement.

Field densities using methods described in Subsection 6.3.1 will be measured to document that the in-place soil is in substantial conformance with the required density.

6.3 Sampling Requirements and Acceptance Criteria

Testing is required for general soil used as structural fill (recompacted soil used in subgrade and berm construction). No field or laboratory testing of general soil will be required for placement in the final cover. Sampling and testing of structural fill will be conducted in accordance with NR 516.07(1m).

6.3.1 Field Testing

The following field-testing method will be used by the RPR during construction:

Parameter	Test Method		
Moisture content	ASTM D3017		
Soil density	ASTM D2922 Method B		

Field density and moisture content tests will be performed on a 100-foot grid pattern as much as reasonably possible for each 1-foot thickness of compacted structural fill placed. The testing pattern will be offset on alternate lifts as much as reasonably possible. In confined areas where compaction equipment is hindered or hand compaction is necessary, a minimum of two field density and moisture content tests will be performed for each 1-foot thickness of structural fill placed.

6.3.1.1 Field Testing Acceptance Criteria

Acceptance criteria for field density will require soil compaction to a minimum of 90 percent of the Modified Proctor (ASTM D1557) maximum dry density, or a minimum of 95 percent of the Standard Proctor (ASTM D698) maximum dry density.

6.3.2 Laboratory Testing

Routine laboratory testing of the structural fill will be performed on representative samples collected from the general fill borrow area and/or general fill stockpiles. Soil characteristics will be determined from representative samples.

6.3.2.1 Representative Sample Analysis

Representative (grab) samples of the structural fill will be obtained at a minimum frequency of one sample for every 5,000 cubic yards placed and a sample will be collected if changes in physical appearance or soil characteristics are observed. The maximum dry density values used for compaction testing may be adjusted during the course construction based on the results of the above sampling.

The following laboratory analyses will be performed on all representative samples obtained:

Parameter	Test Method
Moisture-density relationship using Modified or Standard Proctor compaction	ASTM D1557 ^(a) / ASTM D698 ^(a)
Atterberg limits ^(c)	ASTM D4318
Grain-size analysis	ASTM D422 ^(b)

Notes:

(a) A one-point Proctor analysis may be utilized for representative samples collected for the third sampling criterion (apparent changes in soil quality) to verify applicability of previously analyzed moisture-density relationships. If the result does not verify applicability, then a five-point analysis will be performed in accordance with the first sampling criterion.

^(b) Distribution is to be reported through the 0.002 mm particle size.

^(c) Atterberg limits are only applicable when the sample is fine grain soil.

6.3.2.2 Laboratory Testing Acceptance Criteria

There are no laboratory acceptance criteria for general fill.

6.4 Thickness Documentation

Top of subbase grades will be documented on an approximate 50-foot grid, and at other key locations, such as breaks in grade, toes of slope, mid-points, and tops of slopes. In the alignment for leachate collection undercuts, the bottom of trench undercut elevations will be surveyed at maximum 25-foot intervals (maximum 50-foot intervals if total station, laser equipment, or survey grade global positioning system equipment is used). The allowable tolerance in subbase elevation will be -0.1 foot or as allowed by the CQA Officer.

The rooting zone thickness of the final cover will be surveyed on an approximate 100-foot grid (for cells larger than 4 acres or on an approximate 50-foot grid for cells smaller than 4 acres) and at other key locations, such as breaks in grade and toes of slopes. The minimum acceptable thickness will be 1.50 foot. The allowable tolerance in elevation will be +0.1 foot

In addition to survey measurements for elevation, measurements for horizontal location will also be performed using previously established horizontal control to document the boundaries and alignment of the general soil placement.

7.0 Granular Soil

7.1 General

Granular soil includes select granular fill and select aggregate fill. Select granular fill refers to material used for the granular drainage layer overlying the geomembrane liner and for the granular drainage layer in the final cover. The select aggregate fill refers to the pipe bedding material for leachate collection pipes and final cover drain outlets for the drainage layer and perimeter toe drains. The select aggregate fill is used for structural support of the leachate collection pipes. Limestone and dolomite stone will not be used in the leachate collection system unless no other suitable material is reasonably available. The gravel should be rounded to subangular.

7.2 **Procedures and Observation**

The RPR will observe granular soil placement activities and will document relevant observations to support certification of the following requirements:

- The RPR will periodically observe loads of granular soil for general conformance to material specifications and may randomly sample loads. The RPR will perform routine conformance sampling as defined in Subsection 7.3.
- Guidance will be provided to the machine operators placing soil on the geomembrane by the use of an observer with an unobstructed view of the advancing lift of granular soil.
- No trucks or heavy equipment will travel directly on the geomembrane. Only low-ground pressure tracked equipment (< 5 psi) may operate over the geomembrane when there is a minimum 12-inch-thick layer of select granular fill in-place. Flotation tire-equipped vehicles and tracked vehicles may not travel over the geomembrane unless a minimum of 2 feet of select granular fill are in place. Traditional rubber-tired equipment may not travel over the geomembrane travel over the geomembrane unless a minimum of 3 feet of select granular fill are in place. Procedures for deployment of pipe, sand, gravel, and/or geotextiles overlying geomembranes will be planned at the preconstruction meeting. Special requirements for geomembrane protection and equipment necessary to deploy materials must be approved by the CQA Officer.</p>
- Care will be exercised during placement of granular soil to prevent undue damage to pipes, geomembrane, and geotextiles. Stone will not be dropped from a height greater than 3 feet above the pipe trench.
- A geotextile cushion will be placed between the geomembrane and the select aggregate (pipe bedding) material placed in the leachate collection trenches.
- A minimum of 4 inches of select aggregate (pipe bedding) material will be placed under leachate collection pipes prior to pipe placement, and a minimum of 12 inches of select aggregate will be placed over the top of the leachate collection pipes.
- If granular soil is stockpiled on-site prior to use, measures will be taken to minimize contamination by fines such as wind-blown particles and surface soil during loading operations.

7.3 Sampling Requirements and Acceptance Criteria

Field sampling and laboratory testing frequencies are based on proportionate sampling of construction areas or volumes of material placed as specified by s. NR 516.06. This section describes the required analyses, methods, sampling frequencies, and acceptance limits. The RPR will collect soil samples for laboratory analysis.

7.3.1 Field Testing

No field testing will be required for select granular fill or select aggregate fill. However, as stated in Subsection 7.2 above, the RPR will perform a visual inspection of this soil for conformance to material specifications and may randomly sample deliveries.

7.3.2 Laboratory Testing

Representative (grab) samples will be obtained from the proposed select granular fill and select aggregate fill sources prior to delivery of the material. The source sampling frequency will be dependent on the apparent uniformity of the source and must be approved by the CQA Officer.

Soil Type	Frequency	Parameter	Test Method
Select granular fill (drainage blanket)	1/1,000 CY ^(a, b)	Grain size	ASTM D422 ^(c)
Select granular fill (drainage blanket)	1/2,500 CY ^(b, d)	Remolded hydraulic conductivity	ASTM D2434
Select aggregate fill pipe bedding material (perforated pipes)	1/1,000 LF of trench ^(e)	Grain size	ASTM D422 ^(c)
Pipe bedding material (solid-wall leachate or transfer pipes)	1/1,000 LF of trench ^(e)	Grain size	ASTM D422 ^(f)

Grab samples of granular material placed will be collected and analyzed as follows:

Notes:

^(a) For lesser volumes, a minimum of four samples will be tested.

^(b) This frequency may be reduced for uniform sources. Proposed reductions will be submitted for WDNR approval prior to implementation.

- ^(c) Testing is required only to the #200 sieve.
- ^(d) For lesser volumes, a minimum of two samples will be tested.
- ^(e) For documentation areas with less than 3,000 feet of pipe trench, a minimum of three samples will be tested.

^(f) Testing is required only to the #4 sieve.

7.3.2.1 Laboratory Testing Acceptance Criteria

Select granular fill material utilized in the leachate drainage blanket:

- No more than 5 percent by weight of fines passing the #200 sieve,
- Uniformity coefficient less than 4 for gravelly soil and less than 6 for sandy soil, and
- Remolded hydraulic conductivity of 1 x 10⁻² cm/s or greater at the anticipated field density.

Select granular fill with material retained on the #4 sieve will require a geotextile cushion between the geomembrane and select granular fill (see Section 9).

Select granular fill used in the final cover drainage layer will have a remolded hydraulic conductivity of 1×10^{-3} cm/s or greater at the anticipated field density.

Select aggregate fill pipe bedding material for the leachate collection line will have a uniformity coefficient less than 4, will contain no more than 5 percent by weight passing the #4 sieve, will have a maximum particle diameter of $\frac{1}{2}$ inch, and will have a rounded to subangular particle shape.

Select aggregate fill pipe bedding material used in the final cover toe drains will have a remolded hydraulic conductivity of 1×10^{-2} cm/s or greater at the anticipated field density.

7.4 Thickness Documentation

The finished elevation of the select granular fill drainage layer portion of the composite liner system will be surveyed on a 50-foot grid, which coincides with the grid used for the liner soil barrier layer. The finished elevation of the select granular fill drainage layer portion of the final cover system will be surveyed on a 100-foot grid (50-foot grid for areas less than 4 acres). The minimum acceptable drainage layer thickness will be 12 inches (-0.0/+0.2 foot).

Select aggregate fill pipe bedding placed along collection pipe alignments will be surveyed for elevation prior to pipe placement and following pipe backfilling at 25-foot intervals (50-foot intervals if a total station or laser equipment is used to set elevation) to document the thickness of gravel placed below pipe inverts and above the top of pipe. The minimum acceptable stone thickness will be 4 inches below and 12 inches above the leachate collection piping.

8.0 Topsoil

8.1 General

This section includes the quality assurance requirements for the excavation and placement of the topsoil and for the fertilization, seeding, mulching, and watering of the topsoil layer for vegetation. Topsoil is the final layer of soil material installed on the final cover, along the outside slopes of the perimeter berms, along the ditches, and on other perimeter areas. Topsoil will be obtained from on-site stockpiles created by the clearing of the landfill footprint and associated disturbed perimeter areas or will be hauled in from an off-site borrow source.

8.2 **Procedures and Observation**

Work covered by this section will be performed in accordance with the construction plans and specifications. The RPR will observe topsoil placement activities and will document relevant observations to support certification of the following requirements:

- The RPR will confirm the source and uniformity of topsoil used. Soil excavation and placement will be monitored for minimization of inorganic soil not compatible for establishment of vegetation.
- Prior to seeding, the topsoil will be worked to prepare a suitable seedbed.
- Fertilizing, seeding, and mulching will be performed in a timely manner.

8.3 Sampling Requirements and Acceptance Criteria

The topsoil will be suitable for the establishment and long-term maintenance of the selected vegetation seed mix with appropriate fertilization. At the RPR's discretion, or if required by the construction specifications, samples will be collected for laboratory testing.

8.4 Surveying

The thickness of topsoil placement will be documented on a 100-foot grid for cells larger than 4 acres, or on a 50-foot grid for cells smaller than 4 acres, by surveying or by hand shoveling and measuring the observed thickness of topsoil.

9.0 Geomembrane

9.1 General

This section of the CQA Plan applies to the high-density polyethylene (HDPE) geomembrane used in the landfill composite liner and the linear low density polyethylene (LLDPE) geomembrane, or equal, used in the composite final cover.

The geomembrane will be supplied to the site in factory rolls. No factory seams will be used to prepare larger panels of geomembrane for delivery to the site. This plan, therefore, does not contain Quality Assurance or Quality Control requirements for factory seaming.

The remainder of this section is divided into four major subheadings, which cover the CQA requirements for the preinstallation, installation, field seaming, and post-installation. The terms preinstallation, installation, field seaming, and post-installation are applicable only to the geomembrane installation and do not apply to the overall construction of the landfill facility.

9.2 Preinstallation

This section describes the quality control measures that are applicable to the polyethylene (PE) Resin Manufacturers and Geomembrane Manufacturers, and finished geomembrane roll delivery to the site prior to installation.

The geomembrane must be fabricated from polyethylene resin. The resin shall be virgin material with no more than 10 percent rework. If rework is used, it must be of the same formulation as the parent material. No post-consumer resin (PCR) of any type shall be added to the formulation.

If, during construction, geomembrane materials are obtained from a different manufacturer or are made from different resins, seam samples formed by joining the original and the proposed geomembrane will be tested to confirm the construction compatibility of the two geomembrane materials. Prior to the use of the new geomembrane material, a minimum of two seamed samples (as described above) will be submitted to the geosynthetics laboratory for destructive seam testing as described in Subsection 9.4.5. The CQA Officer will review the testing results prior to authorizing the use of the new geomembrane material.

9.2.1 Manufacturing

9.2.1.1 Material Specifications

The following list specifies the required membrane materials for liner and final cover construction:

- Base liner sideslopes (3H:1V typical)
- Base liner
- Final cover top (5 percent slope or less)
- Final cover sideslopes (4H:1V typical)
- 60-mil HDPE-textured 60-mil HDPE smooth (textured optional) 40-mil LLDPE smooth (textured optional) 40-mil LLDPE-textured

9.2.1.2 Quality Control Requirements

Prior to the delivery of any geomembrane rolls to the site, the Geomembrane Manufacturer will provide the CQA Officer with the following information:

- The Resin Supplier's name, the location of the Resin Supplier's production plant(s), and the resin brand name and product number.
- Any results of tests conducted by the Geomembrane Manufacturer's and/or the Resin Manufacturer's testing laboratories to document the quality of the resin used in fabricating the geomembrane.
- The Quality Control Plan that the Geomembrane Manufacturer will be using for the geomembrane being supplied.

Every roll of geomembrane for delivery to the site must be manufactured and inspected by the Geomembrane Manufacturer according to the following requirements:

- First quality polyethylene resin must be used.
- The geomembrane must contain no more than a maximum of 1 percent by weight of additives, fillers, or extenders, excluding carbon black.
- Carbon black for ultraviolet protection shall be added during manufacturing of the geomembrane.
- The geomembrane must be free of holes, blisters, undispersed raw materials, or other sign of contamination by foreign matter.

The Geomembrane Manufacturer will routinely perform specific gravity (ASTM D792, method B or ASTM D1505) and melt index (ASTM D1238) tests on the raw resin to document the quality of the HDPE and LLDPE resin used to manufacture the geomembrane rolls assigned to this project. The resin from which the geomembrane is made will have a density range of 0.932 g/ml or higher for HDPE and 0.926 g/ml or less for LLDPE. In addition, the geomembrane will have a melt index value of less than 1.0 g per 10 minutes. The results will be submitted to the CQA Officer, prior to the acceptance of the geomembrane.

9.2.1.3 Manufacturer's Certification

The Geomembrane Manufacturer will test the geomembrane produced for the site according to the test methods and frequencies listed in Table 9-1, 9-2, 9-3, and 9-4 or in accordance with the most current version of GM13 and GM17. The Geomembrane Manufacturer will provide certification, based on tests performed by either the Geomembrane Manufacturer's laboratory or other outside laboratory contracted by the Geomembrane Manufacturer, that the geomembrane supplied under this CQA Plan will meet the specifications presented in Tables 9-1, 9-2, 9-3, and 9-4. Additionally, the Geomembrane Manufacturer will provide certification that the Manufacturer's Quality Control Plan was fully implemented for the geomembrane material supplied under this CQA Plan. The Geomembrane Manufacturer will provide documentation to verify results of the Manufacturer's Quality Control Plan implementation if requested by the CQA Officer.

Table 9-1: HDPE Geomembrane – Smooth Test Frequency and Acceptance Criteria

Properties	ASTM Test Method	Test Value (60 mils)	Manufacturer's Testing Frequency (minimum) ⁽¹⁾	Minimum Conformance Testing Frequency ⁽²⁾
Thickness (min. average)	D5199	Nom.	Per roll	5 places/roll
Lowest individual of 10 values		-10%		
Density mg/L (minimum average)	D1505/ D792	0.940 g/cc	200,000 lb	1/100,000 sf ⁽³⁾
Melt flow index – g/10 min (max.)	D1238	1.0	1/batch	1/100,000 sf ⁽³⁾
Tensile Properties (min. average) ⁽⁴⁾	D6693 Type IV		20,000 lb	1/100,000 sf ⁽⁵⁾
Yield strength		126 lb/in.		
Break strength		228 lb/in.		
Yield elongation		12%		
Break Elongation		700%		
Tear Resistance (min. average)	D1004	42 lb	45,000 lb	Not required
Puncture Resistance (min. average)	D4833	108 lb	45,000 lb	Not required
Stress Crack Resistance ⁽⁶⁾	D5397	500 hr.	per GRI-GM10	(7)
Carbon Black Content (range)	D4218 ⁽⁸⁾	2.0-3.0%	20,000 lb	Not required
Carbon Black Dispersion	D5596	Note ⁽⁹⁾	45,000 lb	Not required
Oxidative Induction Time (OIT) (min. average) ⁽¹⁰⁾			200,000 lb	Not required
Standard OIT —or—	D8117	100 min.		
High Pressure OIT	D5885	400 min.		
Oven Aging at 85°C ⁽¹⁰⁾⁽¹¹⁾	D5721		Per each formulation	Not required
• Standard OIT (min. average) - % retained after 90 days	D8117	55%		
 —or— High Pressure OIT (min. average) - % retained after 90 days 	D5885	80%		

Table 9-1: HDPE Geomembrane – Smooth Test Frequency and Acceptance Criteria

	Properties	ASTM Test Method	Test Value (60 mils)	Manufacturer's Testing Frequency (minimum) ⁽¹⁾	Minimum Conformance Testing Frequency ⁽²⁾
U٧	Resistance ⁽¹²⁾	D7238		Per each formulation	Not required
•	Standard OIT (min. average)	D8117	N.R. ⁽¹³⁾		
	—or—				
•	High Pressure OIT (min. average) - % retained after 1,600 hours ⁽¹⁴⁾	D5885	50%		

Notes:

⁽¹⁾ The Geomembrane Manufacturer will perform quality control testing at the specified frequencies (minimum) on geomembrane rolls to be supplied for this project.

⁽²⁾ CQA Officer to coordinate conformance testing at the specified frequencies (minimum) on the geomembrane rolls supplied to the project.

- (3) In addition to the minimum frequency noted, a minimum of one test for each batch of resin used to manufacture the rolls delivered on site must be performed, unless documentation is provided which shows the manufacturer performed testing at the same frequencies.
- ⁽⁴⁾ Machine direction (MD) and cross machine direction (XMD) average values should be on the basis of 5 test specimens each direction.
 - Yield elongation is calculated using a gauge length of 1.3 inches.
 - Break elongation is calculated using a gauge length of 2.0 inches.
- ⁽⁵⁾ In addition to the minimum frequency noted, a minimum of one test for each batch of resin used to manufacture the rolls delivered on site must be performed.
- ⁽⁶⁾ The yield stress used to calculate the applied load for the SP-NCTL test should be the manufacturer's mean value via MQC testing.
- ⁽⁷⁾ A minimum of one test for each batch of HDPE resin used to manufacture rolls delivered on site unless documentation is provided that shows manufacturer performed testing at the same frequency.
- (8) Other methods such as D1603 (tube furnace) or D6370 (TGA) are acceptable if an appropriate correlation to D4218 (muffle furnace) can be established.
- ⁽⁹⁾ Carbon black dispersion (only near spherical agglomerates) for 10 different views:
 - Nine in Categories 1 or 2, and 1 in Category 3.
- ⁽¹⁰⁾ The manufacturer has the option to select either one of the OIT methods listed to evaluate the antioxidant content in the geomembrane.
- ⁽¹¹⁾ It is also recommended to evaluate samples at 30 and 60 days to compare with the 90-day response.
- ⁽¹²⁾ The condition of the test should be 20-hour UV cycle at 75°C, followed by 4-hour condensation at 60°C.
- ⁽¹³⁾ Not recommended since the high temperature of the Std-OIT test produces an unrealistic result for some of the antioxidants in the UV exposed samples.
- ⁽¹⁴⁾ UV resistance is based on percent retained value of the original HP-OIT value.

Table 9-2:	HDPE Geomembrane -	- Textured Test Fre	quency and Acce	ptance Criteria
			quoinoj una / 1000	

Properties	ASTM Test Method	Test Value (60 mils)	Manufacturer's Testing Frequency (minimum) ⁽¹⁾	Minimum Conformance Testing Frequency(2)
Thickness (min. average)	D5994	Nom.	Per roll	5 places/roll
Lowest individual for 8 out of 10 values		-10%		
 Lowest individual for any of the 10 values 		-15%		
Asperity Height (min. average)	D7466	16 mil	Every second roll ⁽¹⁵⁾	Not Required
Density mg/L (minimum average)	D1505/ D792	0.940 g/cc	200,000 lb	1/100,000 sf ⁽³⁾
Melt flow index – g/10 min (max.)	D1238	1.0	1/batch	1/100,000 sf ⁽³⁾
Tensile Properties (min. average) ⁽⁴⁾	D6693		20,000 lb	1/100,000 sf ⁽⁵⁾
Yield strength	Type IV	126 lb/in.		
Break strength		90 lb/in.		
Yield elongation		12%		
Break Elongation		100%		
Tear Resistance (min. average)	D1004	42 lb	45,000 lb	Not required
Puncture Resistance (min. average)	D4833	90 lb	45,000 lb	Not required
Stress Crack Resistance ⁽⁶⁾	D5397	500 hr.	per GRI-GM10	(7)
Carbon Black Content (range)	D4218 ⁽⁸⁾	2.0–3.0%	20,000 lb	Not required
Carbon Black Dispersion	D5596	Note ⁽⁹⁾	45,000 lb	Not required
Oxidative Induction Time (OIT) (min. average) ⁽¹⁰⁾			200,000 lb	Not required
Standard OIT	D8117	100 min.		
—or—				
High Pressure OIT	D5885	400 min.		
Oven Aging at 85°C ⁽¹⁰⁾⁽¹¹⁾	D5721		Per each	Not required
 Standard OIT (min. average) - % retained after 90 days 	D8117	55%	formulation	
 —or— High Pressure OIT (min. average) - % retained after 90 days 	D5885	80%		

Table 9-2: HDPE Geomembrane – Textured Test Frequency and Acceptance Criteria

Properties	ASTM Test Method	Test Value (60 mils)	Manufacturer's Testing Frequency (minimum) ⁽¹⁾	Minimum Conformance Testing Frequency ₍₂₎
UV Resistance ⁽¹²⁾	D7238		Per each	Not required
• Standard OIT (min. average)	D8117	N.R. ⁽¹³⁾	formulation	
—or—				
High Pressure OIT (min. average) - % retained after 1,600 hours ⁽¹⁴⁾	D5885	50%		

Notes:

⁽¹⁾ The Geomembrane Manufacturer will perform quality control testing at the specified frequencies (minimum) on geomembrane rolls to be supplied for this project.

⁽²⁾ CQA Officer to coordinate conformance testing at the specified frequencies (minimum) on the geomembrane rolls supplied to the project.

⁽³⁾ In addition to the minimum frequency noted, a minimum of one test for each batch of resin used to manufacture the rolls delivered on site must be performed, unless documentation is provided which shows the manufacturer performed testing at the same frequencies.

(4) Machine direction (MD) and cross machine direction (XMD) average values should be on the basis of 5 test specimens each direction.

- Yield elongation is calculated using a gauge length of 1.3 inches.
- Break elongation is calculated using a gauge length of 2.0 inches.
- ⁽⁵⁾ In addition to the minimum frequency noted, a minimum of one test for each batch of resin used to manufacture the rolls delivered on site must be performed.
- ⁽⁶⁾ SP-NCTL per ASTM D5397 Appendix is not appropriate for testing geomembranes with textured or irregular rough surfaces. Test should be conducted on smooth edges of textured rolls or on smooth sheets made from the same formulation as being used for the textured sheet materials. The yield stress used to calculate the applied load for the SP-NCTL test should be the manufacturer's mean value via MQC testing.
- ⁽⁷⁾ A minimum of one test for each batch of HDPE resin used to manufacture rolls delivered on site unless documentation is provided that shows manufacturer performed testing at the same frequency.
- ⁽⁸⁾ Other methods such as D1603 (tube furnace) or D6370 (TGA) are acceptable if an appropriate correlation to D4218 (muffle furnace) can be established.
- ⁽⁹⁾ Carbon black dispersion (only near spherical agglomerates) for 10 different views:
 - Nine in Categories 1 or 2, and 1 in Category 3.
- ⁽¹⁰⁾ The manufacturer has the option to select either one of the OIT methods listed to evaluate the antioxidant content in the geomembrane.
- ⁽¹¹⁾ It is also recommended to evaluate samples at 30 and 60 days to compare with the 90-day response.
- ⁽¹²⁾ The condition of the test should be 20-hour UV cycle at 75°C, followed by 4-hour condensation at 60°C.
- ⁽¹³⁾ Not recommended since the high temperature of the Std-OIT test produces an unrealistic result for some of the antioxidants in the UV exposed samples.
- ⁽¹⁴⁾ UV resistance is based on percent retained value of the original HP-OIT value.
- ⁽¹⁵⁾ Alternate the measurement side for double-sided textured sheet.

Table 9-3: LLDPE Geomembrane – Smooth Test Frequency and Acceptance Criteria

Properties	ASTM Test Method	Test Value (40 mils)	Manufacturer's Testing Frequency (minimum) ⁽¹⁾	Minimum Conformance Testing Frequency ⁽²⁾
Thickness (min. average)	D5199	Nom.	Per roll	5 places/roll
Lowest individual of 10 values		-10%		
Density mg/L (minimum average)	D1505/ D792	0.939 g/cc	200,000 lb	1/100,000 sf ⁽³⁾
Melt flow index – g/10 min (max.)	D1238	1.0	1/batch	1/100,000 sf ⁽³⁾
Tensile Properties (min. average) ⁽⁴⁾	D6693		20,000 lb	1/100,000 sf ⁽⁵⁾
Break strength	Type IV	152 lb/in.		
Break Elongation		800%		
2% Modulus (max.) – lb/in	D5323	2400	Per formulation	Not required
Tear Resistance (min. average)	D1004	22 lb	45,000 lb	Not required
Puncture Resistance (min. average)	D4833	56 lb	45,000 lb	Not required
Axi-Symmetric Break Resistance Strain (min) - %	D5397	30	Per formulation	Not required
Carbon Black Content (range)	D4218 ⁽⁶⁾	2.0-3.0%	20,000 lb	Not required
Carbon Black Dispersion	D5596	Note ⁽⁷⁾	45,000 lb	Not required
Oxidative Induction Time (OIT) (min. average) ⁽⁸⁾			200,000 lb	Not required
Standard OIT	D8117	100 min.		
—or—				
High Pressure OIT	D5885	400 min.		
Oven Aging at 85°C ⁽⁸⁾⁽⁹⁾	D5721		Per each	Not required
 Standard OIT (min. average) - % retained after 90 days —or— 	D8117	35%	formulation	
 High Pressure OIT (min. average) - % retained after 90 days 	D5885	60%		

Table 9-3: LLDPE Geomembrane – Smooth Test Freq	uency and Acceptance Criteria

Properties	ASTM Test Method	Test Value (40 mils)	Manufacturer's Testing Frequency (minimum) ⁽¹⁾	Minimum Conformance Testing Frequency ⁽²⁾
UV Resistance ⁽¹⁰⁾	D7238		Per each	Not required
• Standard OIT (min. average)	D8117	N.R. ⁽¹¹⁾	formulation	
—or—				
 High Pressure OIT (min. average) - % retained after 1,600 hours⁽¹²⁾ 	D5885	35%		

Notes:

⁽¹⁾ The Geomembrane Manufacturer will perform quality control testing at the specified frequencies (minimum) on geomembrane rolls to be supplied for this project.

- ⁽²⁾ CQA Officer to coordinate conformance testing at the specified frequencies (minimum) on the geomembrane rolls supplied to the project.
- (3) In addition to the minimum frequency noted, a minimum of one test for each batch of resin used to manufacture the rolls delivered on site must be performed, unless documentation is provided which shows the manufacturer performed testing at the same frequencies.
- ⁽⁴⁾ Machine direction (MD) and cross machine direction (XMD) average values should be on the basis of 5 test specimens each direction.
 - Break elongation is calculated using a gauge length of 2.0 inches.
- ⁽⁵⁾ In addition to the minimum frequency noted, a minimum of one test for each batch of resin used to manufacture the rolls delivered on site must be performed.
- ⁽⁶⁾ Other methods such as D1603 (tube furnace) or D6370 (TGA) are acceptable if an appropriate correlation to D4218 (muffle furnace) can be established.
- ⁽⁷⁾ Carbon black dispersion (only near spherical agglomerates) for 10 different views:
 - Nine in Categories 1 or 2, and 1 in Category 3.
- ⁽⁸⁾ The manufacturer has the option to select either one of the OIT methods listed to evaluate the antioxidant content in the geomembrane.
- ⁽⁹⁾ It is also recommended to evaluate samples at 30 and 60 days to compare with the 90-day response.
- ⁽¹⁰⁾ The condition of the test should be 20-hour UV cycle at 75°C, followed by 4-hour condensation at 60°C.
- ⁽¹¹⁾ Not recommended since the high temperature of the Std-OIT test produces an unrealistic result for some of the antioxidants in the UV exposed samples.
- ⁽¹²⁾ UV resistance is based on percent retained value of the original HP-OIT value.

Table 9-4: LLDPE Geomembrane – Textured Test Frequency and Acceptance Criteria
--

Properties	ASTM Test Method	Test Value (40 mils)	Manufacturer's Testing Frequency (minimum) ⁽¹⁾	Minimum Conformance Testing Frequency ⁽²⁾
Thickness (min. average)	D5994	Nom.	Per roll	5 places/roll
 Lowest individual for 8 out of 10 values 		-10%		
 Lowest individual for any of the 10 values 		-15%		
Asperity Height (min. average)	D7466	16 mil	Every second roll ⁽¹³⁾	Not Required
Density mg/L (minimum average)	D1505/ D792	0.939 g/cc	200,000 lb	1/100,000 sf ⁽³⁾
Melt flow index – g/10 min (max.)	D1238	1.0	1/batch	1/100,000 sf ⁽³⁾
 Tensile Properties (min. average)⁽⁴⁾ Break strength 	D6693 Type IV	60 lb/in.	20,000 lb	1/100,000 sf ⁽⁵⁾
Break Elongation		250%		
2% Modulus (max.) – lb/in	D5323	2400	Per formulation	Not required
Tear Resistance (min. average)	D1004	22 lb	45,000 lb	Not required
Puncture Resistance (min. average)	D4833	44 lb	45,000 lb	Not required
Axi-Symmetric Break Resistance Strain (min) - %	D5397	30	Per formulation	Not required
Carbon Black Content (range)	D4218 ⁽⁶⁾	2.0-3.0%	20,000 lb	Not required
Carbon Black Dispersion	D5596	Note ⁽⁷⁾	45,000 lb	Not required
Oxidative Induction Time (OIT) (min. average) ⁽⁸⁾			200,000 lb	Not required
Standard OIT or	D8117	100 min.		
High Pressure OIT	D5885	400 min.		
Oven Aging at 85°C ⁽⁸⁾⁽⁹⁾	D5721		Per each	Not required
 Standard OIT (min. average) - % retained after 90 days 	D8117	35%	formulation	
 —or— High Pressure OIT (min. average) - % retained after 90 days 	D5885	60%		

Properties	ASTM Test Method	Test Value (40 mils)	Manufacturer's Testing Frequency (minimum) ⁽¹⁾	Minimum Conformance Testing Frequency ⁽²⁾
UV Resistance ⁽¹⁰⁾	D7238		Per each	Not required
• Standard OIT (min. average)	D8117	N.R. ⁽¹¹⁾	formulation	
—or—				
High Pressure OIT (min. average) - % retained after 1,600 hours ⁽¹²⁾	D5885	35%		

Notes:

⁽¹⁾ The Geomembrane Manufacturer will perform quality control testing at the specified frequencies (minimum) on geomembrane rolls to be supplied for this project.

⁽²⁾ CQA Officer to coordinate conformance testing at the specified frequencies (minimum) on the geomembrane rolls supplied to the project.

⁽³⁾ In addition to the minimum frequency noted, a minimum of one test for each batch of resin used to manufacture the rolls delivered on site must be performed, unless documentation is provided which shows the manufacturer performed testing at the same frequencies.

(4) Machine direction (MD) and cross machine direction (XMD) average values should be on the basis of 5 test specimens each direction.

- Yield elongation is calculated using a gauge length of 1.3 inches.

- Break elongation is calculated using a gauge length of 2.0 inches.

⁽⁵⁾ In addition to the minimum frequency noted, a minimum of one test for each batch of resin used to manufacture the rolls delivered on site must be performed.

⁽⁶⁾ Other methods such as D1603 (tube furnace) or D6370 (TGA) are acceptable if an appropriate correlation to D4218 (muffle furnace) can be established.

⁽⁷⁾ Carbon black dispersion (only near spherical agglomerates) for 10 different views:

- Nine in Categories 1 or 2, and 1 in Category 3.

⁽⁸⁾ The manufacturer has the option to select either one of the OIT methods listed to evaluate the antioxidant content in the geomembrane.

⁽⁹⁾ It is also recommended to evaluate samples at 30 and 60 days to compare with the 90-day response.

⁽¹⁰⁾ The condition of the test should be 20-hour UV cycle at 75°C, followed by 4-hour condensation at 60°C.

⁽¹¹⁾ Not recommended since the high temperature of the Std-OIT test produces an unrealistic result for some of the antioxidants in the UV exposed samples.

⁽¹²⁾ UV resistance is based on percent retained value of the original HP-OIT value.

⁽¹³⁾ Alternate the measurement side for double-sided textured sheet.

9.2.2 Delivery, Handling, and Storage of Geomembrane Rolls

The geomembrane will be protected during shipment from excessive heat or cold, puncture, cutting, or other damaging or deleterious conditions. The geomembrane rolls will be stored onsite in a designated area and will be protected from long-term ultraviolet exposure prior to actual installation.

Each geomembrane roll will be marked by the Geomembrane Manufacturer with the following information (on a durable gummed label, or equivalent, on the inside of core):

- Name of manufacturer
- Product type and identification number (if any)
- Roll length
- Roll width
- Batch (or lot) number
- Nominal product thickness
- Date of manufacture
- Roll (or field panel) number

When cores are required for preparing the geomembrane for shipment, the Manufacturer will use cores with sufficient crushing strength to prevent collapse or other damage while in use.

The following practices will be used as a minimum in receiving and storing geomembrane rolls in the designated storage area at the job site:

- While unloading or transferring the geomembrane rolls from one location to another, care will be taken to prevent damage to the geomembrane itself. The preferred method involves using a spreader-bar, straps, and a loader. Rolls will not be dragged.
- Geomembrane rolls will be stored in a manner so as to ensure that they are adequately protected from the following:
 - Equipment damage
 - Strong oxidizing chemicals, acids, or bases
 - Flames, including welding sparks.
 - Temperatures more than 160°F
 - Dust and dirt

The RPR will observe and document, throughout the preinstallation, installation, and postinstallation periods that the Installer provides adequate handling equipment for moving geomembrane rolls and that the equipment and the handling methods used do not pose unnecessary risk of damage. The Installer will be responsible for the means and methods to implement the work.

The Installer will be responsible for ensuring that all materials installed meet specifications (*i.e.*, that the roll marking label information indicates required specifications and properly represents materials). The RPR will maintain a log of geomembrane roll deliveries. The log will contain the roll numbers, date of delivery, and bath (lot) numbers.

9.3 Installation

This section includes discussions of geomembrane roll testing requirements, earthwork required for geomembrane placement, placement of the geomembrane, defects and repairs of geomembrane, and requirements applicable to other materials in contact with the geomembrane. Subsection 9.4 describes the installation and testing requirements for geomembrane seams.

All parties involved in the installation of the geomembrane will be familiar with geomembrane and will focus on protecting the geomembrane from damage during construction activities.

9.3.1 Testing Requirements

This subsection describes the test methods, including sampling procedures and frequencies, and the role of the geosynthetics testing laboratory in testing the geomembrane roll samples. Subsection 9.2.1, under Quality Control Requirements, describes the test methods that are performed on an infrequent basis to demonstrate the uniformity of resin used to fabricate geomembrane shipped to the job site. Seam testing is described in Subsections 9.4.4 and 9.4.5.

9.3.1.1 Test Methods

A representative of the geosynthetics testing laboratory at the Geomembrane Manufacturer's plant may collect geomembrane roll samples. Conformance samples will be collected at the rate of one sample per 100,000 square feet (or per requirements of NR 516.07(2)(a)) of geomembrane produced for delivery to the site. At least one sample will also be obtained for each geomembrane production batch. Samples for thickness testing or measurements will collected on every roll for delivery to the site. The Installer will not ship to, or receive at, the site, geomembrane from more than two production batches in any single shipment without the prior written approval of the CQA Officer.

Samples collected will be the size determined by the geosynthetics testing laboratory. The laboratory technician will indicate the machine direction on the sample.

Tables 9-1 through 9-4 list the tests and the test methods to be performed on the HDPE and LLDPE geomembrane roll samples. At a minimum, the minimum number of tests required by s. NR 516.07(2)(a) or approved by the WDNR will be conducted on the samples. The specifications and methods used in evaluating the results are discussed below under Procedures for Determining Geomembrane Roll Test Failures. Unless specified otherwise, sample specimens will be prepared in accordance with the referenced test method. The results for tear resistance and each of the tensile property tests will be reported for both the machine and cross direction, if these tests are conducted.

9.3.1.2 Role of Testing Laboratory

The geosynthetics testing laboratory will be responsible for performing the tests on samples submitted to them as described above under Test Methods, or as determined by the CQA Officer. The results of the tests performed will be reported to the CQA Officer and the RPR.

Retesting of geomembrane rolls for quality assurance purposes because of failure to meet any or all of the acceptance specifications listed in Tables 9-1 through 9-4 can only be authorized by the CQA Officer.

The Geomembrane Manufacturer and/or Installer may perform their own tests according to the methods and procedures defined in Tables 9-1 through 9-4; however, the results will only be applicable to their own quality control needs. These results will not be substituted for the quality assurance testing described herein.

9.3.1.3 Procedures For Determining Geomembrane Roll Test Failures

Tables 9-1, 9-2, 9-3, 9-4, 9-6 and 9-7 list the acceptance specifications for HDPE and LLDPE geomembranes. The HDPE geomembrane values listed in the acceptance specifications of Tables 9-1 and 9-2 are from the GRI Test Method GM13. The LLDPE geomembrane acceptance values listed in Tables 9-3 and 9-4 are from the GRI Test Method GM17. The most current versions of GM13 and GM17 will supersede the acceptance specifications in the tables. Acceptance specifications apply to both smooth and textured geomembranes. For those tests where results are reported for both machine and cross direction, each result will be compared to the listed specification to determine acceptance.

The following procedure will be used for interpreting results:

- If the test values meet the specifications stated in Tables 9-1 through 9-4, then the roll and the lot will be accepted for use at the job site. If the sample represents all rolls from an entire shipment, then the entire shipment will also be considered accepted.
- If the result does not meet the specifications, then the roll and the batch may be retested using specimens either from the original roll sample or from another sample collected by the geosynthetics laboratory technician or the RPR. For retesting, two additional tests will be performed for the failed test procedure. (Each additional test will consist of multiple specimen tests if multiple specimens are called for in the test procedure.) If both retests are acceptable, then the roll and batch will be considered to have passed this particular acceptance test; if either of the two additional tests fail, then the roll and batch will be considered unsuitable without further recourse. The CQA Officer may obtain samples from other rolls in the batch. Based on testing these samples, the CQA Officer may choose to accept a portion of the batch while rejecting the remainder.
- If retesting does not result in passing test results as defined in the preceding paragraph, or if there is any other nonconformity with the material specifications, then the Installer will withdraw the rolls from use in the project at the Installer's sole risk and expense. The Installer will be responsible at his/her sole risk, cost, and expense for removing this geomembrane from the site and replacing it with acceptable geomembrane.

9.3.2 Earthwork

The Construction Contractor will be responsible for preparing the supporting soil according to the plans and specifications. The geomembrane will be deployed directly above the geosynthetic clay liner (GCL). For each day of installation of the GCL/geomembrane, the installer, the Contractor, and the RPR will observe the surface and certify that the surface is acceptable for installations. The Installer will prepare and sign a subgrade acceptance form for each day of deployment. This certification of acceptance will be reported by the Installer prior to the start of GCL/geomembrane installation in the area under consideration. Unacceptable areas noted by the Installer will be immediately reported to the RPR.

The soil surface will also be examined by the RPR to evaluate any areas softened by precipitation or cracked due to desiccation. The daily observation will be documented in the daily report. Areas determined to be unacceptable will be reworked by the Construction Contractor until acceptable.

9.3.3 Placement

9.3.3.1 Location and Panel Layout Drawing

A panel layout drawing for the geomembrane installation covered by this CQA Plan will be prepared by the Installer prior to installation and submitted to the CQA Officer, showing the proposed location and orientation of geomembrane panels to be installed in relation to slope, collection trenches, anchor trench and phase boundaries, and phase boundaries. This panel layout drawing will be submitted to the WDNR in a preconstruction or preinstallation submittal prior to construction. The CQA Officer will review the proposed panel layout drawing and document that it is consistent with accepted practice and the construction plans and specifications.

9.3.3.2 Installation Techniques

Geomembrane panels will be installed by placing one at a time, and each panel will be seamed by the end of the day on which it was placed.

The RPR will document that the condition of the supporting surface has not changed detrimentally during installation. The RPR will notify the Installer and Construction Contractor of damage done to the supporting surface prior to the panel seaming.

It is the responsibility of the Installer to remove the deployed panel to allow the Construction Contractor to repair the supporting surface. The RPR will observe and document the repair. The RPR will inform the Installer that the method of deployment will be observed during further deployment, and if damage to the GCL and/or supporting surface continues, deployment will be stopped and an alternative means of deployment is to be developed. The RPR will document these events and conversations in the daily report. The RPR will record the roll number, location, and date of each geomembrane panel installed.

The Installer will ensure the following while installing the geomembrane:

• Equipment used does not damage the geomembrane by the way it is handled, by excessive heat, by leakage of hydrocarbons, or by other means.

- Personnel working on the geomembrane do not smoke, wear damaging clothing, or engage in other activities that could damage the geomembrane.
- The method used to unroll the geomembrane does not cause scratches or crimps in the geomembrane and does not damage the GCL or supporting soil.
- The method used to place the rolls minimizes wrinkles (especially differential wrinkles between adjacent panels).
- Adequate temporary loading or anchoring (continuously placed, if necessary), which will not damage the geomembrane, is placed to prevent uplift by the wind.
- Direct contact with the geomembrane is minimized. The geomembrane will be protected by geotextile, extra geomembrane, or other suitable materials, in areas where excessive traffic may be expected.
- Only approved equipment is allowed on the surface of the geomembrane (e.g., generators, test equipment). The use of motorized ATV vehicles is not permitted without approval from the CQA Officer.

9.3.3.3 Weather Conditions

Geomembrane will not be placed in an area of ponded water, during precipitation events, or in the presence of excessive winds (greater than 20 mph). The Installer must receive written approval to deploy geomembrane in temperatures below 32°F. The RPR will document that this condition is fulfilled. The CQA Officer will stop or postpone geomembrane placement when conditions are unacceptable.

9.3.3.4 Damages

The RPR will examine each panel for damage after placement and will determine which panels, or panel portions, should be rejected, repaired, or accepted. Damaged panels or panel portions that have been rejected will be marked, and their removal from the site will be recorded by the RPR.

Panel repairs will be made according to the procedures described in Subsection 9.3.4.

9.3.4 Defects and Repairs

This section applies to defects and repairs resulting from examinations, tests, or visual observations performed on the geomembrane material itself and on the seams.

9.3.4.1 Identification

All geomembrane areas will be examined and documented by the RPR for identification of defects, holes, blisters, undispersed raw materials, and signs of contamination by foreign matter. Because light reflected by the geomembrane helps to detect defects, the surface of the geomembrane will be clean at the time of examination. The RPR will complete the final examination of the geomembrane in areas in which both the Installer and the RPR have completed their QC and CQA, respectively. The RPR and the Installer will perform final examination over the entire geomembrane at the completion of the project. The Installer and/or the Construction Contractor will clean any area that is insufficiently clean to complete the final examination.

Dairyland Power Cooperative – CQA Plan Alma Off-Site Disposal Facility, Phase IV Landfill – Town of Belvidere, WI

9.3.4.2 Evaluation

Each suspect area identified will be nondestructively tested using the vacuum box test method described in Subsection 9.4.4. Each location that fails the nondestructive tests will be marked by the RPR and repaired by the Installer.

9.3.4.3 Repair Procedures

Any portion of the geomembrane exhibiting a flaw or failing a destructive or nondestructive test will be repaired. Several procedures exist for the repair of these areas. The procedures available include the following:

- Patching is used to repair large holes, tears, undispersed raw materials, and contamination by foreign matter.
- Grinding and rewelding are used to repair small sections of extruded seams.
- Spot welding or seaming is used to repair small tears, pinholes, or other minor, localized flaws.
- Capping is used to repair large lengths of failed seams.
- Topping is used to repair areas of inadequate seams that have an exposed edge.
- Other procedures may be used at the recommendation of the Installer if agreed upon by the CQA Officer and the RPR.

The repair procedures, materials, and techniques will be approved in advance of the specific repair by the CQA Officer, RPR, and Installer. At a minimum, the following provisions will be satisfied:

- Patches or caps will extend at least 6 inches beyond the edge of the defect, and all corners of patches will be rounded with a radius of at least 3 inches.
- The geomembrane below large caps will be appropriately cut to avoid water or gas collection between the two sheets.
- The type of geomembrane (i.e., smooth or textured) used for repairs will be approved by the RPR prior to completing the repairs.

9.3.4.4 Examination of Repairs

Each repair will be numbered and logged by the RPR. Each repair will be nondestructively tested according to Subsection 9.4.4. Repairs that pass the above testing will be adequate, except that large caps may be of sufficient extent to require destructive seam sampling and testing, at the discretion of the RPR, according to the provisions of Subsection 9.4.5.

Failed tests indicate that the repair was inadequate, and the repair will be redone and retested until a passing result is obtained. The RPR will document that all repairs have been subjected to nondestructive testing and will record the number of each repair, the date, and the test outcome.

9.3.4.5 Large Wrinkles

When seaming of the geomembrane is completed, the RPR will examine the geomembrane for wrinkles and determine which wrinkles should be cut and reseamed by the Installer. The wrinkle repair will be done in accordance with the equipment and procedures described in Subsections 9.4.2 and 9.4.3 (General Seaming Procedures), respectively, and it will be nondestructively tested using the vacuum box test method described in Subsection 9.4.4.

9.3.5 Materials In Contact With Geomembranes - Anchor Trench System and Backfilling

The anchor trench for the geomembrane will be excavated by the Construction Contractor, unless otherwise specified, to the lines and grades shown on the plans and specifications. The trench will use a "U" configuration. No more than the amount of trench required for the geomembrane to be anchored in 1 day will be excavated to minimize the desiccation potential of the anchor trench soil unless moisture content is maintained. The anchor trench will be adequately drained to prevent ponding or softening of the adjacent soil while the trench is open.

The anchor trench will be backfilled and compacted by the Contractor. Care will be taken when backfilling the trenches to prevent any damage to the geomembrane or other geosynthetics that may also be placed in the trench prior to backfilling.

The RPR will observe the backfilling and compacting operations and will advise the Construction Contractor of the adequacy of the soil installation. The RPR will also advise the CQA Officer of observed problems.

9.4 Field Seaming

This section covers the quality assurance procedures on seams used to join the rolls of geomembrane into a continuous layer. The installation of each of the geomembranes at the landfill facility will include 100 percent nondestructive testing of all field seams for joining adjacent rolls of geomembranes to document that no openings or gaps exist between geomembrane sheets. In addition, destructive testing will be performed at a routine interval for determining the strength and mode of failure of field seams in both the shear and peel modes.

The allowable field seam methods, equipment, personnel qualifications, and destructive and nondestructive testing methods are described in this section.

9.4.1 Panel/Seam Layout

No horizontal seams will be allowed on slopes greater than 5 horizontal to 1 vertical. In corners and at other odd-shaped geometric intersections, the number of horizontal seams will be minimized. A seam numbering system comparable and compatible with the panel numbering system will be agreed upon at the preinstallation meeting (Subsection 3.3).

9.4.2 Seaming Equipment

The approved processes for production field seaming panels and repairs are the dual hot wedge (fusion-type) seam method and the extrusion fillet weld process. Dual hot wedge seaming method will be used on linear seams (production seams). Corners, butt seams, tie-in, and long repairs

will be dual hot wedge seamed, where possible. Specialty seams and repair seams (nonproduction) will be done by the extrusion fillet weld process. No other processes can be used without prior written authorization from the CQA Officer and the RPR. Only equipment that has been specifically approved by make and model will be used.

9.4.2.1 Dual Hot Wedge Process

The Installer will meet the following requirements regarding the use, availability, and cleaning of the equipment to be used at the job site:

- An automated self-propelled type of apparatus will be used.
- The welding apparatus will be equipped to continuously monitor applicable temperatures.
- One spare operable seaming device will be always maintained on-site.
- Equipment used for seaming will not damage the geomembrane.
- The geomembrane will be protected in areas of heavy traffic to prevent damage as discussed in Subsection 9.3.3.
- For cross seams, the edge of the cross seams will be ground to a smooth incline (top and bottom) prior to welding.
- For cross seams, the intersecting dual hot wedge seam will be patched using the extrusion fillet process described below.
- The electric generator for the equipment will be placed on a smooth base in such a way that no damage occurs to the geomembrane. Similarly, a smooth insulating plate or fabric will be placed beneath the hot equipment after use.

The Installer will keep records for each seamer performing dual hot wedge seaming, including welding machine I.D. number, ambient air temperature, and machine operating pressures and temperatures. These data will be recorded at intervals as agreed upon at the preinstallation meeting.

9.4.2.2 Extrusion Fillet Process

The Installer will meet the following requirements regarding the use, availability, and cleaning of extrusion welding equipment to be used at the job site:

- The welding apparatus will be equipped to continuously monitor temperature at the nozzle.
- One spare operable seaming device will be always maintained on-site.
- Equipment used for seaming will not damage the geomembrane.
- The geomembrane will be protected in areas of heavy traffic to prevent damage.
- The extruder will be cleaned and purged prior to beginning seaming, and at any time during which seaming operations are stopped, until all heat-degraded extrudate has been removed from the barrel.
- The electric generator for the equipment will be placed on a smooth base in such a way that no damage occurs to the geomembrane. Similarly, a smooth insulating plate or fabric will be placed beneath the hot equipment after use.

- Geomembrane surfaces will not be ground for welding preparation more than 1 hour prior to seaming.
- Welding rod will be kept clean and be of the correct type for the specific material being welded.

The Installer and, if applicable, the Geomembrane Manufacturer will provide documentation to the CQA Officer regarding the quality of the extrudate used in the welding apparatus. At a minimum, the extrudate will be compatible with the base liner material and will contain the same grade and quality of polyethylene resin as used in the base material.

The Installer will keep records for each seamer performing extrusion weld seaming, including welding machine I.D. number, extrudate, and ambient air temperatures. These data will be recorded at intervals as agreed upon at the preinstallation meeting.

9.4.3 Initial Requirements

9.4.3.1 Personnel Qualifications

Personnel performing seaming operations will be qualified by experience or by successfully passing seaming tests for the type of seaming equipment to be used. At least one seamer will have experience in seaming a minimum of 2,000,000 square feet of polyethylene geomembrane using the same type of seaming apparatus to be used at the landfill facility. The most experienced seamer, the "master seamer," will have direct supervisory responsibility at the job site over less experienced seamers.

The Installer will provide a list of proposed seaming personnel and their experience records to the CQA Officer and the RPR for their review and approval.

9.4.3.2 Weather Conditions

The weather conditions under which geomembrane seaming can be performed are as follows:

- Unless otherwise authorized in writing by the CQA Officer, no seaming will be attempted or performed at an ambient temperature below 32°F (0°C) or above 104°F (40°C).
- Between ambient temperatures of 32°F (0°C) and 50°F (10°C), seaming will be performed only if the geomembrane is preheated by either sun or a hot air device, provided there is no excessive ambient cooling resulting from high winds.
- Above 50°F (10°C), no preheating of the geomembrane will be required.
- Geomembrane will be dry and protected from the wind.
- Seaming will not be performed during any precipitation event unless the Installer erects satisfactory shelter to protect the geomembrane areas for seaming from water and/or moisture.
- Seaming will not be performed in areas where ponded water has collected below the surface of the geomembrane.

If the Installer wishes to use methods that may allow seaming at ambient temperatures below 32°F or above 104°F, the Installer will demonstrate and certify that the methods and techniques used to perform the seaming produce seams that are entirely equivalent to seams produced at temperatures above 50°F and below 104°F, and that the quality of the geomembrane is not adversely affected.

The RPR will document the following items:

- Ambient temperature at which seaming is performed.
- Precipitation events occurring at the site, including the time of such occurrences, the intensity, and the amount of precipitation.

The RPR will inform the CQA Officer if the conditions relating to the weather are not being fulfilled. The CQA Officer will stop or postpone the geomembrane seaming when weather conditions are unacceptable.

9.4.3.3 Overlapping and Temporary Bond

The Installer will be responsible for ensuring that the following requirements are met:

- Panels of geomembrane will have a finished overlap of a minimum of 3 inches for extrusion welding and 4 inches for fusion welding; but, in any event, sufficient overlap will be provided to allow peel tests to be performed on the seam.
- No solvents or adhesives will be used on the geomembrane unless the product has been approved in writing by the CQA Officer. Approval can only be obtained by submitting samples and data sheets to the CQA Officer for testing and evaluation.
- Procedures used to temporarily bond adjacent geomembrane rolls must not damage the geomembrane; in particular, the temperature of the hot air at the nozzle of any spot welding apparatus will be controlled such that the geomembrane is protected at all times against potential damage.

9.4.3.4 Trial Seams

Trial seams will be made on fragments of geomembrane to document that seaming conditions are adequate. Trial seams will be performed on the surface that the geomembrane will be deployed on (e.g., top of GCL). Such trial seams will be made at the beginning of each seaming period, following work interruptions, at changes in weather, and at least once for every 5 hours of seaming activities, for each seaming apparatus used that day. A minimum of one trial seam per welding machine will be made at the start of each day by each seaming technician performing welding that day. Each seamer will be required to complete at least one trial seam each day prior to seaming. Trial seams are to utilize the same materials that the seaming will be performed on (i.e., smooth to smooth, smooth to textured, textured to textured). At a minimum, one trial seam per welding machine will be made at the start of each day by each seaming technician performing welding that day.

The trial seams will be examined by the Installer and the RPR for squeeze-out, foot pressure applied by the seaming equipment, and general appearance, and will be tested using a field tensiometer. If the seam fails any of these examinations, it will be repeated. If the second trial seam fails these examinations, the welding apparatus and seamer are not allowed to seam until

the Installer can demonstrate the cause of the failure. Once the Installer has made the necessary corrections to the welding equipment, the seamer and the apparatus are required to pass two trial seams prior to beginning seaming. The RPR will document the reason for the failure and all subsequent trial seams.

The trial seam samples will be at least 3 feet long by 1 foot wide after seaming, with the seam centered lengthwise. Seam overlap will be as indicated above in Section 9.4.3.3. Trial seams shall be welded under the same conditions as production seaming is to take place.

Five adjoining specimens, each 1 inch wide, will be cut from each end of the trial seam sample by the Installer. The specimens will be tested by the Installer in shear (5 field shear) and peel (5 field peel [inner and outer seams for dual hot wedge]), respectively, using a field tensiometer.

The remainder of the trial seam sample will be identified and marked by the RPR as follows:

- The sample will be assigned a number and marked as to the welding apparatus used and the seamer's name.
- The date, time, applicable operating temperatures of the welding equipment, and ambient temperature at the time of seaming will be noted.
- Whether the sample passes or fails will be indicated.

The RPR will observe trial seam procedures, and record them on the field log forms. The sample itself will be cut into three pieces, one for the Owner's record, one to be retained by the RPR, and one to be made available to the Installer.

The RPR may randomly select trial seam samples for destructive testing by the geosynthetics testing laboratory according to the test procedures described in Subsection 9.4.5. The frequency for trial seam laboratory testing will be at the discretion of the RPR and the CQA Officer.

If a trial seam sample fails a destructive test performed by the geosynthetics testing laboratory, according to the acceptance criteria stated in Subsection 9.4.5, then a destructive test seam sample(s) will be taken from each of the seams completed by the seamer during the shift related to the failed trial seam test. These samples will be forwarded by the RPR to the geosynthetics testing laboratory and, if any of them fails the tests, then the procedures described in Subsection 9.4.5 will apply. The conditions of this paragraph will be considered met if a destructive seam test sample, collected and tested according to the provisions under Location and Sampling Frequency and Sampling Procedure of Subsection 9.4.5, has already been taken and has passed.

9.4.3.5 Seam Preparation

The Installer will ensure that the following conditions for each of the geomembrane installations covered by this plan are met:

• Prior to seaming, the seam area is clean and free of moisture, dust, dirt, debris of any kind, and foreign material.

- If seam overlap grinding is required, then the grinding process will be completed according to the Geomembrane Manufacturer's instructions within 1 hour of the seaming operation, and in a way that will not damage the geomembrane or cause excessive striation of the geomembrane surface.
- Seams will be aligned to minimize the number of wrinkles and "fishmouths."

9.4.3.6 General Seaming Procedure

Unless otherwise specified, the general seaming procedure to be used by the Installer for each of the geomembrane installations covered by this CQA Plan, and observed by the RPR, will be as follows:

- A firm substrate will be provided to achieve proper support for seaming.
- Fishmouths or wrinkles at the seam overlaps will be cut along the ridge of the wrinkle to achieve a flat overlap. The cut fishmouths or wrinkles will be seamed, and any portion where the overlap is inadequate will then be patched with the same geomembrane (including thickness) extending a minimum of 6 inches beyond the cut in all directions.
- If seaming operations are to be conducted at night, adequate illumination will be provided.

9.4.4 Nondestructive Testing

Each field seam will be nondestructively tested over its full length using one of the methods described in this section. The purpose of nondestructive testing is to determine the continuity of the seams. Nondestructive testing, at this stage of development, does not provide any information on the strength of seams. Seam strengths will be determined by destructive testing methods that are described in Subsection 9.4.5. Failure of nondestructive or destructive tests will require the repair of the failed section according to the procedures contained in Subsection 9.3.4.

Nondestructive testing as described in this section will be performed on seams for every geomembrane installation covered by this CQA Plan. The recommended test methods for conducting the nondestructive seam testing are the air pressure test for dual hot wedge seams and the vacuum box test for extrusion fillet welds. These two nondestructive testing methods are described below.

The RPR will perform the following documentation tasks:

- Observe nondestructive seam testing, and examine seams for squeeze-out, foot pressure, and general appearance. Failure of these criteria will be considered as failure of the seam, and repair or reconstruction will be required.
- Document location, date, test unit number, name or number of tester, and outcome of all testing.
- Inform the Installer and CQA Officer of required repairs.
- Document that appropriate repairs are made and that the repairs are retested nondestructively with passing results.

9.4.4.1 Air Pressure Testing

The following test procedure is applicable only to dual hot wedge seams. The equipment for performing the test should meet the following minimum requirements:

- An air compressor or hand pump equipped with a pressure gauge and regulator capable of producing and sustaining a pressure between 25 to 30 psig and mounted on a cushion to protect the geomembrane surface.
- Fittings, rubber hose, and valves to operate the equipment, and a sharp hollow needle or other approved pressure feed device.

Air pressure testing will be performed according to the following procedure:

- 1. Seal both ends of the seam to be tested.
- 2. Insert needle or other approved pressure feed device into the air space at one end of the dual hot wedge seam.
- 3. Energize the air compressor or hand pump to a pressure indicated in Table 9-5, based on the material type and thickness. Maintain the indicated pressure during a 2-minute stabilization period. At the end of the stabilization period, record the time and the pressure in the seam.
- 4. Remove the flexible hose that connects the pressure gauge to the air pump. Observe the pressure gauge for the evaluation period indicated in Table 9-5. Record the time and pressure in the seam at the end of the test period.
- 5. If the pressure difference between the two readings exceeds the maximum allowable pressure drop indicated in Table 9-5, or if the pressure does not stabilize within the evaluation period, one more pressure-monitoring interval is allowed.
- 6. If the pressure loss over both intervals exceeds the allowable pressure drop or if the pressure does not stabilize, then consider the seam as having failed the test.
- 7. If the pressure loss over either interval does not exceed the allowable pressure drop, then consider the seam as having passed the test.
- 8. The Installer must verify that the air channel tested was not obstructed by noting a release of air pressure at the end of the tested seam interval opposite the pressure gauge. If this does not happen, the air channel is blocked and the Installer must take the appropriate steps to ensure that the entire seam passes a non-destructive test.

For any seam interval that fails the air pressure nondestructive test, additional nondestructive testing or visual inspection will be used to identify, if possible, the faulty area of the seam. The faulty area will be repaired and retested. If the faulty area cannot be identified, then the entire seam will be repaired and retested.

Table 9-5: Geomembrane Air Pressure Testing Standards and Acceptance Values⁽¹⁾

	Air Inflatio	n Schedule		Maximum	
Geomembrane Type ⁽²⁾	Minimum Pressure (psi)	Maximum Pressure (psi)	Evaluation Time (Minutes) ⁽³⁾	Allowable Pressure Drop (psi)	
40-mil LLDPE	20	30	2	4.0	
60-mil HDPE	27	30	5	3.0	

Notes:

⁽¹⁾ Values are based on GRI Test Method GM6, revised 1994.

⁽²⁾ Values apply to both smooth and textured geomembrane for the type and thickness indicated.

⁽³⁾ Evaluation time starts after the initial 2-minute stabilization period

9.4.4.2 Vacuum Box Test

Vacuum box testing is to be used on those seams made by the extrusion fillet process, to locate precisely the defects identified from air pressure testing, or to evaluate suspect seam and nonseam areas as discussed in Subsection 9.3.4.

Vacuum box testing equipment must meet the following minimum standards:

- A five-sided vacuum box with an open bottom, a clear viewing panel on top, and a pliable gasket attached to the bottom.
- A vacuum pump and gauge capable of achieving a minimum vacuum of 2 pounds psig [4 inches of mercury (Hg)] and a maximum vacuum of 5 psig.

The following procedure will be used in performing the vacuum box test:

- 1. Clean the seams to be tested so that they are relatively free from soil or foreign objects that might prohibit a good seal from being formed between the vacuum chamber and the geomembrane.
- 2. Energize the vacuum pump to a minimum of 4 inches of Hg of vacuum (approximately 2 psig).
- 3. Wet a strip of geomembrane approximately twice the size of the vacuum box with the soapy solution.
- 4. Place and center the vacuum box with the gasket in contact with the geomembrane surface over the wetted area of the seam.
- 5. Applying a normal force to the top of the vacuum box, close the bleed valve and open the vacuum valve. Check to make certain that a tight seal is created between the geomembrane and the vacuum box. A minimum vacuum of 5 inches will be used for testing with the maximum allowable testing pressure never exceeding 10 inches of vacuum.
- 6. With the vacuum drawn, use the viewing panel to examine the geomembrane seam for bubbles resulting from the flow of air through the seam. Continue this examination for not less than 10 seconds.
- 7. Remove the vacuum box by first closing the vacuum valve and then opening the bleed valve. Proceed to Step 8 if bubbles appear in Step 6. If no bubbles appear in Step 6, then proceed directly to Step 9.
- 8. If bubbles appear through the geomembrane, mark the defective area for repair according to the provisions of Subsection 9.3.4. All repairs will be tested until nondestructive results are passed.
- 9. Move the vacuum box along the seam to be tested, overlapping the previously tested area by no less than 3 inches.

9.4.5 Destructive Seam Testing

Destructive seam testing will be performed on the geomembrane seams covered by this plan. Destructive seam testing is performed to determine the strength of the seam in both shear and peel failure modes. Destructive seam testing will be performed within 48 hours of sampling either in an on-site laboratory by personnel under the direction of the CQA Officer or at the geosynthetics testing laboratory.

9.4.5.1 Location and Sampling Frequency

The RPR will select locations where seam samples will be cut out for the destructive testing. The RPR will mark the locations and record on the seam sample the assigned sample number, seam number, welder ID, machine number, and date welded. Test locations will be determined during seaming at the RPR's discretion. Suspicion of excess crystallinity, contamination, offset welds, or any other potential causes of an imperfect seam may prompt selection of such locations. The Installer will not be informed in advance of any location where seam samples will be taken.

The minimum frequency of sample collection will be one test location per every 500 linear feet of seam length.

9.4.5.2 Sampling Procedure

Samples will be cut under the direction of the RPR as the seaming progresses. For each sample location, the following information will be documented:

- Assigned sample number and reason for collecting the sample (e.g., as part of statistical testing program, suspicious seam).
- Seam number.
- Welder ID.
- Machine #.
- Date Welded.
- Sample location on layout drawing
- For the peel test, which geomembrane is the top and which is the bottom with respect to seams performed using dual hot wedge (fusion) weld techniques.

Specimens for qualitative field testing will be taken prior to removal of the laboratory sample. Samples for field tensiometer testing will be a minimum of 12 inches wide by 12 inches long with the seam centered parallel to the width. From this sample, a total of 10 specimens will be cut for field tensiometer testing. Five specimens will be tested in peel (inner and outer seams for dual hot wedge samples) and five specimens will be tested in shear. If all 10 specimens pass the field tensiometer test described below under Field Test Methods, then the sample for laboratory testing will be taken according to the procedure described below.

The qualitative field-testing sample and the laboratory sample will be collected immediately adjacent to one another. The laboratory sample will be a minimum of 12 inches wide by 42 inches long with the seam centered lengthwise. The sample will be cut by the Installer into three parts and distributed as follows:

- A sample, 12 inches by 14 inches at minimum, will be kept by the Installer for testing if so desired.
- A sample, 12 inches by 12 inches, at minimum, will be given to the Owner for record storage.
- A sample, 12 inches by 16 inches at minimum, will be transmitted to the geosynthetic testing laboratory or on-site testing laboratory by the RPR.

The Installer in accordance with the repair procedures described in Subsection 9.3.4 will immediately repair all holes cut into the geomembrane resulting from destructive seam sampling. The repaired area will be nondestructively tested in accordance with the requirements of Subsection 3.4.4.

9.4.5.3 End-of-Seam Sampling

In addition to the 42-inch sample cut for laboratory testing, an additional sample will be cut from each end of each fusion seam weld greater than 100 feet in length for field testing as described below. These samples, often referred to as "bones", need to be only 1 inch wide and can be cut from the portion of the seam that extends into/past the anchor trench so as not to require an additional repair. A minimum of one bone will be field tested in shear mode and a minimum of one bone will be field tested in seam that extends into/past the anchor trench so as not to require an additional repair. A minimum of one bone will be field tested in shear mode and a minimum of one bone will be field tested in peel mod (inner and outer seam).

9.4.5.4 Field Test Methods

The samples described above under Sampling Procedure as well as the end-of-seam samples described above under End-of Seam Sampling will be field-tested for both peel and shear. Testing will be performed using a field tensiometer or equivalent device. Seam testing acceptance criteria for the field testing of the destructive samples and end of seam samples is contained in Tables 9-6 or 9-7. The seam will be considered as having passed if the failure in both peel and shear does not occur within the seam. If the samples fail the field tensiometer test, then the repair procedures of Subsection 9.3.4 for the holes left by the cut-out samples, and the seam reconstruction procedures for the repair of the defective seam, discussed later in this subsection, will be implemented.

				Acceptance Values ⁽¹⁾	
Property	Test Method	Units	Type of Criterion	Non- Textured	Textured ⁽²⁾
Shear strength ⁽³⁾	ASTM D6392	ррі	Minimum	120	120
Shear elongation ⁽³⁾⁽⁴⁾	GRI GM19a	%	Minimum	50	50
Peel strength ⁽³⁾ Fusion	ASTM D6392	ррі	Minimum	91	91
Peel strength ⁽³⁾ Extrusion	ASTM D6392	ррі	Minimum	78	78
Peel separation ⁽³⁾⁽⁵⁾	GRI GM19a	%	Maximum	25	25

Notes:

⁽¹⁾ The following are unacceptable break codes:

- Hot wedge: AD and AD-Brk >25%

- Extrusion fillet: AD1, AD2 and AD-WLD

⁽²⁾ If the lengthwise edges of the textured geomembrane panels are nontextured, then the nontextured specifications shall apply for the testing of seams made along these edges.

⁽³⁾ Five out of the five test specimens must meet these requirements (including locs of break).

⁽⁴⁾ Omit elongation measurements for field testing.

⁽⁵⁾ Maximum Acceptance Value for five out of the five test specimens.

				Acceptance Values	
Property	Test Method	Units	Type of Criterion	Non- Textured ⁽¹⁾⁽⁵⁾	Textured ⁽¹⁾⁽⁵⁾
Shear strength ⁽²⁾	ASTM D6392	ppi	Minimum	60	60
Shear elongation ⁽²⁾⁽³⁾	GRI GM19a	%	Minimum	50	50
Peel strength ⁽²⁾ Fusion	ASTM D6392	ррі	Minimum	50	50
Peel strength ⁽²⁾ Extrusion	ASTM D6392	ррі	Minimum	44	44
Peel separation ⁽²⁾⁽⁴⁾	GRI GM19a	%	Maximum	25	25

Table 9-7: 40-mil LLDPE Geomembrane Seam Acceptance Criteria

Notes:

(1) If the lengthwise edges of the textured geomembrane panels are nontextured, then the nontextured specifications shall apply for testing of seams made along these edges. For double fusion welded seams, both tracks shall be tested for compliance with values listed.

⁽²⁾ Five out of the five test specimens must meet these requirements (including locus of break).

⁽³⁾ Omit elongation measurements for field testing.

⁽⁴⁾ Maximum Acceptance Value for five out of the five test specimens.

⁽⁵⁾ The following are unacceptable break codes:

Hot wedge: AD and AD-Brk >25%

- Extrusion fillet: AD1, AD2 and AD-WLD

- Separation in plane (SIP) is acceptable if strength, shear elongation, and peel separation criteria are met.

9.4.5.5 Laboratory Test Methods

Laboratory testing of the destructive seam samples will be performed by the geosynthetics testing laboratory or an on-site testing laboratory under the direction of the CQA Officer. All destructive seam tests, whether performed on trial seam samples (as described above) or on samples cut out from production seams, will be performed in general accordance with the methodology of ASTM D6392, which stipulates that at least five specimens will be tested in shear and five in peel. Samples will be cut in alternating order (*e.g.*, shear and peel, peel and shear) and will also be tested in the order of cutting, to determine if any trend in seam quality along the length of the sample exists. All specimens will be cut as 1-inch–wide strips to ensure that the seam does not exceed the test gauge length of the specimen.

The following tests will be performed on each seam sample submitted for laboratory testing:

- <u>Shear and peel maximum tension</u> is the maximum load per unit width of a 1-inch–wide specimen expressed in pounds per inch of width in both the shear and peel mode, according to ASTM D6392 and GRI GM19a.
- <u>Shear elongation at break</u> is the extension at break expressed as a percentage of the initial distance between the edge of the fused track and the nearer grip. This distance should be the same on both sides of the seam and is usually 2 inches. No referenced ASTM test exists for this procedure as defined; however, the specimen will be elongated to a maximum of 100 percent with any failures of individual specimens noted. For specimens that fail below 100 percent elongation, the value at which failure occurred will be noted in the results.
- <u>Peel seam separation</u> estimates the area of seam interface separation expressed as a percentage of the original area.

Also, for both the seam shear and peel tension tests, an indication will be given for each specimen tested that defines the locus of the failure. The loci will be defined in accordance with GRI GM19a.

For shear tests, the following values will be reported for each specimen tested:

- Maximum tension in pounds per inch
- Elongation at break indicating at what percentage the specimen failed (up to a tested maximum of 100)
- The locus of failure using the above designations

For peel tests, the following values will be reported for each specimen tested:

- Maximum tension in pounds per inch
- Seam separation expressed as percent of original seam area
- Locus of failure

For each set of five specimens, the mean will be calculated and reported for the shear maximum tension and the peel maximum tension.

9.4.5.6 Role of Testing Laboratory

The geosynthetics testing laboratory or on-site testing laboratory will be responsible for performing the tests on samples submitted to them as described above. The results of tests performed will be reported to the CQA Officer and the RPR. Retesting of seams, because of failure to meet any or all the specifications listed below, can only be authorized by the CQA Officer.

The Geomembrane Manufacturer and/or the Installer may perform their own quality control testing in accordance with the methods and procedures defined above under Laboratory Test Methods; however, the results, if substantially different from those obtained by the geosynthetics testing laboratory or on-site laboratory, may only be used to request a retesting by the geosynthetics testing laboratory or on-site testing laboratory. All quality assurance test results from the geosynthetics testing laboratory or on-site laboratory govern over any test results from the Geomembrane Manufacturer or Installer. Only the CQA Officer is authorized to approve a retesting request.

9.4.5.7 **Procedures For Determining Destructive Seam Test Failures**

The procedures described in this section apply to the procedures for destructive testing defined above under Field Test Methods and Laboratory Test Methods. Procedures for repairing failed seams are given in Subsection 9.3.4 of this CQA Plan.

The results from the shear and peel tests for the HDPE geomembranes will be evaluated against the criteria tabulated in Table 9-6, and the LLDPE geomembrane will be evaluated against the criteria presented in Table 9-7.

All the tabular criteria for each respective geomembrane type must be met for a given seam to be considered acceptable.

The Installer has the following two options in determining the repair boundary whenever a seam has failed either the field tensiometer testing or laboratory destructive testing:

- 1. The seam can be reconstructed between any two previously tested and passed destructive seam test locations.
- 2. The Installer can trace the welding path to an intermediate location (at a 10-foot minimum from the point of the failed test in each direction) and request that field tensiometer tests be performed at these intermediate locations. If the field tensiometer sample results are acceptable, then full laboratory samples will be taken and tested. If either sample fails, then the process will be repeated until acceptable destructive seam tests have been performed in both directions away from the original failed sample location. All retesting of seams, according to this procedure will use the sampling methodology described earlier in this CQA Plan under Sampling Procedure.

The tracing of a failed seam test will continue until the seaming path boundaries are located, tracking will continue into the previous day's work if needed and into the next day's welding as well.

Seams reconstructed due to a failing destructive seam sample that are more than 50 feet long will be destructive tested, an additional sample taken from the reconstructed zone must pass destructive seam testing.

The RPR will be responsible for documenting all actions, including test results submitted by the geosynthetics testing laboratory, taken in conjunction with seam testing. The RPR will also be responsible for keeping the CQA Officer informed of seam testing results and seaming progress.

9.5 Post-installation

Each geomembrane covered by this CQA Plan will be examined by the RPR. Defects, whether due to failed seams, pinholes, or other penetrations, will be repaired.

Placement of the select granular fill drainage layer material will proceed as soon as practical following the RPR's testing and acceptance of completed geomembrane areas. The granular layer will provide ultraviolet protection, thermal insulation, and protection from physical damage.

Low-ground pressure tracked equipment (< 5 psi) will be used to place the drainage layer material over the geomembrane. At a minimum, 1 foot of cover material is required between the geomembrane and low-ground pressure equipment, 2 feet of cover soil are required between the geomembrane and other tracked or floatation wheeled equipment, and 3 feet of cover soil are required between the geomembrane and rubber-tired vehicles.

9.6 Leak Location Testing

Upon completion of construction of the leachate collection system for each phase of development, an electrical resistivity leak detection survey will be performed over the entire surface of the lined area in accordance with ASTM D7007 or an equivalent method approved by the CQA Officer.

9.6.1 Electrical Resistivity Contractor Requirements

The electrical resistivity testing contractor shall have a minimum of 5 years of experience in performing electrical leak location surveys including surveying at least one million square feet of geomembrane using this method on at least five different projects, unless otherwise approved by the Owner.

9.6.2 Test Procedure

The leak location contractor shall demonstrate in a manner acceptable to the CQA Officer that the leak detection equipment and field procedures are capable of detecting a 0.25-inch- diameter leak using an actual or artificial leak. The leak detection capability must be demonstrated when the leak is midway between four measurement grid points; detecting the leak when the measurement is directly over the leak will not be sufficient. The peak-to-peak signal amplitude must be at least three times the peak-to-peak signal obtained under the same conditions with the excitation signal disconnected. The leak location survey must be conducted such that the leak detection measurements are no further apart than the spacing used to demonstrate the leak detection capability.

The Contractor will prepare the lined area for the leak location survey, including performing the following tasks:

- Insulating the edges of the geomembrane by leaving a width of dry exposed geomembrane around the perimeter of the geomembrane. This can be accomplished by only partially backfilling the anchor trench, leaving a strip uncovered around the perimeter, or extending the geomembrane outside the anchor trench and leaving its edge exposed.
- Isolating any other electrical paths, if present, that connect the drainage layer on the geomembrane to earth ground.
- Removing standing water on the surface of the drainage layer covering the primary liner. The survey cannot be done if the ground is frozen or if there is ice or snow on top of the drainage layer.
- If necessary, wetting the area to be surveyed with water (via water truck, hoses, or other method approved by the CQA Officer) to maintain good electrical contact with the drainage layer material during the survey.

If leaks are indicated by the leak location survey, the Contractor shall excavate the drainage layer around the area of the leak, open the geotextile, and electrically isolate the leak from the surrounding drainage material. The leak location contractor will then record measurements in the area around the excavation to determine if additional leaks are in the area. The Geomembrane Installer shall repair the leak, vacuum box test the repair, and repair the geotextile. The Contractor will then backfill the area around the repaired leak. Resistivity testing shall be completed over repaired areas to confirm additional leaks in the area are not present/marked by original detected defect.

The CQA Officer will observe the electrical resistivity testing.

9.6.3 Reports

Upon completion of each leak survey, the electrical resistivity contractor shall submit a report to the CQA Officer documenting the results of the leak location survey. The report shall document the methodology used, the locations and descriptions of the leaks, and a diagram of the facility showing the approximate leak locations.

10.0 Geotextile

10.1 General

This section of the CQA Plan applies to nonwoven geotextile used throughout the landfill facility. Geotextile will be installed in the following systems of the landfill facility:

- Leachate collection system (LCS)
- Geotextile filter around select aggregate fill for final cover drainage layer discharge pipe

Geotextile may also be used within roadways and spillways for reinforcement. Specifications for the reinforced geotextile will be included with the project plans and specifications for each construction project.

This section is divided into three major subheadings, which cover the quality assurance requirements for preinstallation (which includes Geotextile Manufacturers), installation, and post-installation (which includes the final examination of the geotextiles prior to placing the appropriate material above the geotextile). The terms preinstallation, installation, and post-installation are applicable only to the geotextile and do not apply to the overall construction of the landfill facility.

10.2 Preinstallation

10.2.1 Manufacturing

The geotextile will be supplied to the site in factory rolls. Prior to the delivery of any geotextile rolls to the site, the Geotextile Manufacturer will provide the CQA Officer with the Manufacturer's Quality Control Plan used for production of the geotextile rolls.

Every roll of geotextile for delivery to the site will be manufactured and inspected by the Geotextile Manufacturer, according to the following requirements:

- The geotextile must contain no needles used for punching.
- The geotextile must be free of holes and any other sign of contamination by foreign matter.

The Geotextile Manufacturer will provide certification, based on tests performed in accordance with the methods listed in Table 10-1 that the geotextile cushion supplied under this CQA Plan will meet the material specifications listed in Table 10-2. These tests may be performed by the Geotextile Manufacturer's laboratory or a laboratory contracted by the Geotextile Manufacturer. Additionally, the Geotextile Manufacturer will provide certification that the Manufacturer's Quality Control Plan was fully implemented for the geotextile materials supplied under this plan. The Geotextile Manufacturer will provide documentation to verify the results of the Manufacturer's CQA Plan implementation if required by the CQA Officer.

The geotextile rolls will be tested and evaluated prior to acceptance. The CQA Officer may perform/require additional testing (*i.e.*, conformance testing) as required by detailed specifications or as required in the judgment of the CQA Officer to verify that the geotextile meets the specifications.

Table 10-1: Geotextile Tests and Test Methods

Property	Test Method
Grab tensile strength ⁽¹⁾⁽²⁾	ASTM D4632
Grab elongation ⁽¹⁾⁽²⁾	ASTM D4632
Puncture strength (pin) ⁽¹⁾⁽²⁾⁽⁴⁾	ASTM D4833
Puncture Strength (CBR) ⁽¹⁾⁽²⁾⁽⁴⁾	ASTM D6241
Trapezoidal tear ⁽¹⁾⁽²⁾	ASTM D4533
Apparent opening size ⁽¹⁾	ASTM D4751
Permittivity ⁽¹⁾	ASTM D4491
Water flow rate ⁽¹⁾	ASTM D4491
UV resistance ⁽³⁾	ASTM D4355/D7238

Notes:

⁽¹⁾ Testing is required for geotextile filter.

⁽²⁾ Testing is required for geotextile cushion.

⁽³⁾ Testing is required only if the geotextile is to be uncovered for more than 30 days.

⁽⁴⁾ Geotextile to meet puncture (pin) resistance or puncture (CBR) strength.

Property ⁽¹⁾⁽²⁾	Test Method	Units	Value	6 oz.	8 oz.	10 oz.	12 oz. (3) (5)	16 oz. (3)(6)
Grab tensile strength	ASTM D4632	lb	MARV	160	205	250	300	380
Grab elongation	ASTM D4632	%	MARV	50	50	50	50	50
Puncture strength (pin) ⁽⁴⁾	ASTM D4833	lb	MARV	85	110	150	175	240
Puncture strength (CBR) ⁽⁴⁾	ASTM D6241	lb	MARV	400	500	700	800	900
Trapezoidal tear	ASTM D4533	lb	MARV	60	85	100	115	150
Apparent opening size	ASTM D4751	Sieve	MARV	70	80	100	100	100
Permittivity	ASTM D4491	Sec-1	MARV	1.4	1.2	1.0	0.7	0.5
Water flow rate	ASTM D4491	gpm/ft2	MARV	110	95	75	50	45
UV resistance	ASTM D7238/ D4355	% Retained @ 500 hrs	Typical ⁽²⁾	70	70	70	70	70

Table 10-2: (Geotextile Tests,	Test Methods,	and Accept	ance Criteria
---------------	-------------------	---------------	------------	---------------

Notes:

⁽¹⁾ Values are based on discussions with acceptable manufacturers and represent production values at the time this document was prepared.

⁽²⁾ Values reported in weaker principal direction. All values listed are Minimum Average Roll Values (MARV) except UV resistance. UV resistance is a typical value.

⁽³⁾ Ounce values indicate MARV's in ounce per square yard as determined in accordance with test method ASTMD5261.

⁽⁴⁾ Geotextile to meet puncture (pin) resistance or puncture (CBR) strength.

⁽⁵⁾ For geotextile cushion, approximate maximum particle size of 1 inch for fracture count up to 100%. Approximate maximum particle size of 1 ½ inches for fracture count up to approximately 20%.

(6) For geotextile cushion, approximate maximum particle size of 1 ½ inches for fracture count up to approximately 70%.

(7) For geotextile cushion, approximate maximum particle size of 1 ½ inches for fracture count up to 100%. Approximate maximum particle size of 2 inches for fracture count up to approximately 20%.

10.2.2 Delivery, Handling, and Storage of Geotextile Rolls

Each geotextile roll to be used at the landfill facility will be marked by the Geotextile Manufacturer with the following information and in the following manner:

- When fabric is rolled on a core, each roll will be identified with a durable gummed label, or an equivalent, on the inside of the core and on the outside of the protective wrapping for the roll.
- Each roll label will contain the following information at a minimum:
 - Name of manufacturer (or supplier)
 - Style and type number
 - Roll length
 - Roll width
 - Batch (or lot) number
 - Nominal product thickness
 - Date of manufacture
 - Roll number

The Geotextile Manufacturer will use the following guidelines in packaging, wrapping, and preparing all geotextile rolls for shipment:

- When cores are required, those that have a crushing strength sufficient to avoid collapse or other damage while in use will be used.
- Each roll will be covered with a wrapping material that will protect the geotextile from damage due to shipment, water, sunlight, or contaminants.

The following practices will be used as a minimum in receiving and storing geotextile rolls in the designated storage area at the job site:

- While unloading or transferring the geotextile rolls from one location to another, care will be taken to prevent damage to the wrapping or to the geotextile itself. If practicable, the Installer/Contractor may use forklift trucks fitted with poles that can be inserted into the cores of rolls. The poles will be at least two-thirds the length of the rolls, to prevent breaking the cores and possibly damaging the geotextile. Rolls will not be dragged.
- The geotextile rolls will be stored in such a manner to ensure that they are adequately protected from the following:
 - Precipitation
 - Ultraviolet radiation, including sunlight
 - _ Strong oxidizing chemicals, acids or bases
 - Flames, including welding sparks
 - Temperatures in excess of 160°F
 - Soiling

Throughout the preinstallation, installation, and post-installation periods, the RPR will observe and document that the Installer provides adequate handling equipment for moving geotextile rolls and that the equipment and handling methods do not pose unnecessary risk of damage. The Installer/Contractor will be responsible for the means and methods to implement the work.

The Installer will be responsible for ensuring that all materials installed meet specifications. The RPR will maintain a log of geotextile roll deliveries. The following information, at a minimum, will be recorded on the log for each shipment received at the job site:

- Date of delivery at job site
- For each geotextile roll, the following information:
 - Roll number
 - Batch (lot) number

10.3 Installation

This section describes the quality assurance requirements applicable to the installation, observation, and documentation of geotextile.

10.3.1 Placement

The Installer will install all geotextile in such a manner as to ensure that it is not damaged and in a manner that complies with the following requirements:

- On sideslopes, the geotextile will be securely anchored and then rolled down the slope in such a manner as to continually keep the geotextile in tension.
- In the presence of wind, all geotextile will be secured by suitable methods. The temporary securing material will be left in place until replaced with cover material as shown on the design plans and specifications.
- In-place geotextile will be cut with special care to protect other materials from damage that could be caused by the cutting of the geotextile.
- The Installer will take necessary precautions to prevent damage to any underlying layers during placement of the geotextile.
- During placement of geotextile, care will be taken not to entrap in the geotextile any stones, excessive dust, or moisture that could damage the geotextile, or generate clogging of drains or filters.
- A visual examination of the geotextile will be carried out over the entire surface after installation by the Installer to ensure that no potentially harmful foreign objects, such as needles, are present.
- The edges of the geomembrane between phases will be protected with a geotextile wrap and/or an overlying protective material until the edges are spliced together with the liner system of the adjacent phase.

10.3.2 Seams and Overlaps

The following requirements will be met regarding seaming and overlapping of geotextile rolls:

- Geotextile seams will be continuously heat-bonded or sewn (spot heat bonding or sewing will not be allowed). Geotextile will be overlapped 6 inches prior to seaming. The sewing method and stitch type will be per the Manufacturer's recommendation but must be approved by the CQA Officer. Overlapping of geotextile without sewing may be acceptable for certain applications (e.g., under riprap emergency spillways) with approval from the CQA Officer.
- No horizontal seams will be allowed on slopes steeper than 5 horizontal to 1 vertical (*i.e.*, seams will be along, not across, the slope), except as part of a geotextile repair.
- Sewing will be performed with thread made from the same base material as the geotextile, or suitable equivalent.
- The Installer will pay particular attention to seams to ensure that no earthen materials could be inadvertently trapped beneath the geotextile.

The RPR will be responsible for observing and documenting that the above provisions are performed by the Installer in an acceptable manner.

10.4 Post-installation

10.4.1 Final Examination

The RPR will perform a final geotextile examination after the installation of each geotextile layer has been completed. The objectives of the final examination are as follows:

- To examine for the presence of holes, tears, or other deterioration
- To examine for excessive tension due to stretching of the fabric during installation
- To examine for the presence of foreign objects (i.e., stones, soil clods) beneath the geotextile

If there will be an extended time delay between completion of the geotextile and the start of the installation of any overlying cover, then the Installer will make provisions, by temporarily securing the geotextile using suitable methods to protect it from wind uplift. The RPR will document in the daily report the placement of the temporary securing methods used.

10.4.2 Placement of Soil Materials

The Construction Contractor will place all soil materials located on top of a geotextile in such a manner as to minimize the following:

- Damage to the geomembrane
- Slippage of the geotextile on underlying layers
- Excessive tensile stresses imposed on the geotextile

11.0 Geosynthetic Clay Liner

11.1 Introduction

This section is divided into three major subheadings, which cover the quality assurance requirements for preinstallation (includes the GCL Manufacturer), installation, and post-installation (includes the final examination of GCL prior to the placement of the geomembrane). The terms preinstallation, installation, and post-installation are applicable only to the GCL installation and do not apply to the overall construction of the landfill facility.

11.2 Preinstallation

Preinstallation activities are designed to help ensure that a high-quality product is being manufactured and that it is properly delivered, handled, and stored to maintain its quality.

11.2.1 Manufacturer's Quality Control Plan (MQCP)

The manufacturer of each component of the GCL and the GCL itself will have a Manufacturer's Quality Control Plan (MQCP) to ensure that their product meets all the stated minimum properties. These manufacturers include the Bentonite Supplier, the Geotextile Manufacturer, and the GCL Manufacturer.

11.2.1.1 Bentonite Supplier

The Bentonite Supplier will have a MQCP that will be adhered to in the manufacturing process. This plan will include the following information:

- Documentation that the bentonite is sodium bentonite
- Testing that demonstrates that the bentonite meets specified gradation requirements
- Testing that demonstrates that the bentonite meets specified index test requirements
- Testing that demonstrates that the bentonite has not been treated with synthetic chemicals or polymers

11.2.1.2 Geotextile Manufacturer

The Geotextile Manufacturer will have an MQCP that will be adhered to in their manufacturing process. This plan will include the following provisions:

- Testing that demonstrates that the product is made of specified polymers
- Testing that demonstrates that the product meets certain minimum average roll values (for geotextiles)

11.2.1.3 GCL Manufacturer

The GCL manufacturer will have an MQCP that describes the procedures for accomplishing quality in the final product. At a minimum, the tests shown in Table 11-1 shall be performed by the Manufacturer.

	Property	Test Method ⁽¹⁾	Units	Value	Minimum Conformance Testing Frequency ⁽⁵⁾⁽⁶⁾
Bentonite	Swell Index	ASTM D5890	ml/2 g min	24 (min)	1/100,000 sf
properties	Moisture Content	ASTM D4643	%	12 (max)	Not required
	Fluid loss	ASTM D5891	ml	18(max)	Not required
Geotextile (as	Non-woven (mass per unit area)	D5261	oz/yd ²	5.9 (MARV)	Not required
received)	Woven (Mass per unit area)	D5261	oz/yd ²	3.0 (MARV)	Not required
Physical GCL properties	Bentonite mass per unit area ⁽¹⁾ @ 0% moisture	ASTM D5993	lb/ft ²	0.75 (MARV)	1/40,000 sf
	Tensile Strength ⁽²⁾	ASTM D5993	lb/in	30 (MARV)	1/100,000 sf
	Peel Strength	ASTM D6768	lb/in	3.5 (MARV)	1/100,000 sf
	Hydraulic Conductivity ⁽³⁾	ASTM D5887	cm/sec	5 x 10 ⁻⁹ (max)	Not required
	Index Flux ⁽³⁾	ASTM D5887	m ³ /m ² /sec	1 x 10 ⁻⁸ (max)	1/100,000 sf
	Internal Shear Strength ⁽⁴⁾	ASTM D6243	psf	83.4 (min)	Note 7

Table 11-1: GCL Material Tests, Test Methods, and Acceptance Criteria

Notes:

(1) At 0% moisture content

⁽²⁾ Tested in machine direction

⁽³⁾ Deaired, deionized water @ 5 psi maximum effective confining stress and 2 psi head pressure

⁽⁴⁾ GCL hydrated for 48 hours under 300 psf and for 24 hours under load prior to shear.

⁽⁵⁾ CQA Officer to coordinate conformance testing at the specified frequencies (minimum) on the GCL rolls supplied to the project.

⁽⁶⁾ Conformance testing is not required if GCL manufacturer provides testing documentation at the required frequency prior to shipping.

⁽⁷⁾ Refer to Section 3.2 for shear test requirements.

This MQCP will also dictate the following requirements:

- Overlap alignment lines are to be marked on the edges.
- Completed rolls are to be securely wrapped in plastic.
- Completed rolls are to be stored indoors, and provisions are to be in place to prevent rolls from being stacked too high, to ensure that they are kept dry, and to prevent damage during handling.
- Quality control certificates are to be provided.

11.2.2 Materials

The GCL will consist of a layer of pure sodium bentonite clay encapsulated between two geotextiles and will comply with all of the manufacturing processes and physical/chemical criteria listed in this section.

The bentonite clay utilized in the manufacture of the GCL, as well as any accessory bentonite clay (e.g., Volclay[®] granular sodium bentonite or approved equivalent) provided for seaming and detail work, will meet the manufacturer's minimum requirements, as specified in the MQCP.

The geotextile component of the GCL, and the geosynthetic clay liner itself, will meet the minimum requirements of the respective MQCPs.

11.2.3 GCL Delivery, Handling, and Storage

The GCL panels will be supplied to the site in factory-produced rolls, which are of standard factory roll dimensions.

Each roll of GCL supplied to the site will be labeled with the following information:

- Name and date of manufacturer
- Product type and identification number (if any)
- Lot (Batch) number
- Roll number

The GCL Manufacturer will ensure that the crushing strength of all GCL roll cores will be sufficient to avoid collapse or other damage while in use.

The rolls of GCL will be carefully unloaded by the Contractor upon arrival at the site. At a minimum, the following practices will be followed in receiving and storing GCL rolls in the covered storage area at the job site:

- While unloading or transferring the GCL rolls from one location to another, prevent damage to the GCL.
- For standard rolls, insert a steel support pipe through the cardboard roll core. Attach the slings or lifting chains at one end to the support pipe and at the other end to the bucket of a front-end loader or lifting device. Use a spreader bar to support and spread the slings. The bar and support pipe must be long enough to prevent damage to the edges of the GCL during hoisting.

- Alternatively, modify the forklift trucks to lift the rolls with a steel bar, securely attached to the fork lift and inserted into the roll core. Do not lift the rolls by sliding the forks under the roll.
- Store the rolls of GCL in their original, unopened, wrapped cover in a clean, dry area. Store the material off the ground on pallets or by other suitable techniques that provide continuous support over the entire length of the roll. Cover the roll with a heavy, protective tarpaulin, or store the roll beneath a roof. Care will be used to protect the GCL from the following:
 - Precipitation
 - Ultraviolet radiation, including sunlight
 - _ Strong oxidizing chemicals, acids or bases
 - Flames, including welding sparks
 - Temperatures in excess of 160°F

Throughout the preinstallation, installation, and post-installation periods, the RPR will be responsible for observing and documenting that the Installer provides adequate handling equipment for moving GCL rolls and that the equipment and handling methods do not pose any risk of damage.

The RPR will be responsible for making certain that the name of the manufacturer, the type, and the thickness of each roll (as noted on the roll marking label described above) are correct. The RPR will also maintain a log of GCL roll deliveries. The following information, at a minimum, will be recorded on the log for each shipment received at the job site:

- Date of receipt of delivery at job site
- For each GCL roll, the following information will be noted:
 - Roll number
 - Batch (lot) number

11.2.4 Submittals

Submittals will be made prior to installation of the GCL concerning the GCL Manufacturer/production information and the GCL installer information.

The GCL Manufacturer/production information will include the following:

- Manufacturer's corporate background information.
- Manufacturer's Quality Control Plan (MQCP) for bentonite, geotextile, and GCL manufacturers.
- Project reference list consisting of the principal details of at least 10 projects totaling at least 8 million square feet of GCL installation (if required by the RPR or CQA Officer).
- Results of tests conducted by the Bentonite and Geotextile Supplier documenting the quality of materials used to manufacture the GCL rolls assigned to the project.
- Copy of quality control certificates, signed by a responsible entity of the Manufacturer. Certificates to include roll identification numbers and results of quality control tests (refer to Subsection 11.2.1 for minimum testing requirements).

• Manufacturer's written certification that the GCL meets the project specifications, that the GCL has been continuously inspected and found to be needle-free, that the bentonite will not shift during transportation or installation, and that the bentonite and geotextile materials meet the Manufacturer's specifications.

GCL Installer information will include the following:

- Corporate background information
- Project reference list consisting of the principal details of at least five projects totaling at least 1 million square feet, if required by the RPR or CQA Officer
- List of personnel performing field operations, along with pertinent experience information, if required by the RPR or CQA Officer

The proposed panel layout diagram identifying placement of the GCL panels and seams, as well as any variances or additional details that deviate from the engineering drawings will be submitted prior to installation. The layout will be drawn to scale, will include information such as dimensions and details, and will be adequate for use as a construction plan.

11.3 Installation

The following installation procedures are designed to ensure the effectiveness of the GCL in meeting its design requirements and to simplify the deployment procedures. These procedures are to be followed by the Installer unless the Installer proposes alternative procedures in writing and the CQA Officer approves them in writing prior to installation.

11.3.1 Testing Requirements

This subsection describes the test methods, including sampling procedures and frequencies, and the role of the Geosynthetic Testing Laboratory in testing the GCL roll samples. Unless specified otherwise, all sampling procedures will be performed in accordance with the referenced test method defined in this section.

GCL roll samples will be collected by the Contractor at the discretion of, and under the direction of, the RPR, at a rate specified by the RPR.

Samples will be 3 feet long by the full width of the roll and will not include the first 3 feet of any roll.

Table 11-1 lists the tests and the test methods that may be performed on GCL roll samples. The specifications and methods used in evaluating the results are discussed later in this subsection. At a minimum, the testing required by NR516.07(2m)(a) will be conducted on the GCL.

11.3.1.1 Role of Testing Laboratory

The Geosynthetic Testing Laboratory will be responsible for performing the tests on samples submitted to them. The results of tests performed will be reported to the RPR and CQA Officer.

Retesting of GCL rolls for quality assurance purposes, because of failure to meet any or all of the acceptance specifications in this section, can only be authorized by the CQA Officer.

The GCL Manufacturer and/or Installer may perform their own tests according to the methods and procedures defined in Table 11-1; however, the results will only be applicable to their own quality control needs. These results will not be substituted for the quality assurance testing described herein.

11.3.1.2 Procedure For Determining GCL Roll Test Failures

Table 11-1 lists the specifications that are applicable to the GCL. For any referenced test method that requires the testing of multiple specimens, the criteria in Table 11-1 will be met based on the average results of the multiple specimen tests.

The following procedure will be used for interpreting the results relative to acceptance or rejection of rolls, lots, and shipments of GCL to the site:

- 1. If the test values meet the stated specifications, then the roll and batch will be accepted for use at the job site. If the sample represents all rolls from an entire shipment, then the entire shipment will also be considered accepted.
- 2. If the results do not meet the specification, then the roll and the batch will be retested at the Contractor's expense using specimens either from the original roll sample or from another sample collected by the RPR. For retesting, two additional tests will be performed for the failed test procedure. (Each additional test will consist of multiple specimen tests if multiple specimens are called for in the failed test procedure.) If both retests are acceptable, then the roll and batch will be considered as having passed this particular acceptance test; if either of the two additional tests fail, then the roll and batch will be considered as being unsuitable without further recourse. The RPR may obtain samples from other rolls in the batch. Based on testing these samples, the CQA Officer may choose to accept a portion of the batch while rejecting the remainder.
- 3. If retesting does not result in passing test results as defined in the preceding paragraph, or if there is any other nonconformity with the material specifications, then the Contractor will withdraw the rolls from use in the project at Contractor's sole risk, cost, and expense. Once withdrawn, the same rolls will not be resubmitted for use. Expenses for removing this GCL from the site and replacing it with acceptable GCL will be the sole risk and responsibility of Contractor.

11.3.2 Required Equipment

The following installation equipment is required on-site:

- Front end loader, crane, or other similar equipment. The selected piece of equipment will not cause damage to the subgrade, such as rutting. The Installer will verify in the presence of the RPR that the selected piece of equipment does not damage the subgrade
- A spreader bar to prevent slings from damaging the ends of the rolls.
- Several steel pipes to be inserted into the roll's core for lifting.
- Wooden pallets for aboveground storage of the GCL rolls.
- Heavy waterproof tarps for protecting all GCL rolls.

- Sandbags for securing the GCL during installation and for securing the tarps.
- Adhesive or tape for securing patches.
- Granular bentonite for seams and patches, and for securing around penetrations and structures as shown on the drawings.

11.3.3 Surface/Subgrade Preparation

GCL liner installation will not begin until a proper subbase has been prepared to accept the bentonite liner. Base material, including material in the vee trenches constructed for the leachate collection system piping, will be fine-grained soil free from angular rocks, roots, grass, and vegetation. Foreign materials and protrusions will be removed, and all cracks and voids will be filled; the surface will be made smooth and uniformly sloping. Unless otherwise required by the contract specifications and drawings, the prepared surface will be free from excessive moisture, loose earth, rocks or clay clods larger than 1 inches in diameter, rubble, and other foreign matter. The subgrade will be uniformly compacted to a minimum of 90 percent Modified Proctor density (ASTM D1557), to ensure against localized settlement and rutting under wheel loads and will be smoothed with a smooth drum or vibratory roller.

The surface on which the liner is to be placed will be maintained in a firm, clean, and smooth condition, free of standing water, during liner installation.

11.3.4 Deployment

As each roll is moved from the storage area, the labels will be removed by the Installer or RPR for storage in the project file.

The rolls of GCL will be brought to the area to be lined with a front-end loader, and support pipe will be set up such that the roll of liner is fully supported across its length. A spreader bar or similar device will be used to prevent the lifting chains or slings from damaging the edges. Dragging of the GCL liner will be minimized.

The Contractor will ensure, and the RPR will verify, that the following criteria are being met:

- The equipment used does not damage the GCL by handling, excessive heat, leakage of hydrocarbons, or by other means.
- The prepared surface underlying the GCL has not deteriorated since previous acceptance, and it is still acceptable at the time of GCL placement.
- Personnel working on the GCL do not smoke, wear damaging clothing, or engage in other activities that could damage the GCL.
- The method used to unroll the GCL does not cause damage to the GCL, and/or the subgrade.
- The method used to place the rolls minimizes wrinkles (especially wrinkles between adjacent panels).

GCL must not be placed during precipitation events, in the presence of excessive moisture, in any area of ponded water, or during excessive winds. The GCL must be dry when installed and must be dry when covered.

The proper side of the GCL, as per the manufacturer's recommendation, will face upward (unless otherwise dictated by project requirements). The liner will be placed over the prepared surface such that material handling will be minimized.

The GCL panels will be placed in a manner that ensures sufficient overlap as described in Subsection 11.3.5. Horizontal seams will not occur on slopes steeper than 7 horizontal:1 vertical.

The cover material (i.e., geomembrane) will be placed over the bentonite liner during the same day as the placement of the GCL. Only those GCL rolls that can be covered that same day will be unpacked and placed in position.

When wind conditions could affect installation, the GCL liner installation will be started at the upwind side of the project and will proceed downwind. The leading edge of the liner will be secured at all times with sandbags or other means sufficient to hold it down during high winds.

The GCL will be installed in a relaxed condition and will be free of tension or stress upon completion of the installation. Stretching of the liner to fit will not be allowed. Deployed rolls (panels) will be straightened by the installation personnel to smooth out creases or irregularities.

The RPR will visually inspect the geotextile's quality, the bentonite uniformity, and the degree of hydration, if any, of the GCL. Any areas in need of repair will be marked.

11.3.5 Seaming

Once the first panel has been deployed, adjoining panels will be laid with a 6-inch minimum overlap on longitudinal seams, and 24 inches on the panel end seams, depending on project specifications. To assist in obtaining the proper overlap, 6-inch overlap lines will be marked on the liner. All dirt, gravel, or other debris will be removed from the overlap area of the GCL.

Seam overlaps, whenever possible, will be placed such that the direction of flow is from the top panel to the underlying panel to form a shingle effect.

If the GCL requires a granular bentonite seam, then the overlapping panel edge will be pulled back and granular Volclay[®] (or approved equivalent) sodium bentonite will be poured continuously along all seams and lap areas from the panel edge to the 6-inch lap line, at a minimum application rate of ¹/₄ pound per linear foot or as recommended by the manufacturer.

11.3.6 Patches/Repairs

Irregular shapes, cuts, or tears in the installed GCL will be covered with sufficient liner to provide a 12-inch overlap in all directions beyond the damaged area. A layer of granular bentonite will be placed in the overlap zone in accordance with the Manufacturer's recommendations. An epoxybased adhesive, or other approved method, will be used to secure the patch during backfill operations. Alternatively, the patch can be placed underneath the defective liner.

11.3.7 Penetration Seals

The GCL will be sealed around penetrations, pipes, and structures in accordance with the recommendations of the GCL Manufacturer.

Pipe penetrations will incorporate a collar of GCL wrapped around the pipe and securely fastened. A bentonite or mastic grout will be placed around the corners for additional protection.

An additional GCL skirt placed over the bentonite grout is also recommended to provide a third level of protection and to prevent the bentonite grout from being displaced.

If the seal requires granular bentonite, then a 1- to 2-inch cut will be excavated around the circumference of the pipe, into the subgrade at least 12 inches out from the pipe. Volclay[®] sodium bentonite (or approved equivalent) will then be packed around the pipe in the subgrade excavation and on adjacent areas so that the pipe is surrounded with granular bentonite.

The GCL panel will then be placed over the pipe by penetrating the GCL with slits in a "pie" configuration where the pipe is to protrude in a manner that will create a snug fit between the GCL and the pipe.

More sodium bentonite will then be spread around the cut edges of the GCL against the pipe and over adjacent areas.

To complete the pipe penetration seal, a collar of GCL will be cut in a manner similar to that made on the main panel and will be fit around the pipe, with additional Volclay[®] sodium bentonite (or approved equivalent) being applied into any gaps that may remain.

11.3.8 Covering GCL

Only the amount of GCL that can be inspected, repaired, and covered in the same day will be installed. The GCL must be covered with geomembrane or alternate temporary cover the same day on which it is installed.

11.3.8.1 Geosynthetics

When covering the GCL, precautions will be taken to prevent damage to the GCL by restricting heavy equipment traffic. If a textured geomembrane is to be placed over the GCL, the RPR may require a slip sheet (such as 20-mil smooth HDPE) will be placed over the GCL to allow the textured geomembrane to slide into its proper position. The slip sheet will be removed after the geomembrane is in place.

11.3.8.2 Soil

The following requirements apply to soil placement over the GCLs:

- Equipment used for placing the soil must not be driven directly on the GCL.
- A minimum thickness of 1 foot of soil is specified between a light dozer (*i.e.*, maximum contact pressure of 5 lb/sq. inch) and the GCL.
- A minimum thickness of 3 feet of soil is specified between rubber-tired vehicles and the GCL.

Any leading edge or panels of GCL left unprotected must be covered with a heavy, waterproofing tarp that is secured and protected with sandbags or other ballast.

11.3.9 Submittals

The following will be submitted during installation:

- Daily records/logs prepared by the Installer documenting work performed, personnel involved, general working conditions, and any problems encountered or expected on the project. These records will be submitted on a weekly basis.
- Copy of subgrade acceptance forms by the Installer.
- Quality control documentation.

11.4 Post-installation

11.4.1 Final Examination

The RPR will perform a final GCL examination after portions of installation have been completed. The RPR will examine the GCL for the following:

- Tears or defects
- Proper overlaps

If any portion of the GCL requires repairs based on the above examination, it will be repaired in accordance with the procedures in Subsection 11.3.6.

11.4.2 Submittals

The following will be submitted after installation is completed:

- Installation certification prepared by the Installer certifying that the GCL was installed in substantial accordance with the specifications and the CQA Plan.
- An as-build panel layout diagram prepared by the Installer identifying the placement of panels and seams. The numbering sequence will be as agreed upon between the RPR and the Installer prior to commencing installation.
- A copy of the Warranty obtained from the Manufacturer/Installer.

12.0 Piping

12.1 General

This section includes quality assurance requirements for piping used throughout the facility. Piping will be used in the construction of the following items:

- Leachate collection system
- Leachate conveyance (or transfer) system
- Leachate head well piping
- Final cover toe drain collection and discharge piping

This section is divided into three major subheadings, which cover the quality assurance requirements for the preinstallation (includes Piping Manufacturers and Fabricators), installation, and post-installation (includes the final observation and documentation of piping installations). The terms preinstallation, installation, and post-installation are applicable only to the piping installation and do not apply to the overall construction.

Individual pipe sizes and standard dimension ratios (SDRs) to be used for each individual pipe installation are not detailed in this section; the plans and specifications will be used for the determination of correct size and wall thickness.

12.2 Preinstallation

12.2.1 Manufacturing

12.2.1.1 High-Density Polyethylene Material Specifications

High-density polyethylene (HDPE) pipe must be made from extra high molecular weight (EHMW) polyethylene (PE) resin, and the manufactured piping must be classified as at least Type III, Class C, Category 5, Grade P34 material according to ASTM D1248 and must also have a cell classification of at least 445574C as defined by ASTM D3350.

12.2.1.2 Polyvinyl Chloride Material Specifications

All polyvinyl chloride (PVC) pipe fittings must be PVC <u>molded</u> fittings. Extruded fittings may not be used unless specifically approved in writing by the CQA Officer.

12.2.1.3 Fabricator

The Piping Fabricator will be responsible for perforating the pipe delivered by the Piping Manufacturer according to the plans and specifications.

12.2.2 Delivery, Handling, and Storage of Piping

Pipe will be protected during shipment from excessive heat or cold, puncture, or other damaging or deleterious conditions. The pipe will be stored on-site in a manner suitable to protect it from long-term ultraviolet exposure prior to actual installation.

Dairyland Power Cooperative – CQA Plan Alma Off-Site Disposal Facility, Phase IV Landfill – Town of Belvidere, WI Final July 2003 Revised January 2024

Throughout the preconstruction, construction, and post-construction periods, the RPR will be responsible for observing and documenting that the Contractor provides adequate handling equipment for moving pipe and that the equipment and handling methods do not pose any risk of damage.

The RPR will maintain a log of pipe deliveries throughout the installation. The following information, at a minimum, will be recorded on the log for each shipment received at the job site:

- 1. Date of receipt of delivery at job site
- 2. Pipe size and type

12.3 Installation

12.3.1 Connections

12.3.1.1 HDPE Pipe

Unless approved otherwise by the CQA Officer, HDPE pipe connections will be made by the butt fusion procedure. The following procedure will be used regarding butt fusion seams:

- Seams will be made at the Manufacturer's recommended temperature for fusing pipe and fittings.
- For pipe diameter sizes 4 inches (nominal) and larger, seams will be made using the hydraulic fusion machines. For pipe diameters of less than 4 inches, manual fusion equipment can be used.
- Care will be taken to make certain that adequate pressures are used for fusing pipes and that sufficient cooling periods are allowed prior to testing, bending, or backfilling of pipe sections.

12.3.1.2 PVC Pipe

Unless approved otherwise by the CQA Officer, all PVC pipe connections will be made according to the Standard Practice for Making Solvent-Cemented Joints with Polyvinyl chloride (PVC) Pipe and Fittings, ASTM D2855. Care will be taken regarding required set and cure times for solvent-cemented joints, which vary for ambient temperature conditions. Joints will not be subjected to stresses by moving or backfilling prior to the specified set times, ASTM D2855. Only original quality solvent cement may be used since expired shelf life and deteriorated cements may cause inadequate connections.

12.3.2 Placement

Pipe placement will be done in accordance with the following procedure and requirements:

- Piping will be bedded and backfilled according to the plans and specifications.
- Piping placement will not be performed in the presence of excessive moisture.
- The prepared surface underlying the piping will not show evidence of deterioration since previous acceptance and must be acceptable prior to piping placement.

Dairyland Power Cooperative – CQA Plan Alma Off-Site Disposal Facility, Phase IV Landfill – Town of Belvidere, WI

- The method used to place the piping will not cause damage to the piping and will not disturb the supporting backfill.
- The pipe bedding material will be shovel-sliced or compacted to the spring line of the pipe to ensure proper bedding.
- Observations and measurements will be made to ensure that the pipes are of the specified size and dimension ratio, manufactured of the specified material, and that pipe perforations are sized and spaced as specified.
- All piping will be located as noted in the plans and specifications. Locations, grades, and size requirements are specified on the details of the plan set. Observations and surveying measurements will be made to ensure that the pipes are placed at specified locations and grades and in the specified configuration. Deviations from the plans and specifications will be brought to the attention of the CQA Officer for evaluation of the necessity of corrective action.

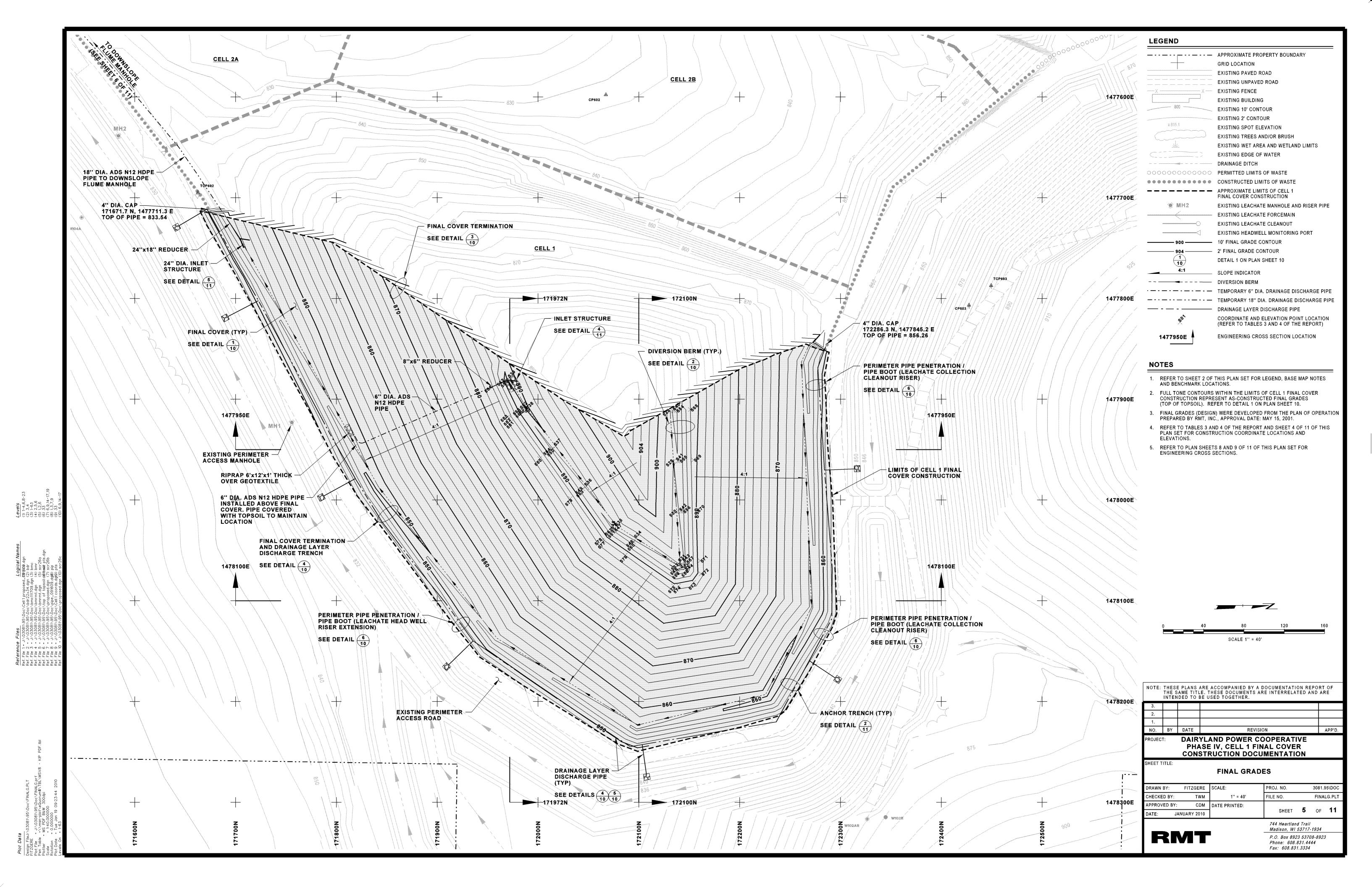
12.3.3 Damage

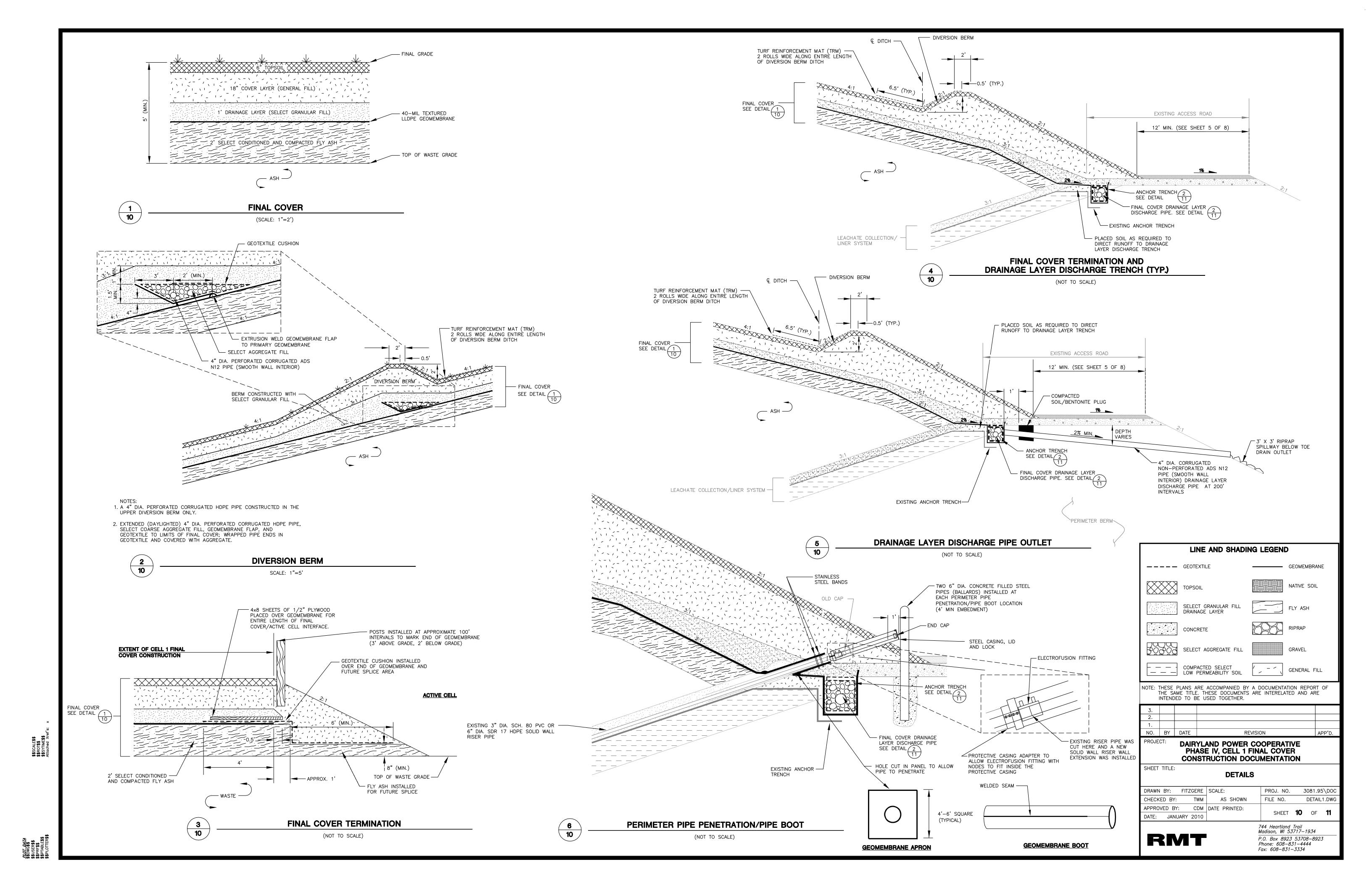
The RPR will examine each pipe after placement for damage. The RPR will advise the CQA Officer as to which pipes will be rejected, repaired, or accepted. Damaged pipes or portions of pipes that have been rejected will be marked and removed from the installation area and documented by the RPR.

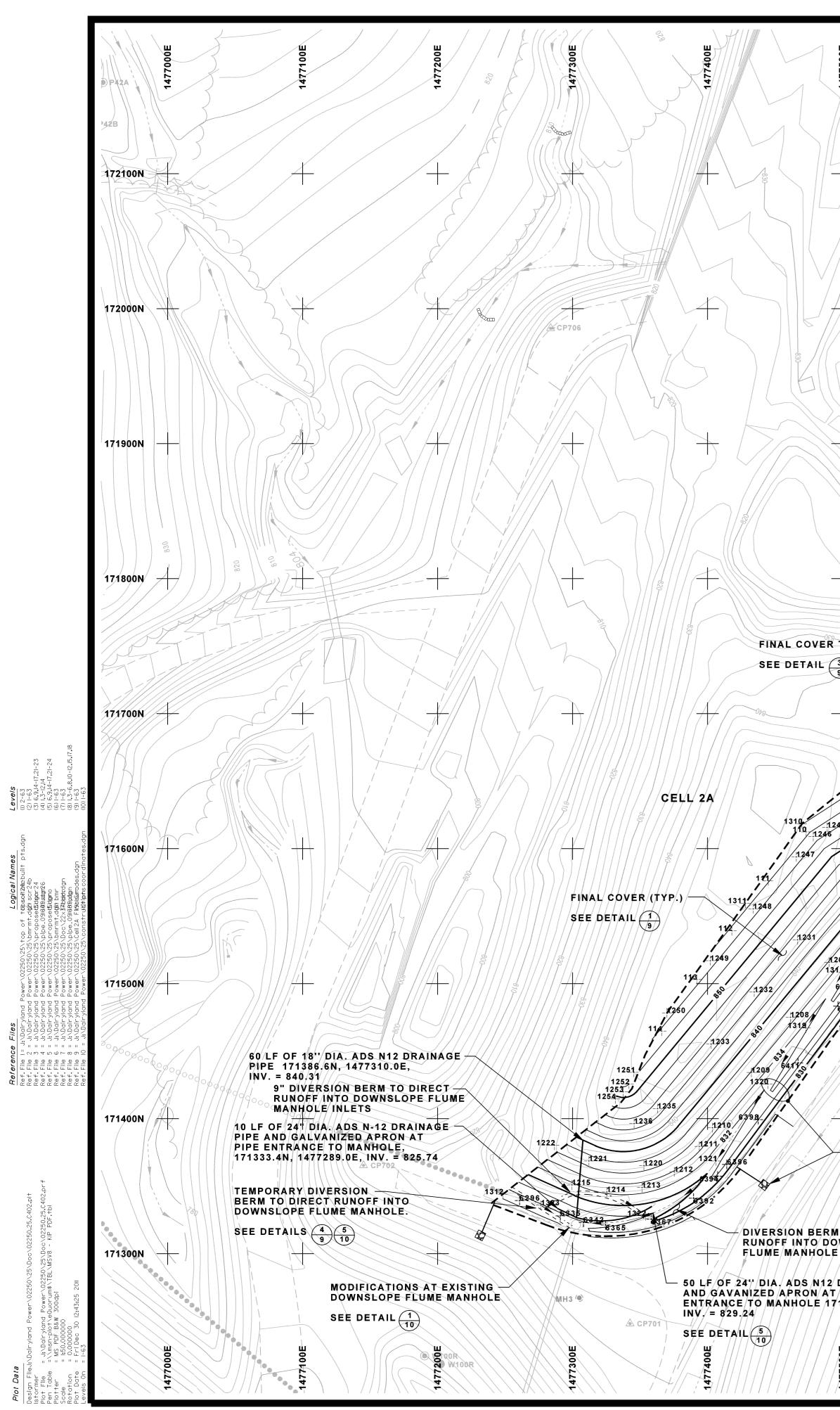
12.4 Post-Installation

Leachate collection pipes will be cleaned with a water jet cleanout device with a maximum pressure of 10,000 pounds per square inch after collection pipe and leachate drainage layer installation is complete. The pipes will be cleaned by jetting from each cleanout access point to the toe of the opposite sideslope. Pipes that do not appear to be free flowing will be immediately reported to the CQA Officer, and corrective action will be taken.

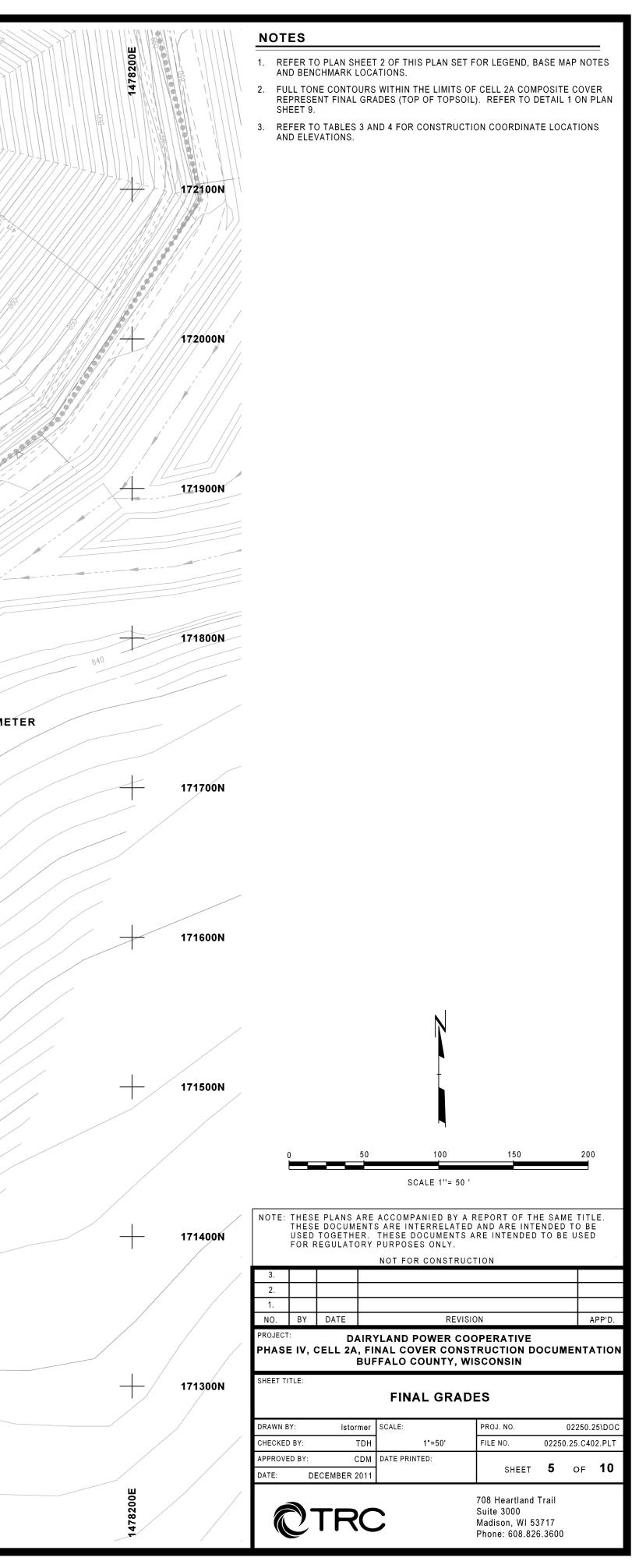
A video camera inspection will be conducted on all leachate collection pipes after initial pipe cleaning activities described above. The video camera inspection will extend a minimum of 300 feet onto the base grades of each leachate collection pipe.

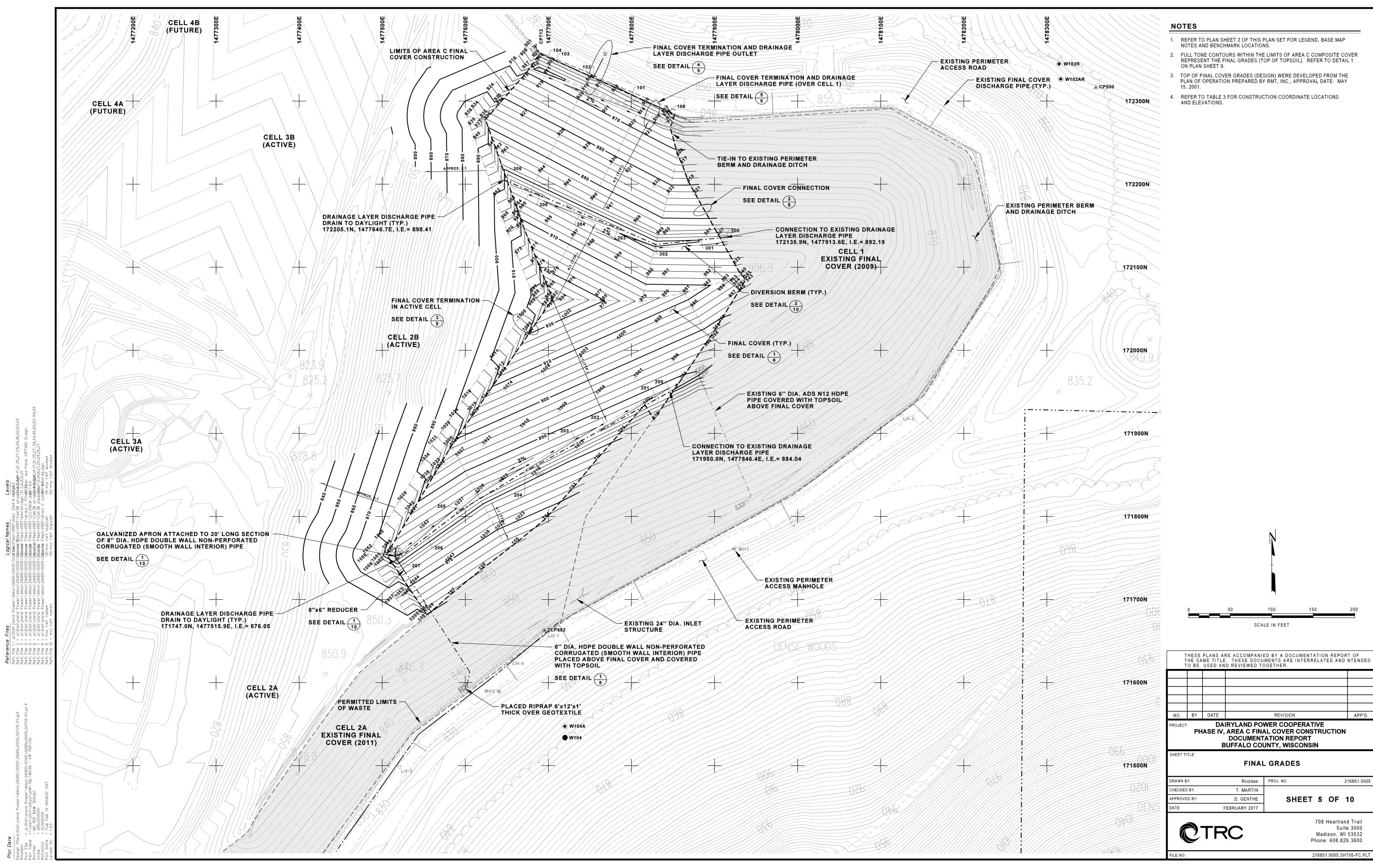

A summary report will be submitted after the pipe cleaning and video camera inspection. The report will summarize any specialty equipment used in collection pipe cleaning, blockages or difficulties in cleaning pipes, and how blockages were removed or pipe damage was repaired. Recording tape or disk of the video camera inspection will be included with the summary report.


Solid-wall pipe (single- and double-walled) outside the limits of waste will be air pressure-tested to document that the piping system is air-tight. The line will be air-pressurized to 5.0 pounds/square inch (gauge pressure). The valve on the pressurizing unit will be closed, and the system will be pressure-monitored. A system pressure of 4.5 psig or greater maintained for 30 minutes after the valve closing will be considered as acceptable. The RPR will observe and document that this operation is carried out and that the pipes are airtight.


Pipe invert elevations will be documented every 25 linear feet by survey or every 50 feet if a total station, GPS, or laser equipment is used, as well as at key points, including changes in grade, intersections, and end points.

Attachment 6


Final Cover Construction – Stormwater Drainage Piping



1477500E	1477600E	1477700E	1477800E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	141 141 141 141 141 141 141 141	1478100E
CELL 2B		NSTALLED GENERAL FILL AND I XISTING 4" DIA. PERFORATED I ROVIDE POSITIVE DRAINAGE		14 X X X X X X X X X X X X X X X X X X X	CELL 1 EXISTING F COVER	[NAL // // // // //
	850		75391			
	000	1304 1305 104 1306 105 1300 5409	5402 SEE DETAI	VER CONNECTION		632
3 9 1308 1309	106 1307 107 1242 1243	1240 850 1223 1201 1313 8h2 1202 LH-1		24" DIA. INLET STR MODIFICATION	UCTURE	XISTING PERIMI CCESS ROAD
109 1244 245 1228 1229 838	1226 1205 1315 5433	B ^R LH-4	DISCH DRAIN	SEE DETAILS 3 4 10 1 ECTED CELL 2A DRAINAGE IARGE PIPE TO EXISTING C IAGE LAYER DISCHARGE P 1.7N, 1477711.3E, INV. = 83	LAYER ELL 1 IPE	X
1205 8429 1206 8429 1317 6423		©				
1203 318 64/18 64/18 64/18 70 LH-3	LEACHATE HE SEE DETAIL	ADWELL TERMINATION				
FINAL COVER T	ERMINATION					
SEE DETAIL	1 1 1 1 1 1 1 1	Service of the servic				
E DRAINAGE PIPE T PIPE 71335.3N, 1477358.(0E					+
1477500E	1477600E	7477700E	1477800E	¹ 000 1477900E	1478000E	1478100E

APP'D.

DRAWN BY:	Rnolden	PROJ. NO. 216851.0005
CHECKED BY:	T. MARTIN	
APPROVED BY:	D. GENTHE	SHEET 5 OF 10
DATE:	FEBRUARY 2017	
Л		708 Heartland Trail Suite 3000

Madison, WI 53532 Phone: 608.826.3600

216851.0005.SHT05-FC.PLT

Attachment 7

Previous GCL Conformance Testing

July 18, 2001

Mr. Paul Donnelly RMT, Inc. 744 Hearland Trail Madison, WI 53717-1934

fax: 608-8313334

Dear Mr. Donnelly:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

 TRI Job Reference Number:
 2159-10-07

 Material(s) Tested:
 8 GCL's

 Test(s) Requested:
 Bentonite Swell Index (ASTM D 5890)

 Hydraulic Conductivity (ASTM D 5887)

 Grab Tensile Strength (ASTM D 4632)

 Peel Strength (ASTM D 4632)

 Mass/Unit Area (ASTM D 5993)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

San R. Alle

Sam R. Allen Vice President and Division Manager: Geosynthetics Technologies

GEOSYNTHETIC CLAY LINER TEST RESULTS

RMT, Inc.

Dairyland Power Company

SR4 07.18.01

Quality Review/Date

2

Material: Cetco Bentomat ST Roll #: 3100 TRI Log #: E2159-10-07

												STD	COEFF.
PARAMETER	TEST P	REPLIC/	ATE NUN	IBER							MEAN	DEV.	OF VAR.
Bentonite - Swell Index	1	2	3	4	5	6	7	8	9	10	1		
(ASTM D 5890)													
Slurry temperature at test intiation	(22 degr	ees C)											
Swell index (mL/2g)	32	,									32]	
Bentonite - Mass/Unit Area (ASTM D 5993, result @ 0%	M.C.)		<u>_</u>										
Bentonite mass/unit area (lbs/ft2)	1.02	0.91	0.88	0.88	0.91						0.92	0.05	
Moisture Content (%)	26.5	26.4	24. 9	23.3	24.7						25.2	1.19	
Grab Tensile Properties (ASTM D 4632)													
MD - Tensile Strength (lbs)	110	110	106	122	114	111	109	111	114	130	114	1 7	
TD - Tensile Strength (lbs)	133	151	183	200	209	196	181	175	208	132	177	28	
MD - Elongation @ Max. Load (%)	55	39	12	14	13	13	13	12	13	63	25	19	107
TD - Elongation @ Max. Load (%)	98	82	71	95	102	98	69	83	111	72	88	14	
Peel Strength													
(ASTM D 4632, modified for	180 de	adree t	beel of	GCL)									
MD - Peel Strength (lbs)	23	22	35	27	24	30	31	33	30	35	29	5	
TD - Peel Strength (Ibs)	36	36	33	34	30	30	30	30	33	32	32	2	
Hydraulic Conductivity - AS (5 psi effective stress)	TM D 5	5887	<u>-</u>										
Hydraulic Conductivity (cm/sec)				1.7 E-0 9							1.7E-09		

MD Machine Direction

TD Transverse DirectionN/A Not Available

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI/ENVIRONMENTAL, INC. A Texas Research International Company

GEOSYNTHETIC CLAY LINER TEST RESULTS RMT, Inc.

Dairyland Power Company

Material: Cetco Bentomat ST Roll #: 3052 TRI Log #: E2159-10-07

TRI LOU #. 22155-10-07											Quality R	eview/	Date
PARAMETER	TEST	REPLIC		MBER							MEAN	STD	COEFF.
Bentonite - Swell Index (ASTM D 5890)	1	2	3	4	5	6	7	8	9	10	MEAN	DEV.	OF VAR.
Slurry temperature at test intiation	(22 degi	rees C)											
Swell index (mL/2g)	30										30]	
Bentonite - Mass/Unit Area (ASTM D 5993, result @ 0%													
Bentonite mass/unit area (lbs/ft2)	0.71	88.0	0.97	0.91	0.79						0.85	0.09	
Moisture Content (%)	16.2	16.5	16.7	15.4	15.0						16.0	0.65	
Grab Tensile Properties (ASTM D 4632)													
MD - Tensile Strength (lbs)	115	126	129	108	117	124	116	123	121	121	120	6	
TD - Tensile Strength (ibs)	180	210	221	204	184	217	206	243	256	206	213	22	
MD - Elongation @ Max. Load (%)	26	22	21	25	21	20	20	21	21	21	22	2	
TD - Elongation @ Max. Load (%)	112	127	132	132	123	118	123	116	119	137	124	8	
Peel Strength (ASTM D 4632, modified for	180 de	egree p	beel of	GCL)	<u>.</u> .				. <u> </u>		8		
MD - Peel Strength (lbs)	22	23	22	20	19	20	22	16	17	12	19	2	
TD - Peel Strength (lbs)	23	18	20	24	36	25	34	38	19	21	26	3 7	
Hydraulic Conductivity - AS 5 psi effective stress)	TMD	5887							-				
Hydraulic Conductivity (cm/sec)				1.5E-09							1.5E-09		

MD Machine Direction

TD Transverse DirectionN/A Not Available

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

07.18.0

GEOSYNTHETIC CLAY LINER TEST RESULTS

RMT, Inc.

Dairyland Power Company

Material: Cetco Bentomat Roll #: 3116	ST											_	
TRI Log #: E2159-10-07												- 07.	
11(1 EOg #. E2153-10-01											Quality R	eview/	Date
PARAMETER	TEST	REPLIC	ATE NU	MRED								STD	COEFF.
Bentonite - Swell Index (ASTM D 5890)	1	2	3	4	5	6	7	8	9	10	MEAN	DEV.	OF VAR.
Slurry temperature at test intiation	(22 degi	rees C)											
Swell index (mL/2g)	31										31]	
Bentonite - Mass/Unit Area (ASTM D 5993, result @ 0%	M.C.)												
Bentonite mass/unit area (Ibs/ft2)	1.04	1.02	0.93	0.93	0.93						0.97	0.05	
Moisture Content (%)	21.1	19.3	19.2	17.7	16.6						18.8	1.53	
Grab Tensile Properties (ASTM D 4632)	_												
MD - Tensile Strength (lbs)	130	134	152	130	138	134	121	107	134	130	131	1 11	
TD - Tensile Strength (lbs)	229	193	169	164	174	219	187	191	175	197	190	20	
MD - Elongation @ Max. Load (%)	15	19	19	18	16	17	16	17	18	16	17] 1	-
TD - Elongation @ Max. Load (%)	71	75	62	67	66	75	75	103	72	109	78	15	
Peel Strength											·		
(ASTM D 4632, modified for	180 de	egree p	beel of	GCL)									
MD - Peel Strength (lbs)	36	31	31	28	35	29	21	42	31	39	32	6	
TD - Peel Strength (lbs)	30	22	44	40	46	41	52	39	37	45	40	8	
Hydraulic Conductivity - AS	TM D :	5887			_								
(5 psi effective stress)													
Hydraulic Conductivity (cm/sec)				1.7E-09						i	1.7E-09		

MD Machine Direction

TD Transverse DirectionN/A Not Available

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

4

Appendix K GCL Conformance Testing Results

RMT, Inc. | Dairyland Power Cooperative 1:\WPMSN\PJT\00-03081\69\R000308169-001.DOC

October 20, 2006

Mail To:

Bill To:

<= Same

Mr. Paul Donnelly RMT, Inc. PO Box 8923 Madison, WI 53708-8923

email: paul.donnelly@rmtinc.com cc email: todd.martin@rmtinc.com - Todd Martin

Dear Mr. Donnelly:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

Project:	Dairyland Power Cooperative - Alma, WI
TRI Job Reference Number:	E2243-77-01
Material(s) Tested:	1 Bentomat ST GCL(s)
Test(s) Requested:	Mass/Unit Area (ASTM D 5993) Bentonite - Swell Index (ASTM D 5890) Peel Strength (ASTM D 4632, mod.) Index Flux (ASTM D 5887)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

John M. Allen, E.I.T Director of Geosynthetics Interaction Laboratory Geosynthetic Services Division www.GeosyntheticTesting.com

GCL TEST RESULTS

TRI Client: RMT, Inc. Project: Dairyland Power Cooperative - Alma, WI

Material: Bentomat ST GCL Sample Identification: 6056 TRI Log #: E2243-77-01

PARAMETER	TEST RE			BER							MEAN	STD. DEV.
	1	2	3	4	5	6	7	8	9	10		
Bentonite - Mass/Unit Area (AS	TM D 5993, n	esult @	0% M.C	.)								
Bentonite mass/unit area (lbs/ft ²)	0.78	0.72	0.77	0.75	0.73						0.75	0.03
Moisture Content (%)	32.1	31.0	31.0	32.1	31.3						31.5	0.6
Bentonite - Swell Index (ASTM I	D 5890)											
Nater temperature at test intiation	n (22 degrees	C)										
Swell index (mL/2g)	25										25	
Note: Bentonite sample tested is Peel Strength (ASTM D 4632, mo			· · ·									
/D - Peel Strength (lbs)	44	29	49	53	43	34	27	20	49	34	38	11
ndex Flux (ASTM D 5887)												
ndex Flux (m ³ /m ² /sec)	2.7E-09										2.7E-09	
											1	

IND Machine Direction

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

page 2 of 2 GeosyntheticTesting.com 9063 Bee Caves Road / Austin, TX 78733 / 512 263 2101 / fax: 512 263 2558

TRI / Environmental, Inc. A Texes Research International Company

September 5, 2006

Mail To:

Bill To:

<= Same

Mr. Paul Donnelly RMT, Inc. PO Box 8923 Madison, WI 53708-8923

email: paul.donnelly@rmtinc.com cc email: todd.martin@rmtinc.com - Todd Martin

Dear Mr. Donnelly:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

Project:	Dairyland Power Cooperative - Alma, WI
TRI Job Reference Number:	E2243-60-07
Material(s) Tested:	6 Bentomat ST GCL(s)
Test(s) Requested: Updating ==>	Mass/Unit Area (ASTM D 5993) Bentonite - Swell Index (ASTM D 5890) Peel Strength (ASTM D 4632, mod.) Index Flux (ASTM D 5887)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

John M. Allen, E.I.T Director of Geosynthetics Interaction Laboratory Geosynthetic Services Division www.GeosyntheticTesting.com

GCL TEST RESULTS

TRI Client: RMT, Inc.

Project: Dairyland Power Cooperative - Alma, Wi

Material: Bentomat ST GCL Sample Identification: 7041 TRI Log #: E2243-60-07

PARAMETER	TEST RE	EPLICAT		BER							MEAN	STD. DEV.
Bentonite - Mass/Unit Area (AST	1 M D 5993, r	2 esult @	3 0% M.C	4	5	6	7	8	9	10		
				-								
Bentonite mass/unit area (lbs/ft ²)	0.91	0.91	0.97	0.89	0.84						0.90	0.05
Moisture Content (%)	30.8	31.0	24.1	24.7	15.3						25.2	6.4
Bentonite - Swell Index (ASTM D	5890)									. <u></u> .		
Water temperature at test intiation	(22 degrees	: C)										
Swell index (mL/2g)	22										22	
Note: Bentonite sample tested is a	as received f	rom mar	nufacture	r prior to	producti	on.						
					p.00000							
Bentonite - Swell Index (ASTM D	5890)					DETECT	-					
Water temperature at test intiation ((23 degrees	C)				RETEST						
Swell index (mL/2g)	15										15	
Natar Davida da ante de terte de			•									
Note: Bentonite sample tested is a	is received ti	rom mar	utacture	r prior to	producti	on.						
Peel Strength (ASTM D 4632, mo	dified for 1	80 degre	e peel c	of GCL)							<u> </u>	
MD - Peel Strength (lbs)	29	28	24	27	31	37	38	34	36	28	31	5
								_				
Index Flux (ASTM D 5887)												
Index Flux (ASTM D 5887) Index Flux (m ³ /m ² /sec)	3.6E-09										3.6E-09	
	3.6E-09 3.4E-09										3.6E-09	

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

Ц

GCL TEST RESULTS TRI Client: RMT, Inc.

Project: Dairyland Power Cooperative - Aima, WI

Material: Bentomat ST GCL Sample Identification: 7075 TRI Log #: E2243-60-07

1 2 3 4 5 6 7 8 9 10 Bentonite - Mass/Unit Area (ASTM D 5993, result @ 0% M.C.) Bentonite mass/unit area (Ibs/ft ²) 0.88 0.91 0.97 0.87 0.81 0.89 0.06 Moisture Content (%) 29.4 29.1 28.1 31.2 30.9 0.81 0.89 29.7 1.3 Bentonite - Swell Index (ASTM D 5890) Water temperature at test intiation (22 degrees C) Swell index (mL/2g) 15 15 Note: Bentonite - Swell Index (ASTM D 5890) RETEST 15 15 Water temperature at test intiation (23 degrees C) Swell index (mL/2g) 18 18 Note: Bentonite sample tested is as received from manufacturer prior to production. 18 18 Note: Bentonite sample tested is as received from manufacturer prior to production. 18 18 Note: Bentonite sample tested is as received from manufacturer prior to production. 18 18 Note: Bentonite sample tested is as received from manufacturer prior to production. 18 18 Note: Bentonite sample tested is as received for 180 degree peel of GCL) 18 16 5 <t< th=""><th>PARAMETER</th><th>TEST RE</th><th></th><th>re numi</th><th>BER</th><th></th><th></th><th></th><th></th><th></th><th></th><th>MEAN</th><th>STD. DEV.</th></t<>	PARAMETER	TEST RE		re numi	BER							MEAN	STD. DEV.
Bentonite mass/unit area (lbs/ft ²) 0.88 0.91 0.97 0.87 0.81 Moisture Content (%) 29.4 29.1 28.1 31.2 30.9 29.7 1.3 Bentonite - Swell Index (ASTM D 5890) Water temperature at test initiation (22 degrees C) 15 15 15 Note: Bentonite - Swell Index (ASTM D 5890) 15 15 15 15 Water temperature at test initiation (22 degrees C) 15 15 15 Note: Bentonite - Swell Index (ASTM D 5890) RETEST 18 Water temperature at test initiation (23 degrees C) 18 18 Note: Bentonite sample tested is as received from manufacturer prior to production. 18 18 Note: Bentonite sample tested for 180 degree peel of GCL) 18 18 Mole - Peel Strength (ASTM D 4632, modified for 180 degree peel of GCL) 3.1E-09 3.1E-09 MD - Peel Strength (lbs) 46 36 28 34 43 36 37 34 35 5 Index Flux (n ³ /m ² /sec) 3.1E-09 3.1E-09 3.1E-09 3.1E-09 3.1E-09 3.1E-09	Bentonite - Mass/Unit Area (AS)	1	2	3	4	5	6	7	8	9	10		
Moisture Content (%) 29.4 29.1 28.1 31.2 30.9 Bentonite - Swell Index (ASTM D 5890) Water temperature at test initiation (22 degrees C) 15 15 Swell index (mL/2g) 15 15 15 Note: Bentonite sample tested is as received from manufacturer prior to production. RETEST 18 Water temperature at test initiation (23 degrees C) 18 18 Note: Bentonite sample tested is as received from manufacturer prior to production. 18 Note: Bentonite sample tested is as received from manufacturer prior to production. 18 Note: Bentonite sample tested is as received from manufacturer prior to production. 18 Note: Bentonite sample tested is as received from manufacturer prior to production. 18 Peel Strength (ASTM D 4632, modified for 180 degree peel of GCL) 36 36 37 34 33 36 5 Index Flux (m ³ /m ² /sec) 3.1E-09 3.1E-09 3.1E-09 3.1E-09 3.1E-09					•,								
Bentonite - Swell Index (ASTM D 5890) Water temperature at test initiation (22 degrees C) Swell index (mL/2g) 15 Note: Bentonite sample tested is as received from manufacturer prior to production. Bentonite - Swell Index (ASTM D 5890) Water temperature at test initiation (23 degrees C) Swell index (mL/2g) 18 Water temperature at test initiation (23 degrees C) Swell index (mL/2g) 18 Note: Bentonite sample tested is as received from manufacturer prior to production. Peel Strength (ASTM D 4632, modified for 180 degree peel of GCL) MD - Peel Strength (lbs) 46 36 28 34 43 36 37 34 33 36 5 Index Flux (m ³ /m ² /sec) 3.1E-09 3.1E-09 3.1E-09 3.1E-09 3.1E-09	Bentonite mass/unit area (lbs/ft ²)	0.88	0.91	0.97	0.87	0.81						0.89	0.06
Water temperature at test initiation (22 degrees C) Swell index (mL/2g) Note: Bentonite sample tested is as received from manufacturer prior to production. Bentonite - Swell Index (ASTM D 5890) Water temperature at test initiation (23 degrees C) Swell index (mL/2g) 18 Note: Bentonite sample tested is as received from manufacturer prior to production. Peel Strength (ASTM D 4632, modified for 180 degree peel of GCL) MD - Peel Strength (lbs) 46 36 17 18 18 18 18 18 18 18 18 18 18 19 18 18 18 18 19 10 11 18 18 18 19 10 118 118 18 19 10 118 118 118 118 118 118 119 118 118 118 <td>Moisture Content (%)</td> <td>29.4</td> <td>29.1</td> <td>28.1</td> <td>31.2</td> <td>30.9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>29.7</td> <td>1.3</td>	Moisture Content (%)	29.4	29.1	28.1	31.2	30.9						29.7	1.3
Swell index (mL/2g) 15 Note: Bentonite sample tested is as received from manufacturer prior to production. Bentonite - Swell Index (ASTM D 5890) Water temperature at test intiation (23 degrees C) Swell index (mL/2g) 18 Note: Bentonite sample tested is as received from manufacturer prior to production. Peel Strength (ASTM D 4632, modified for 180 degree peel of GCL) MD - Peel Strength (lbs) 46 36 18 18 18 18 18 18 18 18 18 18 18 18 18 19 19 10 10 110 111 112 113 114 115 115 115 116 117 118 118 119 119 110 110 111 112 113 114 115 115 115 116 117 118 118 119 119 120 121 122 123 124 125 125 126 126 127 128 129 129	Bentonite - Swell Index (ASTM I	5890)											
Note: Bentonite sample tested is as received from manufacturer prior to production. Bentonite - Swell Index (ASTM D 5890) Water temperature at test initiation (23 degrees C) Swell index (mL/2g) 18 Note: Bentonite sample tested is as received from manufacturer prior to production. Peel Strength (ASTM D 4632, modified for 180 degree peel of GCL) MD - Peel Strength (Ibs) 46 36 28 34 43 36 37 34 33 36 5 Index Flux (m ³ /m ² /sec) 3.1E-09 3.1E-09 3.1E-09 3.1E-09 3.1E-09	Water temperature at test intiation	(22 degrees	C)										
RETEST Water temperature at test initiation (23 degrees C) Swell index (mL/2g) 18 Note: Bentonite sample tested is as received from manufacturer prior to production. 18 Peel Strength (ASTM D 4632, modified for 180 degree peel of GCL) MD - Peel Strength (lbs) 46 36 28 34 43 36 37 34 33 36 5 Index Flux (ASTM D 5887) Index Flux (m³/m²/sec) 3.1E-09 3.1E-09 3.1E-09 3.1E-09	Swell index (mL/2g)	15										15	
RETEST Water temperature at test initiation (23 degrees C) Swell index (mL/2g) 18 Note: Bentonite sample tested is as received from manufacturer prior to production. Peel Strength (ASTM D 4632, modified for 180 degree peel of GCL) MD - Peel Strength (lbs) 46 36 28 34 43 36 37 34 33 36 5 Index Flux (ASTM D 5887) Index Flux (m ³ /m ² /sec) 3.1E-09 3.1E-09 3.1E-09 3.1E-09	Note: Bentonite sample tested is	as received fi	rom mai	nufacture	er prior to	producti	on.						
Water temperature at test initiation (23 degrees C) Swell index (mL/2g) Swell index (mL/2g) Note: Bentonite sample tested is as received from manufacturer prior to production. Peel Strength (ASTM D 4632, modified for 180 degree peel of GCL) MD - Peel Strength (lbs) 46 36 18 MD - Peel Strength (lbs) 46 36 28 19 10 10 11 11 12 13 14 15 16 17 18 18 19 10 10 11 12 13 14 15 16 <	Bentonite - Swell Index (ASTM D	5890)					DETEOT	•					
Swell index (mL/2g) 18 18 Note: Bentonite sample tested is as received from manufacturer prior to production. 18 Peel Strength (ASTM D 4632, modified for 180 degree peel of GCL) 36 MD - Peel Strength (lbs) 46 36 28 34 43 36 37 34 33 36 5 Index Flux (ASTM D 5887) 3.1E-09 3.1E-09 3.1E-09 3.1E-09 3.1E-09	Water temperature at test intiation	(23 dearees	C)				KELESI						
Peel Strength (ASTM D 4632, modified for 180 degree peel of GCL) MD - Peel Strength (lbs) 46 36 28 34 43 36 37 34 33 36 5 Index Flux (ASTM D 5887) Index Flux (m³/m²/sec) 3.1E-09 3.1E-09 <td></td> <td></td> <td>-,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>18</td> <td></td>			-,									18	
MD - Peel Strength (lbs) 46 36 28 34 43 36 37 34 33 36 5 Index Flux (ASTM D 5887) Index Flux (m³/m²/sec) 3.1E-09 3.1E-09 3.1E-09 3.1E-09	Note: Bentonite sample tested is a	as received fr	rom mar	nufacture	er prior to	producti	on.						
Index Flux (ASTM D 5887) Index Flux (m ³ /m ² /sec) 3.1E-09	Peel Strength (ASTM D 4632, mo	odified for 18	30 degr	ee peel o	of GCL)								
Index Flux (m ³ /m ² /sec) 3.1E-09	MD - Peel Strength (lbs)	46	36	28	34	43	36	36	37	34	33	36	5
	Index Flux (ASTM D 5887)												
Hydraulic Conductivity (cm/sec) 2.4E-09 2.4E-09	Index Flux (m³/m²/sec)	3.1E-09										3.1E-09	
	Hydraulic Conductivity (cm/sec)	2.4E-09										2.4E-09	

MD Machine Direction

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reporduction of this report, except in full, without prior approval of TRI.

GCL TEST RESULTS

TRI Client: RMT, Inc. Project: Dairyland Power Cooperative - Alma, WI

Material: Bentomat ST GCL Sample Identification: 7109 TRI Log #: E2243-60-07

PARAMETER	TEST RE	EPLICAT		BER							MEAN	STD. DEV.
Bentonite - Mass/Unit Area (AST	1 M D 5993 -	2 Desult @	3 0% M C	4	5	6	7	8	9	10		
	INI D 3333, I	esun @	U /0 IVI.C.	•)								
Bentonite mass/unit area (lbs/ft ²)	0.83	0.93	0.97	0.92	0.69						0.87	0.11
Moisture Content (%)	29.4	27.6	27.5	27.0	26.6						27.6	1.1
Bentonite - Swell Index (ASTM D	5890)											
Water temperature at test intiation	(22 degrees	C)										
Swell index (mL/2g)	22										22	
Note: Bentonite sample tested is a	as received f	rom mar	nufacture	r prior to	producti	on.						
Dentenite - Swell Index (ASTR D	5800					-						
Bentonite - Swell Index (ASTM D	5690)					RETEST						
Water temperature at test intiation	(23 degrees	C)										
	· •	,									18	
Swell index (mL/2g)	18											
		rom mar	nufacture	r prior to	producti	on.						
Swell index (mL/2g) Note: Bentonite sample tested is a Peel Strength (ASTM D 4632, mo	as received f			•	producti	on.						
Note: Bentonite sample tested is a	as received f			•	producti	on. 32	43	33	33	28	34	5
Note: Bentonite sample tested is a Peel Strength (ASTM D 4632, mo	as received f	60 degre	e peel c	of GCL)			43	33	33	28		5
Note: Bentonite sample tested is a Peel Strength (ASTM D 4632, mo MD - Peel Strength (Ibs)	as received f	60 degre	e peel c	of GCL)			43	33	33	28		5

MD Machine Direction

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

8

Appendix K GCL Conformance Testing Results

TRI / Environmental, Inc. A Texas Research International Company

August 3, 2012

Mail To:

Bill To:

Terrence Halena TRC Environmental Corporation 744 Heartland Trail Madison, WI 53717

email: thalena@trcsolutions.com fax:608-662-5451

Accounts Payable TRC Companies, Inc. 21 Griffin Road North Windsor, CT 06095

PO: 46408 email: apinvoiceapproval@trcsolutions.com

Dear Mr. Halena:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

Project:	DPC - Alma Off Site Cell 3A
TRI Job Reference Number:	E2365-60-03
Material(s) Tested:	2, Bentoliner NSL GCL(s)
Test(s) Requested:	Index Flux (ASTM D 5887)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

John M. Allen, P.E. Division Director

www.GeosyntheticTesting.com

GCL TEST RESULTS

TRI Client: TRC Environmental Corporation

Project: DPC - Alma Off Site Cell 3A

Material: Bentoliner NSL TRI Log #: E2365-60-03

PARAMETER	TEST REF	PLICATE	E NUMBI	ER							MEAN	STD. DEV.
Index Flux (ASTM D 5887) Sample Identification: 50220746	1	2	3	4	5	6	7	8	9	10		
Index Flux (m ³ /m ² /sec)	3.2E-09										3.2E-09	
Hydraulic Conductivity (cm/sec)	2.7E-09										2.7E-09	
Index Flux (ASTM D 5887) Sample Identification: 50220751	7											
Index Flux (m ³ /m ² /sec)	3.4E-09										3.4E-09	
Hydraulic Conductivity (cm/sec)	3.3E-09										3.3E-09	
MD Machine Direction TD 1	ransverse Dire	ection		NA	Not Availa	ble					ļ	

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

October 9, 2012

Mail To:

Bill To:

Terrence Halena	Accounts Payable						
TRC Environmental Corporation	TRC Companies, Inc.						
744 Heartland Trail	21 Griffin Road North						
Madison, WI 53717	Windsor, CT 06095						
email: thalena@trcsolutions.com	PO: 46408						
fax:608-662-5451	email: apinvoiceapproval@trcsolutions.com						

Dear Mr. Halena:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

Project:	DPC - Alma Off Site Cell 3A
TRI Job Reference Number:	E2365-92-06
Material(s) Tested:	1, BentoLiner NSL GCL(s)
Test(s) Requested:	Index Flux (ASTM D 5887)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

John M. Allen, P.E. Division Director

www.GeosyntheticTesting.com

GCL TEST RESULTS

TRI Client: TRC Environmental Corporation Project: DPC - Alma Off Site Cell 3A

Material: Bentoliner NSL TRI Log #: E2365-92-06

PARAMETER	TEST REF	PLICATI	E NUMB	ER							MEAN	STD. DEV.
Index Flux (ASTM D 5887) Sample Identification: 5022157	1 37	2	3	4	5	6	7	8	9	10		
Index Flux (m ³ /m ² /sec)	2.1E-09										2.1E-09	
Hydraulic Conductivity (cm/sec)	1.4E-09										1.4E-09	
MD Machine Direction TD	Fransverse Dire	ection		NA	Not Availa	ble						

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

GCL Conformance Testing

July 29, 2015

Mail To:

Bill To:

<= Same

Terrence Halena TRC Environmental Corporation 708 Heartland Trail, Suite 3000 Madison, WI 53717

email: thalena@trcsolutions.com cc email: twmartin@trcsolutions.com

Dear Mr. Halena:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

Project:	DPC Alma Off-Site Ash Disposal Facility Cell 3B
TRI Job Reference Number:	E2392-71-05
Material(s) Tested:	Four GSE BentoLiner NSL GCL(s)
Test(s) Requested:	Mass/Unit Area (ASTM D5993) Index Flux (ASTM D5887)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

John M. Allen, P.E. Division Director Geosynthetic Services Division www.GeosyntheticTesting.com

page 1 of 4 The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. THI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and methodia client confidentiality. THI limits reproduction of this report, except in full, without prior approval of TRI. TESTING, RESEARCH, CONSULTING AND FIELD SERVICES AUSTIN, TX - USA ANAHEIM, CA - USA ANDERSON, SC - USA GOLD COAST - AUSTRALIA SUZHOU - CHINA

GCL TEST RESULTS TRI Client: TRC Environmental Corporation Project: DPC Alma Off-Site Ash Disposal Facility Cell 3B

Material: GSE BentoLiner NSL GCL Sample Identification: 502256840 🗸 TRI Log #: E2392-71-05

PARAMETER	TEST REPLIC	ATE MI 16								MEAN	STD.
	1 2	3	4 4	5	6	7	8	9	10		DEV.
Bentonite - Mass/Unit Area (AST		•									
Bentonite mass/unit area (Ibs/ft ²)										0.84	0.06
Moisture Content (%)	9.8 9.9	9.8	9.7	9.7						9.8	0.1
Index Flux (ASTM D5887)											
Index Flux (m ³ /m ² /sec)	3.3E-0	9 /								3.3E-09]
Hydraulic Conductivity (cm/sec)	2.8E-0	9 🗸								2.8E-09	
MD Machine Direction TD Tra	nsverse Directior	1	NA	Not Availa	ble		•				

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not epply to samples other than those tested. TRI neithar accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC. 9063 BEE CAVES RD. - AUSTIN, TX 78733 - USA | PH: 800.880.TEST OR 512.263.2101

page 2 of 4

GCL TEST RESULTS TRI Client: TRC Environmental Corporation Project: DPC Alma Off-Site Ash Disposal Facility Cell 3B

Material: GSE BentoLiner NSL GCL Sample Identification: 502256860 TRI Log #: E2392-71-05

PARAMETER	TEST REPLI	CATE NUN	MBER							MEAN	STD. DEV.
Dentenita Macallinit Area (ACT	1 2	3	4	5	6	7	8	9	10		
Bentonite - Mass/Unit Area (AST	-	•	•								
Bentonite mass/unit area (lbs/ft ²)	0.83 0.7				-					0.81	0.06
Moisture Content (%)	10.3 10.	5 10.6	10.8							10.6	0.2
Index Flux (ASTM D5887)										·····	
IIIUEX FIUX (AS I M DOGOT)		x									
Index Flux (m³/m²/sec)	3.6E	-09								3.6E-09]
Hydraulic Conductivity (cm/sec)	2.8E	-09								2.8E-09	1
											J
MD Machine Direction TD Tra	nsverse Directi	on	NA N	vot Availa	ble						

page 3 of 4 The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to aamples other than those tested. TRI neither accepts responsibility for nor makes claim as to the finel use and purpose of the material. TRI observes and maintains client conditionitiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

> TRI ENVIRONMENTAL, INC. 9063 BEE CAVES RD. - AUSTIN, TX 78733 - USA | PH: 800.880.TEST or 512.263.2101

July 29, 2015 September 23, 2015

Reissued to add roll number

Mail To:

Terrence D. Halena

Bill To: <= Same

TRC Environmental Corporation 708 Heartland Trail, Suite 3000 Madison, WI 53717

email: thalena@trcsolutions.com cc email: twmartin@trcsolutions.com cc email: ssellner@trcsolutions.com

Dear Mr. Halena:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report of the laboratory testing for the sample listed below.

Project:	DPC Cell 3 B Construction
TRI Job Reference Number:	E2392-74-03
Material Tested:	One GCL
Test Requested:	Index Flux (ASTM D5887)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Richard S. Lacey, P.E Senior Engineer

Geosynthetic Services Division

www.GeosyntheticTesting.com

9063 BEE CAVES RD. - AUSTIN, TX 78733 - USA | PH: 800.880.TEST OR 512.263.2101

page 1 of 2

GCL TEST RESULTS TRI Client: TRC Environmental Corporation Project: DPC Cell 3 B Construction

Material: GCL Sample Identification: 502252239 TRI Log #: E2392-74-03

PARAMETER	TEST	REPLICAT		IBER							MEAN	STD. DEV.
Index Flux (ASTM D5887)	1	2	3	4	5	6	7	8	9	10		
Index Flux (m ³ /m ² /sec)		2.9E-09									2.9E-09]
Hydraulic Conductivity (cm/sec)		2.3E-09									2.3E-09]

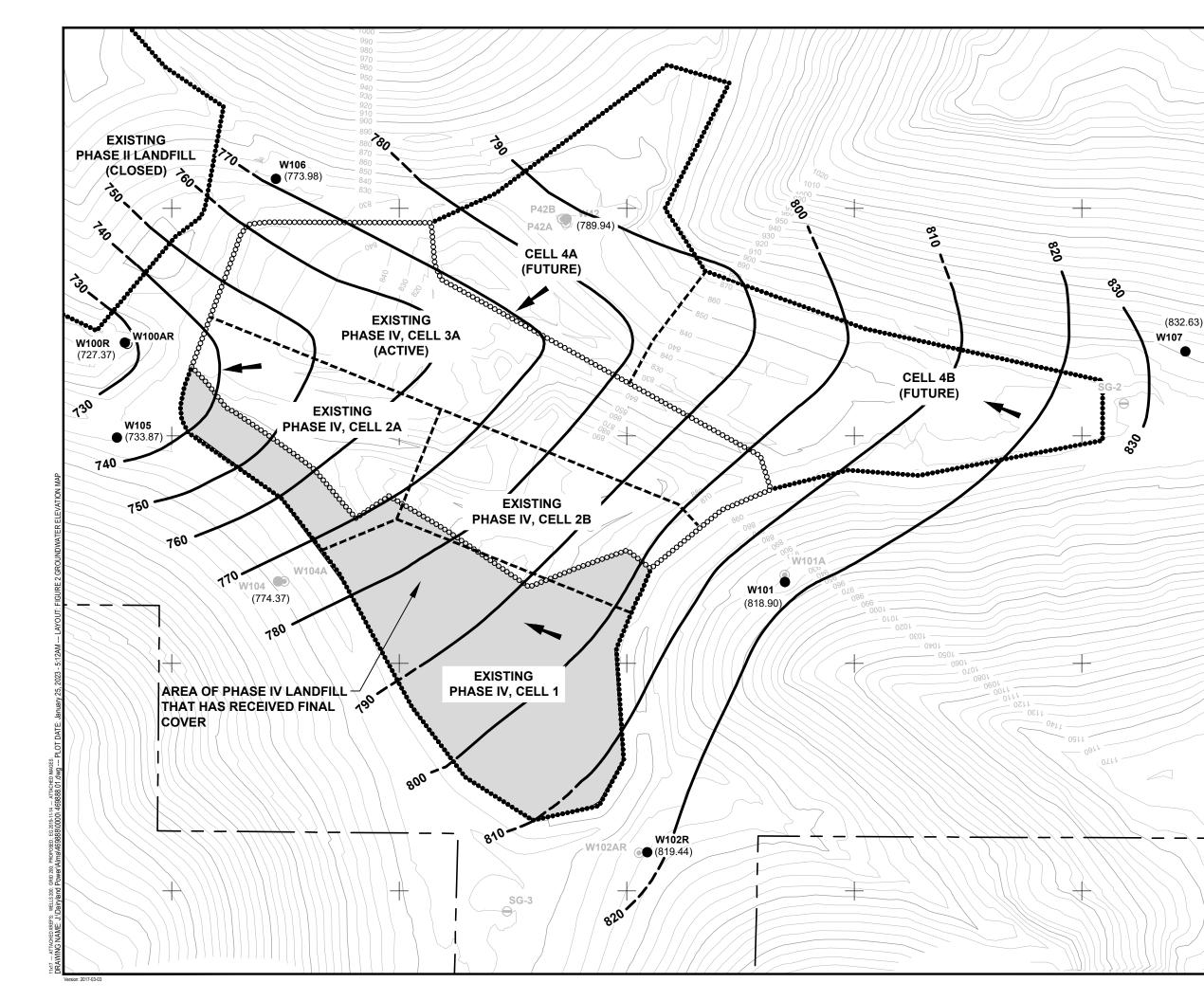
MD Machine Direction TD Transverse Direction

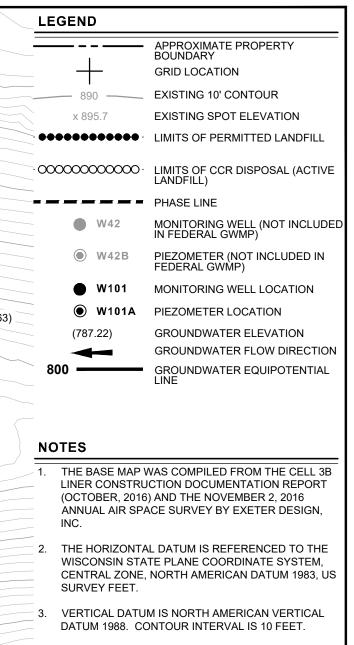
NA Not Available

page 2 of 2 The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

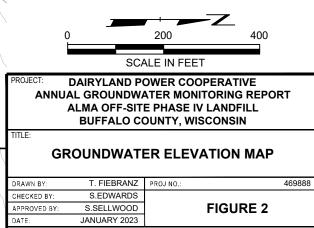
TRI ENVIRONMENTAL, INC.

Quality Assurance Laboratory Test Results


Project:	CAAWS/Fargo Landfill Cell 15 Ph 1	
Sales Order:	76072	
Product:	BLI-089-06N-03S-D-00 BentoLiner NS	
Required Testing:	ASTM D5887 - Standard Test Method for Measurement of Inde Saturated Geosynthetic Clay Liner Specimens Using a Flexible	Ū
Frequency:	1/Week	
Effective Stress:	5 psi	
	Index	Hydraulic


			Flux	Conductivity
Daily Lot	Roll Number	Production Date	(m³/m²/sec)	(cm/sec)
25051102	502252163	5/11/2015	3.50E-09	1.23E-09

Approved By:Michael EllendorfDate Approved:August 4, 2015


Attachment 8

Water Table Map

4. GROUNDWATER ELEVATIONS BASED ON MEASUREMENTS TAKEN SEPTEMBER 20-21, 2022. GROUNDWATER ELEVATIONS ARE BASED ON MEAN SEA LEVEL DATUM.

999 Fourier Drive Suite 101 Madison, WI 53717 Phone: 608.826.3600 469888.01.dw Attachment 9

Baseline Groundwater Monitoring Data

Alma Off-site Groundwater Data CCR Wells

	1	1	1	1	1			ndwater Data CCR W		1	1	1	1		
	Sample				Elevation	рН	Temperature	Conductance	Alkalinity	Total Hardness	Total Copper	Total Manganese	Total Silver	Total Zinc	Nitrate + Nitrite
Site	Date	Location	Comment	Lab ID	ft	SU	degrees C	micromhos/cm	mg/L	mg/L as CaCO3	ug/L	ug/L	ug/L	ug/L	mg/L as N
Alma Offsite	26-Oct-22	W100AR		40253880001	717.13	7.07	10.4	600	313	346	<1.9	<1.2	<0.13	<10.3	1.9
Alma Offsite	28-Nov-22	W100AR		40255290001	717.36	7.18	9.4	602 595	312	322	<1.9	<1.2	< 0.13	<10.3	2.0
Alma Offsite Alma Offsite	28-Mar-23 03-May-23	W100AR W100AR		40260038001 40261759001	716.93 717.67	7.14	9.1 10.1	595	311 310	347 303	<1.9 <1.9	<1.2 <1.2	<0.13 <0.13	<10.3 <10.3	1.9 1.9
Alma Offsite	06-Jun-23	W100AR W100AR		40263312001	717.31	7.17	11.5	582	310	344	<1.9	<1.2	<0.13	<10.3	2.2
Alma Offsite	12-Jul-23	W100AR W100AR		40265136001	715.97	7.19	10.0	585	307	367	<1.9	<1.2	<0.13	<10.3	2.2
Alma Offsite	15-Aug-23	W100AR		40266836001	718.34	7.23	11.5	594	304	346	<1.9	<1.2	<0.13	<10.3	2.0
Alma Offsite	19-Sep-23	W100AR		40268395001	718.04	7.30	10.8	587	305	312	<1.9	<1.2	<0.13	<10.3	2.2
Alma Offsite	26-Oct-22	W100R		40253880002	727.27	7.27	10.2	578	296	341	<1.9	<1.2	<0.13	<10.3	2.1
Alma Offsite	28-Nov-22	W100R		40255290002	727.24	7.17	9.6	578	299	307	<1.9	<1.2	<0.13	<10.3	2.1
Alma Offsite	28-Mar-23	W100R		40260038002	727.29	7.21	10.4	564	299	337	<1.9	<1.2	< 0.13	<10.3	2.1
Alma Offsite	03-May-23	W100R		40261759002	727.47	7.16	10.1	574	305	300	<1.9	<1.2	< 0.13	<10.3	2.3
Alma Offsite	06-Jun-23	W100R		40263312002	727.38	7.25	11.0	573	301	335	<1.9	<1.2	< 0.13	<10.3	2.3
Alma Offsite	12-Jul-23	W100R		40265136002	727.24	7.19	10.4	572	300	324	<1.9	<1.2	<0.13	<10.3	2.2
Alma Offsite	15-Aug-23	W100R		40266836002	727.14	7.28	11.2	583	296	333	<1.9	<1.2	<0.13	<10.3	2.2
Alma Offsite	19-Sep-23	W100R		40268395002	727.10	7.08	11.0	572	299	301	<1.9	<1.2	<0.13	<10.3	2.3
Alma Offsite	26-Oct-22	W101		40253880004	818.68	7.29	9.7	578	285	317	<1.9	<1.2	<0.13	<10.3	2.8
Alma Offsite	28-Nov-22	W101		40255290004	818.61	7.40	8.7	582	291	318	<1.9	1.6	<0.13	<10.3	2.9
Alma Offsite	27-Mar-23	W101		40260038004	817.97	7.43	10.3	582	293	353	<1.9	1.3	<0.13	<10.3	3.0
Alma Offsite	03-May-23	W101		40261759004	818.83	7.49	8.7	561	288	285	<1.9	<1.2	<0.13	<10.3	2.8
Alma Offsite	06-Jun-23	W101		40263312004	818.76	7.50	10.9	570	291	343	5.6	<1.2	<0.13	<10.3	3.3
Alma Offsite	12-Jul-23	W101		40265136004	818.23	7.33	10.5	575	293	346	<1.9	<1.2	<0.13	<10.3	3.0
Alma Offsite	15-Aug-23	W101		40266836004	817.83	7.39	11.3	598	294	334	<1.9	<1.2	<0.13	<10.3	3.3
Alma Offsite	18-Sep-23	W101		40268395004	817.55	7.43	10.1	590	294	321	<1.9	1.2	<0.13	<10.3	3.4
Alma Offsite	26-Oct-22	W102R		40253880003	819.20	7.25	9.1	535	278	308	<1.9	<1.2	<0.13	<10.3	1.7
Alma Offsite	28-Nov-22	W102R		40255290003	819.15	7.38	8.7	537	277	307	<1.9	<1.2	<0.13	<10.3	1.7
Alma Offsite	27-Mar-23	W102R		40260038003	818.57	7.38	8.8	528	275	315	<1.9	<1.2	<0.13	<10.3	1.6
Alma Offsite	03-May-23	W102R		40261759003	819.40	7.44	9.0	517	276	264	<1.9	<1.2	< 0.13	<10.3	1.6
Alma Offsite	06-Jun-23	W102R		40263312003	819.29	7.40	10.0	522 525	279	310	<1.9	<1.2	< 0.13	<10.3	1.9
Alma Offsite	12-Jul-23	W102R W102R		40265136003	818.80 818.42	7.16	9.8 10.6	525	280 274	301 304	<1.9 <1.9	<1.2 <1.2	<0.13 <0.13	<10.3 <10.3	1.8 1.8
Alma Offsite Alma Offsite	15-Aug-23	W102R W102R		40266836003 40268395003	818.42	7.20		539	274 277		<1.9		<0.13	<10.3	1.8
Alma Offsite	18-Sep-23 26-Oct-22	W102R W105		40253880005	733.82	7.40	9.9 8.8	520	284	291 322	<1.9	3.6 <1.2	<0.13	<10.3	2.0
Alma Offsite	28-Nov-22	W105		40255290005	733.81	7.37	8.1	553	286	299	<1.9	<1.2	<0.13	<10.3	2.0
Alma Offsite	28-Mar-23	W105		40260038005	733.65	7.33	7.4	548	283	321	<1.9	<1.2	<0.13	<10.3	2.0
Alma Offsite	03-May-23	W105		40261759005	733.79	7.37	8.8	535	285	281	<1.9	<1.2	<0.13	<10.3	2.1
Alma Offsite	06-Jun-23	W105		40263312005	733.82	7.37	11.7	544	286	310	<1.9	<1.2	<0.13	<10.3	2.3
Alma Offsite	12-Jul-23	W105		40265136005	733.74	7.18	10.6	543	286	324	3.5	<1.2	<0.13	<10.3	2.2
Alma Offsite	15-Aug-23	W105		40266836005	733.69	7.38	9.7	560	282	333	<1.9	<1.2	< 0.13	<10.3	2.2
Alma Offsite	18-Sep-23	W105		40268395005	733.63	7.31	12.4	550	280	303	<1.9	<1.2	<0.13	<10.3	2.3
Alma Offsite	26-Oct-22	W106		40253880006	773.92	7.26	9.2	601	293	354	<1.9	<1.2	< 0.13	<10.3	3.6
Alma Offsite	28-Nov-22	W106		40255290006	773.95	7.40	8.3	602	293	328	<1.9	<1.2	<0.13	<10.3	3.7
Alma Offsite	28-Mar-23	W106	1	40260038006	773.77	7.41	7.7	598	290	350	<1.9	<1.2	<0.13	<10.3	3.6
Alma Offsite	03-May-23	W106		40261759006	773.89	7.44	10.1	583	294	306	<1.9	<1.2	<0.13	<10.3	3.6
Alma Offsite	06-Jun-23	W106		40263312006	773.91	7.44	12.6	592	293	366	<1.9	1.4	<0.13	<10.3	4.6
Alma Offsite	12-Jul-23	W106		40265136006	773.75	7.36	10.9	593	293	348	4.1	1.3	<0.13	<10.3	3.8
Alma Offsite	15-Aug-23	W106		40266836006	773.79	7.46	13.6	610	292	339	<1.9	<1.2	<0.13	<10.3	4.0
Alma Offsite	18-Sep-23	W106		40268395006	773.74	7.45	13.4	600	292	311	<1.9	<1.2	<0.13	12.50	4.1
Alma Offsite	26-Oct-22	W107		40253880007	832.59	7.16	9.5	669	307	373	<1.9	<1.2	<0.13	<10.3	6.0
Alma Offsite	28-Nov-22	W107		40255290007	832.58	7.32	8.9	673	312	358	<1.9	<1.2	<0.13	<10.3	6.0
Alma Offsite	27-Mar-23	W107		40260038007	832.39	7.38	7.9	661	305	394	<1.9	2.5	<0.13	<10.3	5.7
Alma Offsite	03-May-23	W107		40261759007	832.47	7.40	10.6	643	307	345	<1.9	<1.2	<0.13	<10.3	5.7
Alma Offsite	06-Jun-23	W107		40263312007	832.48	7.32	10.7	651	311	383	<1.9	<1.2	<0.13	<10.3	6.4
Alma Offsite	12-Jul-23	W107		40265136007	832.44	7.24	9.7	655	310	385	<1.9	<1.2	<0.13	<10.3	6.0
Alma Offsite	15-Aug-23	W107		40266836007	832.38	7.22	10.7	678	308	384	<1.9	2.1	<0.13	<10.3	6.2
Alma Offsite	18-Sep-23	W107		40268395007	832.53	7.11	10.0	661	307	362	<1.9	<1.2	<0.13	<10.3	6.3
Parameter #					04189	00400	00010	00094	00410	00900	01042	01055	01077	01092	00630
LOD									5.0	0.32	1.9	1.2	0.13	10.3	0.059
LOQ									10.0	1.7	6.4	4.0	0.50	34.4	0.25
Method #									SM 2320 B	6020B	6020B	6020B	6020B	6020B	353.2
Lab Cert. No									405132750	405132750	405132750	405132750	405132750	405132750	405132750

Attachment 10

Revised Environmental Sampling and Analysis Plan

Environmental Sampling and Analysis Plan

Alma Offsite Disposal Facility Phase IV Landfill Alma, Wisconsin

January 2023 Revised January 2024

Prepared For:

Dairyland Power Cooperative 3200 East Avenue South La Crosse, Wisconsin 54601

Prepared By:

TRC 999 Fourier Drive, Suite 101 Madison, Wisconsin 53717

TABLE OF CONTENTS

INTRO	DUCTI	ON		
1.0	LAND	FILL M	ONITORING SYSTEMS	1
	1.1	Detecti	on Groundwater Monitoring	. 1
	1.2	Leacha	te Monitoring	. 1
	1.3	Surface	Water Monitoring	. 3
	1.4	Settlem	ent Monitoring	. 3
2.0	BASE	LINE G	ROUNDWATER SAMPLING	4
3.0	SAMP	LE COI	LECTION	5
	3.1	Field P	ocedures for Groundwater Sampling	. 5
		3.1.1	Groundwater Monitoring Well Maintenance	. 5
		3.1.2	Static Water Level Measurement	. 5
		3.1.3	Purging of Wells	. 6
		3.1.4	Sampling and Data Collection at Each Well	. 6
		3.1.5	Field-filtering	. 7
		3.1.6	Equipment Cleaning Procedure Between Sampling Events	. 7
		3.1.7	Equipment Cleaning Procedure Between Monitoring Wells	. 7
		3.1.8	Sample Preservation Methods	. 7
		3.1.9	Chain-of-Custody Guidelines	. 7
		3.1.10	Sample Shipment Methods	. 9
			3.1.10.1 Time Period	. 9
			3.1.10.2 Handling	. 9
			3.1.10.3 Sample Bottle Labels	
			3.1.10.4 Transport Container Labels	. 9
	3.2	Surface	Water Sampling Field Procedures	. 9
		3.2.1	Static Water Level Measurement	. 9
		3.2.2	Sampling and Data Collection	10
		3.2.3	Sample Preservation	
		3.2.4	Chain-of-Custody Guidelines	10
		3.2.5		10
	3.3		te Monitoring1	
	3.4		itoring1	
4.0			SURANCE/QUALITY CONTROL PROCEDURES (QA/QC) 1	
	4.1		nks1	
	4.2	• •	ent (Rinsate) Blank	
	4.3		uplicate	
	4.4	Matrix \$	Spike / Matrix Spike Duplicate1	12

5.0	RECO	RD KEEPING	13
	5.1	Field Logs	13
	5.2	Chain-of-Custody Procedures	13
	5.3	Labeling	13
6.0	SAMP	LING, ANALYSIS, AND LABORATORY REQUIREMENTS	14
7.0	REPO	RTING	15
8.0	GROU	NDWATER STANDARDS	16
	8.1	Calculation of Groundwater Standards	16
	8.2	Evaluation of Groundwater Standard Exceedances	16
	8.3	Exemptions to Groundwater Standards	16
	8.4	Notification and Response to Attainment or Exceedance of Standards	16
9.0	REFEF	RENCES	17

TABLES

Table 1:	Environmental Monitoring Program	2
	Sample Preservation and Analysis Methods	

FIGURES

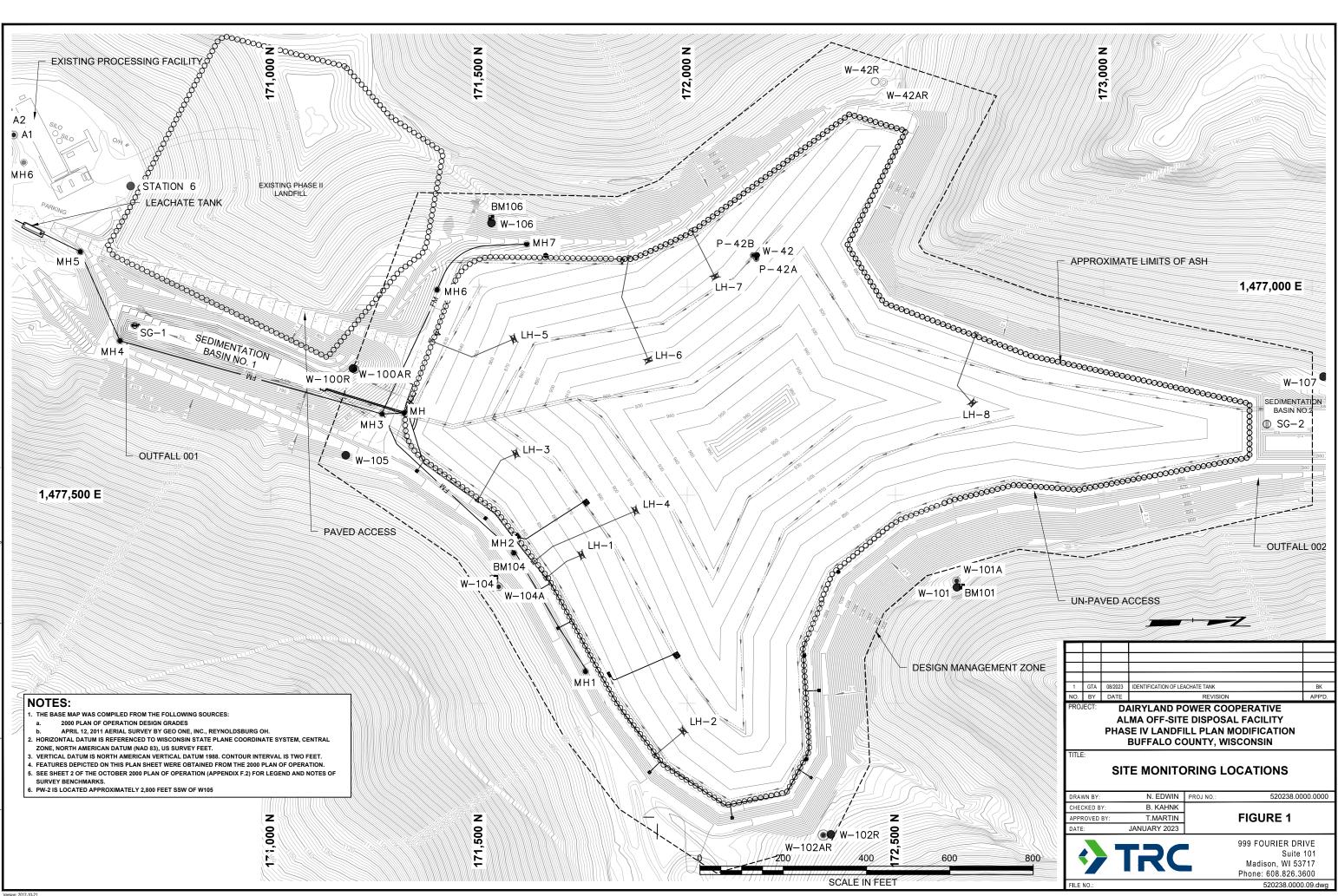
Figure 1:	Site Monitoring Locations	iv
-----------	---------------------------	----

ATTACHMENTS

Attachment 1:	Well Information Form
Attachment 2:	Example Groundwater Sampling Form
Attachment 3:	Example Chain of Custody Record

Introduction

This Environmental Sampling and Analysis Plan (ESAP) describes the methods for monitoring site conditions and for sampling the monitoring devices at the Dairyland Power Cooperative (DPC) Phase IV disposal area. This ESAP has been prepared in accordance with the requirements of ss. NR 514.06(7)(a), NR 507.16, and NR 140.16. Samples will be collected and analyzed in accordance with this ESAP and with NR 507.17. A certified laboratory (NR 149) will perform chemical analyses following the approved methods listed in this ESAP. Figure 1 presents an 11 inch by 17-inch map showing monitoring locations. Attachment 1 includes a Well Information Form.


Three basic types of data will be collected during implementation of the ESAP as follows:

- Chemical data derived from samples collected from the various media
- Fluid levels
- Fluid extraction volumes

The environmental media to be monitored are as follows:

- Groundwater
- Surface water/Sedimentation basin outfalls
- Leachate

DPC sampling personnel will keep and use this ESAP as an independent document (separate from the Plan of Operation or its subsequent modifications). The sampling plan will be followed unless the Wisconsin Department of Natural Resources (WDNR) is notified of, and concurs with, modifications. Written documentation of the approved changes will be submitted to the WDNR.

1.0 Landfill Monitoring Systems

The design of the DPC Phase IV disposal facility incorporates several different monitoring systems in accordance with ch. NR 507. The landfill monitoring systems are discussed in the following subsections. Specific procedures for purging, sampling, and quality assurance/quality control (QA/QC) are provided in other sections of this ESAP. The monitoring program is summarized in Table 1.

1.1 Detection Groundwater Monitoring

Detection groundwater monitoring will be conducted at the DPC Phase IV ash disposal facility in accordance with s. NR 507.19. Figure 1 shows the monitoring wells included in the detection groundwater monitoring program. The wells designated with no "A" or "B" suffix are water table wells. The monitoring wells with the "A" or "B" suffix are piezometers. Monitoring wells with an "R" suffix are replacement wells.

Groundwater beneath the site flows to the south. Therefore, monitoring wells completed to the northwest, north, and northeast of the Phase IV facility (W-42, P-42A, P-42B, W-107, W-101, W-101A, W-102R, and W-102AR) will function as upgradient monitoring points. Wells W-104, W-104A, W-105, W-100R, W-100AR, and W-106 are downgradient monitoring points. Seven of these wells (W-100AR, W-100R, W-101, W-102R, W-105, W-106, and W-107) are designated for the coal combustion residual (CCR) monitoring program under NR 507.15(3). The detection monitoring program includes wells completed in both the unconsolidated sand and silty sand and within the sandstone bedrock. A detailed description of geologic units can be found in the Feasibility Report (RMT, 1997).

Non-CCR wells will be sampled on a semiannual basis (in March and September) for the parameters listed in NR 507, Appendix I, Table 2 for solid waste landfills accepting fly or bottom ash. The CCR wells will be sampled on a semiannual basis (in March and September) for the parameters listed in ch. NR 507, Appendix I, Table 1A for CCR wells at CCR Landfills. Wells and parameters for detection monitoring are summarized in Table 1. Results will be reported in accordance with ch. NR 507 including submittal of sampling results and water elevation data within 60 days of the end of the sampling period per s. NR 507.26, and preparation of an annual groundwater monitoring and corrective action report for CCR wells in accordance with s. NR 507.15(3)(m).

1.2 Leachate Monitoring

Leachate collected at the leachate tank will be monitored on a semiannual (March/September) basis for the parameters listed in Table 1, which is consistent with ch. NR 507, Appendix I, Table 4 for landfills accepting fly ash or bottom ash. The leachate tank will be sampled annually for semivolatile organic compounds (ch. NR 507, Appendix IV).

DPC will maintain records of leachate pumped. Leachate analytical results, volumes, and elevations will be reported to the WDNR on a semiannual basis. Results will be reported in accordance with ch. NR 507.

Table 1: Environmental Monitoring Program Dairyland Power Cooperative Phase IV Ash Disposal Area

Sample Points	Frequency	Parameters
Groundwater		·
Non-CCR Wells: W-42, P-42A, P-42B, W-101A, W-102AR, W-104, W-104A, PW-2	Semiannually (March, September)	NR 507, Appendix I, Table 2: Groundwater elevation, field temperature, field conductivity (at 25°C), field pH, alkalinity, dissolved boron, hardness, sulfate; plus dissolved selenium
CCR Wells: W-100R, W-100AR, W-101, W-102R, W-105, W-106, and W-107	Semiannually (March, September)	NR 507, Appendix I, Table 1A: Groundwater elevation, field temperature, field conductivity (at 25°C), field pH, alkalinity, total boron, calcium, chloride, fluoride, hardness, total dissolved solids (TDS), sulfate; plus dissolved selenium
Leachate		
Leachate tank	Semiannually (March, September)	BOD ₅ , field conductivity at 25°C, field pH, alkalinity, boron, cadmium, chloride, hardness, iron, lead, manganese, mercury, selenium, sulfate, total suspended solids, antimony, beryllium, cobalt, fluoride, lithium, molybdenum, Ra226 and Ra228 combined, thallium
	Annually	Semivolatile organic compounds (NR 507, Appendix IV)
Leachate collection tank	Monthly	Monthly volume records shall be maintained (reported semiannually)
Leachate head wells: LH-1, LH-2, LH-3, LH-4, LH-5, LH-6, LH-7, LH-8	Monthly	Leachate level elevation during operation (reported semiannually)
Surface Water		
Staff gauges: SG-1, SG-2	Semiannually (March, September)	Surface water elevation
Outfall 001, Outfall 002	Semiannually (March, September), if water is present	Visual turbidity, field temperature, field conductivity at 25°C, alkalinity, boron, field pH, hardness, selenium, sulfate

Prepared by: COB, 7/00 Checked by: CCS, 9/19/00 Updated by: S. Sellwood, 12/21/2022

Final January 2023 Revised January 2024

1.3 Surface Water Monitoring

Two sedimentation basins are proposed to be constructed at the Phase IV facility, with Sedimentation Basin 1 currently constructed as of January 2023. Surface water in the sedimentation basins will be sampled in accordance with the requirements set forth in s. NR 507.23 and s. 507.26(3) and analyzed for the parameters listed in Table 1 when water is present at the outfall during a scheduled semiannual sampling event. Surface water monitoring procedures are discussed in Subsection 3.2. Results will be reported in accordance with ch. NR 507.

1.4 Settlement Monitoring

Because fly ash and bottom ash, which are disposed after adding moisture, do not experience significant settlement following placement, no settlement monitoring is planned for the Phase IV disposal area. Annual airspace surveys are conducted.

2.0 Baseline Groundwater Sampling

Baseline groundwater quality was established for monitoring wells at the Phase IV facility and presented in the Plan of Operation (RMT, 2000). Preventive action limits (PALs) and alternative concentration limits (ACLs) were subsequently proposed for replacement monitoring wells in May 2006 (RMT, 2006). PALs for indicator parameters and ACLs were included in the Conditional Plan of Operation Approval (WDNR, 2001) and a WDNR approval letter dated September 22, 2006 (WDNR, 2006).

Additional baseline groundwater monitoring for the seven CCR monitoring wells was conducted between September 2015 and June 2017. Baseline monitoring in 2015 through 2017 included parameters listed in ch. NR 507 Appendix I, Tables 1A and 3, except for alkalinity, hardness, nitrate+nitrite-N, copper, manganese, silver, zinc, field conductivity, and field temperature. Baseline groundwater monitoring for alkalinity, hardness, nitrate+nitrite-N, copper, manganese, silver, zinc, field conductivity, and field temperature in the CCR wells was completed from October 2022 to September 2023. ACLs and PALs calculated using baseline groundwater data have been submitted to the WDNR for review. Metals concentrations in CCR wells are measured as total recoverable metals (i.e., samples for metals are not field-filtered).

Baseline groundwater quality will be established at new or replacement wells in accordance with ss. NR 507.18(4) and (5), unless the requirement for baseline groundwater quality is waived by the WDNR.

3.0 Sample Collection

This section presents specific written procedures for collecting groundwater, surface water, and leachate samples. It includes details on taking field measurements, purging monitoring wells, and obtaining samples in accordance with ss. NR 507.16(1)(c)(d) and (e). Samples will be collected during the months of March and September. The wells will generally be sampled from upgradient to downgradient. If wells are determined to be impacted by regulated or other activities, impacted wells shall be sampled after unimpacted wells have been sampled. If more than one well is determined to have detections of a given substance, the order of sampling of impacted wells will be from the well with the lowest concentration of contaminant to the well with the highest concentration of contaminant.

3.1 Field Procedures for Groundwater Sampling

Figure 1 shows groundwater sample locations, sampling frequencies, and parameters.

3.1.1 Groundwater Monitoring Well Maintenance

In order to assess problems and possible damage to the monitoring wells, field technicians will visually inspect wells at the time of sampling. Wells will be inspected for the following items:

- Protective casing condition
- Protective casing cap condition
- Casing lock condition
- Well cap condition
- Concrete seal condition
- Visual damage to well

DPC field technicians will provide a written inspection report if repair action is needed.

3.1.2 Static Water Level Measurement

Static water levels will be measured in each well prior to purging each time groundwater is sampled. All groundwater level measurements will be made using a reference point established on the well casing. The reference point will be the highest point of the PVC well casing. A battery-operated water level indicator will be the primary device for water level measurements. The indicator is a self-contained transistorized instrument equipped with a cable and sensor that activates a buzzer and a light when it contacts the water. The depth to water is read from permanent 0.01-foot increment markings on the cable.

In case of instrument failure, depth to groundwater will be measured by a plopper tape that is a bell- or cup-shaped weight attached to a nylon-coated stainless-steel measuring tape. When lowered into the well, a "plopping" or "popping" sound is made when the weight strikes the surface of the water. An accurate reading can be determined by lifting and lowering the weight in short strokes, and reading the tape when the weight just strikes the water. Depth to water will be recorded to the nearest 0.01 foot.

In order to prevent cross-contamination between wells, the water level measuring device will be decontaminated between each well by rinsing first with a soapy water solution and then with distilled water.

In accordance with s. NR 507.15(3)(h), groundwater elevations in wells that monitor the same CCR landfill will be measured within a timeframe short enough to avoid temporal variations in groundwater flow that could preclude accurate determination of groundwater flow rate and direction.

3.1.3 Purging of Wells

The monitoring wells will be purged by removing stagnant water so that the samples collected are fresh formation water. Purging will be accomplished using a QED[®] MicroPurge pump and controller or similar submersible pump and a YSI[®] Pro DSS or equivalent multiparameter meter equipped with a flow-through cell. Wells will be purged at a rate of less than a half-liter per minute. Purging will continue until stable conditions are reached, as shown by three consecutive readings taken 2 minutes apart, for the following parameters:

- Dissolved oxygen (± 0.2 mg/L)
- pH (± 0.1 pH unit)
- Conductivity (± 10 percent)
- Temperature ($\pm 0.1^{\circ}$ C)

Purging and sampling data will be recorded on a groundwater sampling form (Attachment 2). In accordance with s. NR 507.26, DPC will inform the department of any CCR well that purges dry, is damaged or obstructed, or in any way is rendered such that a sample is unable to be collected from the well during a scheduled sampling event. In such case, DPC will propose actions to correct the problem prior to the next sampling event.

3.1.4 Sampling and Data Collection at Each Well

Samples will be collected immediately after purging. If the well is purged dry, then the sample will be collected when the well has sufficiently recovered (approximately 4 hours). The flow rate during sampling will be the same or less than the flow rate used while purging. Purging and sampling flow rates should be one half-liter per minute or less. The procedure for sampling the monitoring wells is as follows:

- Prepare bottles by labeling with the well number, the date, the name of the sampler, and the time of day at which the sample is collected.
- Collect samples using the QED[®] MicroPurge pump and controller or equivalent.
- Collect samples for field measurements.
- Fill unfiltered bottles first.
- After filling unfiltered bottles, collect samples to be filtered, if any, using the filtering device.

A log of meter calibrations and checks will be maintained during each sampling event. The volume of sample water required will be based on the sample bottles provided by the lab (i.e., fill the bottles provided), and is anticipated to be approximately one-half liter per well.

Dairyland Power Cooperative Environmental Sampling and Analysis Plan Alma Offsite Disposal Facility, Phase IV Landfill – Town of Belvidere, WI Final January 2023 Revised January 2024

3.1.5 Field-filtering

Samples from the CCR wells collected to meet the requirements of the CCR program will not be field-filtered. If field-filtering is required for samples from non-CCR wells or non-CCR parameters at CCR wells, it will be performed using a 0.45 micron in-line filter attached to the sampling pump discharge.

3.1.6 Equipment Cleaning Procedure Between Sampling Events

All equipment used for sampling that is not dedicated or discarded after use (meters, flow cell, and water level measuring devices, etc.) is decontaminated after the sampling event using the following methods:

- Prepare a soapy water bath using laboratory-grade detergent (Alconox).
- Unwind water level measuring devices, soak in soapy water, and wipe clean with a cloth.
- Rinse all equipment with deionized water (ASTM Type II).
- Dry equipment.
- Seal dry equipment in polypropylene plastic to prevent contamination.

3.1.7 Equipment Cleaning Procedure Between Monitoring Wells

The procedure to be followed for cleaning water level indicators and nylon-clad steel tapes in the field between wells is as follows:

- Rinse equipment with soapy water.
- Rinse equipment with deionized water (ASTM Type II).

If non-dedicated purging equipment is used during a sampling event, the non-dedicated purging equipment will be cleaned between wells as described above.

3.1.8 Sample Preservation Methods

The preservation methods for the parameters to be analyzed are listed in Table 2 below. Each of the bottles will contain a premeasured volume of preservative, as needed.

Samples will be analyzed at a laboratory certified in Wisconsin in accordance with ch. NR 149.

3.1.9 Chain-of-Custody Guidelines

A Chain-of-Custody Record provides a written record of sample bottle possession and transference. The guidelines for the Chain-of-Custody Record to be used by sampling and laboratory personnel to ensure proper tracking are outlined below. An example of a typical Chain-of-Custody Record is included as Attachment 3.

Parameter	Bottle Material	Preservative	Holding Time	Laboratory Methods
Groundwater, Surface Wat	er, and Leachate			
Alkalinity	Polyethylene	None	14 days	SM 2320B
Chloride, fluoride, and sulfate	Polyethylene	None	28 days	EPA 300.0
Boron and calcium	Polyethylene	Nitric acid	6 months	6020B/6010D
Hardness	Polyethylene	Nitric acid	6 months	6020B/6010D/ SM 2340B
Selenium	Polyethylene	Nitric acid	6 months	6020B
Total dissolved solids (TDS)	Polyethylene	None	7 days	SM 2540C
Leachate Only				
BOD5	Polyethylene	None	48 hours	SM 5210B
Total suspended solids (TSS)	Polyethylene	None	7 days	SM 2540D
Cadmium, antimony, and thallium	Polyethylene	Nitric acid	6 months	6020B
Iron, lead, manganese, beryllium, cobalt, lithium, and molybdenum	Polyethylene	Nitric acid	6 months	6020B/6010D
Mercury	Polyethylene	Nitric acid	28 days	7470/1631E
Radium226 + Radium228	Polyethylene	None/Nitric acid	5 days/ 6 months	903.1, 904.0
Semivolatile organic compounds	Glass	None	7 days	EPA 8270E

Table 2: Sample Preservation and Analysis Methods

3.1.10 Sample Shipment Methods

3.1.10.1 Time Period

At the completion of the sampling event, DPC personnel will ship samples to the laboratory via commercial shipping service or courier. Sample shipping will be coordinated to ensure that holding times (Table 2) of the analyses are met.

3.1.10.2 Handling

- 1. Samples will be iced to 4°C and contained in coolers for transport to the laboratory as soon as possible.
- 2. Transport will be by commercial shipping service or courier service.
- 3. Samples will be transported in coolers.
- 4. Sample packaging will include the following:
 - Fill the cooler with ice.
 - Tape the drain on the cooler shut, and wrap the cooler completely with tape in two locations.
 - Place address labels on the cooler.

3.1.10.3 Sample Bottle Labels

Each sample bottle will be labeled so that the analytical laboratory has the following information:

- Collector's name or initials
- Sample date and time
- Sample source/identification
- Sample preservatives
- Whether or not the sample was field-filtered

All labels are color-coded to indicate the type of preservative in the bottle (e.g., red - nitric acid, yellow - sulfuric acid, white - no preservative).

3.1.10.4 Transport Container Labels

Labels for the transport containers will be addressed to the selected laboratory.

3.2 Surface Water Sampling Field Procedures

3.2.1 Static Water Level Measurement

Static water levels will be measured at each sampling point by reading the staff gauge to the nearest 0.05 foot. Surface water sampling points are shown on Figure 1.

3.2.2 Sampling and Data Collection

Surface water samples will be collected with a clean, stainless-steel ladle near the outlet of the sedimentation basins with the opening facing upstream (flowing condition). All bottles will be filled prior to taking a sample for performing field measurements. Field measurements will be performed with the YSI[®] Pro DSS or equivalent measuring equipment. Surface water samples will not be filtered.

3.2.3 Sample Preservation

The preservation methods for the parameters to be analyzed are identical to those for groundwater samples (see Table 2).

3.2.4 Chain-of-Custody Guidelines

The chain-of-custody procedures are identical to those for groundwater samples (see Subsection 3.1.9).

3.2.5 Sample Shipment Method

The sample shipment method for surface water samples is identical to that described for groundwater samples (see Subsection 3.1.10).

3.3 Leachate Monitoring

Leachate levels will be measured monthly at the leachate head wells, and leachate samples will be collected semiannually at the leachate tank. Leachate head will be measured in the leachate head wells using a water level indicator tape. Leachate head measurements will be referenced to mean sea level. Leachate samples will be obtained from the leachate tank using a dedicated bailer or from the leachate tanker truck outflow. The leachate tank will not be purged prior to obtaining samples. The samples will be handled and analyzed as described for groundwater samples. Leachate samples will not be filtered. Collected leachate volumes will be recorded monthly using flow meters. The volume of leachate that is used for dust control will be recorded separately.

3.4 Air Monitoring

In accordance with communication with the WDNR, no air monitoring is required for this site (see Subsection 3.15 of the October 2000 POO).

4.0 Quality Assurance/Quality Control Procedures (QA/QC)

Field QA/QC samples are used to evaluate two primary areas of quality control. Sample contamination that may occur in the field and/or during shipping is monitored in the trip blank(s) and the equipment or rinsate blank(s). Field duplicate samples and matrix spike/matrix spike duplicate samples are used to evaluate precision and bias of the sampling and analytical procedures. A general description of each of these follows.

4.1 Trip Blanks

Trip blank samples are prepared in the laboratory by filling the appropriate clean sample container(s) with reagent-grade water and adding any applicable chemical preservative. The containers are labeled "Trip Blank." Trip blanks are shipped from the laboratory in the cooler to the field and back to the laboratory along with the other samples for that parameter for a given sampling event. The trip blanks are analyzed to identify contamination that may occur from the containers, coolers, cleaning procedures, or chemical preservatives used. Trip blanks are used and analyzed at a frequency of at least one for each sampling event that includes analysis of samples for VOCs. Because VOCs are not part of the analytical program, trip blanks will not be analyzed.

4.2 Equipment (Rinsate) Blank

Equipment or rinsate blanks are prepared in the field immediately following decontamination of nondedicated field equipment used for purging or sampling. Following decontamination, reagent-grade water is passed through the equipment using the same procedures followed in collecting a groundwater sample. The equipment blank water is then collected into laboratory supplied sample bottles and analyzed for the same parameters as the groundwater samples. The equipment blank confirms proper field decontamination procedures. Therefore, one equipment blank will be collected in association with each surface water sampling event, and one equipment blank will be collected in association with each groundwater sampling event if non-dedicated and/or non-disposal field sampling equipment is used. Sampling typically utilizes dedicated and disposable equipment; therefore, equipment blanks will not typically be collected.

4.3 Field Duplicate

Field duplicate samples are an extra set of samples collected at a routine monitoring point and labeled as "Duplicate." These are two separate samples collected from the same source, stored in separate containers, and analyzed independently. The samples shall be collected in proper alternating order for the sample point and field duplicate for each parameter (e.g., first collect metals sample, then duplicate metals sample, and so on). Field duplicates document the precision of the sampling and analytical process. Field duplicates may be collected, and analyzed semiannually if data discrepancies or QA/QC issues are occurring.

4.4 Matrix Spike / Matrix Spike Duplicate

Matrix spike and matrix spike duplicate (MS/MSD) samples are used to evaluate the precision and bias of a method in a given sample matrix. To conduct a matrix spike analysis, a known amount of a target analyte is added to a sample at the laboratory prior to sample preparation and analysis. The matrix spike is then split to create duplicate samples spiked with identical concentrations of target analytes. The laboratory performs MS/MSD analysis for batches of analyzed samples. Site-specific MS/MSD samples will not be collected unless requested by the laboratory.

5.0 Record Keeping

5.1 Field Logs

Field notes must be completely and accurately prepared to become a part of the final report for a monitoring event. Field information will be recorded on groundwater sampling forms (Attachment 2) or equivalent. Field logs will be available to the WDNR upon request.

5.2 Chain-of-Custody Procedures

Proper chain-of-custody procedures are necessary to document the integrity of the samples and the condition of the samples upon receipt at the laboratory. The sample collector will fill in all applicable sections of the Chain-of-Custody Record and forward the original, along with the respective sample(s), to the laboratory. Upon receipt at the laboratory, the DPC sampling coordinator will complete the Chain-of-Custody Record, make a copy for his/her records, and make the original form a part of the final analytical report.

5.3 Labeling

Sample containers will be labeled to prevent misidentification. The following will be recorded on an adhesive label on each sample container. Data will be recorded using a waterproof pen:

- Collector's name or initials
- Sample date and time
- Sample source/identification
- Sample preservatives
- Whether or not the sample was field-filtered

6.0 Sampling, Analysis, and Laboratory Requirements

Samples will be obtained and analyzed in accordance with the approved sampling plan and with the requirements of NR 507.17. Sampling methods are further described in Section 3. All chemical analyses will be conducted by a laboratory certified under s. 144.95, Stats., and NR 149 for that test category, in accordance with NR 507.17(5). Samples will be analyzed for the parameters listed in Table 1.

Dairyland Power Cooperative Environmental Sampling and Analysis Plan Alma Offsite Disposal Facility, Phase IV Landfill – Town of Belvidere, WI Final January 2023 Revised January 2024

7.0 Reporting

The results of environmental monitoring will be submitted to the WDNR within 60 days of the end of the sampling period, in accordance with NR 507. Sampling data will be submitted in an electronic format, and will include the information required by NR 507.26(3)(b). The WDNR will be notified of values that have attained or exceeded the groundwater standards, in accordance with NR 507.30. The owner or operator of the CCR landfill shall determine the rate and direction of groundwater flow each time groundwater is sampled and include the results in the report to the WDNR within 60 days of the end of the sampling period.

In addition, an annual groundwater monitoring and corrective action report in accordance with NR 507.15(3)(m) will be prepared and submitted by January 31 of the year following the calendar year in which the groundwater monitoring system is approved by the department, and annually thereafter. The annual groundwater monitoring and corrective action report will be placed in the written operating record and posted on a publicly accessible internet site in accordance with NR 506.17 (2) and (3). In accordance with NR 507.15(3)(m) the annual groundwater monitoring and corrective action report will document the status of the groundwater monitoring and any corrective action implemented at the CCR landfill, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. The report will include, at a minimum, the information specified in NR 507.15(3)(m)1. through 5.

8.0 Groundwater Standards

8.1 Calculation of Groundwater Standards

The site-specific Preventive Action Limits (PALs) and Alternative Concentration Limits (ACLs) have been calculated or will be calculated following completion of remaining baseline sampling. PALs and ACLs were computed in accordance with NR 507.27. PALs and ACLs for any replacement wells will be established following the first eight rounds of detection monitoring after installation.

8.2 Evaluation of Groundwater Standard Exceedances

Exceedances of PALs and ACLs will be determined in accordance with NR 507.28. If a false reading is suspected, the WDNR will be notified of the intent to either begin assessment monitoring or determine that a false exceedance has occurred. The statement of intent will be submitted with the notification required in NR 507.30(1). The written demonstration of false exceedance will be included with the next monitoring round.

8.3 Exemptions to Groundwater Standards

Any groundwater exemption requests will be made in accordance with NR 507.29, NR 140.28, and NR 500.08(4). Exemption requests will be made in writing to the WDNR. Requests will include a list of the specific wells and parameters for which an exemption is being requested, proposed ACLs, calculations in accordance with NR 507.27, and a discussion of how the criteria listed in NR 140.28(2), (3), or (4) are met.

8.4 Notification and Response to Attainment or Exceedance of Standards

In accordance with NR 507.30, the WDNR will be notified in writing if any groundwater monitoring well value exceeds or attains a groundwater standard. Per NR 507.15(3)(L)(4), the horizontal distance for the design management zone for a CCR landfill is zero feet from the waste boundary and may not be expanded by the department. The waste boundary includes the horizontal space taken up by any liner, dike, or barrier designed to contain CCR waste. Therefore, the point of standards application to determine if a value exceeds or attains a standard is any point where groundwater is monitored.

The notification will specify the parameters for which standards have been attained or exceeded and the well(s) at which the standard was attained or exceeded. The written notification will provide a preliminary analysis of the cause and significance of each concentration in accordance with NR 140.24(1)(a) or NR 140.26(1)(a). The sampling results and two copies of the notification will be submitted to the WDNR within 60 days from the end of the sampling period.

Responses to groundwater exceedances will be in accordance with NR 508, including establishment of an assessment monitoring program in accordance with NR 508.06 unless the exceedance is determined by the WDNR to be from a source other than the CCR landfill, the result of a sampling error, or natural variation.

9.0 References

- RMT, Inc. 1997. Feasibility Report Dairyland Power Cooperative Phase IV Disposal Area Alma Off-Site Ash Disposal Facility. September 1997.
- RMT, Inc. 2000. Plan of Operation Dairyland Power Cooperative, Phase IV Disposal Area, Alma Off-Site Ash Disposal Facility. October 2000.
- RMT, Inc. 2006. Proposed PALs and ACL Values for wells W100AR, W100R, W102AR and W102R, Dairyland Power Cooperative, Phase IV Disposal Area, Alma Off-Site Ash Disposal Facility. May 2006.
- WDNR. 2001. Conditional Plan of Operation Approval for Dairyland Power Cooperative Phase IV Disposal Area, Alma Off-Site Ash Disposal Facility, Town of Belvidere, Buffalo County, License #4126. May 2001.
- WDNR. 2006. WDNR Approval of proposed PAL/ACL calculations for the Dairyland Power Cooperative Phase IV Ash Disposal Facility, Town of Belvidere, Buffalo County Wisconsin, License No. 4126. September 2006.

Attachment 1: Well Information Form

State of Wisconsin Department of Natural Resources

GROUNDWATER WELL INFORMATION FORM Chapter 281 and 289, Wis. Stats. Form 4400-89

Form 4400-89 Facility Name Form 4400-89 Facility Name Form 4400-89														Rev. 7							
acility				Fac			License	e, Perr		ng No.	Date			ted By (Name a							
NI	Dairyland	DNR	Cooperative		606 ir.	6009360	Well C	ocina	4126 Elow	ation		Aug-00 erence	Craig Ba	artholomew, 8/00; Depths	QC'd by F	Rob Hafeme	eister, 8/0)0; updat	ed by N	like Dic	key 6/13/01
Jnique Vell	Well Name	Well ID	Well Location	N E	<u>S</u> W	Date Establishe			Top of Well Casing	Ground		Site Datum (√)	Screen Top (bgs)	Initial Groundwater (ptoc)	Well Depth (bgs)	Screen Length	Well Type	Well Status		Grad- ient	Distance to Waste
	Station 1	001	171440 1508460	X X		8/24/81	4	PVC	837.22	835.7	х		34	31.6	44	10	OW	Aband	Y	U	Within ⁽¹⁾
	Station 2	002	170730 1508940	X X		9/18/81	4	PVC	827.12	825.6	х		37	34.1	47	10	OW	Aband	Y	U	Within ⁽¹⁾
	W42	017	172168.72 1476924.64	Х		10/19/94	2	PVC	837.93	836.0	х		46.5	51.5	56.5	10	OW		Y	S	Within ⁽¹⁾
	P42A	018	172166.81 1476933.9	X X		9/10/79	2	PVC	838.90	835.3	х		64.9	51.4	69.9	5	ΡZ		Y	S	Within ⁽¹⁾
	P42B	019	172159.42 1476925.25	Х		9/11/79	2	PVC	838.30	835.1	х		81.8	51.4	84.8	3	ΡZ		Y	S	Within ⁽¹⁾
	W43	020	171828.38 1477672.25	X X		8/29/79	2	PVC	817.70	814.7	х		54	42.8	64	10	OW	Aband	Y	D	Within ⁽¹⁾
	W100	021	171345.3 1477166.2	X X		10/25/94	2	PVC	794.52	792.2	х		60.5	65.3	70.5	10	OW	Aband	Y	D	20' S
	W101	023	172654.5 1477721	X X		11/2/94	2	PVC	925.83	923.2	х		107	112.5	122	15	OW		Y	U	200' NE
	W101A	024	172652 1477729	X X		10/27/95	2	PVC	925.53	923.1	х		146	112.5	151.0	5	ΡZ		Y	U	190' NE
	W102	025	172046.6 1478190.2	x x		10/18/94	2	PVC	838.02	836.1	х		25	30.2	35	10	OW	Aband	Y	S	Within ⁽¹⁾
	W102A	026	172041.8 1478191.2	x x		10/18/96	2	PVC	837.45	835.7	х		50	30.4	55	5	ΡZ	Aband	Y	S	Within ⁽¹⁾
cation Coordinates Are: Grid Origin Location: (Check if estimated:) Remarks: State Plane Coordinate Local Grid System bgs = below ground surface; btoc = below top of casing. Northern Lat													elow grou	,			0				

Completion of this form is mandatory under s. NR 507.14 and NR 110.25 Wis. Adm. Code. Failure to file this form may result in forfeiture of not less than \$10 nor more than \$5,000 for each day of violation. Personally identifiable information provided is intended to be used by the Department for the purposes related to the waste management program.

State of Wisconsin

Department of Natural Resources

GROUNDWATER WELL INFORMATION FORM Chapter 281 and 289, Wis. Stats. Form 4400-89

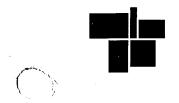
Rev. 7-98

Facility				Fac	,		Licens	e, Perr	nit or Monitori	ng No.	Date			ted By (Name a	,						
	Dairyland		Cooperative		606	6009360			4126		21-/	Aug-00	Dan Reid	d - RMT, Inc.; upd	lated by C	raig Barthol	omew, 8/	/00; QC'd	l by Rol	b Hafem	eister, 8/00
WI		DNR		D)ir.		Well (Casing	Elev	ation	Ref	erence		Depths							
Unique Well No.		vveii iD Numbe r	Well Location	<u>N</u> E	<u>s</u> W	Date Establishe d	Diam.	Туре	Top of Well Casing	Ground Surface	MSL (√)	Site Datum (√)	Screen Top (bgs)	Initial Groundwater (btoc)	Well Depth (bgs)	Screen Length	Well Type	Well Status	Enf. Stds.	Grad- ient	Distance to Waste
	W100A	022	171357	Х		10/27/95	2	PVC	795.31	792.9	X		95	82.9	100	5	ΡZ	Aband	Y	D	18' S
			1477172	Х																	
	W104	027	171542	Х		11/14/95	2	PVC	845.79	843.3	Х		75	87.2	90	15	OW		Y	S/U	120' SE
	14/4044	000	1477713	Х		44/40/05	0	DV (O	045.44	040.4	V		100	100.05		_	57		V	0/11	
	W104A	028	171546 1477718	X X		11/13/95	2	PVC	845.14	843.1	Х		109	100.25	114	5	ΡZ		Y	S/U	110' SE
	W105	029	171180 1477404	XX		11/3/95	2	PVC	821.21	818.3	Х		79	88.45	94	15	OW		Y	S/U	127' SE
	W106	030	171530	Х		11/7/95	2	PVC	850.84	848.3	Х		72	79.5	82	10	OW		Y	S/U	80' W
	W107	031	1476837 173527.44	X		5/1/97	2	PVC	908.29	906.2	Х		69	77.4	84	15	OW		Y	U	190' N
			1477214.99	Х																	
	PW01	032	170430 1477100	X X		8/24/81	10	STL						67	410	NA	Water Supply	Aband	Y	D	260' SE
JQ894	W100R	40	171197.15 1477195.77	X X		5/17/01	2	PVC	784.38	781.4	Х				75	15	OW		Y	D	135' NE
JQ893	W100AR	42	171202.48 1477198.28	Х		5/17/01	2	PVC	784.79	781.4	х				92	10	ΡZ		Y	D	135' NE
SQ892	W102R	44	172319.04	X X		5/17/01	2	PVC	876.1	873.1	Х				78	5	OW		Y	U	90' W
SQ891	W102AR	46	172320.77 1478313.97	X X		5/17/01	2	PVC	876.1	873.1	Х				98	10	PZ		Y	U	90' W
			14/0313.9/	^							-										
🗸 Stat	Coordinates		Local Grid			I Origin Locati	ion: (C	heck if	estimated:)		Remark bgs = b		und surface; btoc	: = below t	op of casir	ıg.				
~	Northern				Lat.	°		"	Long ° _		_" or										
	Southern				St. F	-18116		_ n. n.		_ II. E. 5/C/N	∠one										

Completion of this form is mandatory under s. NR 507.14 and NR 110.25 Wis. Adm. Code. Failure to file this form may result in forfeiture of not less than \$10 nor more than \$5,000 for each day of violation. Personally identifiable information provided is intended to be used by the Department for the purposes related to the waste management program.

Attachment 2: Example Groundwater Sampling Form

		LO	W-FLOW	GROUI	NDWAT	ER SAM	PLING R	ECORD			Well Nam W106				
											Page 1 of				
ROJECT : D	AIRYLAND PO	WER COOF		DNR WELL II	D No: 30				DATE:						
CATION:	Alma Offsite 0	4126		WUWN:			. –		WEATHER:						
ELD MON	ITOR DEVICE: '	YSI ProDSS			CE: Dedicate	d Pump			TEMPERATURE:						
/ELL I.D. (ii	D. (in.): 2-inch SCREEN LENGTH: 10 FIELD REPS:														
ATER LEV	TER LEVEL: MEASURING POINT: Top of PVC Casing PUMP INTAKE DEPTH														
ELL DEPTI	DEPTH (Log): 64.7 Duplicate: W106														
TIME	DEPTH (ft)	TEMP	*DO	COND.	рН		**TURB	DRAW	FLOW	RE	MARKS				
(24 HR)	within >	(°c) 	(mg/L)	(µS/cm) [+/- 3%]	[+/- 0.1]	ORP (mV) [+/- 10]	(NTU) [+/- 10%]	DOWN (ft) (+/- 0.3)	RATE <700mL/min	(Color or	lor, comments)				
Statimzet	1 WIGHU >	17/6	[if > .5 mg/l]		[17- 0.1]	(+/- 10)	[if > 5 NTU]	[<i>\\</i> -0.5]	<700mc/mm	(0007, 00	ior, comments)				
				25											
			<u> </u>	·											
				<u> </u>											
										<u> </u>					
			· · ·												
				ļ											
]											
				ļ											
			<u> </u>												
									<u>├</u>						
		<u>-</u>													
	+		<u> </u>												
IOTES:				2/42	200			istorical Pas		Condi CCO	670				
If three DC	readings are <	0.5 mg/l, co	nsider value s	2/43 tabilzed *		idity values ar			es: pH: 7.15 - 7.6 values as stablized		- 370				



Attachment 3: Example Chain of Custody Record

Pace Analytical*		sample via this Condition	F-CUSTODY Analytical Request Document s chain of custody constitutes acknowledgment and acceptance of the Pace Terms and is found at: https://info.pacelabs.com/hubfs/pas-standard-terms.pdf Custody is a LEGAL DOCUMENT - Complete all relevant fields Billing Information: APInvoices@DairylandPower.com									LAB USE ONLY- Affix Workorder/Login Label Here or List Pace Workorder Number or MTJL Log-in Number Here										
Company: Dairyland Power Cooper								n					ALL E	BOLI	οοι	ITLI	NED	ARE	EAS a	re for LAB USE ONLY		
Address: 3251 East Ave. South, LaC	rosse, WI 54601												ntainer		1		**	_		Lab Project Manager:		
Report To: Tad.Schwartzhoff@Dair	ylandPower.com		Email To:							U ** Pre	2 servativ	1 /e Types		1 tric acio	1 d, (2) su		cid, (3)	hydro	chloric a	cid, (4) sodium hydroxide, (5) zinc acetate,		
Сору То:			Site Collection Info/Address: Alma Off Site									(6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other										
Customer Project Name: ALMA OF	F-SITE GROUND	WATER	State: C WI /	ounty/City		Zone Colle PT []MT]ET						Anal	yses					Lab Profile/Line: Lab Sample Receipt Checklist: Custody Seals Present/Intact Y N NA		
Phone: 608-787-1441	Site/Facility ID	#: Alma O	off-Site		Complianc		ng?													Custody Signatures Present Y N NA Collector Signature Present Y N NA		
Email: Collected By (print): Tad	Purchase Orde	r # •			[X] Yes DW PWS II	[]No			-				- 1		- 1		- 1			Bottles Intact Y N NA		
Schwartzhoff/Brian Kalvelage	Quote #:			DW PWS D #: DW Location Code:									- 1		- 1		- 1			Correct Bottles Y N NA Sufficient Volume Y N NA		
Collected By (signature):	Turnaround Da	ate Require	ed: Standard		-	ly Packed o	on Ice:		9				- 1		- 1					Samples Received on Ice Y N NA		
					[X] Yes	[] No			Glass (G)				- 1		- 1		- 1			VOA - Headspace Acceptable Y N NA USDA Regulated Soils Y N NA		
Sample Disposal: [X] Dispose as appropriate	Rush: (Expedit	te Charges Day [] No			Field Filter	ed (if applio [X] No	cable):		or G				- 1		- 1		- 1			Samples in Holding Time Y N NA		
[]Return	[] 2 Day		ext Day			[\] NO			(P) 0				- 1		- 1		- 1			Residual Chlorine Present Y N NA Cl Strips:		
[] Archive:	[]4 Day				Analysis: A	AII			stic (- 1		- 1		- 1			Sample pH Acceptable Y N NA		
[] Hold: * Matrix Codes (Insert in Matrix bo	y below): Drinkir	a Water (F		Water (G)	/) \//astowa	tor (\\/\\/)			Plastic (- 1		- 1		- 1			pH Strips:		
Product (P), Soil/Solid (SL), Oil (O	,	ir (AR), Tiss	ue (TS), Bioa	ssay (B), V					Type:											Lead Acetate Strips:		
Customer Sample ID	Matrix *	Comp / Grab	Collect Composi Date	•	Compo Date	site End Time	Res Cl	# of Ctns	Container											LAB USE ONLY: Lab Sample # / Comments:		
	GW	Grab																				
	GW	Grab																				
	GW	Grab																				
	GW	Grab																				
	GW	Grab																				
	GW	Grab																				
	GW	Grab																				
	GW	Grab																				
													ĺ									
Customer Remarks / Special Condi	tions / Possible H	lazards:	Type of Ice	Used:	Wet	Blue D	ry	None			SHO	RT HOL	LDS PR	ESENT	(<72 ł	nours)	: Y	Ν	N/A	LAB Sample Temperature Info:		
			Packing Ma	terial Used	:						Lab 1	Frackin	ng #:							Temp Blank Received: Y N NA Therm ID#: Cooler 1 Temp Upon Receipt: oC		
		Radchem sa	imple(s) sc	reened (<50	0 cpm):	Y N	NA				ples re DEX	ceived UPS		ient	Courie	er Pa	ice Co	ourier	Cooler 1 Therm Corr. Factor:OC Cooler 1 Corrected Temp:OC			
Relinquished by/Company: (Signat	ure)	Date	/Time:		Received by	//Company	: (Signa	ture)				Date/T	ime:	-				AB US	E ONLY	Comments:		
Relinquished by/Company: (Signat	Date	/Time:		Received by	//Company	: (Signa	ture)				Date/T	ime:			Table Accti	e #: num:			Trip Blank Received: Y N NA			
												Template: Prelogin:				HCL MeOH TSP Other						
Relinquished by/Company: (Signature) Date/				Date/Time: Received by/Company: (Signature)							Date/Time:					РМ: РВ:				Non Conformance(s):Page: 1YES / NOof: 1		
I																						

Attachment 11

Additional Information for s. NR 514.045(c) Demonstration

Appendix E Soil Boring Logs and Monitoring Well Information and Photographs of Abandonments

New Boring Logs

3

	of Wisco tment of		al Reso	Route '	Γo: d Waste	Пн	laz. Wa	ste					Soil Bo Form 44	-	Log In	form	atior 7
-					ergency Response	•	Jndergro										
				L Wa	stewater		Vater Re Other	sour	ces					Pa	ve 1	of	2
Facility	//Projec	t Name	;		aaaaa			e/Per	mit/M	onitoring	Numb	ег	Boring				
	ryland			1.23					127	-			B6)			
-				e and name of crew chi			Date D	rillin	ig Start	ed	Date	Drillin	g Comp	leted	Drillin	g Me	thod
				w Chief: Eric Sho					1/95			10/31			4 1/4		
	acility		o. W	71 Unique Well No.	Common Well	Name	Final S	tatic		Level et MSL	8	ace Elev 54.4	Feet M	SL	Borehole	8.0	
Soring State I	Locatio Plane	n 12	2243.	.00 N, 1478204.0	0 E		La	t	0,1	ı	Loca	al Grid I		-	plicable)		
NE	1/4	of NI	E 1/	4 of Section 19	T 21 N,R 1		Lon	-	0 , 1			Fee				Feet	Ō
County Buf	falo C	ounty	,			DNR Cou 06	inty Cod	e		ſown/Ci ider e	ty/ or V	/illage					
San	<u>, </u>		et										Soil	Proper	ties	1	
۲	h (In) ered	Counts	In Fe	And Geolo	k Description ogic Origin Fo	r		S	ic	â	OI	Standard Penetration	ure int	σ	ic		
Number	Length (Ir Recovered	Blow	Depth	Each	Major Unit			USC	Graphic Log	Well Diagram	PID/FID	Stand	Moisture Content	Liquid Imit	Plast Limit	P 200	
				TOPSOIL.													
				SILT (ML), 10-2 non-plastic, 10	YR 5/6 yellow	vish							м				
				brown, loose, with reddish m		rine),											
. 77			E-s	qu=.25													
1	24	4	1 1 2 3 4 5 6 7 8 9 10				N	1L									55
			9														
2	24	11	10 11 12	As above. $qu = \sim .25$													ss
			12 13 14 14														
3 7	24	8	15 16	As above.													s
			E	qu=~.25								-					
4 7	22	9	17 18 19 20	As above.													SS
			21														
			24 	POORLY GRAI		· · ·			L				м				
		that th	e infor	nation on this form is t	ue and correct to			wled	lge.								
ignatu				Q Q		11	Firm		RMT		m	e					
	a	me	20.	lend						artland ' 8-831-4							

.

ĺ

5

•

,

.

	. I				1				· ·	Soil	Properti	es		
Samp	ĉ	Counts	n Feet	Soil/Rock Description					+ to u		rioperu		<u></u> .	y (
ber	Length (I Recovered	CO DE	Depth In	And Geologic Origin For Each Major Unit	S C S	Graphic Log	l agram	PID/FID	Standard Penetration	Moisture Content	quid mit	astic mit	200	Comments
In N	Ler Rec	Blow	DeF		5	Gral Log	Wel Dia	L	St. Pe	Mo i Con		РI Li	٩	<u></u>
s Number	20	10	26	GRAVEL (SP), fine to coarse, 10-15% silt, 10YR 6/6 yellowish brown, loose.	SP	0.00 0.00 0.00								SS
			28			. 0. 0. D								
6	18	100/.4'	_	As above, but with 4" silt lense										SS KH=
22			32 33 11 33	from \sim 31.0 to 31.3 feet.		 				м	NP	NP	26.4	3.2X10 cm/sec
7 7	15	11	<u>-</u> 34	As above.		0.0.0. 0.0.0 0.0.0								ss
7			30 31 32 33 33 34 35 36 37 38 39 40			0.00				М				
8 7	24	14	11-39 111-40	As above, but with 6" silt lense										ss
8			41 42 43	from ~40.2 to 40.8 feet. SILTY SAND (SM), 80% fine	_					м				(
0.777	24	12	E-44	sand, 20% silt, 10YR 6/6 yellowish brown, loose.	SM									SS
۶ []	24	13	45	End of boring at 47.0 feet.			•			w				
'							•							

	of Wisco tment o		al Reso	urces		d Waste			laz. V						oil Bo form 44	-	-	nfor	mati	ion 7-91
						ergency Res stewater	sponse		-	round Resoui	Tanks rces									
)ther							Pa		0	f 3	3
	y/Projec ryland			1.23		-			Lice		rmit/Mo 127	nitoring	Numb	er	Boring B6		ег			
				e and name of c					Date	Drilli	ng Starte	d	Date	Drilling	g Comp	leted	Dril	ling N	Aetho	юd
				w Chief: Eri		_					2/95		_	11/6					HSA	
ONR I	Facility V	Vell No	o. W	I Unique Well N	io.	Common	Well Na	ime	Fina	l Static	Water I Feet	Level MSL	8	ace Elev 94.4	Feet M	SL	Boreho	8.	iamete O Ir	
Boring State 1	Locatio		2170	00 N, 1477	763 በ	0 E			ł	Lat	0,11		Loca	al Grid I	Location		plicab	e)	 ר	
NE		of NE		-	, 05.0 19	т 21 г	N.R 12	w		ong	0,11			Fee				Fee] E] V
County		-					D	NR Cou		-	Civil T Belvi		y/ or V	/illage						
	nple														Soil	Prope	rties			
Number	Length (In) Recovered	Blow Counts	Depth In Feet	And	Geolo	k Descrip gic Origi Major Ur	in For			N S C S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic	-	P 200	Comments
1	16	17	1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	POORLY (GRAVEI 10% silt, 6/6 yello (Fill).	(SP) 5-10 wish t), fine to % cobble prown, de	coarse, s, 10Y ense,	R		SP					М					SS
		that th	e infor	mation on this fo	rm is ti	rue and cor	rect to th			cnowle	-									
ignatu	ire			•					Firm		RMT	miland	Ten:I 1	Indiana	Winner					
C		54	no.	that no							744 Hea Tel: 608									

(

	_
	7
- (

Boring	Numbe	r	B61	Use only as an attachment to Form 440	0-122.						Page		of 3	3	
Sam			Feet		1					Soil	Properti	es		C	
	(H)	Counts		Soil/Rock Description					ion			Ì.		- N.	1
	U a	no	H	And Geologic Origin For	S	U.	Ë	8	ard ato	ure nte	σ	<u>.</u>		t	
- Der	H N		Ŧ	Each Major Unit	U	L L L	 agram	μ	ind.	st: Itel	ац: + і =	i t st	200	e e	
	Length (In Recovered	Blow	Depth		S N	Graphic Log	We I Dia	PID/FID	Standard Penetrati	Moistur Content	ш. 	Pla Eim	с Д	S Comments	
2 Number	12			As above.		tat								SS	-
			E-26												
- 24			E 27				1		1						
			E ⁻²⁸												
			E ⁻²⁹												
37	14	27	E-30	As above.										ss	
3			E-31			₩¥¥									
44		:	E-32				1							l.	
			E-33												
			E-34]								
4 7	4	23	11 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	As above.			1							SS	
4			E-36				1								
11			E-37			H]								
			E-38												
			1 39												
5 7/	14	20	1-40	As above.		HAX .								ss	
5			41				2								· • • • •
12	,		42				3							(
	1		4 3				1			м					المعمد الم
			44	SILT (ML), 15% fine to coarse			3		1						
6 7/	24	12	E 45	sand, 10% fine gravel, 10YR 3/2,	ML		1							ss	
6			E-46	very dark grayish brown, stiff, very slightly plastic, (Fill).		m	9								
-12			E ⁴⁷	very slightly plastic, (Fill).			9								
			E-48				2								
			49			XXX	X				1				
7	14	23	E 50		1		,							ss	
			E ⁻⁵¹					ĺ							
-12	1		E ⁻⁵²	As above, but with rust colored											
			E 53	mottles, (Native), (Loess/fluvial).											
			E												
8 7/	18	22	E 55											ss	
8			E	As above.						м	28	22	86.4		
14	1		E 57												
	ļ											1			
			E												
9 <i> </i>	24	15												ss	
			E										1		
]			As above.						м					
													1		
															Ì
10 🏹	16	16	47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66								1			ss ``	
	1		E _00												_

8

	Boring	Numb	er	B61	Use only as an attachment to Form 4400)-122.						Page		of 3	3
\bigcirc	Sam	Length (In) a	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	N S C S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	Comments
	11	24	17	67 68 69 70 71	As above. As above.						м				SS
	12	6	51	72 73 74 75 76 77 78 79	As above, with Dolomite gravel from 75.0 to 75.2 feet, 10YR 5/3 brown.						M-W				SS
\bigcirc	13	18	50	80 81 82 83 84 85 86 87 88 88 89	As above.	- - -					vw				SS
	14	14		85 86 87 88	As above.						w				SS
	15	4		90 111-91	WEATHERED SANDSTONE, with silt zones, medium grained, brown and rust. SANDSTONE GRAVEL, with some silt, brown, angular.						w				SS
	16	16	87	92 93 94 94 95	As above. End of boring at 95.0 feet.										SS
Ċ					· ·										

	of Wisco rtment of		al Res		id Waste	_	Haz. W		Tombro				oil Bo orm 44		og Inf	ormat	tion 7-91
					ergency Response stewater	D 1	Underg Water l										_
Facilit	y/Project	Name		<u></u>			Other	nse/Pe	rmit/Mo	nitoring	Numb	er	Boring	Page Numbe		of	2
	ryland			81.23			2.000		927				B6 2		_		
				me and name of crew chi			Date	Drilli	ng Start	ed	Date	Drilling	g Comp	leted	Drilling	g Meth	.od
Boa	rt Lon	gyea	r, Cr	ew Chief: Eric Sho	enderg			11/	1/95			11/1	/95		4 1/4	" HSA	A
ONR I	Facility V	Vell No	D.	WI Unique Well No.	Common Well I	Name	Fina	I Static	Water	Level		ace Elev			orehole		
	T								Fee	t MSL		18.2 Il Grid I				8.0 1	Inches
State 1	Locatio Plane		2192	2.00 N,1477253.0	0 E			Lat	0 🕽 1	r				N N	neuole;	Γ	Ε
NE		of NE	<u> </u>	1/4 of Section 19	T 21 N,R 1			ong	0 , 1			Fee	et 🗌	S	I	Feet [□ w
County Buf	/ falo C(untv	,			DNR Co 06	unty C	lode		'own/Cit idere	ty/ or V	llage					
-	nple	Juney											Soil	Propert	ies		
	(II) ed	at s	Feet	Soil/Ror	k Description							ion					
	rec	Counts	۲,		ogic Origin For	r		S	υ	E	e	ata	e t		U		ts
Der	ength ecover		Ę		Major Unit			ပ	ЧЧ	Bra	PID/FID	nda etr	stu ter	Liguid Limit	asti mit	200	Comments
Number	Length (I Recovered	Blow	Depth					S D	Graphic Log	Well Diagram	E	Standard Penetrati	Moisture Content	Ligu	Plas Limi	ດ 6	l S
				TOPSOIL, (silt)	•				-								1
				SILT (ML), 5-10									М				
			E-4	clay, 10YR 5/ brown, medium		511											
17	20	7	5	plasticity, (Lao	custrine).			ML									SS
1		•	E 6														
2																	
			8														
. 77		•	10 11 11	,													
	24	9	E-11	As above.									м	19	17	98.5	SS
12			E-12													10.0	
			E 13														
			13 14 15														
3 7	24	8			DED SAND V	ЛТН			┟╵┙┟				М				ss
			10 17 18 19 20	GRAVEL (SP), fine to coars	e			·	•							
			E-18	³ 10-30% silt, 1 brown, medium					0.0								
			19		in delise, (indvi	.ui).			0.0								
4 7/	24	8	E-20					SP					·				ss
			E	As above, but w		e			0.00								
			22	1011 21.0 to 2	1.5 feet.					a							
			E-24						0.0.0								
			E_25						0.0	1							
		that th	e info	ormation on this form is t	rue and correct to	the best o		knowle	dge.								
lignati		,					Firm		RMT		T	Andir	Winge				
	Dani	e d	. le	ind						artland ' 8-831-4							
			d by (

.

(

(

||

Boring	Numbe	er	B62	Use only as an attachment to Form 440	0-122.	Ţ	T			0-11	Page		of 2	:
Sam Number	(II) ed	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	N S C S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Limit Limit	Plastic Limit	P 200	SS Comments
5	24	15	26 27 28 29 30 31	As above.		0.0.0 0.0.0 0.0.0								SS
6	12	17	E-32	As above.		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0								SS
7	10	10	33 34 35 36 37 38	As above.		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								SS
8	6	50/2"	38 39 40 41 42	As above, but dense. End of boring at 42.0 feet.		8 0 0 0 0 0 0 0 0 0 0								ss
												•	•	
											,			

		f Wisco			Route T		—							oil Bo	-	og Inf	ormat	
	Depart	ment o	f Natur	al Reso		l Waste rgency Response		iaz. Wa Indergro		Tanks			F	orm 440	0-122			7-91
								ater Re										
~~ -								ther							Page		of	3
)	Facility Dair	/Projec yland			31.23			Licens	e/Per	mit/Mor	hitoring	Numb	er	Boring B63		r		
Ī	Boring	Drilled	By (Fi	rm nan	he and name of crew chie	:f)		Date I	Drillir	ng Starte	d	Date	Drilling	g Compl	eted	Drillin	g Meth	od
	Boar	rt Lor	igyea	r, Cre	ew Chief: Paul Dick	kinson		1	10/3	1/95			10/31	/95		4 1/4	" H SA	A
]	DNR F	acility '	Well N	o. V	/I Unique Well No.	Common Well Nam	e	Final S	Static	Water L	evel MSL		ice Elev	ation Feet MS		orehole	Diame 8.0 I	
]	Boring	Locatio	n					<u>i</u>			MOL			ocation				ineries
	State P			71976	.00 N, 1477115.00	E		L	at	0 , 11					N		•	Ε
-	NE		of NI	<u>C</u> 1.	/4 of Section 19	T 21 N,R 12W		Lon	Ŷ	0 9 11			Fee	et 🔲	S]	Feet [] W
(County Buff	alo C	ountv	,		DN 06		nty Co	de	Civil To Belvi		// or V	illage					
-	Sam	ple			T									Soil	Propert	ies		
		ŝ.	Counts	Feet	Soil/Rock	C Description							io Li					
		C S	J	L L		gic Origin For			S	υ	Ę	8	at	ine 1	-	<u>.</u>]ts
	ا م	ht Sve				Aajor Unit			ပ	Ч.	- 8	É	eta	stu		المك المك ا	200	Jer 1
	Number	Length (In) Recovered	Blow	Depth		5			s n	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Mo i sture Content	Liquid Limit	Plas' Limi	л Д	Comments
-	Z				TOPSOIL, (silt).				<u> </u>			<u> </u>	0, 22	20		<u> </u>		
				1 2 3 4 5 6 7 8 9 10 11														
					SILT (ML), 10% non-plastic, 10								ŀ	м				
				E,	yellowish brow	n, medium stiff,												
				Ξ.	(Loess, fluvial/	lacustrine).												
~`\	1	20	11	E				1	ML				ļ					SS
)	- 2			Ē,														
ST	-1			8	A									м	23	20	61.7	ST KV=
	Т			<u> </u>	As above.									IVI	25	20	01.7	2.4X10-5
	. 77		27	E-10							1							ss
	2	2	21	E-11							·						ļ	
	2			 17	As above, (rock	in spoon).											ļ	
				E-13										м				
				12 13	POORLY GRAD		H											
	3 7	8	100/.9		10% silt, 10YF	, fine to coarse, 8 6/6 dark			SP					ļ				ss
	3			E-16	yellowish brow						.							
	- 22			E 17	(fluvial).					0. 1.0								
										:0.0								
										0.00								
	4 🏼	8	100/.5							. a a								SS
				E22	As above.					0.40				1		1		
										0.0.								
			[, jundani Jund						0.q.0.			1	1		1		
				-25						. 0.0								
-			y that t	he info	rmation on this form is t	ue and correct to the	_		nowle	dge.								
	Signatu	re						Firm		RMT								

Crai Tel: 608-831-4444, Fax: 608-831-3334 A This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

744 Heartland Trail, Madison Wisconsin

Boring	Numb	er	B63	Use only as an attachment to Form 4400	-122.						Page		of 3	,
Sam			Feet							Soil	Properti	ies		()
s Number	Length (In) Recovered	Blow Counts	Depth In Fe	Soil/Rock Description And Geologic Origin For Each Major Unit	SUSU	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	ss Comments
5	10	100/8"	26 27 11 28	As above.										SS
6	8	100/6"	29 30 31 31 32 33	As above.										SS
7	12	50	34 35 36 37 38	As above.						₩.				SS
8	24	52	26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43											ss
9 ///	18	52	44 45 11 46	WEATHERED SANDSTONE, 10-20% silt, 10-15% fine to coarse gravel, 5Y 4/3 olive, dense, (weathered sandstone), (glauconitic).	SS					W				SS
10	4	100/6"	47 48 49 50 51 51 52 53	As above, but becomes denser.										SS
11	12	100/6"	55	As above.										SS
12	18	100/8"	153 54 55 56 57 58 59 60 61 62 63 64 65 66	As above.										SS
13	18	100/8"	64 65 66											ss

Form 4400-122A	

~~~~~		g Numb	er	<b>B63</b>	Use only as an attachment to Form	4400-122.						Page		of	3
· /	Sam Laquinn V	éd (In)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	N S C S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Mo i sture Content	Liquid Limit	Plastic Limit	P 200	Comments
	14			67 68 69 70 71 72 73 74 74 76 77	As above. As above. End of boring at 77.0 feet.										SS SS
$\bigcirc$															

	of Wisco tment o		al Resou			Пн	łaz. Was	ite						oring <b>l</b> 00-122	.og In	forma	tion 7-
				Emerge	ency Response vater		Jndergro Vater Re )ther							Pag	e 1	of	2
Facility	-					0		e/Pen	nit/M	onitoring	Numb	er		Numbe			
	-		er 308						127				<b>B6</b>	-			
-		•		e and name of crew chief) w Chief: Paul Dickin	son		Date D		-	ed	Date	Drillin		oleted		ng Meth	
								0/31				10/31			4 1/4	4" HS	<b>A</b>
DNR F	acility '	Well No	o. W	I Unique Well No. Co	ommon Well N	ame	Final S	tatic				ace Elev 22.1			orehole		
Boring	Locatio	n		L			<u> </u>			et MSL		al Grid I			licable)	8.0	Inch
State P				00 N, 1477483.00 E			La		0 , 1			_					
NE County		of NE	5 1/4	4 of Section 19 T	21 N,R 12	W DNR Cou	Long	-		Town/Cit	v/ or V	Fee	et 🗌	S		Feet	
-	alo C	ounty		••••••••••••••••••••••••••••••••••••••		06				idere	,, <u>,</u> , ,,						
Sam		l M	Feet										Soil	Proper	ies	1	-
	(In) ed	Counts		Soil/Rock D	)escription							Standard Penetration	0				
Ľ	Ī		H	And Geologic	-			ທ ບ	ic ic	Well Diagram	EI.	dar.	Moisture Content	<b>P</b> _	in t		ţ
Number	ength Recover	Blow	Depth	Each Ma	jor Unit			ກ	Graphic Log	el l agr	PID/FID	and	oist onte	Liquid Limit	Plast Limit	200	Comments
ž	<u>ے ہ</u>							⊇┤	<del>ت ق</del>	ай	6	ក្ខភ្ន	ĔŬ			<u> </u>	
			E ₄												-		
. 77	10		1 1 2 3 4 5 6 7 8 9 10 11 12	<b>CHT AN</b> 10 <i>0</i> 5													
' 🏼	18	16	E-6	SILT (ML), 10% fi non-plastic, 10YR			Ň										SS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				yellowish brown, (Loess, fluvial/lac		f,											
				(19053, 110710)/100	ustime).												
. 77	ND	•••	E_10	Dech in mean													
2	NR	13	E -11	Rock in spoon.													ss
										-							
			13														
77			E-14 E-15														
3	22	21	16	As above.									M	29	22	97.0	SS
22			17														
ı																	
			13 14 15 16 17 18 19 20 21 22 23 24														
4	12	35	20														ss
			22	POORLY GRADE			1		-1-5 I . 0 0				м				
			23	GRAVEL (SP), fi 10% silt, 10YR 6					р. ф.								
			24 25	brown, dense, (flu				2	. <i>о. о</i>					Í			
hereby	certify	that th	1	nation on this form is true a	and correct to t	he best of	f my kno	wled	ge.	1		<u> </u>	L	1	1	.I	
Signatur	re			•	, <u>, , , , , , , , , , , , , , , , </u>	[]	Firm	I	RMT				· .				
	Ban	iel (ə. l e	~l						artland ' 8-831-4							
This for	m is au	thorize	d by Ch	apters 144, 147 and 162, V													

_	Numbe	r	B64	Use only as an attachment to Form 44	100-122.		<u> </u>	· · · · ·		Soil	Page Properti		<u> </u>	2
Samper Jackson Samper	ength (In) ecovered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	s c s n	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Limit Limit	Plastic Limit	P 200	sa Comments
5	12	6 100/12 45	26 27 28 28 29	(lacustrine). As above, but with 10-15% silt.	SP	D.0.0		:						SS
6	16	45	30 31 32 33 33	As above, but with ~ 6 " silt lense from ~ 32.0 to 32.5 feet.		000 000 000 000 000 000 000								SS
	12	43	35 36 37 38 38 39	As above.		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								SS
B 77	20	43	33 34 35 36 37 38 39 40 41 42 43 44 45 46	As above.										ss (
	18	56	45 46 47 48 49	As above, but with 4" silt lense from ~46.4 to 46.7 feet.						W				SS
o	24	24	50 51 52 53 54 55 56 57	As above.			100 D 8 000 00 8 9 00							SS
1	24	31	55	As above. End of boring at 57.0 feet.		Υσ. 	1000 A							SS
														C

	of Wisc tment o		al Res	ources	ute To: Solid Waste Emergency Wastewater	Response		laz. Wast Indergrou Vater Res	nd Ta					Soil Ba Form 44		Log In	form	ation 7-91
Facilit	y/Projec	t Name	;				<u> </u>	ther License	Perm	it/Mo	nitoring	Numb	er	Boring	Pag Numb		of	3
	ryland								29:	27	_			B6 :	5			
-		-		me and name of creve ew Chief: Eric		ŗ		Date Dr	-		ed.	Date	Drillin	-	leted		ng Met	
			-			·			1/9/				11/10				4 HSA	
DNR H	acility	Well N	D.	WI Unique Well No.	Comm	on Well Name	•	Final St	atic W				ace Elev 0 1.8			Borehole		
Boring	Locatio							<u> </u>		Peet 0 y II	t MSL		d Grid I			licable)		Inches
State I				1.00 N, 147717				Lat		0 , n 0 , n			_					E
County		of NI	<u> </u>	1/4 of Section 19	121	N,R 12W	R Cou	Long hty Code			own/Cit	y/ or V	Fee Village	et 🗌	S		Feet	
	falo C	ounty				06					dere							
San	Ť	ω υ	Feet										Ē	Soil	Proper	ties T	1	-
	с Н Н	Counts		5011/.	Rock Desc								Standard Penetration	۵				10
C.	r Å		н Н С	And G	eologic Or	-					am	E.	tra	ut a		t ic		ut:
Number	Length (I Recovered	Blow	Depth	E	ch Major	Unit		c,			Well Diagram	PID/FID	tan ene	Moisture Content	Ligu	a i	200	Comments
Ž	75	<u> </u>			<u></u>			=			ΔĒ	<u>```</u>	ပ်ရှိ	žŭ	<u> </u>		<u> </u>	<u> ŭ</u>
																1		
									į									
1 7	18	11		CII TV CAN	D (CM) 54	507 mores fin	~	SM						м				
	10	11	<u> </u>	sand, 45%			e	SIV						M				SS
14				yellowish b	rown, loos	se, (Fluvial)).	Ì										
			E-8 E-9															
- <i>77</i>			Ē_10															
2	8	26 100/5	10 11 11	POORLY G				GP GP		0.0								ss
<u> </u>						ar Dolomite oarse sand,	•			000								
				2.5Y 5/3 li					• D 1	$\square 1$								
77				dense.					8	0								
3	2	50/2"	E-16	As above, (fl	uvial).				• Þ '	$\square 1$								SS
			E-17						ŏ	0	·							
			12 13 14 15 16 17 18 19 20 21 22 23 24 24 25						þ									
				SILTY SAN (SM), 60-8						: : : : : : :							1	
4 7	14	78		sand, most	y fine, 20°	% silt,												ss
			E-22	10-20% gra yellowish b														
			E-23	(fluvial).		, ,									ļ		1	
			24	POORLY G	RADED G	RAVEL			댕	ينية. الم								
hereb	y certify			mation on this form	is true and c	correct to the h	est of	my knov	vledge	e.			<u> </u>	L	I	<u> </u>		
Signatu								Firm		MT								
	De	uil	в.	lerd					74	4 Hea			fadison					
							1		16	1: 009	0-031-44	144 , Fa	x: 608-	221-223	94			

Boring	Numb	er	B65	Use only as an attachment to Form 440	0-122.						Page	2	of	3
Sam			Feet							Soil	Properti	es		()
	(LI) g	Counts		Soil/Rock Description					<u>.</u>					
	1		日	And Geologic Origin For	S	U	E	8	at d	ri t	-	<u>u</u>		1ts
0er	at a		-	Each Major Unit	ပ	Гд Д	- Ľ	Ē	eta	ter ter	i, t	ا حد حد	200	la E
	Length (I Recovered	Blow	Depth		n s	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moistur Content	Liquid Limit	Plas ¹ Limi	ע רע	ss Comments
5 Number	9		E	(GP), 90% fine angular gravel,	GP									ss
		50/5	26	10% fine to coarse sand, 2.5Y		D CD	4							
			27	5/3 olive brown, dense.		0,0								
			E 20			DD'	\$							
			<u>-29</u>			စို့စိ								-
6	5	50/5"	25 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50			DD'	4			1				ss
		}		As above, auger refusal at		စို့စို					2			
			E 32	31.0 feet, (fluvial).		20	4							
			1			စို့စိ								
_			11.34			b CD '	4						2	
7	0	50/1"	E-36		ļ	စို့စိ	1							SS
]	37		1	DD'	4	:						
		l	E-38			စိုးစိ	-							
			E_39	SILT (ML), 95% silt, 5% clay, 10YR 4/4 dark yellowish brown,			ļ							
_ 77			E-40	stiff to very stiff, (Loess,										66
8	14	31	E-41	fluvial).	ML			ł	1				ĺ	SS
			4 2											
			E-43											No.4
			E-44					ļ				İ		
۰ <i>7</i> 7	13	17	E-45	SILT (ML) , as above, with 60-70%	ML					м				ss
۶ <i>۳</i>	15	17	E-46	silt, 30-40% clay, 5% sandstone									ł	
14			E-47	gravel, 10YR 4/4 dark yellowish				1			1			
			E-48	brown, stiff, (fluvial).										1
			E-49								· ·			
10 7	9.5	45	50									Ì		ss
10 🦷	-1.5		E-51	As above.										
14			E-52											
	l	ļ	E-53	POORLY GRADED GRAVEL	-	لك ع	ዛ			w	1			
			E-54	(GP), 95% fine angular gravel,		200								
11 7	4	16	E-55	5% fine to coarse sand, 10YR 4/4 dark yellowish brown,	GP	0,6							ļ	ss
11		55/5	56	medium dense to very dense,		20	4	·	1				Ì	
		1	E 57	(fluvial).		0,6		1		ļ				
			58			50	4			1				
			E 29			Ŏ Ċ	2							
12 7	14	78		SILTY SAND (SM), 80% fine to	SM		H			M				SS
				medium sand, 20% silt, 10YR 5/6 yellowish brown, dense to			į.							
		1	E	very dense.										
			64	Lost circulation at 63.0 feet.			Ì	1			1			
77		ĺ	E-65									1	1	
13	3	50/4"	51 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66	As above (weathered sandstone).		開閉	ij 1							SS
	1	1	F	l		1144	'']	<u> </u>						

State of Wisconsin Department of Natural Resources

,	Boring	Numb	er	B65	Use only as an attachment to Form 440	0 -122 .						Page	3	of 3	
(Sam	Length (In) ^{dd} Recovered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	u s c s	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Limit Limit	Plastic Limit	P 200	Comments
	14		50/2"	-67 -68 -69 -70 -71 -72	As above, some gravel zones. End of boring at 72.0 feet.									S	S
\bigcirc															
Õ															

		of Wisc tment o		al Resou		e To: blid Waste mergency Respons 'astewater	е 🗆 t П 1	Haz. Wast Undergrou Water Reso	nd Tanks				Soil Bo Form 44		.og Inf		7-91
\bigcirc	Facility	-			1 00					onitoring	Numb	er		Pag Numbe		of	2
×.,		-		er 308	and name of crew c	hief)		Date Dri	927	ted	Date	Drillin	B6		Drillin	g Meth	
	-		-		w Chief: Eric Sh				/31/95		Paul	10/31			4 1/4	-	
	DNR F	acility	Well N	w	I Unique Well No.	Common Well	Name	Final Sta		Level	Surf	ace Elev		lp	orehole		
										et MSL	1	91.0					Inches
	Boring State F			71532.	00 N, 1477014.	00 E		Lat	0,	n	Loca	al Grid I	_		licable)		
	NE		of NI		4 of Section 19	T 21 N,R 1	2W	Long	0,	11		Fee		N S	I	Feet	⊔ e □ w
	County Buff		ounty	,			DNR Cou 06	unty Code		Fown/Cit idere	y/ or V	llage					
	Sam					······································							Soil	Proper	ies		
		(H)	Counts	Feet	Soil/Ro	ck Description						io					
	Ļ	L L D D D	Cou	H	And Geo	ogic Origin Fo		S	U.	E	Ħ	ard rat	a te	σ	U.		nts
	Number	Length (I Recovered	Blow	Depth	Each	Major Unit		U S C	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plast Limit	P 200	Comments
					TOPSOIL, (silt).											<u> </u>
\bigcirc	1	24	14	1 1 2 3 4 5 6 7 8 9 10 11	10% silt, 10Y	DED SAND (m, 5% fine gra (R 6/8 brownis 1m dense, (fluv	vel, h	SP					М				SS
	2	1	30		As above, but	~ 15% gravel.											SS
	3	6	20 50/4"	15 16 17 18	As above.												SS
	4	22	19	13 14 15 16 17 18 19 20 21 22 23 24 24 25		m, 5% fine gra 6/8 reddish yel	vel,	SP					м				SS
			that th	e inforn	nation on this form is	true and correct to		·	-								
$\left(\right)$	Signatuı		mil	Q. E	-le			Firm		eartiand 7)8-831-44							
	\$10 nor	more t	han \$5	,000 for	apters 144, 147 and 1 each violation. Fine and violation is a separate	d not less than \$10) or more th	han \$100 c	r impriso	ned not l	ess tha						

.

Boring	g Numbe	er	B66	Use only as an attachment to Form 440	0-122.						Page		of	2
Sam	2	t s	Feet	Sail/Deals Description					Б	Soil	Propert	ies		
¢.		Coun	Ч	Soil/Rock Description And Geologic Origin For	S	<u>.</u>	E		ard	a te	т	ic.		ts
umbei	Length (I Recovered	Blow Counts	Depth	Each Major Unit	ບ ຮ	<u>Graphic</u> Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plast Limit	200	SS Comments
^c Number	12	_			<u> </u>		30		S C	Σΰ			<u> </u>	ss
			27	As above.										
			28 											
6	20	27	30											ss
			31	As above.										
			-33 -34											
7 7	18	28	35											ss
7			26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	WEATHERED SANDSTONE, fine to medium, 25% silt, 5Y 4/3 olive, medium dense, (weathered	SS					w				
			38 	sandstone).										
8	20	34	40											ss
			= 41 = 42	As above. End of boring at 42.0 feet.										
								- -						
•														
												1		Į
				· ·			L							

		of Wisc tment o		al Resou	🗆 Em	id Waste	Response	□ u □ w	laz. Wa Indergro Vater Re	ound					oil Bo orm 44		og Info	ormati of 2	7-91
Fa	cility	/Projec	t Name	;							rmit/Mo	nitoring	Numb	er		Numbe		01 2	
		-		er 308							927		-	D ''''	B67		D 111	<u></u>	<u> </u>
					e and name of crew ch w Chief: Eric Sho		,				ng Starte	d	Date	Drilling		leted	Drilling		
	DUA		igj cu	., 010		CHOCLE	•		1	.0/3	1/95			10/31	/95		4 1/4	" HSA	L
D	NR F	acility	Well N	o. W	I Unique Well No.	Comn	non Well Nam	ne	Final S	Static	Water I Feet	Level MSL		ace Elev 07.5		1	orehole	Diamete 8.0 Ir	
		Locatio		11760	00 N 1477518 0	0 F			La	at .	0 9 11		Loca	l Grid I			licable)		~
	iate F IE	Plane	of NH		00 N, 1477518.0 4 of Section 19		N,R 12W	,	Lon		0 7 11			Fee	_	N S	F	L Feet [」E] w
_	ounty			5 17	4 01 Section 19	1 41			inty Cod	•	Civil Te	own/Cit	y/ or V						
			ounty				. 06				Belvi	dere							
	Sam			Feet											Soil	Propert	ies		
		g (I	Counts	1	Soil/Roo	k Desc	ription							i on					
	,	ر م		L L	And Geole					თ	U	Ę	읍	ard	ture	ъ	<u>u</u>		1ts
	Ъе Г	1 <u>4</u> 8	3	Ę	Each	Major	Unit			ပ 	<u>д</u>	 agram	PID/FID	e ti	stur: Itent	auid mit	ast mit	200	ia mei
	Number	Length (In Recovered	Blow	Depth						ດ ກ	Graphic Log	Dia	PIG	Standard Penetrati	Mois [.] Conte		L ia E ia	с 4	Comments
				_	TOPSOIL, (silt)	•													
				1 2 3 4 5 6 7 8 9 10	SILTY SAND (7.5YR brown,			,							М				
				4	(Lacustrine).														
	1 7	16	16	E-5					s	SM									ss
···· \	1 7 //																		
				1117 1118 19	POORLY GRA										м				
	. 77			E-10	GRAVEL (SP 6/6 yellowish			•			0.0.0								
	2 1	14	26	E-11	dense, (fluvial					SP	0.0.								SS
				E-12							0.0.0								
				13							0.0								
				<u>-</u> 14		•					0.000								
	3 7 <u>7</u>	NŔ	26	-15	NO RECOVER	V rock	in spoon				0.0								ss
•			20	12 13 14 15 16 17 18 19 20		., 1005	in spoon.				0 0 0.								
	12			E-17							0.0.								
				E-18							0.4.0								
				19							0.0								
4	↓ 🏹	6	25	E-20	As above.						0.00								ss
			50/2"								0.0								
	22			E ⁻²²							0.0								
				E-23							0.0								
											0.9.0								
Ih	ereby	/ certify	that th	<u>-25</u> μe infoπ	nation on this form is t	rue and	correct to the	best of	f mv kn	owle	dge.			1	L	I	1		I
	natu								Firm		RMT								
····		•	Dame	e 9.	bend						744 Hea Tel: 608								

This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

Boring	Numb	er	B67	Use only as an attachment to Form	n 4400-122.						Page		of 2	2
Sam	ple	10	Feet						c	Soil	Propert	ies		()
	Length (In) Recovered	Blow Counts		Soil/Rock Description					Standard Penetration	a				ហ
L	h ere	ы С	In	And Geologic Origin For	ວ ເ	j.	Well Diagram	1	tar	Moisture Content	₽_	÷ +	5	ent
mbe	ngt cov	S	Depth	Each Major Unit	S S	Graphic Log	agr	PID/FID	and	Moistur Content	Liquid Limit	Plas [.] Limi [.]	200	Ĕ
NUN	Re R	B	D D		<u> </u>	C al	٥Ĕ	6	54	ĔŬ		L P	٩.	ss Comments
2 Number	2	100/2"	26	As above.		. o o								55
14						0.0		_						
	1		E-28			р., о								
			27 28 29 30 31 31											
6	8	40		As above.						м	NP	NP	28.2	SS KV =
		50/3"	E-32											6.1X10-4
												1		
			- 34			0. 0. D.								
7 🏹	6	50/4"	35	As above.		à.o.o.								ss
7			36			. D								
			38			00								
•			E-39			Pa								
8 7	8	50/6"	33 34 35 36 37 38 39 40 41 42 43	As above.										ss
8			E-41			a. 0. 0	-							
-22]		42			0.0 D								
			E-44			0.00								
o 77		50/6"	45	As above.		. P. o								ss
9		50/6	E-46	AS above.		0.00								
			E-47			0.0								
			48 49 50 51 51 52											
77	-		E-50			0.000								50
10	2.4	100/5"	51											SS
14	1		E-52	End of boring at 52.0 feet.		<u>.</u>	-							
						·								

		of Wisco ment o		al Resou		id Waste			laz. W		. .				oil Bo orm 440	-	og Ini	iorma	ation 7-91	
						stewater	Response	<u>и</u> П	Vater I	round Resour	Tanks ces					-	•		2	
***~.]	Facility	/Projec	t Name							nse/Pe	rmit/Mo	nitoring	Numb	er	Boring	Page Numbe		of	2	
Ş	-			er 308	1.23						127				B68					_
]					e and name of crew ch				Date	Drilli	ng Starte	d	Date	Drillin	g Compl	eted	Drillin	-		
	Boai	rt Lor	ıgyear	, Crev	w Chief: Paul Dic	:KINSON				10/3	0/95			10/30	/95		4 1/4	" H S	SA	
Ī	ONR F	acility '	Well No). W	I Unique Well No.	Comm	on Well N	lame	Final	Static	Water I			ice Elev			orehole			_
7	Doring	Locatio							<u> </u>		Feet	MSL			Feet MS				Inches	
	State P			1572.	00 N, 1477353.0	0 E			1	Lat	0 9 11					N	,		Ε	
_	NE		of NE	, 1/4	4 of Section 19	т 21	N,R 12			ong	0 9 11			Fee	et 🗆	S		Feet	□ w	,
(County Buff		ounty					DNR Cou 06	inty C	ode	Civil To Belvi	own/Cir dere	y/ or V	illage		x.				
-	Sam														Soil	Properti	es		_	
-		ed (In)	Its	Feet	Soil/Rod	k Deer	rintion							io I						
		Length (In Recovered	Counts	E I	And Geol		-	• •		თ	υ	Ē	8	Standard Penetrat	Moisture Content	-	U		ts	
	ber	gth ove	3	1 1		Major	-			ပ ်	Graphic Log		PID/FID	inde letr	stu	Liquid Limit	last imit	200	Comment	
	Number	Rec	Blow	Depth						S N	Gral Log	Well Diagram	DId	Sta	Б С Г	Li i T	E Ia E Ia		L C C	•
-					POORLY GRA					SP	H				м					
				1 2 3 4 5 6 7 8 9 10 11 12	GRAVEL (SP 25% fine grav			ım,												
				<u> </u>	brown, (Fill).															
				E -4	SILT (ML), 5%			n							ļ					
	1	24	7	5	non-plastic, 7 with rust color					ML									ss	
~					(Loess, fluvia)	l).														
<u>,</u> /r	-1				qu = .50										м	24	22	96.	7 ST KV=	-
	L			<u> </u>	POORLY GRA	DED S	AND W	ĪTH -	1		 								1.1X	
	27	6	100/4"	10	GRAVEL (SP					SP	. D. a								ss	
	2		100/4	E-11	10% silt, 10Y brown, very d			.1		•-										
	- 112										0.0.0									
											0									
	77										0.000									
	3	6	100/6"	E-16	As above.														SS	
				17				t.			• • •									
											0.			 .						
				19																
	4 7	6	100/8"	20	As above.						0.00								ss	
				13 14 15 16 17 18 19 20 21 22 23 24																
				23							0.00									
				24							0.0.									
-			<u> </u>	-25				41 - 1			[*****	1						<u> </u>		
-	hereby Signatu		y that th	e infor	nation on this form is	true and	correct to		f my l Firm	knowle							• •			—
	- Billion		Da		. lend						RMT 744 He	artland '	Frail, N	Aadison	Wiscor	sin				
				~ 8					1		Tel: 60									

This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

)

Boring		er	B68	Use only as an attachment to Form	400-122.		I				Page		of	2
Sam	ple	l v	Feet						Ē	Soil	Propert	ies		
	Length (In) Recovered	Blow Counts		Soil/Rock Description			i		d tion	e				ົ
Ĺ	L L L	ខ	H	And Geologic Origin For	S	<u>.0</u>	Ē	H	בק	Moisture Content	+	ic	_	t
he	t o S	3	۲ ۲	Each Major Unit	ບ ຮ	Graphic Log	- Ige	PID/FID	and	Moistur Content	aci -	Plastic Limit	200	
NUN	Ъ м	BIG	Dep th	· · · ·	5	Graf Log	Well Diagram	ΡI	Standard Penetrati	βÖ	Liqui	Plas Limi	4	Comments
5 Number	8	100/6"	-26	As above.										SS
			27											
			28											
			29			· · · · ·								
677	6	100/6"	30 31 31	As above, but 10-15% silt.		0.0								ss
6		100/0	E-31											
14			E-32											
			E-33		1									
			<u>-</u> 34			0.0.								
ז זי	8	100/6"	35	As above.		·								ss
			36			0.00								
			E 38											
			E-39			P. o.	1							
. 77			F						1					ss
8	12	100/1'	40 41	As above.		D								00
			42											[
			E-43			· D								X
			E-44											
9 7/	8	100/6"	45	As above.		P	•	-						ss
9 <i>]</i> //			F											
11			47			0.0.0								
			48											
77			E_50			0.000								
10 🏹	10	100/12'	51						· ·					SS
<u> </u>			52			0.0.0	-	1						
11 7	12	100/12	50 50 51 52 53 53 54 55 55			 								ss
11			54	As above.		1. 8.								
14	1		55			0.0	2							
			56			° 6.								
			56 57 58			. 0 0	2			1				
							1							
			E-39			0.0								
12	10	100/8"		As above.										ss
			60 61 61 62			. o .o								
				End of boring at 62.0 feet.							1			
														1
-														
							1	ľ						
		1	1			1	I	1		1	1	1	1	1

)

	of Wisco tment o	onsin f Natur	al Reso	ources 🗵	oute To: Solid Waste Emergency Respo	onse	🗆 Ur	az. Wa ndergro	ound					oil Bo orm 44	oring L 00-122	.og Ini	form	ation 7-91
] Wastewater			'ater Ro ther	esour	ces					Page	e 1	of	3
Facility	//Projec	t Name							e/Pe	mit/Mo	nitoring	Numb	er	Boring	Numbe			
	-	l Powe								292				B1(
				ne and name of cre	w chief) ling, Crew Chi	of.				ng Starte	d	Date	Drilling	-	leted	Drillin	-	
	nk Ba		αru		ing, crew cin	C1.	r F	1	10/2	1/94			10/21	/94		HSA	2 1/	4"
DNR F	acility	Well No). V	VI Unique Well No	o. Common W	ell Name		Final S	Static	Water I	.evel		ace Elev			orehole		eter
	T									Feet	MSL		10.4 1 I Grid I			61	./4	Inches
Boring State F			1852	.00 N, 14773	17.00 E			L	at	0 , 11		Loca			N N	ncable)		Е
NE	1/4	of NE	; 1	/4 of Section 1	9 т 21 м, в	r 12W		Lor		0 > 11			Fee	_]	Feet	
County		ounty				DNR 06	R Coun	nty Co	de	Civil To Belvi		y/ or V	'illage					
Sam					<u></u>					Delvi				Soil	Propert	ies		1
	2	ţ	Feet	0.11									6					
	(In)	Counts	Ъ		Rock Description				S	υ	e	ρ	n t T T	<u>۳</u>		υ		ts
)er	Length (I Recovered				ach Major Unit		1	-	ບ ບ	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	rid tid	÷.+	200	Comments
Number	le co	Blow	Depth		j				ິ ກ	Graf Log	le l Di aș	Ĥ	star Pene	jo No	i au	P a	й А	L.
				FILL, SILT	Y SAND WITH	Ŧ			<u> </u>	m			011	20				+
1 🏹	10	25		GRAVEL	(SM), fine to co	oarse,								М				ss
					gravel, brown 7 im to very dense									N				
2 7	4	100/12																ss
		100/12	E_5															
277	4	1	E.z	Cobble in sp	000n.					фф М				М				ss
1 2) 3 // 4	4	100/6																
<u>7</u>				Easier drillin	ng at ~7.5'.									м				
4 1//	20	17	10															SS
14					2" layer, black. D WITH GRA			-/,	SM	7.77				М		1		
			\mathbb{E}_{12}^{11}		to coarse, 20%)											
			E-13		vel, 30% silt, b 2, medium dense													
				Fluvial.	, meatum acuse	~,				0.0.0						ł		
5 7	16	29							SM					м				ss
5			10 16 17 18 19 20 21							0.00								
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			17 - 18															
. 77										0.0		1					Ì	
6	4	100/14	-21											М				SS
11										0.00								
			23 															
			⊢							P. 4								
I hereb	y certif	y that th	<u>-25</u> e info	rmation on this for	m is true and correc	ct to the b	est of	my kr	iowle	dge.				I	<u> </u>	L		<u> </u>
Signatu	-			_				Firm		RMT				<u> </u>	<u> </u>		-	
Ì	Da	und	ଚ.	leid						744 He			Madison ax: 608-					
/ This fo	-				and 162, Wis. Stats	. Comple	etion o	of this								n		
\$10 not	r more	than \$5	,000 fa	or each violation.	Fined not less than	\$10 or m	ore that	an \$10	0 or	imprisoı	ned not	less tha						
violatio	n. Eac	h day o	f conti	nued violation is a	separate offense, p	oursuant to	o ss 14	44.99 a	and 1	62.06, V	NIS. Sta	ts.						

(

Boring	Numb	er	<b>B10</b>	3 Use only as an attachment to Form 44	00-122.		·				Page		of	3
Sam			Feet						<u>-</u>	Soil	Propert	ies		
	ed (J	Counts		Soil/Rock Description					D D					
		5	H	And Geologic Origin For	S	υ	E	e	 D t t	l t t	-	υ		te
ы Б	t h	U U		Each Major Unit	ບ 	<u>ب</u>		É	eta	ter t	i i d		200	l an
r mt	Length (I Recovered	Blow	Depth		S S S S S S S S S S S S S S S S S S S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Ligu	Plast Limit		Comments
- Number	<u></u> 222				<u> </u>		30	<u> </u>	01	M			٩	ss
' 1	4	100/8	26 27 28 29 30 31 31 32 33 33 34 35 36			.р.								
22			27			P. A O.				1				
		1	28			P. 0. 0					1			1
			E-29			· · · · · ·						:		
s 77	4	100/8	E-30			0.0				м				ss
8	-	100/0	<b>E</b> -31			• • •								
14			E-32			 . p								
			-33											
			<u>-</u> 34			0.0								
9 77	3	100/6	35			a				м				ss
9			E-36											
<u> </u>			E-37											
			E-38											
			39		_	hin								
10 🏹	10	9	E 40										•	ss
10 7			<b>E</b> -41	SILT (ML), 5% fine to medium	ML					м				$  \bigcirc$
-22			E-42	sand, nonplastic, brown 10YR										
		9 100/12	<b>4</b> 3	4/3, loose, (Loess).	1					Í		1		
			44		i	0.0	1							
11 🏹	6	100/12	45			0.0								SS
11			46	SILTY SAND WITH GRAVEL	SM	0.0				м			1	
			47	(SM), fine to coarse, 20% fine to coarse gravel, 30-35% silt, brown										
			48 49	7.5YR 5/2, very dense, Fluvial.										
<u>.</u>														
12 //	6	100/8				. 0. 0				M				SS
			E_57								1			
		1	1 50 51 52 53 54 55 56 57 58 59 60 61 61 62 63			0.0			1			1		
			E-54				1						1	
77			E-55			0.0					1		1.	ee.
13	6	100/15	56						1	м			ļ	SS
14			57					1				1		
			E-58								1			
			E-59			0.0								
77		100/0	E-60	Glauconitic.		. 40				w				SS
14 🏹	10	100/8	E61	Giaucomuc.		0.0	e			"				Ţ~
	1		<b>E</b> -62					1						
			E-63			. 7. 0		1			1			
			E-64				4							()
15 77	24	100/6	E65	Drilling becomes more difficult.	SM	0.0		1		w			1	ss
15	24	100/0	64 65 66	Drining becomes more uniteut.	0.41	0.40	3			1				<b>_</b>
	1	<u> </u>	<u> </u>				<u> </u>	<u> </u>			1			

,	Boring	Numbe	r	<b>B10</b>	Use only as an attachment to Form 4400	-122.						Page	3	of 3	}
( )	Sam		10	Feet	· · · · · · · · · · · · · · · · · · ·					c	Soil I	Propertie	es		
Х.,	Number	Length (In) Recovered	Blow Counts	Depth In Fe	Soil/Rock Description And Geologic Origin For Each Major Unit	s c s	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	200	Comments
	Nu	Re	<u>_</u>			D	5 7		2	ភ្ម	ĔŬ			<u> </u>	<u> </u>
				67	Sandstone bedrock at $\sim 67.0$ feet.										
					End of Boring at 67.0 feet.										
								1							
					·			:							
													·		
					, · · · · ·										-
$\bigcirc$															
										:					
															ļ
											1				
															ĺ
										ļ					
( )															
$\cup$															
															ļ

		of Wisc tment c		al Resou	Rout arces 🛛 S	e To: olid Waste	□ H	łaz. Wa	ste					oil Bo form 440		og In	form	ation 7-91
						mergency Response /astewater		Jndergro Vater Re										
-					······································			Other							Page		of	2
( )		-	ct Name 1 Pow	er 308	1.23			Licens		rmit/Mo 927	nitoring l	Numb	er	Boring W4		r		
					e and name of crew of			Date D	Drilli	ng Starte	d	Date	Drilling	g Comp	leted	Drillin	-	
		ironn ik Ba		& FU	Indation Drilling	g, crew chief.		1	0/1	9/94	-		10/19	/94		HSA	61/	'4''
	DNR F	acility	Well No	o. W	I Unique Well No.	Common Well	Name			Water I			ice Elev		-	orehole		
	Boring	Locatio	on					<u> </u>	87.	2 Feet				Feet MS .ocation	1	10 licable		Inches
	State P				00 N, 1476925.		<b>A</b> 117	La		0,11			-				<b>F</b> .	□ e □ w
	NE County		of NE	5 1/4	4 of Section 19	T 21 N,R 1	DNR Cou	Lon Inty Cod	<u> </u>		own/City	/ or V	Fee illage		5		Feet	
	Buff	'alo C	ounty				06			Belvi	dere							
	Sam	2	ν	Feet									5	Soil	Propert	es		-
		(II) éd	Counts	L L L		ock Description								e.				Ś
	د م	ver	ပိ	1		logic Origin Fo 1 Major Unit	r.		လ ပ	hic	лап	μ	idar itra	ent	+ <u>-</u>	+ :0	©	lent
	Number	Length (Ir Recovered	Blow	Depth					ິດ ∩	Graphic Log	Well Diagram	PID/FID	Standard Penetrat i	Moisture Content	а с а с ц	Plas Limi	200	Comments
•		-102		<b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b>	TOPSOIL.		<u></u>					<u>u</u>	υL	20			<u> </u>	
	1	8	4		SILT (ML), 3-	10% fine sand,		N	۸L					м				ss
					fine gravel, 1	0-15% lean clay, nonplastic, br												
	2	18	4	4	7.5YR 4/2, s	oft, (Loess,	• • • •							м				ss
				5	fluvial/lacust	rine).								-				
$\bigcirc$	3	24	7	6										м				ss
	4	16	100/12	<u> </u>	SILTY SAND	WITH GRAVE	<u>۲۲</u>	s	M					м				ss
					(SM), 25% g	ravel, fine to												
					yellow 10YR	25% silt, brown 6/6, very dense												
				E-13	Fluvial.	•												
				13 14 15 16														
	5 🏹	12	39	E-15		. •								м				ss
	5			16				s	M									
				E														
				18 19											5			
	6 🏹	12	100/12	20 21 22 23 23 24	Cobbles (5-109	%).								М				ss
	6			21 -22														
				E-23														
				E-24														
-	hereby	Certifi		_25	nation on this form is	true and correct to	the heat of	f mu lene	awle.	114114 dae	88 189						1	
-	Signatur		, uiat ui	o mom				Firm		RMT								,
( ⁻ )		Dar	niel	ଡ.	herd	·				744 Hea	urtiand Ti 3-831-444							
$\bigcup_{i=1}^{n}$	This for \$10 nor	m is au more f	thorized	d by Ch 000 for	apters 144, 147 and each violation. Fine	162, Wis. Stats. Co d not less than \$10	ompletion of or more the	of this re an \$100	epori ) or i	is mano mprison	latory. F	enalti ss that	es: For	feit not l	ess that	ach		· · · · · ·
	violation	n. Eac	h day of	f continu	ied violation is a sep	arate offense, pursu	ant to ss 1	44.99 at	nd 16	52.06, V	Vis. Stats	•						

.

Boring	Numbe	er	W4	2 Use only as an attachment to Form 440	00-122.	··					of 2	2
Sam Laquiny 7	Length (In) ^d Recovered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	8	Graphic Log Well	Diagram PID/FID	Standard Penetration	Moisture Content Light	mait mastic	P 200	ss Comments
8	8	100/8	26 27 28 29 30 31 32 33 34	4" silt lens at 31.3'.					м			SS SS
9 7	24	19	35 36 37 38 38	POORLY GRADED SAND (SP), fine to coarse, glauconitic, 5-10% silt, 5% clay, 5% fine gravel, olive 5Y 4/4, medium dense,	SP				м			SS
10 🎢	24	23	40 41 42 43	Fluvial.					М			ss
11	24	45	45 46 47 48	SILTY SAND WITH GRAVEL (SM), fine to coarse, 5% clay, reddish yellow 7.5YR, at ~46.7', Fluvial.	SM				М			SS
12	14	45	50 51 52 53 54 55 56	SILTY SAND (SM), fine to medium, 5% fine gravel, olive 5Y 4/4, very dense, wet at ~51.0', (Sandstone Fragments). End of Boring at 56 Ft.	SM				W			SS KH = 1.7X10 cm/sec

		of Wisc	onsin f Natura	1 Dec	Route '	To: id Waste		łaz. Waste	_					oil Bo orm 44		.og In	form	ation 7-91
	Depar	iment o	r Natura	a Res	<u> </u>	ergency Response	_	iaz. wasu Jndergrou		anks			F	01111 444	00-122			7-91
						stewater	🗆 V	Vater Reso	ource	es					Pag	e 1	of	3
	Facility	/Projec	t Name					License/	Реп	nit/Mon	itoring 1	Numbe	er	Boring	-		01	
i	Dair	yland	l Powe	er 30						127				<b>W1</b>				
					ne and name of crew ch			Date Dri	-	-	1	Date	Drilling	g Comp	leted	Drilli		
		ironn 1k Ba		¢Г Г	oundation Drilling,	Clew Chief.		10	/24	/94			10/24	/94		HSA	41	/4"
	DNR F	acility	Well No	). ľ	WI Unique Well No.	Common Well	Name	Final Sta					ice Elev			orehol		
	Dening	Locatio						72	9.1	Feet	MSL		02.2			licable		Inches
	State F			1345	5.00 N, 1477166.0	0 E		Lat		0 9 11					N		,	□е
_	NE	1/4	of NE	; 1	1/4 of Section 19	T 21 N,R 1		Long		0 9 11			Fee	et 🗌	S		Feet	□ w
	County Ruff		ounty				DNR Cou 06	inty Code		Civil To <b>Belvic</b>	wn/City <b>ler</b> e	/ or V	illage					
•	Sam													Soil	Proper	ties	`	
-		(Hn)	its	Feet	Soil/Roc	k Description							Standard Penetration					
		0.0	Counts	្រុ		ogic Origin Fo		<b>0</b>		U	E	8	at	å t	σ	U		stc
	Number	9th Sve		Ę	Each	Major Unit				Graphic Log	Well Diagram	PID/FID	and in the	ist.	au io	ast +:	200	Comments
	NLM	Length (I Recovered	Blow	Depth				S I	,	Grai Log	Wel Diag	PIC	Sta Per	Moisture Content	L L E E	Plast I imit		. <u>5</u>
•					TOPSOIL, silt.				2112									
		12	17	Induction of the second	FILL, SILT (M					$\overline{\Delta}$				D				SS
	<u>″</u>			<u>-</u> 3	coarse sand, 3 nonplastic, bro				R	$\mathfrak{m}$								
	2 //	18	9	<b>E-4</b>	medium stiff.		-,		K					D				SS
					FILL, as above wood fragmen		in		F									
$\mathbf{}$	3 7	6	16		matrix.	is, oners with			È	$\dot{\Omega}$				М				ss
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				SILTY SAND V			SM	1									
	4 7/	4	100/14	<b>E</b> -9	(SM), 20% fir 20% silt, brov				Ę					м				SS
			100/14	E-10	ب بنه منه ا	lense-very den												
	•			E-11		rine.												
									ŀ					1				
	s 77	4	100/12	13 14 15 16 17 18				SN	,									ss
	° //	4	100/12	E-16										м				
	11			E-17														
	. 77		1	E-20					ļ									
	6 1	4	100/14	E-21										M				SS
	<u>'//</u>			E-22										1				
				23														
				24					ŀ									
-	l hereb	y certif	y that th		prmation on this form is t	true and correct to	o the best o	of my know	wled	lge.	1		.L	L	<u> </u>	<u> </u>		<u> </u>
-	Signatu		-		<u>.</u>			Firm		RMT								
1			Dan	al	7. ler						rtland T -831-44							
) <del>.</del>	This fo	rm is a	uthorize	d hv é	Chapters 144 147 and 1	62. Wis. Stats C	Completion	of this re-								un .		
					Chapters 144, 147 and 1 or each violation. Fined													

(

Ć

\$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or bot violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

.

Boring		er	W1(	Use only as an attachment to Form 4400-	.122.				Soil	Page Propertie		of 3	
Sam John Sam	ength (In) Recovered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	S C S N	Graphic Log Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	( )
7	4	100/6	-26	5% cobbles.					м				SS
8	10	100/6	E 32	Cobble layer from ~31'-35'.	,				М				SS
9 7	12	100/10	-37 38						М				SS
10 🏹	6	100/10	40 41 41 42 43		SM				м				ss
11	10	100/12	44 45 46 47	Drilling becomes much easier at 47.0' - 49.5'.					м				SS
12	4	100/10	11 40 41 42 43 44 45 46 47 48 49 50 51 52 53 55 56 57 58 9 60 61 62 63 64 65 66 66 66 66	Less sand.		الم			М			•	SS
13	6	100/5	54 55 56 57 58						М				SS
14	8	100/12	59 60 61 62 63		1				м				SS
15	14	100/12	64 65 66	SILTY SAND (SM), fine to medium, 10% clay, olive 5Y 4/4, very dense, wet (Glauconitic), two 1" thick silt lenses at 66.5'	SM SM				w w	20	18	18.5	ss

	Boring	g Numbe	er	<b>W1</b>	Use only as an attachment to Form 440	0-122.						Page	3	of	3
$\bigcap$	San	nple		Feet						~	Soil	Propert	ies		
X.,	/	Length (In) Recovered	Counts		Soil/Rock Description					Standard Penetration	<b>a</b> 1				
	Ĺ	h ere	Cou	h	And Geologic Origin For	S	U 	Ē	E	ard rat	nt n	σ	U U		nts
	Number	191 201	- 70	Depth	Each Major Unit	ບ ຮ	Graphic Log	Well Diagram	PID/FID	and	Moisture Content	Liquid Limit	ast mit	200	KH= Comments
	Nun	Rec	Blow	Dep			Grar Log	Me I Dia	PIC	St∈ Per	С Ч	Liqu Limi	Plas Limi	L L	U C C
				67 68 69 -70	and 66.3', (Weathered Sandstone).									<u></u>	КН =
				68											1X10 cm/sec
				<b>69</b>			開始								
				-70	End of Boring at 70 Ft.										
					• • • • •										
	•														
ومعمو															
	) -					1									
×	/														
											•				
f.						,									
C	,														
-												l			1

Image and the			of Wisco tment of		al Re	source		Waste	Пн							oil Bo orm 44(	ring L )0-122	og In	form	ation 7-91
Builty Project Nume     Boring Data       Dairy Jand Power 3081.23     2-27       Dairy Jand Power 3081.23     2-27       Boring Data by Clim name and name of crew Chief?     Date Drilling Standt       Date Drilling Standt     Date Drilling Completed       Dirity Jand Power 3081.23     Date Drilling Standt       Date Drilling Standt     Date Drilling Completed     Drilling Method       DIR Facility Well No.     W1 Unique Well No.     Common Well Name       Boring Lacition     State Plane     State Plane       State Plane     1/4 of NE 1/4 of Section 19 T 21 NR 12W     Date 0 **       NE L Ad of NE 1/4 of Section 19 T 21 NR 12W     Date 0 **     Date 0 **       Soutifato County     Diff County     Diff County     Soutifato County       Boring Lacition     And Geologic Origin For     Soil/Rock Description     Soil Properies       Soutifato County     Diff or sample descriptions.     Soil / T So ANNDY SLT.     Soil / T So ANNDY SLT.       1 3     50:.1     7     Soil / T So ANNDY SLT.     Soil / T So ANNDY SLT.       2 4     6     500 // Y doiley. every dense.     Soil / T So ANDY SLT.       3 50:.1     7     5     4     5       4 5     8 above.     Soil / So ANDY SLT.     Soil / So ANDY SLT.       5 7     9     As above.     Soil / So An								• • •	🗆 V	Vater	-						Page	1	of	2
Daring Drilled by (Firm mane and name of row clair)     Dar. Drilling Stantal     Dar. Drilling Completed     Drilling Kethod       Bornar Longycar, Crew Chief: Randy Radke     10/23/95     10/27/95     41/4" HSA/MR       DNR Facility Well No.     Wil Unique Well No.     Common Well Name     Final State Kare     State Flam     <		-	-			)81.2	3		0				-	Numbe	r		Number			
DNR Facility Well No.       WI Unique Well No.       Common Well Name       Faul Suici Wire Level       Surface Elevation       Borthole Dumeter         Borting Location       Sinth Well No.       Common Well Name       Faul Suici Wire Level       Surface Elevation       Borthole Dumeter         Borting Location       Sinth Well No.       11357.00 N, 1477172.00 E       Lat       0'''       Local Grid Location (Ut applicable)         Sinth No.       140 of NE       140 of Section       19 T 21 N, R 12W       Local Grid Location (Ut applicable)       E         Sinth No.       Buffalo County       06       EWI Grow (Ut applicable)       Fet       Soil Properties         Sinth No.       Soil/Rock Description       And Geologic Origin For       E       E       E         Sinth No.       Soil/Rock Descriptions.       Soil/Rock Descriptions.       Soil/Rock Descriptions.       Soil/Rock Descriptions.       Soil/Rock Descriptions.         1 20 3       30/.1       Fro       Bilind drilled to 70.0 feet. See log of W100 for sample descriptions.       Soil/Well Soil Soil Properties       Soil/Soil Soil Soil Properties         2 20 6       Soils - Fro       Sill/Y SAND TO SANDY SILT       Soil/Moli, Net and 10% clay, Sill Soil Soil Soil Soil Soil Soil Soil	•	Boring	Drilled	By (Fi	rm na	me an	d name of crew chie			Dat				Date	Drilling	Comp	leted	Drilliı	ng Me	thod
Total product in the last of the la		Boa	rt Lon	igyeai	r, Cı	rew C	Chief: Randy Ra	ıdke										L		
Bing Lostion State Plane       171357.00 N, 1477172.00 E Long       Lat       0 ***       Local Grid Location (if applicable)         State Plane       171357.00 N, 1477172.00 E NE       Local Grid Location (if applicable)       E       E         State Plane       1/4 of Section       19       T 21       N.R 12W       Construction       Feet       N       Feet <t< td=""><td></td><td>DNR F</td><td>acility V</td><td>Well N</td><td>0.</td><td>WI Uı</td><td>nique Well No.</td><td>Common Well 1</td><td>Name</td><td>Fina</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>orehole</td><td></td><td></td></t<>		DNR F	acility V	Well N	0.	WI Uı	nique Well No.	Common Well 1	Name	Fina							1	orehole		
Sind Fraile       Isor NE       14 of Section       19       T 21       N.R       1200       County       DNR County       Oc       Feet       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N	•			n				<u> </u>		<u> </u>						ocation	(If app	icable		
County       DNR County       Crit Town/Cley or Vilage         Sample									2W	I		0,11			Fee				Feet	
Sample       Soil/Rock Description         a       a       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b <td< td=""><td></td><td>County</td><td></td><td></td><td></td><td>11-1 01</td><td></td><td></td><td>DNR Cou</td><td></td><td></td><td></td><td></td><td>/ or V</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		County				11-1 01			DNR Cou					/ or V						
u       Bind Geologic Origin For Each Major Unit         1       3       50/1       Fin Each Major Unit       origin For Each Major Unit       origin For Each Major Unit       origin For Each Major Unit       origin For Each Major Unit         1       3       50/1       Fin Fin       Blind drilled to 70.0 feet. See log of W100 for sample descriptions.       fin SHLTY SAND TO SANDY SULT (SM-ML), fine sand, 10% clay, SY 144 olive, very dense, (glauconitic), (weathered sandstone).       fin Fin Fin Fin Fin       fin Fin Fin       fin Fin Fin       fin Fin Fin Fin       fin Fin Fin <fin Fin       fin Fin Fin Fin       fin Fin Fin Fin       fin Fin Fin Fin       fin Fin Fin Fin       fin Fin Fin Fin       fin Fin Fin       fin Fin Fin Fin       fin Fin Fin       fin Fin Fin       fin Fin Fin       fin Fin       fin Fin Fin       <td< td=""><td></td><td></td><td></td><td>ounty</td><td></td><td></td><td></td><td></td><td>00</td><td></td><td></td><td>Delvio</td><td></td><td></td><td></td><td>Soil</td><td>Properti</td><td>es</td><td></td><td></td></td<></fin 				ounty					00			Delvio				Soil	Properti	es		
u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u			<u>2</u>	Its	1		Soil/Rock	Description							ion					
1       3       50/.1       Fragment       Bind drilled to 70.0 feet. See log of W100 for sample descriptions.       SM-ML       SM-ML       SS         2       6       50/.5       SILTY SAND TO SANDY SILT (SM-ML), fine sand, 10% clay, 5Y 4/4 olive, very dense, (glauconitic), (weathered sandstone).       S       S         2       6       50/.5       80 80 81 82       As above.       S       S         2       6       50/.5       80 84 85 86 87 99 99       As above.       S       S         1       18       100/17**********************************				, JOC				-	r .			U.	Ē		ard rat	ure nte	σ	i U		nts
1       3       50/.1       Fragment       Bind drilled to 70.0 feet. See log of W100 for sample descriptions.       SM-ML       SM-ML       SS         2       6       50/.5       SILTY SAND TO SANDY SILT (SM-ML), fine sand, 10% clay, 5Y 4/4 olive, very dense, (glauconitic), (weathered sandstone).       S       S         2       6       50/.5       80 80 81 82       As above.       S       S         2       6       50/.5       80 84 85 86 87 99 99       As above.       S       S         1       18       100/17**********************************		nber	19 20 20	S S	l f		Each N	lajor Unit				aph g	agn	ШÀ	and	ist nte	로트	n e	200	e e
1       3       50.1       7.1       Bind drilled to 70.0 treet. See log of WIOD for sample descriptions.       SM-ML 1.1       SM-ML 2.1       SM-ML 2.		NUI	л М Г	B		3						د ئ	ч с с Е	Ы	to a	£₿			il e	<u> </u>
2       6       50/5*       SILTY SAND TO SANDY SILT (SM-ML), fine sand, 10% clay, 5Y 4/4 olive, very dense, (glauconitic), (weathered sandstone).       1         2       6       50/5*       82         76       77       78         77       78       80         80       84       85         84       86       84         86       87       88         84       86       87         93       18       00/17*       92         94       As above.       83         18       00/17*       92         93       18       00/17*       92         94       As above.       83         1       18       00/17*       92         93       As above.       83         10       94       As above.         10       18       00/17*       92         93       18       00/17*       92       93         10       18       00/17*       92       93         11       18       00/17*       92       93         12       18       00/17*       93       18         100       193		1 77	3	50/.1	1		Blind drilled to 7	0.0 feet. See	log	ſ	M-ML									ss
2     6     50/5*     82       8     88       8     88       8     89       3     18     00/17*       93     18       1     hereby certify that the information on this form is true and correct to the best of my knowledge.       Signature     Firm       Puril 6.     E.C.       This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penaltics: Forfeit not less than		. //				1														
2     6     50/5*     82       8     88       8     88       8     89       3     18     00/17*       93     18       1     hereby certify that the information on this form is true and correct to the best of my knowledge.       Signature     Firm       Puril 6.     E.C.       This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penaltics: Forfeit not less than						2 2														
2     6     50/5*     82     As above.       2     6     50/5*     82     As above.       3     18     00/17*     92       93     18     00/17*     92       93     18     00/17*     92       1 hereby certify that the information on this form is true and correct to the best of my knowledge.     SS       Signature     Firm     RMT       744     Heartland Trail, Madison Wisconsin       This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penaltics: Forfeit not less than					Ę-7	4	5Y 4/4 olive, v	ery dense,												
2     6     50/5*     81 83 84 85 88 88 88 88 89 99 90 18     As above.     55       3     18     100/17*     92 93 94     As above.     55       1 hereby certify that the information on this form is true and correct to the best of my knowledge.     55       Signature     Firm 74 Heartland Trail, Madison Wisconsin 744 Heartland Trail, Madison Wisconsin 71 tei: 608-831-4444, Fax: 608-831-3334       This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penaltics: Forfeit not less than					E-7	5		weathered												
2       6       50/5"       82       As above.       55         3       84       85       84       85       86         3       18       100/17"       91       As above.       55         1 hereby certify that the information on this form is true and correct to the best of my knowledge.       55       55         Signature       Firm       RMT       744 Hearland Trail, Madison Wisconsin       Tel: 608-831-43344         This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than       Formation of this report is mandatory.       Penalties: Forfeit not less than	/				- E - E															
2       6       50/5"       82       As above.       55         3       84       85       84       85       86         3       18       100/17"       91       As above.       55         1 hereby certify that the information on this form is true and correct to the best of my knowledge.       55       55         Signature       Firm       RMT       744 Hearland Trail, Madison Wisconsin       Tel: 608-831-43344         This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than       Formation of this report is mandatory.       Penalties: Forfeit not less than					E,															
2       6       50/5"       82       As above.       55         3       84       85       84       85       6         3       18       100/17"       -91       As above.       55         1 hereby certify that the information on this form is true and correct to the best of my knowledge.       55         Signature       Firm       RMT         744 Hearland Trail, Madison Wisconsin       Tel: 608-831-4334         This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than					Ë-7															
2       6       50/5"       82       As above.       55         3       84       85       86       87       88         3       18       100/17"       -91       As above.       55         1 hereby certify that the information on this form is true and correct to the best of my knowledge.       55       55         Signature       Firm       RMT       744 Heartland Trail, Madison Wisconsin       Tel: 608-831-43344         This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than       Formation of this report is mandatory.       Penalties: Forfeit not less than					<b>E</b> 8	0							Ţ							
3 18       00/17"       92         93       93       As above.         1 hereby certify that the information on this form is true and correct to the best of my knowledge.       SS         Signature       Firm       RMT         744 Heartland Trail, Madison Wisconsin Tel: 608-831-4444, Fax: 608-831-3334       Firm         This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than		2 7	6	50/5"			As above.													ss
Image: Signature       Firm       RMT         This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than       Firm																				
Image: Signature       Firm       RMT         This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than       Firm								•												
Image: Signature       Firm       RMT         This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than       Firm					8															
Image: Signature       Firm       RMT         This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than       Firm					<b>E</b> -8	6							* *							
Image: Point of the set																				
Image: Point of the set																1			Ì	
Image: Point of the set					E,															
Image: Point of the set		- <i>7</i> /	10	00/17	,E-9		As above													ss
I hereby certify that the information on this form is true and correct to the best of my knowledge.         Signature         Firm       RMT         This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than		° //	18	100/17	<b>E</b> -9		13 0000.											1		
I hereby certify that the information on this form is true and correct to the best of my knowledge.         Signature       Firm       RMT         Daniel D. level       744 Heartland Trail, Madison Wisconsin         This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than					F											,				
Signature       Firm       RMT         Daniel D. level       744 Heartland Trail, Madison Wisconsin         This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than		I hereb	v certif	y that t			ion on this form is tr	ue and correct to	the best of	of my	knowle	dge.	<u> </u>		<u> </u>			<u> </u>		
This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than												RMT							. <u></u>	
This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than	Ì		Da	nie	۵.	le.	l													
		This fo	orm is a	uthoriz	ed by	Chap	ters 144, 147 and 16	2, Wis. Stats. C	Completion	of th	is repor	rt is man	datory.	Penal	ties: For	rfeit not	less tha	n		

violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

(

Ć

Boring	g Numb	er	W1(	Use only as an attachment to Form 440	0-122.	,			·		Page		of 2	
San	Length (In) alu Recovered		Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	N S C S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Limit Limit Limit	Plastic Limit	P 200	Comments )
4	12	100/10"	95 96 97 98 99 99 100 101 102 103 104 105 106 107 108 109 110 110 110 110 110 110 110 110 110	As above. SANDSTONE, fine grained glauconitic with interbedded silt lenses, soft, friable, and poorly cemented. End of boring at 121.0 feet.										KH = 2.5X10-5 cm/sec

		of Wisco tment o	onsin f Naturi	al Reso		d Waste	_		z. Waste	<b>.</b>				oil Bo orm 44		og Ini	orma	tion 7-91
					□ Eme	rgency Resp tewater	_		derground ter Resour									
								] Ot	ner						Page		of	4
~~~~		-	t Name Powe		81.23			1	License/Pe	rmit/Mo <b>927</b>	nitoring	_		<b>W1</b>		r		
					ne and name of crew chie			I	Date Drilli	ng Starte	ed	Date	Drilling	g Comp	leted	Drillin	g Meti	nod
		ironm 1k Ba			oundation Drilling,					5/94			10/25			HSA		
	DNR F	acility	Well No). V	VI Unique Well No.	Common V	Well Name	I	Final Static 813.	Water I		92	ace Elev 23.2	Feet MS	SL 6	orehole	4	eter Inches
	Boring State P			2655	.00 N, 1477721.00) E			Lat	0,1		Loca	l Grid I	ocation.		licable)		ПЕ
	NE	1/4	of NE		/4 of Section 19	т 21 м	,R 12W		Long	0,11			Fee				Feet	Ξw
	County Buff		ounty				DNR 06	Coun	ty Code	Civil T Belvi	own/Cit dere	y/ or V	ïllage					
	Sam	ple		Feet										Soil	Propert	ies		_
		(i Li Da	Counts	Ŭ L L	Soil/Rock	k Descript	ion						l e					
		. a	Ino	H	And Geolo	-			ဟ	υ	Ę	8	at d	at e		υ		ts
	ber	gth ove	3	÷		Major Uni			ု ပ	hq	– E	É	e ta	sture	± E	:+:	200	je L
	Number	Length (Ir Recovered	Blow	Depth					S N	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plast Limit	L N L	Comments
				1 2 3 4 5 6 7 8	POORLY GRAD													
		12	20	<u> </u>	medium to very	dense, (v	with		SP					м			ŀ	SS
				<u>-</u> 3	sandstone fragr	nents), Flu	uvial.											
	1 2	14	8	E -4	Grades to yellow	10YR 7/0	6.							м				ss
·····	3	16	11															ss
Sine?					Rust colored mot interbedded wit									м				
	4 7		00/12"		brownish yello		now and											ss
	4																	
				10 11 12										м				
				E-12	·										1			
				E-13														
				E-14														
	5 🏹	18	24											м				ss
	5								SP									
				17														
				E-19														
	. 77		00/14	E-20	Very fine silty sa	ndet 0	1.07							м				00
	6		100/14	-21	very fine sitty sa	$a_{1} \sim 2$	1.0 .							IVI				SS
				E-22														
			24 100/14"	23							▋▋							
				H														
-	[hereby	certify	that th	<u>= 25</u> e info	mation on this form is tr	ue and corre	ect to the be	st of r	ny knowle				I	L	11		<u> </u>	
	Signatu	-								RMT								
		2	mie	2 0	· leio					744 He	artland 7	rail, N	ladison	Wiscon	sin			

Tel: 608-831-4444, Fax: 608-831-3334

This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

Boring	Numb	ег	W1	01 Use only as an attachment to Form 44	100-122.						Page		of	4
Sam			Feet						- c	Soil	Properti	es I		$ \bigcirc$
Ĺ	Length (In) Recovered	Counts	H	Soil/Rock Description And Geologic Origin For Each Major Unit	s C	hic	 agram	PID/FID	Standard Penetration	Moisture Content	uid t	stic t	200	sa Comments
qunN	Leng Reco	Blow	Depth	Lacii Major Omit	s n	Graphic Log	Well Diag	ÛId	Star Pene		Liqu Limi	Plast Limit	Р 20	Com
2 Number	8	100/6"	26	More cemented, yellow 10YR 7.8 very dense, 20% silt.						М				SS
		100/4"	28											ss
8			29 	DOLOMITE , bedrock, highly weathered and fractured, brown										Grab
 ₩			28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	7.5YR 5/2, fractures/voids filled with silt and sand.										Grab
10 ♥ ₩			33			77								Giao
Ψ Ψ			35											
业 11 ^型			36			77								Grab
Ψ.			38			Z								
ት ም			40			4								
·Ψ			42											
12	6	100/6"	F											SS
13 [∰] ₩			45	Rock becomes more competent at $\sim 46^{\circ}$.								-		Grab
¥ 14	-		47			7								Grab
بي. پيد			48 49 50	Erecture rope at 48.0' 50.0'										
¥. ب	•		51	Fracture zone at ~48.0' - 50.0' (loose air circulation).		Ź								
4 74 4			53											Grab
۔ پ			55				-							
4			57											
15 7		100/2"	58			×								ss
15			51 52 53 54 55 56 57 58 59 60 61 62 63 64			4								
			62			77								
Т Ф	·													Grab
17 🖑	- -		65 11-65			Ź								Grab
	I	1							1		1	1		

	Boring	g Numbe	er	W1	01 Use only as an attachment to Fo	orm 4400-122.						Page		of	4
	Number	Length (In) ^g Recovered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	U S C S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Limit Limit	Plastic Limit	P 200	Comments
	18 * * * * * * * *				SANDSTONE, fine grained glauconitic, friable poorly-cemented, olive.										Grab
	₩ 19 ₩ ₩ ₩ 20 ₩			75 76 77 78 79 80	DOLOMITE , weathered fractured interbedded with glauconitic sandstone (or glauconitic silty sand in fractures).										Grab Grab
С	₩ ₩ ₩ 21 ₩ ₩ ₩			67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 20	SANDSTONE, fine grained, very friable, poorly cemented, olive weathered.										Grab
	₩ 22 ₩ ₩ ₩			89 90 91 91 92 93 94	Color change to rust brown at $\sim 91.0^{\circ}$, color change to olive at $\sim 93^{\circ}$.						D				Grab
	23 ₩ ₩ ₩ ₩ 24 ₩			95 96 97 98 99 100 101	Color changes from rust brown to olive.						D				Grab Grab
(₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩			92 94 95 97 97 98 99 100 101 101 103 104 105 106 107 108							D				Grab

26 W 26 W 110 Solution Content of the second surface but got no recovery. W W		
26 100 Attempt to core from 108 to 118 for bold words with a constraint but got no recovery. 111 27 111 111 112 111 112 112 112 112 112 112 112 112 112 112 113 112 114 115 115 112 116 112 117 112 118 111 119 112 119 112 110 112 111 112	G	CH = X10 m/sec Grab

Emergency Response Wastewater									Underground Tanks Water Resources					Page 1 of 4					7-91	
Facility/Project Name												nitoring								
												d								
											-	u	1				-			
											3/95		10/30/95				Air			
DNR Facility Well No. WI Unique Well No. Common Well Name																	Borehole Diameter			
										813.	0 Feet	MSL					6.0 Inche			
Boring Location State Plane 172652.00 N. 1477729.00 E										Lat	0,11		Loca		_	ficable)	□е			
										Long 0, " Feet S Feet							eet	□ w		
County DNR Co											nty Code Civil Town/City/ or Village									
Buffalo County 06											Belvi	dere			Cail	Despare			T	
Sam	_	ú	eet	3											501	Propen	les		-	
	LI In In	cunt	Τυ Ε				+	r		S	U U	E	8	ard	a t		U U		nts	
ber	Length Recove		, t		Each N	• •				ပ ဖ	hqe	- Be		andi	ist nte	au i	ast mit	200	Comments	
L N N		Blo	Dep							° ∩	ت ت	Die	<u>P</u>	St: Pei	£Ö	<u> </u>	L P	٩	ß	
			30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54	of W10	01 for sa IITE/LIP red, high res filled	mple o MEST ly wea	descripti ONE, ha athered,	ons												
	County	Department of Pacility/Project Dairyland Boart Lon DNR Facility V Boring Location State Plane NE 1/4 of County Buffalo Co Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Sample Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Lo	Department of Natura Facility/Project Name Dairyland Powe Boring Drilled By (Fin Boart Longyear DNR Facility Well Not Boring Location State Plane 17 NE 1/4 of NE County Buffalo County Sample C p a C p a C p a C a C a C a C a C a C a C a C	Department of Natural Resource Pairyland Power 308 Bairyland Power 308 Boart Longyear, Crew ONR Facility Well No. W Boring Location 172652.4 Sample of NE 1/4 Sample of NE 1/4 County Buffalo County -30 Sample of Uno O and Call Canty and Call -30 Canty and Call and Call Canty and Call -30 Canty and Call -30 </th <th>Department of Natural Resources</th> <th>Department of Natural Resources ⊠ Solia □ Dairyland Power 3081.23 □ Was Pacility/Project Name □ Was Dairyland Power 3081.23 □ Oracle State Plane DORF Facility Well No. WI Unique Well No. Boring Location State Plane State Plane 1/2 of Section Sample \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</th> <th>Department of Natural Resources Solid Waste □ Emergency □ Wastewater □ airyland Power 3081.23 Boring Drilled By (Firm name and name of crew chief) Boart Longyear, Crew Chief: Eric Shoenberg DNR Facility Well No. WI Unique Well No. Common State Plane 1/4 of NE 1/4 of Section 19 T 21 County Sample 1/4 of Section 19 T 21 Soundy Soundy Soundy Soundy Soundy Soundy Sample 1/4 of Section 19 T 21 County Sample 1/4 of Section 19 T 21 Soundy Soundy Soundy Soundy Soundy Soundy Sample 1/4 of Section 19 T 21 County Sample 1/4 of Section 19 T 21 Soundy 3 Soundy Soundy Soundy Soundy Lag 9 0 4 Soundy Soundy Soundy Sample 9 3 Soundy Soundy Soundy Soundy Soundy Soundy Sound</th> <th>Department of Natural Resources Solid Waste □ Emergency Response □ Wastewater □ airyland Power 3081.23 Boring Drilled By (Firm name and name of crew chief) Boart Longyear, Crew Chief: Eric Shoenberg DNR Facility Well No. WI Unique Well No. Common Well I Soring Location State Plane 172652.00 N, 1477729.00 E NK 1/4 of NE 1/4 of NE 1/4 of Section Sample 9 G 9 Laig 9 G 9 G 9 Laig 9 G 9 G 9 Laig 9 G 9 G 9 G 9 G 9 G 9 G 9 G 9 G 9 G 9 G 9 G 9 G 9 G 9 G 9</th> <th>Department of Natural Resources Solid Waste Image: Construct of Construction of Constructin on Construction of Construction of Construction of Co</th> <th>Department of Natural Resources Solid Waste Haz. Under Wastewater Under Wastewater Other Other Soring Driled By (Firm name and name of crew chief) Boart Longycar, Crew Chief: Eric Shoenberg DNR Facility Weil No. WI Unique Well No. Common Well Name Fin Soring Location State Plane 172652.00 N, 1477729.00 E I 4 of Section 19 T 21 N,R 12W II Sounty Buffalo County DNR County Of Sample State Plane 172652.00 N, 1477729.00 E I 4 of Section 19 T 21 N,R 12W II Sounty Buffalo County DNR County Of Sample State Plane Soli/Rock Description And Geologic Origin For Each Major Unit Soli And Geologic Origin For Each Major Unit And Geologic Origin For Each Major Unit And Factures filled with silt/sand. A factures filled with silt silt</th> <th>Department of Natural Resources Solid Waste Haz. Waste Benergency Response Underground Wastewater Other Tacility/Project Name Zadity/Project Name Zadity/Project Name Dairyland Power 3081.23 Z Zoring Drilled By (Firm name and name of crew chief) Date Drillity Boart Longycar, Crew Chief: Eric Shoenberg Date Drillity State Plane 172652.00 N, 1477729.00 E Lat NE 1/4 of NE 1/4 of Section 19 T 21 N.R 12W Long Sounty 06 06 DRCounty Code 06 DRCounty Code Sample Sate Plane 172652.00 N, 1477729.00 E Lat Lat NE 1/4 of NE 1/4 of Section 19 T 21 N.R 12W Long Sounty 90 G E Soli/Rock Description 0 C C Sample Sate Plane 1/4 of Section 19 T 21 N.R 12W Long Sounty Soli/Rock Description And Geologic Origin For C C C Sag G G</th> <th>Department of Natural Resources Solid Waste Haz. Waste Demergency Response Underground Tanks Dairyland Power 3081.23 2727 Joring Drilled By (Firm name and name of crew chief) Date Drilling Stare Boart Longyear, Crew Chief: Eric Shoenberg Date Drilling Stare Joring Location Static Waste State Plane 172652.00 N, 1477729.00 E NR Facility Well No. WI Unique Well No. Common Well Name Final Static Water I State Plane 172652.00 N, 1477729.00 E NR 1/4 of NE 1/4 of Section 19 T 21 N,R 12W Dong DNR County DNR County Code Civil T State Plane 172652.00 N, 1477729.00 E Lat 0.1 with the origin of the origin origin of the origin origin origin of the origin origin origin</th> <th>Department of Natural Resources Solid Waste Haz. Waste Brergency Respone Udderground Tanks Wastewater Udderground Tanks Dairyland Power 3081.23 2927 Joring Drilled By (Firm name and name of crew chief) Date Drilling Started Boart Longycar, Crew Chief: Eric Shoenberg 10/23/95 DNR Facility Well No. WI Unique Well No. Comp Location WI Unique Well No. State Plane 172652.00 N, 1477729.00 E IA of NE 1/4 of Section 19 T 21 NR 1/4 of Section 10 T Sample Soli/Rock Description And Geologic Origin For C 1/9 19 T 21 10 Solid 11 11 12 Solid Waste 13 Belvidere Sample Soli/Rock Description 14 G 10 13 C 1/9 14 G 10 14 G 10 14 G 10 15<</th> <th>Department of Natural Resources Solid Waste Department of Natural Resources Substrate Resources Datry land Power 3081.23 Datry land Power 3081.23 Datry land Power 3081.23 Date Drillid By (Firm name and name of orew chief) Boart Longyear, Crew Chief: Eric Shoenberg Date Drillid By (Firm name and name of orew chief) Boart Longyear, Crew Chief: Eric Shoenberg DNR Facility Weil No. WI Unique Well No. Common Well Name State Plane 172652.00 N, 1477729.00 E NE 1/4 of NE 1/4 of Section 19 T 21 N, R 12W Source Sample State Plane 172652.00 N, 1477729.00 E Lat 0 ? * n DNR County Buff alo County Buff alo County Buff alo County Buff alo County Buff alo County Billind drilled to 30.0 feet. See log of W101 for sample descriptions DOLOMTTE/LINESTONE, Inad, fractured, highly weathered, fractures filled with silf/sand.</th> <th>Department of Natural Resources Solid Waste Haz. Waste Haz. Waste F acility/Project Name Underground Tanks Wastewater Other acility/Project Name Distant Resources Other Boart Longyear, Crew Chief: Eric Shoenberg Date Drilling Barded Date Drilling Started Date Drilling Started NR Facility Well No. WI Unique Well No. Common Well Name Final Static Water Level Surface Eleve Start Plane 172652.00 N, 1477729.00 E Lat 0.7 n Local Grid 1 NR Facility Well No. WI Unique Well No. Common Well Name Bivil TownCity/ or Village Build Grid 1 Sonny 1/4 of NE 1/4 of Section 19 T 21 N.R 12W Local Grid 1 Sonny 500 4 Soli/Rock Description 06 Belvidere 5 Sonny 5 5 Soli/Rock Description 5 5 5 5 Sonny 5 5 Soli/Rock Description 5 5 5 5 Song Cong Cong Cong Code 6 9 4 6 4 4 4</th> <th>Department of Naural Resources B Solid Wate Haz. Wase Form 44 Emergency Response Underground Tanks Durby Concertaints Boring Sacility/Project Name Date Drilling Started Date Drilling Started</th> <th>Department of Natural Resources Solid Waste Competence in the Automation of Natural Resources Solid Waste Competence in Underground Tanks Water Resources Water Resources Water Resources Water Resources Water Resources Competence in the Natural Resource in Competence in the Natural Resource in Competence in Co</th> <th>Department of Natural Resources Department of Natural Resources Department of Natural Resources Department of Natural Resources Determinity Resource Date Data Resources Determinity Resource Date Data Resources Determinity Resources Date Data Resources Data Data Data Data Resources Data Data Data Resources Data Data Data Data Resources Data Data Data Data Resources Data Data Data Resources Data Data Data Data Data Resources Data Data Data Data Data Resources Data Data Data Data Data Data Resources Data Data Data Data Data Dat</th> <th>Department of Namari Resources Department of Namari Resources Department of Namari Resources Datry Jund Pover 3081.23 Datry Jund Pover 3081.24 Datry Jund Pover 3081.24 Da</th>	Department of Natural Resources	Department of Natural Resources ⊠ Solia □ Dairyland Power 3081.23 □ Was Pacility/Project Name □ Was Dairyland Power 3081.23 □ Oracle State Plane DORF Facility Well No. WI Unique Well No. Boring Location State Plane State Plane 1/2 of Section Sample \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Department of Natural Resources Solid Waste □ Emergency □ Wastewater □ airyland Power 3081.23 Boring Drilled By (Firm name and name of crew chief) Boart Longyear, Crew Chief: Eric Shoenberg DNR Facility Well No. WI Unique Well No. Common State Plane 1/4 of NE 1/4 of Section 19 T 21 County Sample 1/4 of Section 19 T 21 Soundy Soundy Soundy Soundy Soundy Soundy Sample 1/4 of Section 19 T 21 County Sample 1/4 of Section 19 T 21 Soundy Soundy Soundy Soundy Soundy Soundy Sample 1/4 of Section 19 T 21 County Sample 1/4 of Section 19 T 21 Soundy 3 Soundy Soundy Soundy Soundy Lag 9 0 4 Soundy Soundy Soundy Sample 9 3 Soundy Soundy Soundy Soundy Soundy Soundy Sound	Department of Natural Resources Solid Waste □ Emergency Response □ Wastewater □ airyland Power 3081.23 Boring Drilled By (Firm name and name of crew chief) Boart Longyear, Crew Chief: Eric Shoenberg DNR Facility Well No. WI Unique Well No. Common Well I Soring Location State Plane 172652.00 N, 1477729.00 E NK 1/4 of NE 1/4 of NE 1/4 of Section Sample 9 G 9 Laig 9 G 9 G 9 Laig 9 G 9 G 9 Laig 9 G 9 G 9 G 9 G 9 G 9 G 9 G 9 G 9 G 9 G 9 G 9 G 9 G 9 G 9	Department of Natural Resources Solid Waste Image: Construct of Construction of Constructin on Construction of Construction of Construction of Co	Department of Natural Resources Solid Waste Haz. Under Wastewater Under Wastewater Other Other Soring Driled By (Firm name and name of crew chief) Boart Longycar, Crew Chief: Eric Shoenberg DNR Facility Weil No. WI Unique Well No. Common Well Name Fin Soring Location State Plane 172652.00 N, 1477729.00 E I 4 of Section 19 T 21 N,R 12W II Sounty Buffalo County DNR County Of Sample State Plane 172652.00 N, 1477729.00 E I 4 of Section 19 T 21 N,R 12W II Sounty Buffalo County DNR County Of Sample State Plane Soli/Rock Description And Geologic Origin For Each Major Unit Soli And Geologic Origin For Each Major Unit And Geologic Origin For Each Major Unit And Factures filled with silt/sand. A factures filled with silt silt	Department of Natural Resources Solid Waste Haz. Waste Benergency Response Underground Wastewater Other Tacility/Project Name Zadity/Project Name Zadity/Project Name Dairyland Power 3081.23 Z Zoring Drilled By (Firm name and name of crew chief) Date Drillity Boart Longycar, Crew Chief: Eric Shoenberg Date Drillity State Plane 172652.00 N, 1477729.00 E Lat NE 1/4 of NE 1/4 of Section 19 T 21 N.R 12W Long Sounty 06 06 DRCounty Code 06 DRCounty Code Sample Sate Plane 172652.00 N, 1477729.00 E Lat Lat NE 1/4 of NE 1/4 of Section 19 T 21 N.R 12W Long Sounty 90 G E Soli/Rock Description 0 C C Sample Sate Plane 1/4 of Section 19 T 21 N.R 12W Long Sounty Soli/Rock Description And Geologic Origin For C C C Sag G G	Department of Natural Resources Solid Waste Haz. Waste Demergency Response Underground Tanks Dairyland Power 3081.23 2727 Joring Drilled By (Firm name and name of crew chief) Date Drilling Stare Boart Longyear, Crew Chief: Eric Shoenberg Date Drilling Stare Joring Location Static Waste State Plane 172652.00 N, 1477729.00 E NR Facility Well No. WI Unique Well No. Common Well Name Final Static Water I State Plane 172652.00 N, 1477729.00 E NR 1/4 of NE 1/4 of Section 19 T 21 N,R 12W Dong DNR County DNR County Code Civil T State Plane 172652.00 N, 1477729.00 E Lat 0.1 with the origin of the origin origin of the origin origin origin of the origin origin origin	Department of Natural Resources Solid Waste Haz. Waste Brergency Respone Udderground Tanks Wastewater Udderground Tanks Dairyland Power 3081.23 2927 Joring Drilled By (Firm name and name of crew chief) Date Drilling Started Boart Longycar, Crew Chief: Eric Shoenberg 10/23/95 DNR Facility Well No. WI Unique Well No. Comp Location WI Unique Well No. State Plane 172652.00 N, 1477729.00 E IA of NE 1/4 of Section 19 T 21 NR 1/4 of Section 10 T Sample Soli/Rock Description And Geologic Origin For C 1/9 19 T 21 10 Solid 11 11 12 Solid Waste 13 Belvidere Sample Soli/Rock Description 14 G 10 13 C 1/9 14 G 10 14 G 10 14 G 10 15<	Department of Natural Resources Solid Waste Department of Natural Resources Substrate Resources Datry land Power 3081.23 Datry land Power 3081.23 Datry land Power 3081.23 Date Drillid By (Firm name and name of orew chief) Boart Longyear, Crew Chief: Eric Shoenberg Date Drillid By (Firm name and name of orew chief) Boart Longyear, Crew Chief: Eric Shoenberg DNR Facility Weil No. WI Unique Well No. Common Well Name State Plane 172652.00 N, 1477729.00 E NE 1/4 of NE 1/4 of Section 19 T 21 N, R 12W Source Sample State Plane 172652.00 N, 1477729.00 E Lat 0 ? * n DNR County Buff alo County Buff alo County Buff alo County Buff alo County Buff alo County Billind drilled to 30.0 feet. See log of W101 for sample descriptions DOLOMTTE/LINESTONE, Inad, fractured, highly weathered, fractures filled with silf/sand.	Department of Natural Resources Solid Waste Haz. Waste Haz. Waste F acility/Project Name Underground Tanks Wastewater Other acility/Project Name Distant Resources Other Boart Longyear, Crew Chief: Eric Shoenberg Date Drilling Barded Date Drilling Started Date Drilling Started NR Facility Well No. WI Unique Well No. Common Well Name Final Static Water Level Surface Eleve Start Plane 172652.00 N, 1477729.00 E Lat 0.7 n Local Grid 1 NR Facility Well No. WI Unique Well No. Common Well Name Bivil TownCity/ or Village Build Grid 1 Sonny 1/4 of NE 1/4 of Section 19 T 21 N.R 12W Local Grid 1 Sonny 500 4 Soli/Rock Description 06 Belvidere 5 Sonny 5 5 Soli/Rock Description 5 5 5 5 Sonny 5 5 Soli/Rock Description 5 5 5 5 Song Cong Cong Cong Code 6 9 4 6 4 4 4	Department of Naural Resources B Solid Wate Haz. Wase Form 44 Emergency Response Underground Tanks Durby Concertaints Boring Sacility/Project Name Date Drilling Started Date Drilling Started	Department of Natural Resources Solid Waste Competence in the Automation of Natural Resources Solid Waste Competence in Underground Tanks Water Resources Water Resources Water Resources Water Resources Water Resources Competence in the Natural Resource in Competence in the Natural Resource in Competence in Co	Department of Natural Resources Department of Natural Resources Department of Natural Resources Department of Natural Resources Determinity Resource Date Data Resources Determinity Resource Date Data Resources Determinity Resources Date Data Resources Data Data Data Data Resources Data Data Data Resources Data Data Data Data Resources Data Data Data Data Resources Data Data Data Resources Data Data Data Data Data Resources Data Data Data Data Data Resources Data Data Data Data Data Data Resources Data Data Data Data Data Dat	Department of Namari Resources Department of Namari Resources Department of Namari Resources Datry Jund Pover 3081.23 Datry Jund Pover 3081.24 Datry Jund Pover 3081.24 Da	

Signature Firm RMT 744 Heartland Trail, Madison Wisconsin Tel: 608-831-4444, Fax: 608-831-3334

This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

		Numbe	r		01A Use only as an attachment to Form 4400	0-122.	<u>г г</u>			<u></u>		Page		of	4
	Number	Length (In) ^{du} Recovered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	U S C S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Propert Limit Limit	Plastic Limit	P 200	Comments
-				$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	 SANDSTONE, olive green, glauconitic, soft, fissile, friable, fine to medium grained. DOLOMITE/LIMESTONE, hard, dense, highly weathered. SANDSTONE, olive green, glauconitic, interbedded with dark brown-black sandstone and white lenses, fine grained, fissile, medium friable, recovery =94%, RQD=50%, FF=3. Recovery=99%, RQD=55%, FF=6. As above, but also contains tan sandstone, very fine with lenses of shaley consistency, bottom 3.5 feet well cemented. 										RC

)

(

(

\bigcirc	Boring	g Numbe	?Г		01A Use only as an attachment to Form 44	00-122.						Page	3	of 4	4
()	San	Length (In) and Recovered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	NSCS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Limit Limit	Plastic Limit	P 200	Comments
\bigcirc				97 98 99 100 101 102 103 104 105 106 107 108 109 110 110 110 111 111 112	Recovery=40%, RQD=0%. Core barrel locks up at 104.0 feet. ¥			Ţ							RC
				115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	As above, SANDSTONE, olive green, glauconitic, interbedded with dark brown to black sandstone and white calcareous shaley lenses, fine-grained, fissile, medium friable.										

Soil Boring Log Information Supplement Form 4400-122A 7-91

Boring	Numbe	r	W1	01A Use only as an attachment to Form	4400-122.						Page	4	of 4		
Sam	Length (In) <mark>a</mark> Recovered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	รวรก	Graphic Log	Well Diagram	PID/FID	Standard Penetration	e +-		Plastic Limit	P 200	Comments)
			u 1 1 1 1 1 1 1 1 1 1	End of boring at 152.0 feet.										KH = 1X10-2 cm/sec	>

State of Wisconsin Department of Natural Resou	Emergency Response	Iaz. Waste Jnderground Water Resou			Soil Boring Form 4400-12	22		7-91
Facility/Project Name		Other	ermit/Monitoring	Number	P Boring Num	age 1 iber	of	2
/ Dairyland Power 308	1.23		2927		W102			
Boring Drilled By (Firm name		Date Drilli	ng Started	Date Drillin	g Completed	Drillin	g Meth	od
Environmental & Fou Frank Badula	undation Drilling, Crew Chief:	10/1	8/94	10/1		HSA	6 1/4	ļ"
DNR Facility Well No. W	I Unique Well No. Common Well Name	1	Water Level	Surface Ele 836.1	vation Feet MSL	Borehole 10 1		ter Inches
Boring Location		Lat	0 9 11	Local Grid	Location (If a	pplicable)		
	00 N, 1478190.00 E 4 of Section 19 T 21 N,R 12W		0 * 11	Fe	et 🗆 S		Feet	□ E □ W
County		Long Inty Code	Civil Town/Cit				reel	
Buffalo County	. 06		Belvidere	у. <u></u> д-				
Sample of U					Soil Prop	erties	1	_
	Soil/Rock Description			j.				
	And Geologic Origin For	ω	0 E	a la ta	i t	U	ļ	ts
	Each Major Unit	U С	ird - B	E bas	str uic	mit astic mit	200	Je
Number Length (In Recovered Blow Count Depth In F		S N	Graphic Log Well Diagram	PID/FID Standard Penetration	Moisture Content Liquid	L D E	רא ב	Comments
$1 \begin{bmatrix} 24 \\ 1 \end{bmatrix} \begin{bmatrix} 24 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ -3 \\ -4 \\ -7 \\ -8 \\ -7 \\ -8 \\ -7 \\ -8 \\ -9 \\ -10 \\ -11 \\ -11 \\ -12 \\ -13 \\ -14 \\ -15 \\ -16 \\ -17 \\ -18 \\ -19 \\ -20 \\ -21 \\ -22 \\ -23 \\ -24 \end{bmatrix}$	Not sampled, see Log of W102A for sample descriptions. LEAN CLAY WITH SAND (CL/L), 40% silt, Lacustrine. Not sampled, see Log of W102A for sample descriptions.	CL			31	19	80.7	Kv 4.8E-8 ST
Ē-25		f my knowle Firm	RMT 744 Heartland 7	Frail, Madisor 144, Fax: 608				

This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

Boring	Numbe	r	W1 (02	Use only as an attachment to Form 4	400-122.						Page	2	of	2	
Sam	ple		ē.							~	Soil I	Properti	es			
Number	Length (In) Recovered	Blow Counts	Depth In Feet		Soil/Rock Description And Geologic Origin For Each Major Unit	S C S U	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Maisture Content	Liquid Limit	Plastic Limit	P 200	Comments)
			26 27 28 30 31 32 33 34 35		d of Boring at 35.5 Ft.		المريم من عن المريم br>والمريم المريم br>والمريم المريم br>والمريم المريم								KH == 3.5/10 cm/sec	

		of Wisco		al Resou	Route 7		Пъ	laz. Waste					oil Bo form 44	ring L	og Ini	forma	tion 7-91
	Depart		1 Ivatur	ai 10000		ergency Response		Inderground	Tanks			T.	-01111 - 4-4	00-122			7-91
					□ Was	• • •		Vater Resou									
														Page	e 1	of	2
	Facility	/Projec	t Name			<u>. </u>		License/Pe		-	Numb	er		Numbe			
. /				er 308					2927	•				<u>02A</u>			
					e and name of crew chi			Date Drilli	ng Starte	d	Date	Drilling	g Comp	leted	Drillin	g Meti	nod
	Fran	nk Ba	dula		undation Drilling,	Crew Chief:			8/94			10/18			HSA		
	DNR F	acility	Well No	o. W	I Unique Well No.	Common Well Nat	me	Final Static 808	Water I .9 Feet			ace Elev 35.7			orehole 101		eter Inches
	Boring								0 , 11		Loca	l Grid I	ocation	(If app	licable)		
	State P				00 N, 1478191.0		.7	Lat	0,11			P	_	N		-	E
	NE		of NE	5 1/	4 of Section 19	T 21 N,R 12V		I Long		own/City	/ or V	Fee		S		Feet	
	County Buff		ounty		• · · · · · · · · · · · · · · · · · · ·	0			Belvi			mage					· 1
	Sam			Feet									Soil	Propert	ies	T	_
		ed (J	Counts		Soil/Rock	k Description						ion					
		U Đ		H	1	gic Origin For		S	υ	Ę	e	at d	e te	-	υ		1ts
	- Po	ath			1	Major Unit		ပ ပ	ĥ	– 81 81	É	eta	stu ter	i t d	+ +	200	je l
	Number	Length (I Recovered	Blow	Depth		2		S	Graphic Log	Well Diagram	PID/FID	Standard Penetrati	Moisture Content	Liqui. Limit	Plast Limit	Б Б	Comments
	z	78	<u> </u>					<u> </u>	9		<u>p</u>	SE.	ΣΟ				
	1 🛛	24	4	1 1 2 3 4 5 6 7 8	TOPSOIL.												ss
	1 2 3 4	24	-	<u></u> 2	SILT (ML), 10%	fine to coarse		ML					м				
				<u>-</u> 3		gravel, nonplasti	c,										
	2 🏹	24	4	<u>-</u> 4	brown 7.5YR 4												SS
				E-5	Fluvial/Lacustr			_/] CL	$\langle / / \rangle$				м				
```\	3	24	4	<u>-6</u>	LEAN CLAY (C 5% fine to med		,										ss
)	° //	24	-	E-7		plastic, brown											10
						th black mottles,											
	4 ∅	24	5	<b></b> 9	soft, (Loess/lac	custrine).											ss
				10 10					44				м				ss
				E-11	SILTY SAND W			SM-	. o o								
				1.1		to coarse, 25-30	%	SP	0.00				1 N				
				E-13	silt, 10-15% fit	ne gravel,											
				E-14		w 10YR 6/6, ve	ry		0.0.0								
	- 77			12 13 14 15	dense, Fluvial.												66
	5	18	100/18	<b>E</b> 16					0.000				M				SS
				E 17					00								
				E-18										· ·			
				E-19					0.0							ł	
				17 18 19 20					0.0							1	
	6 7	12	100/12					SM-					М				SS
	6							SP	0.00								
				E 23					0.00								
				F					p								
				24					0.00			1					
•	I hereby	certif	v that th		nation on this form is t	rue and correct to the	e best o	f my knowl	edge.	<u>.                                    </u>		<u> </u>	<u>.</u>	L	1	1	
	Signatu		/					Firm	RMT								
	- -	· ·	<u> </u>	0	· ·					artland 7	Frail. N	Aadison	Wiscor	nsin			

Tel: 608-831-4444, Fax: 608-831-3334 This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than

This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Portet not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats. State of Wisconsin Department of Natural Resources

Boring	Numbe	r	W1	02A Use only as an attachment to Form 440	0-122.						Page	2	of 2	2
Sam			Feet							Soil	Propert	ies		
	e (H	Counts		Soil/Rock Description					i on					
۲.		Cou	H	And Geologic Origin For	S	<u>.</u>	Ĕ	Ħ	arc rat	ur.	σ	<u>.</u>		nts
ipei	Length (I Recovered	2	Depth	Each Major Unit	ບ s	Graphic Log	Well Diagram	PID/FID	and	Moisture Content	Liquid Limit	ast mit	200	e E
NLIN	Ler Rec	Blow	Def	•	<u> </u>	Gra	ы. Пре	IL	Standard Penetrati	βŜ	Liqu Limi	Plas Limi	٩	s Comments
7 Number	12	36	26							М				SS
							Ţ							
			28											
			27 28 29 10 30 10 31			· · · · · ·								
8 7/	6	38	E 30			.0.0				w				ss
8			31											
			32 33 34 34 35 36 37 38 39 40 41 41 42			. P								
			<u>–</u> 34			0.0								
9 77	10	31	E-35		SM					w	NP	NP	14.7	ss
9			<u>-</u> 36											
24			37			0.00								
			38											
77			40											
10 🌌	4	14	E-41	More fine to medium, dense		D				W				SS
				gravel.										
			E 43	-		0.00 0.00					ļ			
11	16	30	E-45			0.00				w				ss
			47	Less gravel.		· · o. · o.								
			48			0.0.0				1				
			43 44 45 46 47 48 49 50			0.0								
12 7	12	18	<b>50</b>	SANDY SILT (ML), 30% fine to	ML	ĥĤ			·	w	18	17	64.6	ss
12			51	medium sand, 15% clay										
	1			(glauconitic), olive 5Y 4/4, medium dense, (Weathered									ļ	KH= 2.8X10
			50 51 52 53 53 54 55	Sandstone).										cm/sec
			E-55	Becomes harder at ~53'.	-			1						
				End of Boring at 55 Ft.						1				
													1	
		Į												
					ļ									
														$ \cup $

		of Wisco tment of		al Resou	irces 🛛 S	e To: olid Wast Emergency Vastewate	Respons	e []	Und Wat	. Waste erground er Resour					oil Bo form 44	00-122			7-91
	Facility	//Project	Name						Othe	er icense/Per	rmit/Mo	nitoring	Numb	er	Boring	Page		of	3
1	-	ryland			1.23					2	927				Wľ				
]					e and name of crew				D	ate Drilli	ng Starte	ed .	Date	Drilling	g Comp	leted	Drillin	g Met	hod
	воа	rt Lon	gyear	, Crev	w Chief: Todd S	chmalf	elat			11/1	4/95			11/14	/95		HSA	/MR	
]	DNR F	Facility V	Vell No	5. W	I Unique Well No.	Com	mon Well	Name	Fi	inal Static				ace Elev			orehole		
1	Boring	Locatio	n				,			757.	4 Fee			43.3 al Grid I					Inches
	State I		17	1542.	00 N, 1477713					Lat	0 9 11					N			Б
-	NE		f NE	1/4	4 of Section 19	т 21	l n,r 1			Long	0 1 11			Fee	et 🗖	S		Feet	
(	County Buf	falo Co	ounty					DNR C 06	ounty	/ Code	Civil T Belvi		ty/ or V	llage					
-	Sam			Feet											Soil	Propert	ies		
		G (I	Counts		Soil/R	ock Des	cription							io					
	,		Dou	ភ	And Geo		-			S	<u>.</u>	E	8	ard at	l l l l l l l l l l l l l l l l l l l	-	U.		Jts
	Number	Length (I Recovered		Depth	Eac	h Major	Unit			ບ ທ	Graphic Log	Well Diagram	PID/FID	Standard Penetrati	Moisture Content	Liquid Limit	last imit	200	Comments
	NLLI	л М С	Blow	Der							Gral Log	We Dia	ЫI	Per	δΩ	Liqu	L i	L 10	ا د د
				1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 24 25 24 25 26 27 27 27 27 27 27 27 27 27 27	Blind drilled to for W104A f descriptions.	or samp		. 10g											
Ī	hereb	y certify			nation on this form i	s true and	correct to	o the bes	t of m	y knowle	dge.				·	·		1	
2	Signatu	re	<b>.</b>		<u></u>				Fir	m	RMT						·		
s. F	<u>C</u>	A	m	stat	hat									Aadison ax: 608-					

This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

000

Cra

Soil Boring Log Information Supplement Form 4400-122A 7-91

Boring	Numbe	r	<b>W1</b>	04	Use	only as an at	tachment to	) Form 4400	-122.							2	of	3
Number	Length (In) ^d Recovered	Blow Counts	Depth In Feet		And Geo	ock Descri logic Orig n Major U	gin For		n s c s	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Propert pimit Limit		P 200	Comments )
			26 27 28 29 30 31 32 33 4 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 45 56 57 8 59 60 61 62 63 64 65 66 66															

(

and the second se		g Numbe	er	<b>W1</b>	04 Use only as an attachment to Form	m 4400-122.				,		Page	 of	3
	San	Length (In) ^{du} Recovered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	ດ ເບ ຮ	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Limit Limit	 200	Comments
				<b>6</b> <b>6</b> <b>7</b> <b>7</b> <b>7</b> <b>7</b> <b>7</b> <b>7</b> <b>7</b> <b>7</b>	¥ End of boring at 93.0 feet.					<u>Ó Ă</u>	ž		<u> </u>	
									-					

Doter     Page 1     of of the second remain/formation in number       Dartyland Power 3081.23     Lecent/Fermin/Monitoring Number     Boring Complexed     Dilling Methe       Boring Drilled By (Firm mane and num of crew chief)     Date Drilling Samed     Date Drilling Complexed     Drilling Methe       Boring Location     Starface Elevation     Boring Location     Boring Location (fapplicable)       NE     11/4 of NE     1/4 of Section 19     T 21     N.R 122W     DOR County     Dir Brown(Crev) or Village       Burling Methe     Dir 2 1     N.R 122W     OB     County     Elevation     Berling Methe       Sample     1/4 of Section 19     T 21     N.R 122W     OB     County     Elevation     Berling Methe       Sample     Fig. 1/4 of Section 19     T 21     N.R 12W     OB     County     Elevation     Berling Methe       Sample     Fig. 1/4 of NE     1/4 of Section 19     T 21     N.R 12W     OB     County     Elevation     Berling Methe       Sample     Fig. 1/4 of NE     Soil/Rock Description     Go     Go     Go     Fig. 1/4 of Section     Fig. 1/4 of Section     Soil Properties       1     1/2			of Wisco Iment of		al Reso	🗆 Em	Го: id Waste ergency Response stewater	• 🗆 U	laz. Wasti Indergrou Vater Reso	ınd					oil Bo orm 44	-	og Info	ormat	tion 7-91
249 W104A       Boring Driticel By (Firm name and name of crew chiet) Boart Longvar. Crew Chiet: Paul Dickinson     Date Driting Samed 11/9/95     Date Driting Completed     Dritting Metha Baser       DNR Facility Well No.     WI Unique Well No.     Common Well Name     Final Sate Water Level     Surface Blevation     Borthole Diamet 44.8     Feet MSL     6.0     I       DNR Facility Well No.     WI Unique Well No.     Common Well Name     Final Sate Water Level     Surface Blevation     Borthole Diamet 44.3     Feet MSL     6.0     I       DR Facility Well No.     IV Unique Well No.     Common Well Name     Final Sate Water Level     Surface Blevation     Borthole Diamet 44.3     Feet MSL     6.0     I       NE     1/4 of NE     1/4 of Section     19     T 21     N.R 12W     Long     0" "     Feet D     Soil Properties       Sample     G     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g     g							SIEwalei		ther							•		of	4
Boring Drilled By (Firm name as have of crew chief)     Date Drilling Started     Date Drilling Completed     Diffing Metho       Boring Location     WI Unique Well No.     Common Well Name     Final Static Water Level     Surface Elevation     Bornel Diamet       Boring Location     State Plane     1/1/9/95     Surface Elevation     Bornel Location     Bornel Location     Surface Elevation     Bornel Location     G. 0.     HSA/AIK/       NE     1/4 of NE     1/4 of Section     19     T 21     N.R. 12W     Loca Grid Location (fraphicable)     Surface Elevation     G. 0.     N       Sample     1/4 of NE     1/4 of Section     19     T 21     N.R. 12W     Loca Grid Location (fraphicable)     Soil Properties       Sample     1/4 of NE     1/4 of Section     19     T 21     N.R. 12W     Loca Grid Location (fraphicable)       Sample     1/4 of NE     1/4 of Section     19     T 21     N.R. 12W     Loca Grid Location (fraphicable)       Sample     1/4 of NE     1/4 of Section     19     T 21     N.R. 12W     Loca Grid Location (fraphicable)       Sample     1/4 of NE     50     Soil/Rock Description     0     0     0     Soil Properties       1     1     24     NA     5     SILT (ML), 95% silt, 5% ciay, 10/Y S/4 yellowish brown, non-plastic, (Locess,		-							License/			-	Numb	er					
Boart Lonyear, Crew Chief: Paul Dickinson     11/13/95     I1/13/95     II/13/95       Boart Lonyear, Crew Chief: Paul Dickinson     II/19/95     II/13/95     II/13/95     II/13/95       DNR Facility Weil No.     WI Unique Weil No.     Common Weil Name     Final Static Water Level 744.8 Feet MSL     8043.1 Feet MSL     6.0 in 6.0 in       State Plane     17/1546.00 N, 1477718.00 E     Lat     0 · n     Local Grid Local (off Local Control off Applicable)       Ne     1/4 of NE     1/4 of Section 19 T 21 N,R 12W     DNR Coumy Code     Chill TownChry or Village       Buffalo County     06     Belvidere     Soll/Rock Description And Geologic Origin For.     Code Grid Local Grid Local (off Local Control Code 9 and code and	1		-				af		Date Dr	_			Date	Drilling		_		Meth	uod
In Draw Cargo       DNR Facility Well No.     Well Unique Well No.     Common Well Name     Final Static Water Level     Surface Elsevation       Boring Location     T71546.00 N, 1477718.00 E     Lat     0 '' "     Coal Grid Location (If applicable)       State Plane     1/4 of NE     1/4 of Section     19 T 21 N.R 12W     Local Grid Location (If applicable)       NE     1/4 of NE     1/4 of Section     19 T 21 N.R 12W     Local Grid Location (If applicable)       Sumple     0 '' "     Feet     S Feet     S Feet       County     IDNR County Code     Cleft TowarCity' or Village     Soil Properties       Sample     1     Cleft TowarCity' or Village     Soil Properties       Sample     1     Soil/Rock Description     6     Cleft TowarCity' or Village       Sample     1     Soil/Rock Description     6     Cleft TowarCity' or Village       1     24     NA     5     Soil/Rock Description     6       1     24     NA     5     Soil/Rock Description     6       1     1     24     NA     5     Soil/Rock Description       1     1     24     NA     5     Soil/Rock Description       1     1     24     NA     5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>i di la construcción de la const</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></td<>											-	i di la construcción de la const		-					
744.8 Feet MSL       643.1 Feet MSL       6.0 In Boring Location State Plane         Boring Location State Plane       171546.00 N, 1477718.00 E       Lat       0 · n       Local Grid Location (if applicable) or n       60         NE       1/4 of NE       1/4 of NE       1/4 of Section       19       T 21       N.R 12W       Local Grid Location (if applicable)         Ne       1/4 of NE       1/4 of Section       19       T 21       N.R 12W       Lat       0 · n       Local Grid Location (if applicable)         Sumple       Signification       And Geologic Origin For.       C       C       C       C       Feet       Soil Properties         Signification       Signification       Soil/Rock Description       C       C       C       Feet       Soil Properties         Signification       Signification       Soil/Rock Description       C       C       Feet       Soil Properties         Signification       Signification       Soil Properties       Soil Properties       Soil Properties       Soil Properties         Signification       Soil Properties       Soil Properties       Soil Properties       Soil Properties       Soil Properties         Signification       Soil Properties       Soil Properties       Soil Properties       Soil Propertie																			
Description     Lat     0 * it     Local Grid Location (f applicable)       State Plane     171546.00 N, 1477718.00 E     Lorg     0 * it     Peet II       NE     1/4 of NE     1/4 of Section     19     T 21     N, R 12W     Long     0 * it       Buffalo County     DNR County Code     Civil Town/Ciry' or Village     Belvidere     Soil Properties       Sample		DNR F	acility V	Vell No	). V	WI Unique Well No.	Common Well	Name											
State Plane       171546.00 N, 1477718.00 E       Lat       0.1 m       Image: Construct of the state of t		Boring	Locatio	<u> </u>		· · · · · · · · · · · · · · · · · · ·			1 14	<b>!4</b> .		MSL						<u></u>	Inches
DNR County Code (6     Civit Town/City/ or Village Belvidere       Sample I G B B P OPERTIES       Sample I G B B P OPERTIES     Soil/Rock Description And Geologic Origin For Each Major Unit     O     U G B B P OPERTIES       I I I 24     NA     I I I I I I I I I I I I I I I I I I I					1546	.00 N, 1477718.0	0 E		Lat										Ε
Burfrato County         06         Belvidere           Sample         5         Soil/Rock Description And Geologic Origin For Each Major Unit         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <				of NE	) 1	/4 of Section 19	T 21 N,R 1								et 🗆	S	F	eet	<u>w</u>
SampleSoll Propertiesu $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Soll/Rock Description And Geologic Origin For Each Major Unit $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ 				untv					nty Code	;			y/ or V	illage					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Juney				100						1	Soil	Proper	ies		1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2	t s	L E	G. 11/D	1. D							6					7
1       24       NA $\begin{bmatrix} -1 \\ -2 \\ -3 \\ -4 \\ -5 \\ -5 \\ -6 \\ -7 \\ -8 \\ fluvial/lacustrine).       ML       ML       M         2       16       8       \begin{bmatrix} -1 \\ -2 \\ -3 \\ -6 \\ -7 \\ -8 \\ fluvial/lacustrine).       As above.       ML       M         3       0       16       8       \begin{bmatrix} -1 \\ -2 \\ -7 \\ -8 \\ fluvial/lacustrine).       Rock in shoe, sandstone.       Very hard drilling at 17.0 feet, (fluvial).       M         4       20       79       \begin{bmatrix} 20 \\ -21 \\ -22 \\ -22 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24$			Нр	n			-			0	0	F	0	D to	e 4		υ		t s
1       24       NA $\begin{bmatrix} -1 \\ -2 \\ -3 \\ -4 \\ -5 \\ -5 \\ -6 \\ -7 \\ -8 \\ fluvial/lacustrine).       ML       ML       M         2       16       8       \begin{bmatrix} -1 \\ -2 \\ -3 \\ -6 \\ -7 \\ -8 \\ fluvial/lacustrine).       As above.       ML       M         3       0       16       8       \begin{bmatrix} -1 \\ -2 \\ -7 \\ -8 \\ fluvial/lacustrine).       Rock in shoe, sandstone.       Very hard drilling at 17.0 feet, (fluvial).       M         4       20       79       \begin{bmatrix} 20 \\ -21 \\ -22 \\ -22 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24$		ē	t h šer					, <b>1</b> ,			Ļ	in a	É	dai	en ul	+ E		Ø	Le l
1       24       NA $\begin{bmatrix} -1 \\ -2 \\ -3 \\ -4 \\ -5 \\ -5 \\ -6 \\ -7 \\ -8 \\ fluvial/lacustrine).       ML       ML       M         2       16       8       \begin{bmatrix} -1 \\ -2 \\ -3 \\ -6 \\ -7 \\ -8 \\ fluvial/lacustrine).       As above.       ML       M         3       0       16       8       \begin{bmatrix} -1 \\ -2 \\ -7 \\ -8 \\ fluvial/lacustrine).       Rock in shoe, sandstone.       Very hard drilling at 17.0 feet, (fluvial).       M         4       20       79       \begin{bmatrix} 20 \\ -21 \\ -22 \\ -22 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24 \\ -24$		quin	6 La		ep †	Lacit	Major Onic				rap og	e l l i ag	È	tar	o i e		i a		Comments
$3 \overrightarrow{10} 0 16 \overrightarrow{16} \overrightarrow{16} \overrightarrow{16} \overrightarrow{16} \overrightarrow{16} \overrightarrow{16} \overrightarrow{16} \overrightarrow{16} \overrightarrow{16} \overrightarrow{17} \overrightarrow{18} \overrightarrow{16} \overrightarrow{16} \overrightarrow{17} \overrightarrow{18} \overrightarrow{16} \overrightarrow{16} \overrightarrow{17} \overrightarrow{18} \overrightarrow{16} \overrightarrow{19} \overrightarrow{16} \overrightarrow{19} 1$		Ž	ŢĞ						=	2			۵.	ST	Συ	<u></u>	<u>م</u> _	<u> </u>	
Image: Second		1 2 3	16			10YR 5/4 yelle non-plastic, (L fluvial/lacustri As above.	owish brown, oess, ne). ndstone.		M	L					М				ST SS
		4			22 23 23 24 24 25	to coarse angul silt, 5% gravel yellowish brov sandstone in sh	SM), 55-60% ar sand, 30-40 , 10YR 5/4 vn, dense, noe.	fine 0%			المحمد بالمحمد المحمد المحم المحمد المحمد المحم المحمد المحمد المحم المحمد المحمد								SS
				that th	e info	rmation on this form is t	rue and correct to			wle	dge.								
Signature       FITT       RMT         Change OB-Bachhologo       744 Heartland Trail, Madison Wisconsin         This form/rs authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than	λ.	Signatur Coordinates This for	uñ		d by C	hanters 144 147 and 14	57 Wie State O		Firm		744 Hea Tel: 608	8-831-44	144, Fa	x: 608-	831-333	34			

\$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

Boring	g Numbe	r	<b>W1</b> (	04A Use only as an attachment to Form 440	0-122.						Page	2	of 4	1
San			tu							Soil	Properti	es		$\left( \right)$
6 Number	Length (In) Recovered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	N S C S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	ss Comments
5	11	21	26 27 28 28 29	As above, with 70% fine sand, gravel zone at ~ 25.5 to 25.7 feet, (weathered sandstone).										SS
6	23	26	30 31 32 33 33 34	Weathered sandstone, fine grained, glauconitic, gray, tan, and olive, (came out as SM-50% gravel).								-		SS
7 //	23	55	35 36 37 38 38 39	As above, 85% fine sand, 10% silt, 5% gravel. As above.										SS
8	13	48	111227 28 29 30 31 32 33 34 35 36 37 38 39 40 41 22 34 44 5 46 47 88 99 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 66 66 66 66 66 66 66 66 66 66 66	As above. <b>WEATHERED SANDSTONE</b> , green, glauconitic, fine grained, silty.						м				GRAB
-			49 50 51 52 53 54	As above.										GRAB
-			55 56 57 58 59 60	As above.										GRAB GRAB
-			61 62 63 64 64 65 66	As above.							-			GRAB

(

$\bigcirc$ .	Boring Sam	Numbe	r		04A Use only as an attachment to Form 4	400-122.	T				Soil	Page Propert		UI -	<b>4</b>
. / <del>-</del>		Ê	ts	Feet	Soil/Rock Description					Standard Penetration					]
		Length (In) Recovered	Blow Counts	H	And Geologic Origin For	S	0	E		ata	Moisture Content	_	υ		ts
	L L	Ŧį	ŭ		Each Major Unit	U U	, Ž	ara	Ę	a ta	itu ten	E t	÷. +	200	Lar .
	Number			Depth		ဟ	Graphic Log	Well Diagram	PID/FID	tar	oio	Liquid Limit	Plastic Limit		Comments
-	ž	<u> </u>	_					30	<u> </u>	S C	ΣΟ		<u> </u>	۵.	0
				E-68											
				E-69											
				70	As above.						:				GRAB
				E-71	716 d0070.										
				E-72											
				E 73											
				E-74											
				E-75	As above.										GRAB
				67 68 69 70 71 72 73 74 74 75 76 77											
				78											
	_			1       79         80       81         82       83         84       85         86       87         88       90         91       91					-		м				
					As above, with steam from hole - moisture.										GRAB
					moisture.										
				E-83											
				E-84											
				E-85											GRAB
				86											
				E-87	No return from 87.0 to 117.0 feet.										
				88											
				E-89											
				<b>5</b> 90											
														1	
				<u>92</u>											
				<b>₽</b> 93										ļ	
				E-94	х.									1	
				<b>5</b>						ľ					
												1			
					$\overline{\nabla}$									1	
					₽	ł		Ĩ						l	
				E 100					1					ł	
				92 93 94 95 96 97 98 99 99 100 101 101 104 105 106 107 108											
				E-102							Į				
				E-103	<b>SANDSTONE</b> , as above, green, glauconitic, fine-grained, silty.										
				Ē-104	Binneomite, inte-Branieu, sity.										
				E-105											
				E-106									1		
				E-107							1		1		
				E-108					1			1			

.

Soil Boring Log Information Supplement Form 4400-122A 7-91

Boring	Numbe	r	<b>W1</b>	04A Use only as an attachment to Form 440	0-122.						Page		of 4	•
Sam Number	Length (In) ^{jd} Recovered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	รวรก	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Limit Limit	Plastic Limit	P 200	Comments (
<u>N</u>			<b>a</b> 109 110 111 112 113 114 115 116 117	Liquid coming from hole - very small drops. End of boring at 117.0 feet.										KH = 4.4X10-4 cm/sec
	ļ	1											<u> </u>	

	of Wisco tment o		al Resou	ırces	Em Em	d Waste	Response	. 🗆 I	Haz. Wasi Undergrou Water Res	ind '		s				oil Bo form 44	oring L 00-122	og Íní	orma	tion 7-91
								_	Other							·	Page		of	3
	/Projec		: er 308:	1 23					License		mit/№ 127		toring	Numb	er	Boring W1	Numbe	r		
				e and name of	crew chi	ef)			Date Di		_	·		Date	Drilling	L		Drillin	g Met	hod
				w Chief: E			ļ			11/	7/95				11/9	/95		HSA	-	
DNR F	acility V	Well N	o. W	I Unique Well	No.	Comm	ion Well	Name	Final St		Wate Fe				ace Elev 18.3			orehole 81		eter Inches
Boring State F			71180.0	00 N, 147	7404.0				Lat		ο,				ıl Grid I			licable)		
NE		of NH		4 of Section	19		N,R 1	2W	Long		ο,	#			Fee	_		1	Feet	⊔ e □ w
County Buff	alo C	ounty	,						unty Code	;	Civil Bel			y/ or V	llage					
Sam	· · · · ·	Counts	Feet													Soil	Propert	ies		_
Number	Length (In) Recovered	r		נ	Graphic Log		Diagram	PID/FID	Standard Penetration	Moisture Content	quid mit	lastic imit	200	Comments						
Nur	Rec	Blow	Depth							I	<u> </u>			L	St: Per	٤Ö	L L E E	Ľ Ъ	<u>د</u>	0 C
	1       15       14       1       Not sampled.         1       15       14       14       5       SILT (ML), 98% silt, 2.5Y 5/4         1       15       14       14       5       SILT (ML), 98% silt, 2.5Y 5/4         1       16       14       16       16       16         1       15       14       16       16         1       15       14       16       16         1       15       14       16       16         1       15       14       16       16         1       15       14       16       16         1       15       14       16       16         1       15       14       16       16         1       15       14       16       16         1       14       16       16       16         1       16       16       16       16         1       16       16       16       16									L						D				SS
2	17	25 103	11 12 13 14 15	As above		 v - only		4".		Ρ										SS SS
4	18	130	12 13 14 15 16 17 18 19 20 21 21 22 23 24 25	POORLY WITH S angular fine to c yellowis POORLY GRAVH yellowis Very hard	SAND ( dolomi coarse s sh brow GRAI EL (SP) sh brow	(GP), 5 te grav and, 10 m, ver DED SA , 10YF m, ver	55-60% vel, 40-4 0YR 5/6 y dense AND W R 5/6 y dense	fine 45% 6  /ITH	r 											SS
I hereby	certify	that th	e inforn	nation on this	form is tr	ue and c	correct to	the best o	of my know	wled	ge.				•		•	L	<u> </u>	
Signatur		• /	~	11					Firm	7		leart			1adison 1x: 608-					

This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

Soil Boring Log Information Supplement Form 4400-122A 7-91

Boring	Numb	er	<b>W1</b>	Use only as an attachment to Form 440	0-122.				<del></del>		Page		of 3	3
Number	Length (In) ^{jd} Recovered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	N S C S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Maisture Content	Limit Limit	Plastic Limit	P 200	Comments
				No sample, (weathered rock).										
5	12	86	30 31 32 33 33 34	WEATHERED SANDSTONE, ~50-60% very fine sand, 40-50% fines, 2% gravel, yellowish brown and green.						М				SS
6	5	100/5"	35 36 37 38 38	Weathered glauconitic SANDSTONE, fine grained, olive brown.										SS
7 —			26         27         28         29         30         31         32         33         44         45         44         45         44         45         46         47         48         9         60         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70 <th70< th="">         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         <th70< th="">         70         70         70<td>As above.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>GRAB</td></th70<></th70<>	As above.										GRAB
8	-		44 45 46 47 48	As above.										GRAB
9			49 50 51 51 52 53	As above.										GRAB
10			1 50 51 52 53 54 55 55 56 57 58 59 60 61 61 62 63 64 65 66	As above.										GRAB
11 -			1 59 1 60 1 61 1 62 1 63	As above.										GRAB
12			1-64 65 11-66	As above.										GRAB

State of Wisconsin Department of Natural Resources

Soil Boring Log Information Supplement Form 4400-122A 7-91

$\bigcirc$		g Numb	er	<b>W1</b>	05 Use only as an attachment to Form 4	400-122.						Pag		of	3
(	Number Number	Length (In) ^{ald} Recovered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	รวรก	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Mo i sture Content lios	Limit Limit	Plastic Si	P 200	Comments
	13 — 14 —			67 68 69 70 71 72 73 74 75 76 77 78 79 90	As above. As above.			200000							GRAB GRAB
$\bigcirc$	15 — 16 —			77 78 79 80 81 81 82 83 83 84 84 85	No sample taken. As above.										GRAB KH = 3X10-3
	17			80 81 82 83 84 85 86 87 88 89 90 91 91 92 93 94 95 94 95	No return from 87.0 to 90.0 feet.										GRAB
					End of boring at 95.0 feet.										

	of Wisco Iment of		al Reso	urces	Route 7 🖾 Soli	fo: d Waste				Waste					Soil Bo Form 44	oring L 00-122	og In	form	ation 7-91
						ergency l stewater	Response	🗆 v		Resou	Tanks rces					Page	: 1	of	3
· ·	/Projec		er 308	1.23						ense/Pe	rmit/Mo 2927		g Numb	er	Boring W1	Numbe			
	-			e and name of	of crew chi	ef)			Dat		ng Starte		Date	Drilling			Drillin	ig Mei	thod
Boa	rt Lon	igyea	r, Cre	w Chief: I	Paul Dicl	kinson				11	/2/95			11/7	1/95		8"M	UD	ROTARY
DNR F	-		o. W	/I Unique We	ll No.	Comm	on Well Nai	me	Fin		Water I 6 Feet		8	ace Elev 48.3	Feet MS	SL		8.0	neter Inches
Boring State P			71530	.00 N, 14	76837 0	ЭE				Lat	0 , 11		Loca	al Grid I			licable)		<b>—</b> —
NE		of NH		4 of Section	19		N,R <b>12V</b>	v	T	ong	0 , 11			Fee				Feet	
County								NR Col			Civil T Belvi		ity/ or V						
Sam	ple		- -										Τ		Soil	Propert	ies		
	(In) ~ed	Counts	In Feet		Soil/Rocl		-			S	0	F		rd ation	e L		υ		ts I
- La	$\begin{array}{c c} \hline c \\ c \\$									υ υ	-i ų	jrai	Ē	dai	e ul	+ id	<del></del> +	200	La
Numk	Lens Reco	Blou	Dep1							S N	Graphic Log	Well Diagram	PID/FID	Standard Penetrat	Moisture Content	Liquid Limit	Plas Limi	р 20 20 20 20	10
1 2 2 3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $									SM					M				SS SS
4	14		19 20 21 22 23 23 24 25	As above			f mu	knowla			1						SS		
Signatur	_	uiat (1)							r my Firm		-	~							
	au	à	$\sum$	Soult	100		2				RMT 744 Hea Tel: 608								

This form is autholized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

.

	Numb	er	W1	Use only as an attachment to Form 440	0-122.		T			Soil	Page Properti		of	
Sam Lagunn 5	ngth (In) covered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	n s c s	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content		Plastic Limit	P 200	Comments
5	18	100/.5'	26 27 27 28	As above, but native soil. SILTY SAND (SM), fine to										SS
6	20	46	<b>2</b> 27 28 29 30 31 32 33 34 35 36 37 38	medium, 10% clay, 5Y 4/4 olive, very dense, (glauconitic), (weathered sandstone).	SM					М				SS
7														SS
8	12	100/14'	39         39         30         31         31         32         33         34         34         35         36         37         38         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39	As above, but interbedded with silt and fines.										ss ss
9 <b>//</b>	8	100/10	* 46 47 48 49 49	As above, but very dense.										
10	6	100/8"	50 51 52 53 53 54	As above.										SS
11	6	100/6'	57 58 59	As above.										SS
12	3	100/3'	60 10161 62 63 63	As above.	_									ss (
П			65	SANDSTONE, tan to greenish tan, weathered, some fracturing, only 2 pieces longer than 4".										

Boring	g Numbe	er	<b>W1</b>	Use only as an attachment to Form	n 4400-122.						Page	3	of <b>3</b>	<b>k</b>
Sam										Soil	Properti	es		
Number	Length (In) Recovered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	S C S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	Comments
	Leng	NA	14 dag 14 dag 17 dag 18 dag	Recovery=32%, RQD=5%. Recovery=25%, RQD=4%. End of boring at 84.0 feet.						W				RC RC
C														

		f Wisco			Route 7		_						ioil Bo		og In	forma	
	Depart	ment of	f Natur	al Reso	_	d Waste		laz. Waste Indergroun	d Teoko			F	orm 44(	00-122			7-91
						ergency Response stewater	_	Vater Resou									
								Other						Page	1	of	3
	Facility Dair	/Project			31.30			License/P 2927	ermit/M	onitoring	Numb	er	Boring W1		r		
					ne and name of crew chi			Date Drill	ing Star	ed	Date	Drillin	g Compl	eted	Drilli	ng Meu	hod
	Boai	rt Lon	gyea	r, Cre	ew Chief: T. Schma	alfeldt		4/	29/97			5/1	l/ <b>97</b>		6 1/-	4 HSA	۱.
	DNR F	acility V	Vell No	o. W	VI Unique Well No.	Common Well	Name	Final Stat	ic Water	Level		ace Elev			orehole	e Diam	
								ļ	Fee	et MSL			Feet MS				Inches
	Boring State P			13527	.44 N, 1477214.9	9 E		Lat	0 * 1	11	Loca	u Gria I	Location		licable	,	Пе
	NE		of NE		/4 of Section 19	T 21 N,R 1	2W	Long	0 9 1	11		Fe	-			Feet	
	County						DNR Cou		Civil 7	Fown/City	/ or V						
	Buff	alo C	ounty	,			06		Belv	idere							
	Sam	ř		Feet									Soil	Propert	es	- <del></del>	_
		(u E U	Counts	L B	Soil/Roci	k Description						Standard Penetration					
		Σĕ	n	L L		gic Origin Fo	r	S	0	e	0	24	2 + J		U	1.	ts
	<u> </u>	t s			1	Major Unit	-	ပ	ĨĘ	- Le	É	ata tr	t u l	+ q	sti it	200	lei
	Number	Length (Ir Recovered	Blow	Depth				ω	Graphic Log	Well Diagram	PID/FID	ene	Moisture Content	Liqu	<u>ה</u> ב		Comments
	ž	שב	B			<u>~</u>		<u> </u>		30	0	NG	ΣŬ M		۹ –		0
				<u>undundundundundundundundund</u> 10 11 12 12	SILT (ML), 5% sand, 5% fine								IVI				
				2	clay, slightly p												
				<u>-</u> 3	4/4 brown.			_/					М				
				₽4	POORLY GRAI				. P. e								
	177	8	26	<u> </u>	GRAVEL (SP) WITH GRAVI			SP									SS
$\sim$	1	o	20	<u>-</u> 6	coarse, 10-209			51	0.0								50
				E-7	to coarse grave	l, 5% cobbles											
				<u>-8</u>	10YR 6/6 brow				0.0								
				<u></u> 9	medium dense.												
	2 T	24	56	E-10	As above.				. P. q								ss
	2	24	50	E-11	As above.												55
				E-12					0.0				1	1			1
				E-13					0.00								
				E-14					0								
	. 77	15	24	E-15	As shows have	the headland			0.00								
	3	15	36	13 14 14 15 16 17 18 19 20	As above, but w ~ 12.0-13.5 fe				: a .				4				SS
				E-17					0.00								
				E-18					11.11					.	ł	1	
				E-19	POORLY GRAI SILT (SP/SM)								м				
	. 77			E-20	to medium gra												
	- ⁴ //	18	26	E-21	fragments), 10	YR 6/6 brown	nish	SP/SN	1								SS
				E-22	yellow, mediu	m dense.											
				E-23													
				E-24						t i							
				E-25					11111								
	I hereby	y certify	/ that ti		rmation on this form is t	rue and correct to	o the best o	f my know	ledge.								
	Signatu	re				,		Firm	RMT	,							
100		2	n. 'n	۵. e	ind				744 H	eartland 7							
( )					· · · · · · · · · · · · · · · · · · ·	A 110 -				08-831-44							
$\bigcirc$					Chapters 144, 147 and 16 or each violation. Fined												

violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

Boring	Numbe	r	<b>W1</b>	07 Use only as an attachment to Form 440	0-122.	-	,		<b></b>		Page		of .	3
Sam L	Length (In) $\overline{\overline{a}}$ Recovered	Counts	n In Feet	Soil/Rock Description And Geologic Origin For	c s	hic	a Ta	FID	Standard Penetrat i on	â	Properti	с С	8	( )
Numbe	Leng. Reco	Blow	Depth	Each Major Unit	s n	Graphic Log	Well Diagram	PID/FID	Stan Pene	Mo i stur Content	Liquid Limit	Plast Limit	P 200	Comments
And		44	26 27 28 29 30 31 31 32 33 33 34	As above, except ~20% silt. WEATHERED DOLOMITE BEDROCK, becomes competent at ~31.0 feet.										SS SS RQD=0
7 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			135 36 37 38 39 40 41 41 42 43 44 44 45 46	Alternating layers (1-2 feet thick) of light brown dolomite and olive brown to olive green silty sandstone.										FF=0 Rec=40% GRAB GRAB
₩ ₩ ₩ ₩ ₩			47 48 49 50 51 51 52 53 54 55 56 60 61 61 62 63	<ul> <li>Olive brown to olive green SILTY SANDSTONE, glauconitic, fine to medium grained.</li> <li>Driller notes large fractures at ~53.0 feet, loose air circulation.</li> <li>DOLOMITE, light brown to gray, highly weathered with alternating layers of olive brown to olive green silty sandstone.</li> <li>Air circulation returns at ~60.0 feet.</li> </ul>										GRAB
			62 63 64 65 66	Olive brown to olive green Glauconitic SANDSTONE, fine-grained with many silty lenses.				00000000						

State of Wisconsin Department of Natural Resources

(

Soil Boring Log Information Supplement Form 4400-122A 7-91

	g Numbe	er	W1	<b>U</b> / Use only as an attachment to Form 4400	D-122.	F	1		ľ	<u> </u>	Page		of .	5
Number	Length (In) Recovered	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	S J S N	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Limit	P 200	Comments
RC2	18		2) 67 68 69 70 71 72 73 74 75 77 78 79 80 81 82 83 84 85 86	Olive green glauconitic SANDSTONE, fine grained with many silty lenses. Water at 74.5 feet while drilling. End of boring at 86.0 feet.										RQD=( FF=0 Rec=38

.

	of Wisc artment o		al Resou		i Waste rgency Response	e 🗌 U	-		Tanks ces				oil Bo orm 44	-	og Inf	ormat	tion 7-91
	(5)						Other				Marsh		D	Page		of	2
3	ty/Proje irylan			1.23			Licer	nse/Pe	rmit/Mo	nitoring	Numo	er			n ON6		
				e and name of crew chie		· · · · · · · · ·	Date	Drilli	ng Starte	d	Date	Drilling			Drilling		od
	vironn ank Ba		& F0	undation Drilling,				10/2				10/20			HSA		
DNR	Facility	Well N	o. W	I Unique Well No.	Common Well	Name	Final		Water I 9 Feet			ace Elev 5 <b>6.4</b> 1			orehole 101.		ter nches
	g Locati Plane		70664	00 N, 1476758.00	F		1	Lat	0 9 11		Loca	l Grid I			licable)	r	
NE		of NI		4 of Section 19	т 21 N,R 1	2W		ong	0,11			Fee			F	l Feet [	」 e ] w
Coun				· · · · · · · · · · · · · · · · · · ·		DNR Cou 06	nty C	ode	Civil To Belvi	own/Cit dere	y/ or V	ïllage					
	mple		ee†										Soil	Propert	ies		
	l (il)	nts	<b>L</b> L	Soil/Rock	Description							Standard Penetration					
Ľ.		Counts	្រុ		gic Origin Fo			S	<u>i</u>	Ē	A	ard	ure nte	σ	<u>.</u>		nts
Number	Length (I Recovered	Blow	Depth	Each N	lajor Unit			ပ ပ	Graphic Log	Well Diagram	PID/FID	and	Moisture Content	iquid imit	ast mit	200	Comments
NU	Le Re	Ē						<u>⊃</u>	Gra <u>l</u> Log	<u> </u>	H	Pel Pel	£ື	ĒĒ	Plas [.] Limi [.]	۵.	ß
. 7		100/7 100/2 36		ASPHALT, 3".			_/						N	1			
1	4	100/7		FILL, SILTY SA coarse, 25% sil									М				SS
4			E-3	medium gravel,	brownish ye												
2	2	100/2		10YR 6/6, very Boulder.	dense.								Μ				SS
3	8	36	<u> </u>	<b>POORLY GRAD</b> fine to coarse, (		SP),		SP					М				SS
			8	gravel, (sandsto	ne fragments	),											
4 7	14	20	E-9	brownish yellow dense, Fluvial.	w 10YR 6/8,								М				ss
2	4		9 10 11 11	$2^{"}$ silt lens at $\sim 9$	5' and $-10$	.0'.											
			12														
			E-14														
57	24	32	15										М				ss
5 7	24	52	16	6" silt lens at 15.	2'.			SP					141				55
2	4		E 17														
			18														
. 7		1.0010	E-20														
6	26	100/9	21										М				SS
2	4		E-22														
			13 14 15 16 17 18 19 20 21 22 23 24														
			24 25														
I here	y certif	y that th	<u></u>	nation on this form is tr	e and correct to	the best of	my k	nowle	dge.					1	L		1
Signat	ure			_		[]	Firm		RMT								
X	Du	ind	0. <b>&amp;</b>	-de				744 Hea Tel: 608									

This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

Boring Number STATION6Use only as an attachment to Form 4400-122. Page 2										of 2	2			
Sam	·		Feet							Soil	Properti	es		
4 Number	Length (In) Recovered	Blow Counts	pth In	Soil/Rock Description And Geologic Origin For Each Major Unit	รวรก	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Mo i sture Content	Liquid Limit	Plastic Limit	P 200	Comments
7	10	100/14	E-26							М				SS
8	16	25	26 27 28 29 30 31 32 33 33 33	Cobble zone from $\sim 27'$ to 30'. Mostly fine to coarse sand.						M				55
9	24	12	33 34 35 36 37 38	12" silt lens at 35.5' - 36.5'.						М				SS
10 7	16	12 100/18 2	39 40 41 42 43	SILTY SAND WITH GRAVEL (SM), fine to medium, 20% silt, 10-20% gravel, brownish yellow 10YR 6/8, very dense, Fluvial.	SM					м				ss
11	4	2	<u></u> = 48	SILT (ML), 10% clay, 20% fine to coarse sand, and fine gravel, nonplastic, dark brown 7.5YR 5/4, very loose, (Fluvial).	ML					w				SS
12	12	27	49 50 51 52 53 54 55	SILTY GRAVEL WITH SAND (GM), 33% fine to coarse sand, 15% silt, clay, dark brown 7.5YR 5/4, medium dense, Fluvial.	GM	$\frac{00}{20} + \frac{00}{20} + 00$				w	NP	NP	18.5	SS KH = 1.6X10 cm/sec
				End of Boring at 55 Ft.										
														C

Attachment 12

Revised Run-On and Run-Off Systems Plan



## Run-On and Run-Off Control System Plan

## Alma Offsite Disposal Facility Phase IV Landfill Alma, Wisconsin

October 2016 Revised October 2021 Revised January 2024

#### **Prepared For:**

Dairyland Power Cooperative 3200 East Avenue South La Crosse, Wisconsin 54601

#### **Prepared By:**

TRC 999 Fourier Drive, Suite 101 Madison, Wisconsin 53717

Breanne Kahnk

BreAnne Kahnk, P.E. Senior Project Engineer

Todd W. Martin

Todd Martin Principal Project Manager



#### **TABLE OF CONTENTS**

REVIS	ION HI	STORY	,	ii
1.0	INTRO	DUCTI	ON	1
	1.1	Purpos	e and Scope	. 1
2.0		RUN-OF	G DESIGN CONCEPTS FOR CONTROLLING RUN-ON	
	2.1		l	
	2.2		ו Control System	
		2.2.1	General	
		2.2.2	Control of Surrounding Run-On	
		2.2.3	Diversion Berms	.3
		2.2.4	Downslope Flumes	
		2.2.5	Ditching	.4
		2.2.6	Sedimentation Basins	.4
		2.2.7	Culverts	.4
		2.2.8	Temporary Surface Water Controls	.4
	2.3	Run-Of	f Control System	. 5
		2.3.1	General	.5
		2.3.2	Leachate Collection System	.5
		2.3.3	Leachate Removal and Transfer System	.5
		2.3.4	Leachate Storage Capacity From a 25-Year 24-Hour Storm Event	.6
		2.3.5	Conclusions	.6
3.0	CONS	TRUCT	ION OF RUN-ON AND RUN-OFF CONTROL SYSTEM	7
	3.1	Run-on	Control Systems	. 7
	3.2	Run-off	Control Systems	. 7
4.0	AMEN	DMENT	FOF THE PLAN AND NOTIFICATION	8
5.0	ENGIN	IEER'S	CERTIFICATION	9

#### **APPENDICES**

Appendix A:	Surface Water Run-On Control System Calculations
Appendix B:	Surface Water Run-Off Control System Calculations
Appendix C:	Relevant October 2000 POO Plan Sheets



#### **REVISION HISTORY**

Revision Number	Revision Date	Section Revised	Summary of Revisions
1	10/6/2021	1.2, 2.2, 2.3, 3.0, App. B	5-year periodic revision, revised text and Appendix B
2	10/11/2023	Inserted Section 3	Requirements to meet WDNR standards

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024



## 1.0 Introduction

#### 1.1 **Purpose and Scope**

This Run-On and Run-Off Control System Plan (Plan) was prepared by TRC Environmental Corporation (TRC) on behalf of Dairyland Power Cooperative (DPC) for the Alma Offsite Disposal Facility, Phase IV Landfill (Landfill) where coal combustion residuals (CCR) are disposed. The approximately 32.1 acre Landfill is located in Sections 18 and 19, T21N, R12W, Town of Belvidere, Buffalo County, Wisconsin.

This Plan meets the run-on and run-off control system requirements of the United States Environmental Protection Agency's (USEPA) CCR Rule (Title 40 Code of Federal Regulations (CFR) parts 257 Subpart D – "Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments"). This text and its accompanying appendices and plan sheets present the plans and specifications of the run-off and run-on control systems of the Landfill. The plan sheets and the text, with its appendices, complement each other and should be reviewed and used as one document.



# 2.0 Engineering Design Concepts for Controlling Run-On and Run-Off

#### 2.1 General

The Landfill design has been developed to provide environmentally sound CCR disposal. The storm water run-on and run-off control systems for the Landfill have been designed and meet the requirements of 40 CFR 257.81.

The supporting calculations for the run-on and run-off design are referenced throughout the text and are included in the appendices. Details and drawings illustrating design layout and specifications are referenced as applicable and presented on the plan sheets and figures. The majority of the calculations provided in the appendices were prepared during the initial permitting of the Phase IV Disposal Area and included in the October 2000 Plan of Operation (POO) in accordance with Wisconsin Administrative Code, Chapters 500 through 520, and conversations with the Wisconsin Department of Natural Resources (WDNR). Plan sheets included in Appendix C are the relevant plan sheets from the October 2000 POO drawing plan set. For the purposes of this Plan, the terms surface water and storm water have been used interchangeably and reflect precipitation routed over land or temporarily stored to manage run-on and run-off. No streams, wetlands, or bodies of water are located in areas that would impact run-on and run-off at the Landfill.

#### 2.2 Run-On Control System

#### 2.2.1 General

The run-on control system for the Landfill consists of perimeter berms, diversion berms, downslope flumes, ditching, sedimentation basins, and culverts, designed and constructed to control surface water during both the operational and post-closure periods of the Landfill. The design of the surface water controls have been performed for the operational periods when the combination of surface conditions and contributing acreage would result in the greatest run-off volume, and for the post-closure period. Given the location of the site, the surface water management system was designed utilizing the 100-year, 24-hour storm event at the time of the design, which exceeds the current 25-year, 24-hour storm event required by 40 CFR 257.81(a)(1). Calculations for the surface water run-on control designs are included in Appendix A.

The surface water control system design has been performed to meet the following requirements:

- Run-off curve numbers (RCNs) used in the analysis provide a conservative analysis of the potential land uses of the upland areas. Upland areas within the watershed primarily include wooded areas and agricultural lands. The wooded areas are located on the steeper-sloped areas of the valley and are unlikely to be affected by future land uses. High RCNs for the agricultural lands were selected to represent a conservative fallow condition with exposed bare soil. The RCNs selected for these areas were 86.
- Surface water run-on controls have been designed to divert off-site surface water away from the active fill areas. On-site surface water is routed to sedimentation basins, except surface water in contact with active fill areas, which is treated as leachate.



#### 2.2.2 Control of Surrounding Run-On

Surface water from areas west, north, and east of the Landfill currently drain to existing drainage channels that have formed in the valleys near the Landfill. These drainage channels converge at the location of the Landfill, are conveyed around the Landfill by perimeter diversion ditches, and continue to the south in a single drainage ditch. The main drainage ditch then routes the water to the south for approximately 1.5 miles before discharging into the Mississippi River (see Plan Sheet 5 in Appendix C).

Diversion ditches are designed to route off-site surface water around the Landfill in a controlled manner. These ditches are constructed in phases as the Landfill is developed.

During previous construction events, the perimeter drainage ditch along the eastern, western, and northern sides of the Landfill were constructed to route storm water from the east, west, and north around the Landfill. Cells 1, 2, and 3 of the Landfill have been constructed (see Plan Sheet 9 in Appendix C). A temporary drainage ditch/diversion berm was constructed on the northwestern side of the Landfill to route surface water from areas northwest of the Landfill around the Landfill. During Cell 4, Module B development, the remaining surface water controls will be completed (see Plan Sheets 11 and 12 in Appendix C).

Temporary and permanent ditching and diversion berms were designed and constructed to manage the peak flows associated with the 100-year, 24-hour storm event.

#### 2.2.3 Diversion Berms

Diversion berms are designed along the final cover system to collect and transfer surface water to the receiving downslope flume or sedimentation basin (see Detail 2 on Plan Sheet 19 in Appendix C). These diversion berms concentrate and control flow, and discharge the non-contact surface water (water that has not come into contact with the CCR) from the Landfill away from the final cover. The swales created by the diversion berms are designed at 2 percent typical slopes along the flow lines. The locations of the surface water diversion berms are shown on Plan Sheet 12 in Appendix C.

Drainage areas for the Landfill are defined by the proposed surface water diversion berms at the site. Run-off computations were performed for the site with the proposed diversion berms inplace and are contained in Appendix A. Figure K-2 in Appendix A shows the post-closure drainage areas for the Landfill.

#### 2.2.4 Downslope Flumes

Downslope flumes are included in the design to collect and transfer surface water from the diversion berms on the final cover to the sedimentation basins. Plan Sheet 12 shows the location of the downslope flumes. The downslope flumes have been designed as enclosed pipe flumes to limit erosion and to control the flow as it crosses roads. Downslope flume calculations are included in the culvert design subsection of Appendix A.



### 2.2.5 Ditching

Surface water ditching has been designed to minimize velocities and depths of flow. Velocities for the grass-lined ditching have been limited to 4 feet per second (fps). In areas where velocities exceed 4 fps, permanent erosion matting, or grouted riprap are used to limit erosion and reduce velocities. Ditch sizing calculations are contained in Appendix A. Designed ditch locations are shown on Figure K-3 in Appendix A. The ditching to route surface water around the Landfill and away from the active areas of the Landfill are designed at a minimum 2-foot depth as shown on Detail 8 on Plan Sheet 23 in Appendix A. Ditch sizing calculations for operational and post-closure conditions show that a minimum freeboard of 0.4 feet occurs as the worst case condition in the ditches for the 100-year 24-hour storm event. Therefore, the calculations indicate that run-on to the active areas of the Landfill should not occur for the 25-year 24-hour storm event as required by 40 CFR 257.81(a)(1).

#### 2.2.6 Sedimentation Basins

Two permanent sedimentation basins are designed to capture and treat non-contact run-off from the Landfill final cover system. The locations of the permanent sedimentation basins are shown on Plan Sheet 5 in Appendix C. The basins have been designed with a minimum surface area that exceeds the surface area required to settle 0.015 mm particles. The sedimentation basins are designed to accommodate the surface water run-off from a 100-year, 24-hour storm event. The emergency spillways are designed to control the run-off from a storm greater than the 100-year, 24-hour storm event.

#### 2.2.7 Culverts

Several culverts are designed to transport non-contact run-off from the Landfill final cover and surrounding areas. The locations of the permanent culverts are shown on Plan Sheet 12 in Appendix C. The culverts have been designed to allow the peak run-off associated with a 100-year, 24-hour storm to pass through it without creating surface water breaching (i.e., berm overflow and run-on into active areas of the Landfill) or excessive backwater levels. Culvert sizing was performed using design charts developed by the U.S. Department of Transportation Federal Highway Administration. Culvert sizing calculations are provided in Appendix A.

#### 2.2.8 Temporary Surface Water Controls

In addition to the permanent surface water management features discussed above, temporary surface water controls are also implemented during operation of the Landfill to control surface water from entering the active disposal area and to limit erosion of the final cover. These temporary control features include diversion berms, downslope discharge structure, and culverts. Temporary diversion berms will be constructed as needed along the transition from an active area to an area that has reached final grade, or that has intermediate cover, in order to control surface water from entering the active area. Temporary downslope discharge structures will be used to route non-contact run-off from diversion berms (either temporary or permanent) to the perimeter ditches.



#### 2.3 Run-Off Control System

#### 2.3.1 General

The leachate collection and handling system in conjunction with cell delineation berms (see detail 5 on Plan Sheet 17 in Appendix C) and perimeter berms comprise the control system for preventing contact surface water run-off from the active portions of the Landfill. Contact surface water is managed as leachate. The leachate collection system for the Landfill has been designed to provide effective drainage, collection, and removal of leachate from the Landfill.

#### 2.3.2 Leachate Collection System

The primary components of the leachate collection system consist of a drainage layer, leachate collection and transfer piping, cleanouts, manholes, a storage tank, and a load-out facility. The leachate collection system layout is shown on Plan Sheet 5 in Appendix C. The drainage layer is placed over the geomembrane on the base and sidewalls. The drainage layer promotes the efficient transmission of leachate to the leachate collection trenches and pipes. The drainage layer is a minimum of 12 inches thick and has a minimum hydraulic conductivity of  $1.0 \times 10^{-2}$  centimeters per second (cm/s).

The leachate collection piping is placed in vee-shaped trenches and consists of 6-inch–diameter perforated high density polyethylene (HDPE) pipe. Pipe bedding material is placed around the perforated pipe and mounded as shown on Plan Sheet 17 in Appendix C.

Leachate collection pipes in each cell are placed parallel to each other in valleys over the herringbone design across the base. These lines drain at a 4 to 6 percent slope to the leachate removal and transfer system.

Temporary cell delineation berms are used along the cell boundaries to control surface water runoff from exiting the active areas of the Landfill. Refer to Detail 5 on Plan Sheet 17 for further details on the temporary cell delineation berm design.

#### 2.3.3 Leachate Removal and Transfer System

The perforated leachate collection piping will transition to 6-inch–diameter nonperforated leachate transfer piping within the Landfill just prior to where the transfer piping penetrates the liner system at the southern toe-of-slope of each cell. The horizontal pipe penetration has been designed to prevent leachate from leaving the Landfill liner system through the liner penetration.

Outside of the limits of CCR, concrete manholes provide a location for transfer piping to manifold into a single perimeter transfer pipe around the southern end of the Landfill, and to provide a location for cleanout access piping.

The combined transfer piping then extends to the leachate storage tank located near the ash processing facility. Leachate collected in the tank is pumped into tanker trucks and transported to a nearby wastewater treatment plan for treatment which complies with 40 CFR 257.81(b). Plan Sheet 5 illustrates the location of the transfer piping, manholes, and the storage tank.



#### 2.3.4 Leachate Storage Capacity From a 25-Year 24-Hour Storm Event

The proposed phasing plans and existing conditions were reviewed to determine the worst-case scenario for leachate generation. This worst-case scenario was used to show that run-off from the active area of the Landfill would not occur from a 25-year 24-hour storm event. Calculations contained in Appendix B show that there is approximately 14,700 cubic feet of leachate storage capacity remaining in the leachate collection system after a 25-year 24-hour storm event. Therefore, sufficient infrastructure is provided to prevent run-off from the active area of the Landfill as required by 40 CFR 257.81(a)(2).

#### 2.3.5 Conclusions

This Plan has demonstrated that the Landfill has a run-on control system and a run-off control system sufficient to prevent flow onto or off of the active portion during a 24-hour 25-year storm event. The Landfill is in compliance with the requirements of 40 CFR 257.81.



## 3.0 Construction of Run-on and Run-off Control System

#### 3.1 Run-on Control Systems

As noted in Section 2.2, the run-on control system consists of perimeter berms, diversion berms, downslope flumes, ditching, sedimentation basins, and culverts. Run-on controls have been designed to divert off-site surface water away from the active fill areas. On-site water is routed to sedimentation basins, except surface water in contact with active fill areas which is treated as leachate.

As summarized in Section 2.2.2, the run-on features are constructed incrementally during both the liner construction and final cover construction events. The previously constructed features were constructed per the site specifications with construction oversight directed by a professional engineer licensed in the State of Wisconsin. Documentation reports for construction events at the Landfill were prepared, submitted to the WDNR, and approved by the WDNR.

Temporary systems are used at the limits of the construction event to assist in the run-on control system until the remainder of the components are completed. The remainder of the run-on control system components will be completed during development of Cell 4B and following its closure. Specific schedules of exactly when features will be developed is not practicable, as the development and closure of the Landfill is dependent on filling activities, which are highly variable. Future construction will meet the previously approved design and specifications as noted in the October 2000 Plan of Operation, and construction oversight will be directed by a professional engineer licensed in the State of Wisconsin.

#### 3.2 Run-off Control Systems

As noted in Section 2.3, the run-off control system consists of the leachate collection system in conjunction with cell delineation berms and perimeter berms. The previously constructed features for the active area were constructed during the liner installation of the associated module/cell. The remaining portions of the run-off control system will be constructed during the construction events for Cells 4A and 4B. The general placement of the leachate collection system is summarized in Section 2.3.2 and is detailed in the approved October 2000 Plan of Operation.

Previous and future construction have been/will be completed in accordance with the site specifications and design, as shown in Appendix C. Construction oversight has/will be directed by a professional engineer licensed in the State of Wisconsin. Documentation reports for previous construction events have been prepared, submitted to the WDNR, and previously approved by the WDNR. Following construction of future landfill cells/modules, reports documenting construction will be prepared and submitted to the WDNR as required by ch. NR 516.



### 4.0 Amendment of the Plan and Notification

This Plan was been completed in compliance with the requirements set forth in 40 CFR 257.81. This document has been placed in the operating record, posted to the publicly accessible website, and government notifications have been provided.

A Run-On and Run-Off Control System Plan must be prepared every 5 years from the completion date of this Plan.

The Plan must be amended whenever the periodic review period is reached or if changes in site conditions, either intentionally or unintentionally, occur that will sustainably impact the current written plan in effect.



### 5.0 Engineer's Certification

Pursuant to 40 CFR 257.81 and by means of this certification I attest that:

- (i) I am familiar with the requirements of the federal CCR rule (40 CFR 257);
- (ii) this Run-On and Run-Off Control System Plan has been prepared in accordance with good engineering practice; and
- (iii) this Run-On and Run-Off Control System Plan meets the requirements of 40 CFR 257.81(c).

For the purpose of this document, "certify" and "certification" shall be interpreted and construed to be a "statement of professional opinion." The certification is understood and intended to be an expression of my professional opinion as a Wisconsin licensed professional engineer, based upon knowledge, information, and belief. The statement(s) of professional opinion are not and shall not be interpreted or construed to be a guarantee or a warranty of the analysis herein.

**CAHNK** Signature of Registered Professional Engineer E-46825 ETON Registration No. E-46825 State: Wiscon 

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin

Final October 2016 Revised January 2024



### Appendix A: Surface Water Run-On Control System Calculations

- Note: For clarification purposes, these run-on calculations estimate "run-off" quantities from areas in and surrounding the Landfill that develop non-contact surface water that is managed to prevent run-on to the active Landfill areas.
- Surface Water Run-off Calculations
  - Purpose/Methodology/Assumptions/Results/References
  - Post-closure Run-off Calculations
  - Operational Run-off Calculations
  - Reference Information
- Diversion Berm, Perimeter Ditch, and Spillway Design Calculations
  - Purpose/Methodology/Assumptions/Results/References
  - Calculations Post-closure Landfill Conditions
  - Calculations Operational Landfill Conditions
  - Reference Information
- Culvert/Downslope Flume Design Calculations
  - Purpose/Methodology/Assumptions/Results/References
  - Calculations Post-closure Landfill Conditions
  - Calculations Temporary Culverts, Operational Conditions
- Vegetation Information



**Surface Water Run-off Calculations** 

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024



### Purpose/Methodology/Assumptions/Results/References

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024



### COMPUTATION SHEET

744 Heartland Trail (53717-8923) P.	O. Box 8923 (5370	8-8923)	Madison, WI	(608) 831-4444		VOICE: (608) 831-1989
PROJECT/PROPOSAL NAME	PREPAR	ED	CH	ECKED	PROJECT/PI	ROPOSAL NO.
Dairyland Power Cooperative	e BJK	Dat 5/9				3081.40

CLIET

### SURFACE WATER RUNOFF CALCULATIONS

### Purpose

The purpose of the surface water runoff calculations was to estimate the amount of surface water runoff and the peak discharge for the 25-year, 24-hour and 100-year, 24-hour storms at the proposed Dairyland Power Landfill. Calculations were performed for the pre- and post-development conditions. Calculations were also performed for operational conditions for the 25-year, 24-hour storm. Once determined, the surface water runoff quantities were compared to determine the effect of the proposed landfill on the existing drainage patterns. The runoff calculations were also used to size diversion ditches, sedimentation basins, culverts, and downslope flumes.

### Methodologies

Surface water runoff calculations consist of delineating drainage areas (watersheds), as shown on the attached figures, estimating runoff characteristics, and calculating the peak and total runoff rate and volume for each drainage area. The methods for computing surface water runoff were based on the methodologies presented in the Technical Release No. 55 - "Urban Hydrology for Small Watersheds" by the United States Soil Conservation Service.

The calculations were performed using the QUICK TR-55 computer program developed by Haestad Methods (Haestad 1989). The program incorporates rainfall quantities, storm distributions, surface runoff characteristics, drainage areas, times of concentration, and travel times to generate a hydrograph from which the volume of surface water runoff and the peak discharge are obtained.

It is noted that the storm water control structures have been designed using a 100-year, 24-hour storm event and a TR-55 Type II storm distribution to determine peak flow rates. Rainfall distributions for the Type II storm event include "nested" higher intensity storm events within those needed for longer durations at the same probability. The resulting peak flows using this design method meet or exceed the peak flows obtained using a 25-year, time of concentration storm event (required by NR 504.09).



## COMPUTATION SHEET

 SHEET
 2
 OF
 3

 744 Heartland Trail (53717-8923)
 P. O. Box 8923 (53708-8923)
 Madison, WI
 (608) 831-4444
 FAX: (608) 831-3334
 VOICE: (608) 831-1989

 PROJECT/PROPOSAL NAME
 PREPARED
 CHECKED
 PROJECT/PROPOSAL NO.

OJECT/PROPOSAL NAME	PREPAR	ED	CHECKE	D	PROJECT/PROPOSAL NO.
airyland Power Cooperative	^{By:} BJK	Date: 5/97	By: BLP	Date: 6/97	3081.40

### Assumptions

Da

The following assumptions were made in developing the hydrographs (Note: The figures and values referenced in these assumptions have been included in the references portion of this appendix):

- A 2-year, 24-hour storm event in the vicinity of the landfill is 2.8 inches based on rainfall maps prepared by the U.S. Weather Bureau.
- A 25-year, 24-hour storm event in the vicinity of the landfill equates to 4.9 inches based on rainfall maps prepared by the U.S. Weather Bureau.
- A 100-year, 24-hour storm event in the vicinity of the landfill equates to 6.1 inches based on rainfall maps prepared by the U.S. Weather Bureau.
- A Type II rainfall distribution was used, based on SCS storm distribution maps provided in the TR-55 manual.
- Cover types for the pre-development conditions, from which runoff curve numbers were determined, were based on USGS topographic maps and an aerial photograph.
- For the post-development landfill conditions, a runoff curve number of 74 was assumed, based on values provided in the TR-55 manual.
- Based on the USDA-SCS General Soil Map for Buffalo County, Wisconsin, the primary soil formations present include the Dubuque silt loam and the Fayette silt loam. These soils are a Type B soil, based on tables provided in the TR-55 manual.
- Runoff curve numbers for the non-landfill areas ranged from 55 to 86, based on values provided in the TR-55 manual. Refer to the attached calculations for the breakdown and description of each of the curve numbers used for the various drainage areas.

### Results

The table below summarizes the results of the surface water runoff analyses and provides a comparison of the pre- and post-development conditions:

	TOTAL RUNOFF (acre-ft)			PEAK	PEAK DISCHARGE (cfs)		
STORM	PRE-	POST-	Δ	PRE-	POST-	Δ	
25-year	153	148	(5)	1,170	1,028	(142)	
100-year	232	225	(7)	1,895	1,622	(273)	

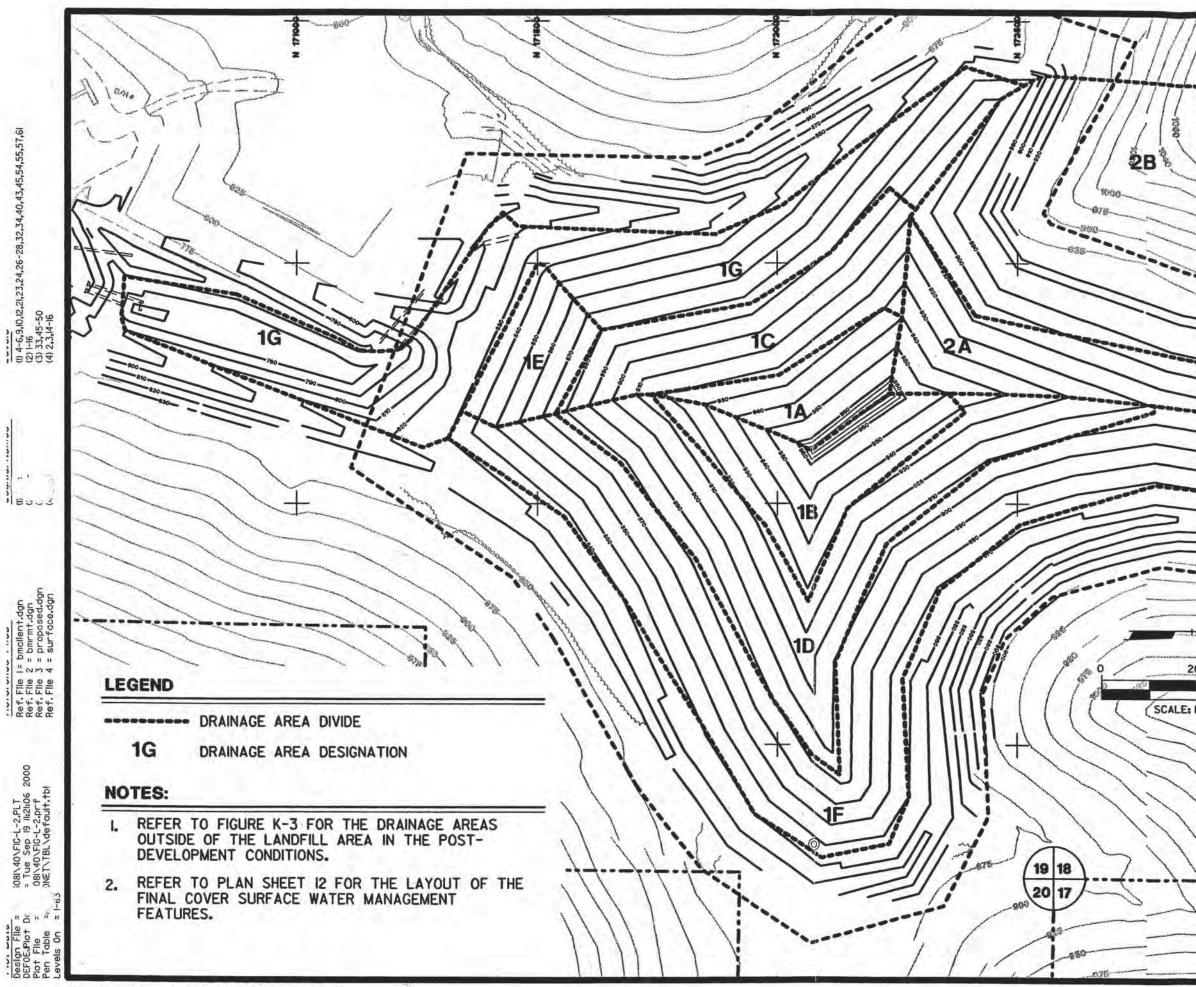
Based on the results of the surface water runoff calculations, the proposed landfill is not anticipated to have an adverse impact on the existing surface water at the site. Total runoff volumes to the existing drainageways are not anticipated to change in the pre- and postdevelopment conditions. Peak runoff volumes to the existing drainageways for post-



### COMPUTATION SHEET

				5.	HEEL	3	_OF3
744 Heartland Trail (53717-8923) P.	O. Box 8923 (53708	3-8923)	Madison, WI	(608) 831-44	44 FA	X: (608) 831-3334	VOICE: (608) 831-1989
PROJECT/PROPOSAL NAME	PREPARE	ED	CH	IECKED		PROJECT/PR	OPOSAL NO.
Dairyland Power Cooperative	e BJK	Dat 5/			ate: /97		3081.40

development conditions are slightly lower than the pre-development conditions. This is primarily due to the use of sedimentation basins to dissipate peak flows from the landfill to the surrounding areas. The reduced peak flows will result in reduced sediment transport from the site.


The results of these surface water runoff calculations have also been used in the attached diversion berm, perimeter ditch, spillway, and sedimentation basin calculations. These structures have been designed to handle the peak runoff from the 100-year, 24-hour storm event.

### References

- US Department of Agriculture, Soil Conservation Service. Urban Hydrology for Small Watersheds. Technical Release No. 55. 2nd Edition. June 1986.
- US Department of Agriculture, Soil Conservation Service. 1986. Engineering Field Manual for Conservation Practices. November 1986.
- Haestad Methods. Pond Pack, QUICK TR-55. Hydrology for Small Watersheds. December 1989.



**Post-closure Run-off Calculations** 



E 1477000 E 1477500 200 SCALE: 1=200-1000 1080 E 1478000 POST-DEVELOPMENT SURFACE WATER MANAGEMENT FEATURES -LANDFILL AREAS DAIRYLAND POWER COOPERATIVE JCD Dwn. By: Approved By: KIM Date: SEPT. 2000 Proj." 3081.40 Flle ": FIG-L-2.PLT FIGURE K-2

Quick TR-55 Ver.5.46 S/N: Executed: 09:52:46 04-09-1997

#### Dairyland Power Coop. Feasibility Report Landfill Runoff BJK 3/97

# RUNOFF CURVE NUMBER SUMMARY

Subarea	Area	CN
Description	(acres)	(weighted)
		**********
14	1.40	74
18	2.20	74
10	2.90	74
1D	5.30	74
1E	1.20	74
1F	9.50	74
1G	7.40	84

÷

Quick TR-55 Ver.5.46 S/N: Executed: 09:52:46 04-09-1997

6/13/97

Dairyland Power Coop. Feasibility Report Landfill Runoff BJK 3/97

#### RUNOFF CURVE NUMBER DATA

Composite Area: 1A

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	1.40	74	
COMPOSITE AREA>	1.40	74.0	(74)

Composite Area: 1B

	AREA	CN	
SURFACE DESCRIPTION	(acres)		
Landfill Cover	2.20	74	
COMPOSITE AREA>	2.20	74.0	(74)

Composite Area: 1C

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	2.90	74 -	
COMPOSITE AREA>	2.90	74.0	(74)

Quick TR-55 Ver.5.46 S/N: Executed: 09:52:46 04-09-1997

Composite Area: 1D

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	5.30	74	
COMPOSITE AREA>	5.30	74.0	(74)

Composite Area: 1E

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	1.20	74	/
COMPOSITE AREA>	1.20	74.0	( 74 )

Composite Area: 1F

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	9.50	74	1
COMPOSITE AREA>	9.50	74.0	(74)
*****************************			

Composite Area: 1G

	AREA	CN
SURFACE DESCRIPTION	(acres)	
Landfill Cover	4.40	74 -
Sedimentation Basin	3.00	98 -

COMPOSITE AREA ---> 7.40 83.7 ( 84 )

Quick TR-55 Ver.5.46 S/N: Executed: 09:53:01 04-09-1997

> Dairyland Power Coop. Feasibility Report Landfill Runoff BJK 3/97

RUNOFF CURVE NUMBER SUMMARY

Subarea	Area	CN
Description	(acres)	(weighted)
2A	2.70	74
2B	21.50	69

Quick TR-55 Ver.5.46 S/N: Executed: 09:53:01 04-09-1997



1

Dairyland Power Coop. Feasibility Report Landfill Runoff BJK 3/97

# RUNOFF CURVE NUMBER DATA

Composite Area: 2A

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	2.70	74	
COMPOSITE AREA>	2.70	74.0	(74)
111111111111111111111111111111111111111			

Composite Area: 28

Landfill Cover 2.70 7	74
Graded/Grassed Area 2.00 6	51 -
Woods/Brush 15.80 6	57 -
Sedimentation Basin 1.00 9	98 -
COMPOSITE AREA> 21.50 6	58.8 ( 69 )

SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

> Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

Subarea descr.	Tc or Tt	Time (hrs)
	*******	
14	Tc	0.18
18	Tc	0.23
10	Tc	0.23
10	Tc	0.35
1E	Tc	0.18
1F	Tc	0.45
1G	Tc	0.22

#### Quick TR-55 Ver.5.46 S/N: Executed: 09:48:41 04-09-1997 B:COVER1.TCT

1

)

)

6/13/97

Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

#### TC COMPUTATIONS FOR: 1A

SHEET FLOW (Applicable to Tc only)					
Segment ID	-	1			
Surface description	Den	e Grass			
Manning's roughness coeff., n		0.2400	1		
Flow length, L (total < or = 300)		150.0			
Two-yr 24-hr rainfall, P2	in				
Land slope, s					
Cand stope, s	ft/ft	0.2500			
.007 * (n*L)	1.11				202
T =	hrs	0.13			0.13
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft	420.0			
Watercourse slope, s	ft/ft	0.0200	1		
0.5					
Avg.V = Csf * (s)	ft/s	2.2818			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282			- 2		
T = L / (3600*V)	hrs	0.05		•	0.05
CHANNEL FLOW					
Segment ID		1.0.00			
Cross Sectional Flow Area, a	sq.ft	0.00			
Wetted perimeter, Pw	ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness-coeff., n		0.0000			
2/3 1/2					
1.49 * r * s					
V =	ft/s	0.0000			
n	1.42				
Flow Length, L					
the congress to	ft	0			
T = L / (3600*V)	hrs	0.00			0.00
		TOTAL T	IME (hrs	0	0.18

Feasibility Report Landfill Final Cover BJK 3/97 TC COMPUTATIONS FOR: 18 SHEET FLOW (Applicable to Tc only) Segment ID 1 Surface description Dense Grass Manning's roughness coeff., n 0.2400 125.0 / Flow length, L (total < or = 300) ft Two-yr 24-hr rainfall, P2 2.800 in 0.2500 -Land slope, s ft/ft 0.8 .007 * (n*L) T = ---hrs 0.11 8 0.11 0.5 0.4 P2 * s SHALLOW CONCENTRATED FLOW Segment ID 2 Surface (paved or unpaved)? Unpaved Flow Length, L 960.0 / ft Watercourse slope, s ft/ft 0.0200 / 0.5 Avg.V = Csf * (s) 2.2818 ft/s where: Unpaved Csf = 16.1345 Paved Csf = 20.3282 T = L / (3600*V)0.12 hrs 0.12 CHANNEL FLOW Segment ID Cross Sectional Flow Area, a 0.00 sq.ft Wetted perimeter, Pw ft 0.00 Hydraulic radius, r = a/Pw ft 0.000 Channel slope, s ft/ft 0.0000 Manning's roughness coeff., n 0.0000 2/3 1/2 1.49 * Π. * 5 V = -----0.0000 ft/s n Flow Length, L ft 0 T = L / (3600*V) hrs 0.00 0.00

TOTAL TIME (hrs) 0.23

Quick TR-55 Ver.5.46 S/N: a:COVER1.TCT Executed: 09:48:41 04-09-1997

Dairyland Power Coop.

Quick TR-55 Ver.5.46 S/N: Executed: 09:48:41 04-09-1997 a:COVER1.TCT

)

1026

Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

1.1

#### Te COMPUTATIONS FOR: 1C

SHEET FLOW (Applicable to Tc only)			
Segment ID		1	
Surface description	Den	e Grass	
Manning's roughness coeff., n		0.2400	
Flow length, L (total < or = 300	)) ft	165.0 /	
Two-yr 24-hr rainfall, P2	in	2.800	
Land slope, s	ft/ft	0.2500 -	
0.8			
.007 * (n*L)			
T =	hrs	0.14	= 0.14
0.5 0.4			
P2 * s			
SHALLOW CONCENTRATED FLOW			
Segment ID		2	
Surface (paved or unpaved)?		Unpaved	
Flow length, L	ft	720.0 /	
Watercourse slope, s	ft/ft	0.0200 /	
		0.0200 /	
0.5			
Avg.V = Csf * (s)	ft/s	2.2818	
where: Unpaved Csf = 16.1345			
Paved Csf = 20.3282			
T = L / (3600*V)	hrs	0.09	= 0.09
CHANNEL FLOW			
Segment ID			
Cross Sectional Flow Area, a	sq.ft	0.00	
Wetted perimeter, Pw	ft	0.00	
Hydraulic radius, r = a/Pw	ft	0.000	
Channel slope, s	ft/ft	0.0000	
Manning's roughness coeff., n		0.0000	
2/3 1/2		-	
1.49 * r * s			
V =	ft/s	0.0000	
n			
FINE DECEMBER 1	100		
Flow length, L	ft	0	
T = L / (3600*V)	hrs	0.00	= 0.00
	0.00	TOTAL TIME (	hrs) 0.23

Quick TR-55 Ver.5.46 S/N: Executed: 08:55:25 06-18-1997 a:COVER1.TCT

> Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

#### TC COMPUTATIONS FOR: 1D

SHEET FLOW (Applicable to Tc only) Segment ID Surface description Dense Grass Manning's roughness coeff., n 0.2400 160.0 / Flow length, L (total < or = 300) ft Two-yr 24-hr rainfall, P2 in 2.800 Land slope, s ft/ft 0.2500 / 0.8 .007 * (n*L) T = 0.13 hrs = 0.13 0.4 0.5 P2 * s SHALLOW CONCENTRATED FLOW Segment ID 2 Surface (paved or unpaved)? Unpeved Flow Length, L 1770.0 ft Watercourse slope, s 0.0200 / ft/ft 0.5 Avg.V = Csf * (s) 2.2818 ft/s where: Unpaved Csf = 16.1345 Paved Csf = 20.3282 T = L / (3600*V) 0.22 hrs 0.22 CHANNEL FLOW Segment ID Cross Sectional Flow Area, a sq.ft 0.00 Wetted perimeter, Pw 0.00 ft Hydraulic radius, r = a/Pw 0.000 ft Channel slope, s 0.0000 ft/ft Manning's roughness coeff., n 0.0000 2/3 1/2 1.49 * r . . 0.0000 ft/s n Flow length, L ft 0 T = L / (3600*V) 0.00 hrs 0.00 TOTAL TIME (hrs) 0.35

B2G 6/13/97 Quick TR-55 Ver.5.46 S/N: Executed: 08:55:25 06-18-1997 a:COVER1.TCT

#### Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

10000 - 113/97

- K

#### TC COMPUTATIONS FOR: 1E

SHEET FLOW (Applicable to Tc only)					
Segment ID					
Surface description	Den	se Grass			
Manning's roughness coeff., n		0.2400			
Flow length, L (total < or = 300	) ft		1.12		
Two-yr 24-hr rainfall, P2	in	C			
Land slope, s	ft/ft		1		
0.8					
.007 * (n*L)					
T =	hrs	0.14			0.14
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpeved			
Flow length, L	ft	250.0			
Watercourse slope, s	ft/ft	0.0200			
0.5					
Avg.V = Csf * (s)	ft/s	2.2818			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.03			0.03
CHANNEL FLOW			· 4.		
Segment ID					
Cross Sectional Flow Area, a		0.00			
Wetted perimeter, Pw	sq.ft	0.00			
Hydraulic radius, r = e/Pw	ft				
Channel slope, s	ft				
Manning's roughness coeff., n	ft/ft	0.0000			
Haranny's roughness coerr., n		0.0000			
2/3 1/2					
1.49 * r * e					
V a	44.10	0.0000			
94 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ft/s	0.0000			
Flow Length, L	ft	0			

4

Quick TR-55 Ver.5.46 S/N: Executed: 09:48:41 04-09-1997 a:COVER1.TCT

> Dairyland Power Coop, Feasibility Report Landfill Final Cover BJK 3/97

6/13/97

1.14

#### TC COMPUTATIONS FOR: 1F

SHEET FLOW (Applicable to Tc only)						
Segment ID		1				
Surface description	Dens	e Grass				
Manning's roughness coeff., n		0.2400				
Flow length, L (total < or = 300)	ft	150.0	-			
Two-yr 24-hr rainfall, P2	in	2.800				
Land slope, s	ft/ft	0.2500	1			
0.8						
.007 * (n*L)						
T =	hrs	0.13			0.13	
0.5 0.4						
P2 * s						
SHALLOW CONCENTRATED FLOW						
Segment ID		2				
Surface (paved or unpaved)?		Unpaved				
Flow length, L	ft	2650.0	1			
Watercourse slope, s	ft/ft	0.0200	1			
		010200				
0.5						
Avg.V = Csf * (s)	ft/s	2.2818				
where: Unpaved Csf = 16.1345						
Paved Csf = 20.3282						
T = L / (3600*V)	hrs	0.32		14	0.32	
				1	0.32	
CHANNEL FLOW						
Segment ID						
		0.00				
Wetted perimeter, Pw	sq.ft ft	0.00				
Hydraulic radius, r = a/Pw	1.1	0.00				
Channel slope, s	ft ft/ft	0.000				
Manning's roughness coeff., n	Tt/Tt	0.0000				
Horanny a roughness coerra, n		0.0000				
2/3 1/2						
1.49 * r * s ·						
V =	ft/s	0.0000				
n		100 March 10				

Flow length, L ft 0 T = L / (3600*V) hrs 0.00 = 0.00

TOTAL TIME (hrs) 0.45

Quick TR-55 Ver.5.46 S/N: Executed: 09:48:41 04-09-1997 a:COVER1.TCT

#### Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

#### TE COMPUTATIONS FOR: 16

SHEET FLOW (Applicable to Tc only)					
Segment ID		1			
Surface description	Dens	e Grass			
Manning's roughness coeff., n		0.2400			
Flow length, L (total < or = 300)	ft	170.0	-		
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.2500	1		
0.8					
.007 * (n*L)					
Τ =	hrs	0.14			0.1
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2	3		
Surface (paved or unpaved)?		Unpaved	Unpaved		
Flow length, L	ft	780.0	370.0	-	
Watercourse slope, s	ft/ft	0.0600	0.0800		
0.5					
Avg.V = Csf * (s)	64.1-	3.9521	4.5635		
where: Unpaved Csf = 16.1345	ft/s	3.9321	4.3035		
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.05	+ 0.02	-	0.08
CHANNEL FLOW					
Segment ID					
Cross Sectional Flow Area, a	sq.ft	0.00			
Wetted perimeter, Pw	ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness coeff., n		0.0000			
2/3 1/2					
1.49 * r * s					
V =	ft/s	0.0000			
n					
Flow length, L	ft	0			
riow tength, L					

1828 6/13/97 Quick TR-55 Ver.5.46 S/N: Executed: 08:57:44 06-18-1997 s:COVER2.TCT

> SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

> > Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

Subarea descr.	Tc or Tt	Time (hrs)
24	Tc	0.28
28	Tc	0.18

1.1

Quick TR-55 Ver.5.46 S/N: Executed: 08:57:44 06-18-1997 a:COVER2.TCT

> Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

> > .

6/13/97

#### TC COMPUTATIONS FOR: 2A

SHEET FLOW (Applicable to Tc only)					
Segment ID		1			
Surface description	Dens	se Grass			
Manning's roughness coeff., n		0.2400			
Flow length, L (total < or = 300)	ft	200.0			
Two-yr 24-hr rainfall, P2	in				
Land slope, s	ft/ft	0.2500	1		
0.8					
.007 * (n*L)	1.45				
T =	hrs	0.16			0.16
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow Length, L	ft	0.000	1		
Watercourse slope, s	ft/ft	1000000	1		
0.5					
Avg.V = Csf * (s)	ft/s	2.2818			
where: Unpaved Caf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.11		÷	0.11
CHANNEL FLOW					
Segment ID					
Cross Sectional Flow Area, a	sq.ft	0.00			
Wetted perimeter, Pw	ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness coeff., n		0.0000			
2/3 1/2					
1.49 * 5 * 8					
V =	ft/s	0.0000			
n	1.7.8	0.0000			
Flow length, L	ft	0			
T = L / (3600*V)	hrs	0.00			0.00
211 FCG 11 F00 11 F0 11 F0 11 F0 11 F0 11 F0 10 F0			INE (hrs)	2557	0.28
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Quick TR-55 Ver.5.46 S/N: Executed: 08:57:44 06-18-1997 a:COVER2.TCT Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97 Te COMPUTATIONS FOR: 28 SHEET FLOW (Applicable to Tc only) Segment ID 1 Surface description Brush Manning's roughness coeff., n 0.1300 Flow length, L (total < or = 300) ft 300.0 Two-yr 24-hr rainfall, P2 2.800 in Land slope, s ft/ft 0.2000 0.8 .007 * (n*L)

T = ______ hrs 0.15 = 0.15 0.5 0.4 p2 * s

Segment ID		2	3
Surface (paved or unpaved)?		Unpaved	Unpaved
Flow length, L	ft	560.0	300.0
Watercourse slope, s	ft/ft	0.4400	0.0800
0.5			
Avg.V = Csf * (s)	ft/s	\$10.7024	4.5635
where: Unpaved Csf = 16.1345			
. Paved Csf = 20.3282			

hrs

0.01

0.02

= 0.03

0.00

		ELOU
LIAN	INEL	FLOW

T = L / (3600*V)

Segment ID			
Cross Sectional Flow Area, a	sq.ft	0.00	
Wetted perimeter, Pw	ft	0.00	
Hydraulic radius, r = a/Pw	ft	0.000	
Channel slope, s	ft/ft	0.0000	
Manning's roughness coeff., n		0.0000	
2/3 1/2 1.49 * r * s			
v =	ft/s	0.0000	
Flow length, L	ft	o	
T = L / (3600*V)	hrs	0.00	-

TOTAL TIME (hrs) 0.18

#### Page 1 Return Frequency: 25 years

#### TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:33 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER1 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER125.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	Rund Rund			/p /used
1A	1.40	74.0	0.20	0.00	4.90	2.2	28 1	1.14	.14
1B	2.20	74.0	0.20	0.00	4.90	2.2	28 1	.14	.14
10	2.90	74.0	0.20	0.00	4.90	2.2	28 1	.14	.14
1D	5.30	74.0	0.40	0.00	4.90	2.2	28 1	.14	.14
1E	1.20	74.0	0.20	0.00	4.90	2.2	28 1	. 14	.14
1F	9.50	74.0	0.50	0.00	4.90	2.2	28 1	.14	.14
1G	7.40	84.0	0.20	0.00	4.90	3.1	18 1	.08	.10

* Travel time from subarea outfall to composite watershed outfall point.

I -- Subarea where user specified interpolation between Ia/p tables.

Total area = 29.90 acres or 0.04672 sq.mi Peak discharge = 67 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

Т	otal Runoff =
22.5 a	c (2.25") + 7.4Ac (3.18m)
	12

6.2 ac - FT

	Input	Values	Rounded	Values	la/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	I Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
A	0.18	0.00	0.20	0.00	Yes	
B	0.23	0.00	0.20	0.00	Yes	
C	0.23	0.00	0.20	0.00	Yes	
D	0.35	0.00	0.40	0.00	Yes	
E	0.18	0.00	0.20	0.00	Yes	**
F	0.45	0.00	0.50	0.00	Yes	
G	0.22	0.00	0.20	0.00	No	Computed Ia/p < .

* Travel time from subarea outfall to composite watershed outfall point.

## Page 2

Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:33 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER1 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER125.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at	
	Composite Outfall	Composite Outfall	
Subarea	(cfs)	(hrs)	
***********	**********		
1A	4	12.2	
1B	6	12.2	
10	8	12.2	
1D	11	12.3	
1E	3	12.1	
1F	17	12.4	
1G	29	12.2	
******			
Composite Watershed	67	12.2	

### Page 3

#### Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

#### Executed: 09-18-2000 12:51:33 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER1 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER125.HYD

#### Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Subarea Description	11.0 hr	11.3 hr	11.6 hr	11.9 hr	12.0 hr	12.1 hr	12.2 hr	12.3 hr	12.4 hr
1A	0	0	0	1	2	3	4	2	1
1B	0	0	0	1	3	5	6	4	2
10	0	0	0	2	4	7	8	5	3
1D	0	0	1	1	2	5	8	11	11
1E	0	0	0	1	2	3	3	2	1
1F	0	1	1	2	3	5	9	15	17
1G	1	1	2	8	15	27	29	18	9

Subarea	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13.8
Description	hr	hr	hr	hr	hr	hr	hr	hr	hr
1A	1.	1	1	0	0	0	0	0	0
1B	1	1	1	1	1	1	0	0	0
10	2	1	1	1	1	1	1	1	0
1D	8	6	4	3	2	2	1	1	1
1E	1	1	0	0	0	0	0	0	0
1F	17	13	10	8	5	3	3	2	2
1G	6	5	4	3	3	2	2	2	2
******	••••••								
Total (cfs)	36	28	21	16	12	9	7	6	5

### Page 4

#### Return Frequency: 25 years

#### TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

#### Executed: 09-18-2000 12:51:33 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER1 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER125.HYD

#### Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

#### Composite Hydrograph Summary (cfs)

Subarea Description	14.0 hr	14.3 hr	14.6 hr	15.0 hr	15.5 hr	16.0 hr	16.5 hr	17.0 hr	17.5 hr
1A	0	0	0	0	0	0	0	0	0
1B	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
1D	1	1	1	1	1	1	0	0	0
1E	0	0	0	0	0	0	0	0	0
1F	2	1	1	1	1	1	1	1	1
1G	1	1	1	1	1	1	1	1	1
Total (cfs)	·····	3							

Subarea Description	18.0 hr	19.0 hr	20.0 hr	22.0 hr	26.0 hr	
1A	0	0	0	0	0	
1B	0	0	0	0	0	
10	0	0	0	0	0	
1D	0	0	0	0	0	
1E	0	0	0	0	0	
1F	1	1	1	0	0	
1G	1	1	0	0	0	
Total (cfs)	2	2	1	0	0	

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 07-30-1998 11:54:55 Watershed file: --> A:COVER1 .MOP Hydrograph file: --> A:COVER100.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

1 BLB 5/20/98

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	1	Runoff (in)	10110	/p /used
1A	1.40	74.0	0.20	0.00	6.10	1	3.27	1.12	.12
18	2.20	74.0	0.20	0.00	6.10	i.	3.27	1.12	.12
10	2.90	74.0	0.20	0.00	6.10	î.	3.27	1.12	.12
10	5.30	74.0	0.40	0.00	6.10	î.	3.27	1.12	.12
1E	1.20	74.0	0.20	0.00	6.10	Ì.	3.27	1.12	.12
1F	9.50	74.0	0.50	0.00	6.10	È	3.27	1.12	.12
16	7.40	84.0	0.20	0.00	6.10	i	4.29	1.06	.10

* Travel time from subarea outfall to composite watershed outfall point.

I -- Subarea where user specified interpolation between Ia/p tables.

Total area = 29.90 acres or 0.04672 sq.mi Peak discharge = 98 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

22.5 ac (3.27") +	7. 4 ac (4. 24")
12	
= 3.8 ac-F	÷τ

Total Runoff

	Input	Values	Rounded	Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	i Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
A	0.18	0.00	0.20	0.00	Yes	
в	0.23	0.00	0.20	0.00	Yes	
C	0.23	0.00	0.20	0.00	Yes	
D	0.35	0.00	0.40	0.00	Yes	
E	0.18	0.00	0.20	0.00	Yes	
F	0.45	0.00	0.50	0.00	Yes	
G	0.22	0.00	0.20	0.00	No	Computed la/p < .

* Travel time from subarea outfall to composite watershed outfall point.

#### Quick TR-55 Version: 5.46 S/N:

#### Page 2 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 07-30-1998 11:54:55 Watershed file: --> A:COVER1 .MOP Hydrograph file: --> A:COVER100.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

#### >>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at Composite Outfall	Time to Peak at Composite Outfall
Subarea	(cfs)	(hrs)
	***********	
1A	6	12.2
1B	9	12.2
1C	12	12.2
10	16	12.3
1E	5	12.2
1F	25	12.4
1G	40	12.2
**********	*******	
Composite Watershed	98	12.2

#### Page 3 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 07-30-1998 11:54:55 Watershed file: --> A:COVER1 .MOP Hydrograph file: --> A:COVER100.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Composite Hydrograph Summary (cfs)

Subarea	11.0	11.3	11.6	11.9	12.0	12.1	12.2	12.3	12.4
Description	hr	hr	hr	hr	hr	hr	hr	hr	hr
1A	0	0	0	1	3	5	6	3	2
18	0	0	0	2	4	8	9	5	3
IC	0	0	1	3	6	11	12	7	4
10	0	1	- t -	2	4	7	12	16	15
1E	0	0	0	1	2	4	5	3	2
(F)	1	1	1	2	4	8	14	22	25
16	1	2	2	10	20	37	40	24	12
								******	
Total (cfs)	2	4	5	21	43	80	98	80	63

Subarea	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13.8
Description	hr	hr							
								******	
1A	1	1	1	1	1	0	0	0	0
18	2	1	1	1	1	1	1	1	1
10	3	2	2	1	1	1	1	1	1
1D	12	8	6	4	3	2	2	2	1
1E	1	1	1.1	1	0	0	0	0	0
1F	24	19	14	11	7	5	4	3	3
1G	8	6	5	4	3	3	3	2	2
Total (cfs)	51	38	30	23	16	12	11	9	8

-

#### Page 4 Return Frequency: 100 years

#### TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 07-30-1998 11:54:55 Watershed file: --> A:COVER1 .MOP Hydrograph file: --> A:COVER100.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

#### Composite Hydrograph Summary (cfs)

Subarea Description	14.0 hr	14.3 hr	14.6 hr	15.0 hr	15.5 hr	16.0 hr	16.5 hr	17.0 hr	17.5 hr
1A	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0
10	1	1	1	0	0	0	0	0	0
1D	1	1	1	1	1	1	1	1	1
1E	0	0	0	0	0	0	0	0	0
1F	2	2	2	2	1	1	1	1	1
IG	2	2	2	1	1	1	1	1	1
Total (cfs)	6	6	6	4	3	3	3	3	3

Subarea Description	18.0 hr	19.0 hr	20.0 hr	22.0 hr	26.0 hr	
1A	0	0	0	0	0	
18	0	0	0	0	0	
10	0	0	0	0	0	
1D	1	0	0	0	0	
1E	0	0	0	0	0	
1F	1	1	1	-1	0	
1G	1	1	1	11	0	
Total (cfs)	3	2	2	2	0	

-

#### Page 1 Return Frequency: 25 years

--

#### TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:16 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER225.HYD

#### Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	ł	Runoff (in)	Ia input	/p /used
2A	2.70	74.0	0.30	0.00	4.90	ï	2.28	1.14	.14
2B	21.50	69.0	0.20	0.00	4.90	î.	1.89	1.18	.18

* Travel time from subarea outfall to composite watershed outfall point. I -- Subarea where user specified interpolation between Ia/p tables.

> Total area = 24.20 acres or 0.03781 sq.mi Peak discharge = 54 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

>> Compu	ter Modif	ications	of Inpu	t Parameters <<	***
		*******			************
Input	Values	Rounded	Values	Ia/p	
Tc	* Tt	Tc	* Tt	Interpolated	la/p
(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
	Input Tc	Input Values Tc * Tt	Input Values Rounded Tc * Tt Tc	Input Values Rounded Values Tc * Tt Tc * Tt	Tc * Tt Tc * Tt Interpolated

0.00

Yes

0.30 2B 0.18 0.00 0.20 0.00 Yes 14 ..... 

* Travel time from subarea outfall to composite watershed outfall point.

2A

0.28

0.00

#### Page 2 Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:16 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER225.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at Composite Outfall	Time to Peak at Composite Outfall
Subarea	(cfs)	(hrs)
2A	6	12.2
2B	48	12.2
Composite Watershed	54	12.2

# Page 3

Return Frequency: 25 years

## TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

## Executed: 09-18-2000 12:51:16 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER225.HYD

# Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Subarea Description	11.0	11.3	11.6	11.9	12.0	12.1	12.2	12.3	12.4
Description	hr								
2A	0	0	0	1	2	4	6	6	4
2B	1	1	2	9	20	42	48	31	17

Subarea Description	12.5 hr	12.6 hr	12.7 hr	12.8 hr	13.0 hr	13.2 hr	13.4 hr	13.6 hr	13.8 hr
2A	3	2	1	1	1	1	1	1	0
28	11	9	7	6	5	4	4	4	3

Subarea Description	14.0 hr	14.3 hr	14.6 hr	15.0 hr	15.5 hr	16.0 hr	16.5 hr	17.0 hr	17.5 hr
2A	0	0	0	0	0	0	0	0	0
2B	3	3	2	2	2	2	2	2	1
	*******								
Total (cfs)	3	3	2	2	2	2	2	2	1

Subarea	18.0	19.0	20.0	22.0	26.0
Description	hr	hr	hr	hr	hr
2A	0	0	0	0	0
2B	- 1	1	1	1	0



#### Page 1 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 15:19:47 Watershed file: --> A:\COVER2 .MOP Hydrograph file: --> A:\COVER200.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	1	Runoff (in)	Ia input	/p /used
2A	2.70	74.0	0.30	0.00	6.10	1	3.27	1.12	.12
2B	21.50	69.0	0.20	0.00	6.10	Î.	2.79	1.15	.15

* Travel time from subarea outfall to composite watershed outfall point. I -- Subarea where user specified interpolation between Ia/p tables.

> Total area = 24.20 acres or 0.03781 sq.mi Peak discharge = 82 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

# >>>> Computer Modifications of Input Parameters <<<<<

	Input	Values	Rounded	Values	la/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
			********		**************	
2A	0.28	0.00	0.30	0.00	Yes	
2B	0.18	0.00	0.20	0.00	Yes	

* Travel time from subarea outfall to composite watershed outfall point.

#### Page 2 Return Frequency: 100 years

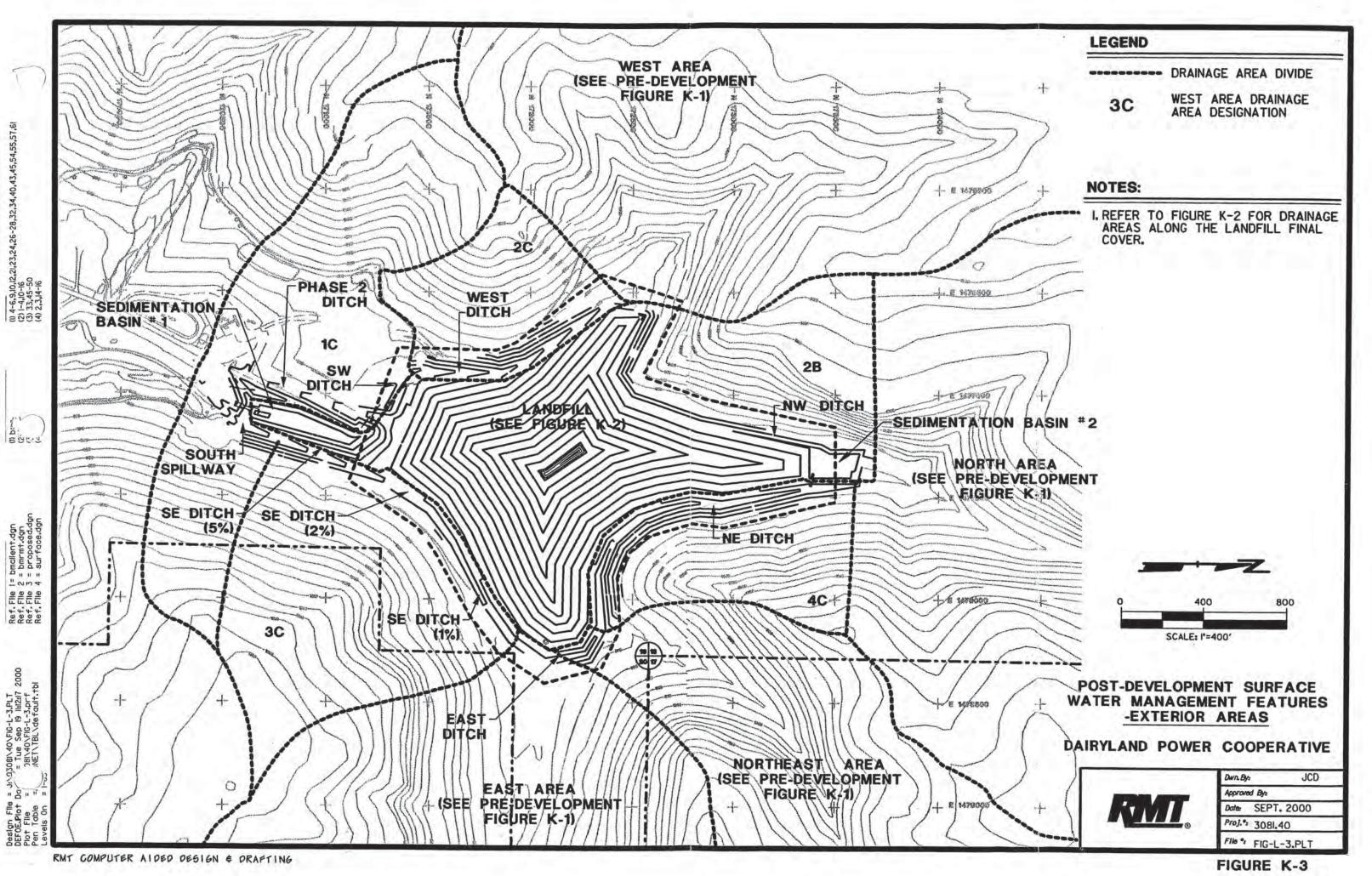
## TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 15:19:47 Watershed file: --> A:\COVER2 .MOP Hydrograph file: --> A:\COVER200.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at Composite Outfall	Time to Peak at Composite Outfall
Subarea	(cfs)	(hrs)
**********		
2A	9	12.2
2B	73	12.2
************		**********
Composite Watershed	82	12.2


#### Page 3 Return Frequency: 100 years

## TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 15:19:47 Watershed file: --> A:\COVER2 .MOP Hydrograph file: --> A:\COVER200.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Subarea	11.0	11.3	11.6	11.9	12.0	12.1	12.2	12.3	12
Description	hr	hr	hr	hr	hr	hr	hr	hr	h
ZA	0	0	1	1	3	6	9	9	17
2B	2	2	3	16	33	65	73	45	2
Total (cfs)	2	2	4	17	36	71	82	54	3
Subarea	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13
Description	hr	hr	hr	hr	hr	hr	hr	hr	h
2A	4	3	2	2	1	1	1	1	
28	16	13	10	9	7	6	6	5	1
Total (cfs)	20	16	12	11	8	7	7	6	
Subarea	14.0	14.3	14.6	15.0	15.5	16.0	16.5	17.0	17.
Description	hr	hr	hr	hr	hr	hr	hr	hr	h
2A	1	1	0	0	0	0	0	0	
2B	4	4	3	3	3	3	2	2	1
Total (cfs)	5	5	3	3	3	3	2	2	-
			and a						
Subarea	18.0	19.0	20.0	22.0	26 0				
and the second sec	18.0 hr	19.0 hr	20.0	22.0	26.0			3) -	
Subarea Description	18.0 hr	19.0 hr	20.0 hr	22.0 hr	26.0 hr				
and the second sec									



> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 rev 7/98

# RUNOFF CURVE NUMBER SUMMARY

Subarea	Area	CN
Description	(acres)	(weighted)
10	42.00	67
20	15.00	56
30	33.00	58
40	16.00	57
East	520.00	67
Northeast	80.00	63
North	236.00	63
West	100.00	71

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 rev 7/98

# RUNOFF CURVE NUMBER DATA

Composite Area: 1C

SURFACE DESCRIPTION	AREA (acres)	CN	
Woods (35%)	15.00	55	
Existing Landfill (50%)	21.00	74	
Graded Areas (10%)	4.00	61	
Fallow - Bare Soil (5%)	2.00	86	

COMPOSITE AREA ---> 42.00 66.5 ( 67 )

Composite Area: 2C

	AREA	CN	
SURFACE DESCRIPTION	(acres)		
Woods (85%)	12.80	55	
Graded Areas (15%)	2.20	61	

COMPOSITE AREA ---> 15.00 55.9 ( 56 )

Composite Area: 3C

SURFACE DESCRIPTION	AREA (acres)	CN	
Woods (80%)	27.00	55	
Graded Areas (10%)	3.00	61	
Fallow - Bare Soil (10%)	3.00	86	
COMPOSITE AREA>	33.00	58.4	( 58 )

1940 Martin Martin Martin Martin Martin Martin

Composite Area: 4C

SURFACE DESCRIPTION	AREA (acres)	CN	
	********	****	
Woods (75%)	12.00	55	
Graded Areas (25%)	4.00	61	
COMPOSITE AREA>	16.00	56.5	(57)

Composite Area: East

	AREA	CN	
SURFACE DESCRIPTION	(acres)		
***********************************			
Woods (60%)	312.00	55	
Fallow - Bare Soil (40%)	208.00	86	

COMPOSITE AREA ---> 520.00 67.4 ( 67 )

Composite Area: Northeast

SURFACE DESCRIPTION	AREA (acres)	CN				
	********					
Woods (75%)	60.00	55				
Fallow - Bare Soil (25%)	20.00	86				
COMPOSITE AREA>	80.00	62.8	(	6	3	2

Composite Area: North

	A COMPANY OF THE		
	AREA	CN	
SURFACE DESCRIPTION	(acres)		
************************************	********		
Woods (75%)	177.00	55	
Fallow - Bare Soil (25%)	59.00	86	

COMPOSITE AREA ---> 236.00 62.8 ( 63 )

> VB28 8/20/98

Composite Area: West

	AREA	CN	
SURFACE DESCRIPTION	(acres)		
Woods (50%)	50.00	55	
Fallow - Bare Soil (50%)	50.00	86	
COMPOSITE AREA>	100.00	70.5	(71)
************************************			

> SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

## Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Subarea descr.	Tc or Tt	Time (hrs)
10	Tc	0.35
20	Tc	0.32
30	Tc	0.41
40	Tc	0.38
East	Tc	0.68
Northeast	Tc	0.37
North	Tc	0.53
West	Tc	0.52

. .

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

## TC COMPUTATIONS FOR: 1C

SHEET FLOW (Applicable to Tc only)				
Segment ID	4	1		
Surface description	Woo			
Manning's roughness coeff., n	MOO	0.4000		
Flow length, L (total < or = 300)	ft			
			1	
Two-yr 24-hr rainfall, P2	in	2.800	/	
Land slope, s	ft/ft	0.2700		
0.8				
.007 * (n*L)	1.1.1	1.1		14.4
T =	hrs	0.33		0.3
0.5 0.4 P2 * s				
SHALLOW CONCENTRATED FLOW		1.1		
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow length, L	ft	650.0		
Watercourse slope, s	ft/ft	0.5000	1	
0.5				
Avg.V = Csf * (s)	ft/s	\$11.408	8	
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.02		0.0
CHANNEL FLOW				
Segment ID		3		
Cross Sectional Flow Area, a	sq.ft	42.00		
Wetted perimeter, Pw	ft	28.00		
Hydraulic radius, r = a/Pw	ft	1.500		
Channel slope, s	ft/ft	0.1500		
Manning's roughness coeff., n		0.0450		
2/3 1/2				
1.49 * r * s				
V =	ft/s	\$16.804	0	
n				
Flow Length, L	ft	500	/	
T = L / (3600*V)	hrs	0.01		0.0

6/17/97

-



Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

# Te COMPUTATIONS FOR: 20

SHEET FLOW (Applicable to Tc only)	4			
Segment ID		1		
Surface description	Wood	ds		
Manning's roughness coeff., n		0.4000		
Flow length, L (total < or = 300)	ft	300.0		
Two-yr 24-hr rainfall, P2	in	2.800		
Land slope, s	ft/ft			
0.8		0.4200		
.007 * (n*L)				
	hrs	0.27		
0.5 0.4	0.2	0.21	•	0.27
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpeved		
Flow length, L	ft	370.0 -		
Watercourse slope, s	ft/ft	0.4200 /		
0.5				
Avg.V = Csf * (s)	ft/s	\$10.4564		
where: Unpaved Csf = 16.1345				
Paved Caf = 20.3282				
T = L / (3600*V)	hrs	0.01	•	0.01
CHANNEL FLOW		and the second se		
Segment ID		3		
Cross Sectional Flow Area, a	sq.ft	17.00		
Wetted perimeter, Pw	ft	17.00		
Hydraulic radius, r = a/Pw	ft	1.000		
Channel slope, s	ft/ft	0.0600 -		
Manning's roughness coeff., n		0.0450		
2/3 1/2				
1.49 * r * s				
V =	ft/s	8.1105		
n				
Flow length, L	ft	1050 -		
T = L / (3600*V)	hrs	0.04		0.04
		TOTAL TIME (hrs)		0.32

6/17/97

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

#### TE COMPUTATIONS FOR: 3C

SHEET FLOW (Applicable to Tc only)	τ.			
Segment ID		1		
Surface description	RON	Crops		
Manning's roughness coeff., n		0.1700		
Flow length, L (total < or = 300)	ft	300.0		
Two-yr 24-hr rainfall, P2	in			
Land slope, s	ft/ft			
0.8				
.007 * (n*L)				
T =	hrs	0.32		0.32
0.5 0.4				0.05
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow length, L	ft			
Watercourse slope, s	ft/ft	0.3600 /		
0.5		- Auto -		
Avg.V = Csf * (s)	ft/s	9.6807		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.03	1.2	0.03
CHANNEL FLOW				
Segment ID				
	12 M	3		
Cross Sectional Flow Area, a	sq.ft	150.00 -		
Wetted perimeter, Pw	ft	45.00 -		
Hydraulic radius, r = a/Pw	ft	3.333		
	ft/ft	0.0150		
Manning's roughness coeff., n		0.0600 -		
2/3 1/2				
2/3 1/2 1.49 * r * s				
V =	4.7			
	ft/s	6.7868		
0				
Flow length, L	ft	1450 -		
T = L / (3600*V)	hrs	0.06		0.06
******************************				
		TOTAL TIME (	1/8)	0.41

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

> > .

## TC COMPUTATIONS FOR: 4C

SHEET FLOW (Applicable to Tc only)	-00				
Segment 10		1			
Surface description	Noo	ds			
Manning's roughness coeff., n		0.4000			
Flow length, L (total < or = 300	) ft	300.0 /			
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.3700 -			
0.8					
.007 * (n*L)					
T =	hrs	0.29			0.29
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft	390.0 -			
Watercourse slope, s	ft/ft	0.5000 -			
0.5					
Avg.V = Csf * (s)	ft/s	\$11.4088			
where: Unpaved Csf = 16.1345	62.3	C. C	-		
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.01		•	0.01
CHANNEL FLOW					
Segment ID		3			
Cross Sectional Flow Area, a	sq.ft	28.00			
Wetted perimeter, Pw	ft	20.00 /			
Hydraulic radius, r = a/Pw	ft	1.400			
Channel slope, s	ft/ft	0.0200			
Manning's roughness coeff., n		0.0500			
2/3 1/2					
1.49 * 5 * 5					
V =	ft/s	5.2741			
n					
Flow length, L	ft	1670 -			
T = L / (3600*V)	hrs	0.09	1		0.09
		TOTAL TIME			0.38

VB10 6/17/97

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

6/17/97

### To COMPUTATIONS FOR: East

SHEET FLOW (Applicable to Tc only)					
Segment ID		1			
Surface description	Row	Crops			
Manning's roughness coeff., n		0.1700			
Flow Length, L (total < or = 300)	ft	300.0	•		
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.0500	-		
0.8					
.007 * (n*L)					
T =	hrs	0.32		1.1.1	0.32
0.5 0.4					
PZ * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow Length, L	ft	2000.0	1		
Watercourse slope, s	ft/ft	0.0700	-		
0.5					
Avg.V = Csf * (s)	ft/s	4.2688			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.13		- 0	0.13
CHANNEL FLOW					
Segment ID		3	4		
Cross Sectional Flow Area, a	sq.ft	27.00	27.	.00	
Wetted perimeter, Pw	ft	16.40			
Hydraulic radius, r = a/Pw	ft	1.646		46	
Channel slope, s	ft/ft	0.0700		- 00	
Manning's roughness coeff., n		0.0700	0.07	700	
2/3 1/2					
1 /0 0 0 0					
1.49 * r * s					

1.49 * r * s		
V =	ft/s 7.8521 5.9356	
n		
Flow length, L	ft 2500 / 3000 /	
T = L / (3600*V)	hrs 0.09 + 0.14 = 0.23	

TOTAL TIME (hrs) 0.68

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

## Tc COMPUTATIONS FOR: Northeast

SHEET FLOW (Applicable to Tc only)					
Segment ID		1			
Surface description	Row	Crops			
Manning's roughness coeff., n		0.1700			
Flow Length, L (total < or = 300)	ft	300.0	1		
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.0800	1		
0.8					
.007 * (n*L)					
T =	hrs	0.27		14	0.27
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft				
Watercourse slope, s	ft/ft	0.0700	-		
0.5					
Avg.V = Csf * (s)	ft/s	4.2688			
where: Unpaved Csf = 16.1345	100.0				
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.04		•	0.04
CHANNEL FLOW					
Segment ID		3			
Cross Sectional Flow Area, a	sq.ft				
Wetted perimeter, Pw	ft				
Hydraulic radius, r = a/Pw	ft	1.646	0-		
Channel slope, s	ft/ft				
Nanning's roughness coeff., n		0.0700			
2/3 1/2					
1.49 * r * s					
V =	ft/s	\$11.104	5		
n					
Flow length, L	ft	2400			
T = L / (3600*V)	hrs	0.06		÷	0.06
		TOTAL T	IME (hrs)		0.37

1828 6/17/97

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

1888

## Te COMPUTATIONS FOR: North

SHEET FLOW (Applicable to Tc only)	1.1				
Segment ID		1			
Surface description	ROW	Crops			
Manning's roughness coeff., n		0.1700			
Flow length, L (total < or = 300)	ft	300.0 -			
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.0500			
0.8					
.007 * (n*L)					
T =	hrs	0.32		= 0.32	
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow Length, L	ft	1000.0 /			
Watercourse slope, s	ft/ft	0.0600 /			
0.5					
Avg.V = Csf * (s)	ft/s	3.9521			
where: Unpaved Csf = 16.1345	11/8	3.9321			
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.07	1.1	= 0.07	
CHANNEL FLOW					
Segment 1D		3			
Cross Sectional Flow Area, a	sq.ft	27.00			
Wetted perimeter, Pw	ft	16.40			
Hydraulic radius, r = a/Pw	ft	1.646			
Channel slope, s	ft/ft	0.0830 /			
Manning's roughness coeff., n		0.0700			
2/3 1/2					
1.49 * * * *					
V =	ft/s	8.5502			
n	14.0	CISSOE			
etail (	0.5				
Flow length, L	ft	4200			
T = L / (3600*V)	hrs	0.14		0.14	
		TOTAL THE			:
		TOTAL TIME	(nrs)	0.53	

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

# To COMPUTATIONS FOR: West

= 0.32
= 0.09
= 0.10

Quick TR-55 Ver.5.46 S/N: Executed: 11:30:57 D6-18-1997 a:POSTDVTT.TCT

> SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

## Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Subarea descr.	Tc or Tt	Time (hrs)
10	Tt	0.00
20	Tt	0.05
30	Tt	0.01
40	Tt	0.09
East	Tt	0.07
Northeast	Tt	0.09
North	Tt	0.18
West	Tt	0.08

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

> > 1.1

BfB *

## Tt COMPUTATIONS FOR: 2C

SHEET FLOW (Applicable to Tc only)				
Segment ID				
Surface description				
Manning's roughness coeff., n		0.0000		
Flow length, L (total < or = 300)	ft	0.0		
Two-yr 24-hr rainfall, P2	in	0.000		
Land slope, s	ft/ft	0.0000		
0.8				
.007 * (n*L)				
T =	hrs	0.00		0.00
0.5 0.4				11.14
P2 * s				
HALLOW CONCENTRATED FLOW				
Segment ID				
Surface (paved or unpaved)?				
Flow Length, L	ft	0.0		
Watercourse slope, s	ft/ft	0.0000		
0.5				
Avg.V = Csf * (s)	ft/s	0.0000		
where: Unpaved Caf = 16.1345	0.942			
Paved Csf = 20.3282		× .		
T = L / (3600*V)	hrs	0.00	•	0.00
HANNEL FLOW				
Segment ID		3 I I I I I I I I I I I I I I I I I I I		
Cross Sectional Flow Area, a		17.00		
Wetted perimeter, Pw	sq.ft	17.00		
Hydraulic radius, r = a/Pw	ft	17.00		
Channel slope, s	NA 6.74			
Manning's roughness coeff., n	ft/ft			
Manning's roughness coerr., n		0.0450		
2/3 1/2				
1.49 * r * s				
V =	ft/s	7.4039		
n				
Class Januarity 1				
Flow length, L	71	1200 -		
T = L / (3600*V)	hrs	0.05		0.05
		TOTAL TIME (hrs)		0.05

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

#### TE COMPUTATIONS FOR: 3C

SHEET FLOW (Applicable to Tc only) Segment ID Surface description 0.0000 Hanning's roughness coeff., n Flow length, L (total < or = 300) ft 0.0 Two-yr 24-hr mainfall, P2 in 0.000 0.0000 Land slope, s ft/ft 0.8 .007 * (n*L) T = ----hrs 0.00 0.5 0.4 P2 * 5 SHALLOW CONCENTRATED FLOW Segment ID Surface (paved or unpaved)? Flow Length, L 0.0 ft Watercourse slope, s ft/ft 0.0000 0.5 Avg.V = Csf * (s) 0.0000 ft/s where: Unpaved Csf = 16.1345 Paved Csf = 20.3282 

T = L / (3600*V) hrs

#### CHANNEL FLOW

Segment ID		1	
Cross Sectional Flow Area, a	sq.ft	42.00 -	
Wetted perimeter, Pw	ft	28.00 -	
Hydraulic radius, r = a/Pw	ft	1.500	
Channel slope, s	ft/ft	0.1500 /	
Manning's roughness coeff., n		0.0450	
2/3 1/2			
1/0 * * * *			

V =	ft/s	<b>%16.8040</b>		
n Flow length, L	ft	550 -	3	
T = L / (3600*V)	hrs	0.01		

TOTAL TIME (hrs) 0.01

0.00

6/17/97

0.00

0.00

0.01

=

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

TE COMPUTATIONS FOR: 4C

T = L / (3600*V)	hrs	80.0	+ 0.01	=	0.09
Flow length, L	ft	1950/	550 /		
n			000000		
V =	ft/s	6.7868	\$16.8040		
1.49 * r * s					
2/3 1/2					
		510000	3.0430		
Manning's roughness coeff., n		0.0600	0.0450		
Channel slope, s	ft/ft	0.0150/	0.1500 /		
Hydraulic radius, r = a/Pw	ft	3.333	1.500		
Wetted perimeter, Pw	sq.rt	150.00	42.00 28.00		
		1	2		
Segment ID					
MANNEL TO MA					
T = L / (3600*V)	hrs	0.00		•	0.00
Paved Csf = 20.3282					
where: Unpaved Csf = 16.1345					
Avg.V = Csf * (s)	ft/s	0.0000			
0.5					
Watercourse slope, s	ft/ft	0.0000			
Flow length, L	ft				
Surface (paved or unpaved)?	140				
Segment ID					
SHALLOW CONCENTRATED FLOW					
P2 * s					
0.5 0.4		0.11			
T =	hrs	0.00		i.	0.00
.007 * (n*L)					
0.8		0.0000			
Land slope, s	ft/ft	0.000			
Flow length, L (total < or = 300) Two-yr 24-hr rainfall, P2	ft	0.0			
Manning's roughness coeff., n		0.0000			
Advance of the second sec					
Surface description					

- ÷.

6/17/97

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

1 alinen

# Tt COMPUTATIONS FOR: East

SHEET FLOW (Applicable to Tc only)	*				
Segment ID					
Surface description		5.43S			
Manning's roughness coeff., n		0.0000			
Flow length, L (total < or = 300)		1 I. J. 1977			
Two-yr 24-hr rainfall, P2	in	23587			
Land slope, s	ft/ft	0.0000			
0.8					
.007 * (n*L)					1.00
T =	hrs	0.00			0.00
0.5 0.4					
P2 * s					
HALLOW CONCENTRATED FLOW					
Segment ID					
Surface (paved or unpaved)?					
Flow length, L	ft	0.0			
Watercourse slope, s	ft/ft	0.0000			
0.5					
Avg.V = Csf * (s)	ft/s	0.0000			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.00		•	0.00
HANNEL FLOW					
Segment ID		1	2		
Cross Sectional Flow Area, a	sq.ft	150.00	42.00		
Wetted perimeter, Pw	ft	45.00	28.00		
Hydraulic radius, r = a/Pw	ft	3.333	1.500		
Channel slope, s	ft/ft	0.0150	0.1500		
Manning's roughness coeff., n		0.0600	0.0450		
2/3 1/2					
1.49 * r * s					
V =	ft/s	6.7868	\$16.8040	έπ.	
n					
Flow length, L	ft	1600 /	550	•	
T = L / (3600"V)	hrs	0.07	0.01		0.07
		TOTAL TIP			0.07

Quick TR-55 Ver.5.46 S/N: Executed: 11:30:57 06-18-1997 a:POSTDVTT.TCT

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Tt COMPUTATIONS FOR: Northeast

and the second se					
SHEET FLOW (Applicable to Tc only)	1				
Segment ID					
Surface description					
Manning's roughness coeff., n		0.0000			
Flow length, L (total < or = 300	)) ft	0.0			
Two-yr 24-hr rainfall, P2	in	0.000			
Land slope, s	ft/ft	0.0000			
0.8					
.007 * (n*L)					
T =	hrs	0.00			0.0
0.5 0.4					
PZ * s					
SHALLOW CONCENTRATED FLOW					
Segment ID					
Surface (paved or unpaved)?					
Flow length, L	ft	0.0			
Watercourse slope, s	ft/ft	0.0000			
0.5					
Avg.V = Csf * (s)	ft/s	0.0000			
where: Unpaved Csf = 16.1345	11/5	0.0000			
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.00			0.00
CHANNEL FLOW					
Segment ID		1	2		
Cross Sectional Flow Area, a	sq.ft	150.00	42.00		
Wetted perimeter, Pw	ft	45.00	28.00		
Hydraulic radius, r = a/Pw	ft	3.333	1.500		
Channel slope, s	ft/ft	0.0150-	0.1500 -	1	
Manning's roughness coeff., n		0.0600	0.0450		
2/3 1/2					
1.49 * r * s					
V =	ft/s	6.7868	\$16.8040	0	
n					
Flow length, L	ft	1870 /	550		
T = L / (3600*V)	hrs	0.08 +	0.01	-	0.09
		TOTAL TIN	E (hrs)		0.09

6/17/91

•

Quick TR-55 Ver.5.46 S/N: Executed: 11:30:57 06-18-1997 a:POSTDVTT.TCT

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Tt COMPUTATIONS FOR: North

SHEET FLOW (Applicable to Tc only)					
Segment ID					
Surface description					
Manning's roughness coeff., n		0.0000			
Flow length, L (total < or = 300)	ft	0.0			
Two-yr 24-hr rainfall, P2	in	0.000			
Land slope, s	ft/ft	0.0000			
0.8					
.007 * (n*L)					
T =	hrs	0.00			0.00
0.5 0.4					12.00
P2 * s					
HALLOW CONCENTRATED FLOW					
Segment ID					
Surface (paved or unpaved)?	3	and a			
Flow length, L	ft	0.0			
Watercourse slope, s	ft/ft	0.0000			
0.5					
Avg.V = Csf * (s)	ft/s	0.0000			
where: Unpaved Csf = 16.1345		Prove a			
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.00		•	0.00
HANNEL FLOW					
Segment ID		1	2		
	sq.ft	28.00	150.00		
Wetted perimeter, Pw	ft	20.00	45.00		
Hydraulic radius, r = a/Pw	ft	1.400	3.333		
	ft/ft	0.0200-	0.0150	1	
Manning's roughness coeff., n		0.0500	0.0600		
2/3 1/2					
1.49 * r * s					
V =	ft/s	5.2741	6.7868		
	1.7.	3.6/41	0.7000		
	ft	1670 -	2250	1	
Flow length, L	1.07				
Flow length, L T = L / (3600*V)	hrs	0.09 +	0.09		0.18
				=	0.18
		0.09 +		•	0.18

BBBINAN

1.0

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Tt COMPUTATIONS FOR: West

SHEET FLOW (Applicable to Tc only)					
Segment ID					
Surface description					
Manning's roughness coeff., n		0.0000			
Flow length, L (total < or = 300)	ft	0.0			
Two-yr 24-hr rainfall, P2	in				
Land slope, s	ft/ft	1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -			
0.8					
.007 * (n*L)					
T =	hrs	0.00			0.00
0.5 0.4				1.5	0.00
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID					
Surface (paved or unpaved)?					
Flow Length, L	ft	0.0			
Watercourse slope, s	ft/ft	0.0000			
0.5 Avg.V = Csf * (s)	ft/s	0.0000			
where: Unpaved Csf = 16.1345	11/1	0.0000			
Paved Csf = 20.3282			1		
Paven Car - 20.3202					
T = L / (3600*V)	hrs	0.00		•	0.00
CHANNEL FLOW					
Segment ID	2.10	1	2		
Cross Sectional Flow Area, a	sq.ft		17.00		
Wetted perimeter, Pw	ft	17.00	17.00		
Hydraulic radius, r = a/Pw	ft	······································	1.000	5	
Channel slope, s	ft/ft	0.0600	0.0500	1	
Manning's roughness coeff., n		0.0450	0.0450		
2/3 1/2					
1.49 * r * *					
V =	ft/s	8.1105	7.4039		
		0.1105	7.4039		
Flow length, L	ft	1050 -	1200	/	
T = L / (3600*V)	hrs	0.04 +	0.05	4	0.08
		TOTAL TIN		10000	
		Torne 110	- (me)		0.00

1 328 6/17/97

#### Page 1 Return Frequency: 25 years

#### TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:58:17 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV25.HYD

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA CN (acres)		Tc (hrs)	* Tt (hrs)	Precip.   (in)	Runoff (in)	Ia input	/p /used
10	42.00	67.0	0.40	0.00	4.90	1.73	1.2	.20
20	15.00	56.0	0.30	0.10	4.90	0.99	1.32	.32
30	33.00	58.0	0.40	0.00	4.90	1.11	1.3	.30
4C	16.00	57.0	0.40	0,10	4.90	1.05	1.31	.31
East	520.00	67.0	0.75	0.00	4.90	1.73	1.2	.20
Northeast	80.00	63.0	0.40	0.10	4.90	1.45	1.24	.24
North	236.00	63.0	0.50	0.20	4.90	1.45	1.24	.24
West	100.00	71.0	0.50	0.10	4.90 İ	2.04	1.17	.17

* Travel time from subarea outfall to composite watershed outfall point.

1 -- Subarea where user specified interpolation between Ia/p tables.

Total area = 1042.00 acres or 1.6281 sq.mi Peak discharge = 1027 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

>>>> Computer Modifications of Input Parameters <<<<<

	Input	Values	Rounder	d Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
					**************	
10	0.35	0.00	0.40	0.00	Yes	
20	0.32	0.05	0.30	0.10	Yes	
3C	0.41	0.01	0.40	0.00	Yes	1441
4C	0.38	0.09	0.40	0.10	Yes	1000
last	0.68	0.07	0.75	0.00	Yes	
lortheast	0.37	0.09	0.40	0.10	Yes	(4.4)
lorth	0.53	0.18	0.50	0.20	Yes	
lest	0.52	0.08	0.50	0.10	Yes	

Travel time from subarea outfall to composite watershed outfall point.

Total Runoff

= 141.9 ac-ft

#### Page 2 Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:58:17 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV25.HYD

### Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at Composite Outfall	Time to Peak at Composite Outfall
Subarea	(cfs)	(hrs)
10	61	12.3
20	11	12.4
3C	28	12.4
4C	12	12.5
East	533	12.7
Northeast	84	12.5
North	219	12.6
West	145	12.5
**********		
Composite Watershed	1027	12.6

#### Page 3

Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type 11. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:58:17 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV25.HYD

## Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

Composite Hydrograph Summary (cfs)

Subarea	11.0	11.3	11.6	11.9	12.0	12.1	12.2	12.3	12.4
Description	hr	hr	hr	hr	hr	hr	hr	hr	hr
10	1	1	2	5	9	22	43	61	61
20	0	0	0	0	0	1	4	9	11
30	0	0	0	0	1	6	17	27	28
4C	0	0	0	0	0	0	2	6	10
East	9	13	17	25	33	52	102	197	329
Northeast	1	1	2	4	7	14	31	57	80
North	2	3	4	6	8	13	28	66	126
West	3	5	6	11	17	30	56	95	128
•••••	******								
Total (cfs)	16	23	31	51	75	138	283	518	773

Subarea	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13.8
Description	hr	hr	hr	hr	hr	hr	hr	hr	hr
			******						
10	48	34	26	20	13	10	8	7	7
20	10	8	6	5	3	2	2	2	2
30	24	18	13	11	7	6	5	4	4
4C	12	11	9	7	4	3	3	2	2
East	454	527	533	490	350	248	183	143	117
Northeast	84	74	58	45	28	20	16	14	12
North	187	219	217	191	130	86	62	49	41
West	145	136	115	92	58	39	29	24	20
Total (cfs)	964	1027	977	861	593	414	308	245	205

#### Page 4 Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:58:17 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV25.HYD

## Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

Subarea	14.0	14.3	14.6	15.0	15.5	16.0	16.5	17.0	17.5
Description	hr	hr	hr	hr	hr	hr	hr	hr	hr
1C	6	5	5	4	4	4	3	3	3
20	1	1	1	1	1	1	1	1	1
3C	3	3	3	3	2	2	2	2	2
4C	2	2	1	1	1	1	1	1	1
East	98	81	69	59	53	47	42	38	36
Northeast	11	9	8	8	7	6	6	5	5
North	35	30	26	23	21	19	17	16	14
West	18	15	13	12	11	10	9	8	7
Total (cfs)	174	146	126	111	100	90	81	74	69

Subarea	18.0	19.0	20.0	22.0	26.0
Description	hr	hr	hr	hr	hr
10	3	2	2	2	0
20	1	1	1	0	0
3C	2	1	1	1	0
4C	1	1	1	1	0
ast	34	30	27	22	0
Northeast	5	4	4	3	0
North	14	12	10	9	0
West	7	6	5	5	0
**********					
Total (cfs)	67	57	51	43	0

#### Page 1 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 11:25:28 Watershed file: --> A:\POSTDV2 .MOP Hydrograph file: --> A:\POSTDV00.HYD

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip, (in)	1	Runoff (in)	11.000	/p /used
10	42.00	67.0	0.40	0.00	6.10	1	2.61	1.16	.16
20	15.00	56.0	0.30	0.10	6.10	i.	1.66	1.26	.26
30	33.00	58.0	0.40	0.00	6.10	Î.	1.82	1.24	.24
40	16.00	57.0	0.40	0.10	6.10	î.	1.74	1.25	.25
East	520.00	67.0	0.75	0.00	6.10	i	2.61	1.16	.16
Northeast	80.00	63.0	0.40	0.10	6.10	i.	2.25	1.19	.19
North	236.00	63.0	0.50	0.20	6.10	ì.	2.25	1.19	. 19
West	100.00	71.0	0.50	0.10	6.10	i.	2.98	1.13	.13

* Travel time from subarea outfall to composite watershed outfall point.

I -- Subarea where user specified interpolation between Ia/p tables.

Total area = 1042.00 acres or 1.6281 sq.mi Peak discharge = 1618 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

>>>> Computer	Modifications	of	Input	Parameters	*****
---------------	---------------	----	-------	------------	-------

Subarea Description	Input Tc (hr)	Values * Tt (hr)	Rounded Tc (hr)	Values * Tt (hr)	la/p Interpolated (Yes/No)	la/p Messages
10	0.35	0.00	0.40	0.00	Yes	
20	0.32	0.05	0.30	0.10	Yes	
3C	0.41	0.01	0.40	0.00	Yes	**
40	0.38	0.09	0.40	0.10	Yes	44.1
East	0.68	0.07	0.75	0.00	Yes	
ortheast	0.37	0.09	0.40	0.10	Yes	
lorth	0.53	0.18	0.50	0.20	Yes	
lest	0.52	0.08	0.50	0.10	Yes	

* Travel time from subarea outfall to composite watershed outfall point.

Total Runoff

= 215.7 ac-ft

Page 2 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 11:25:28 Watershed file: --> A:\POSTDV2 .MOP Hydrograph file: --> A:\POSTDV00.HYD

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
***********	*********	
10	96	12.3
20	20	12.4
30	49	12.4
40	20	12.5
East	837	12.6
Northeast	136	12.4
North	360	12.6
West	223	12.5
Composite Watershed	1618	12.6

#### Page 3 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

## Executed: 10-01-1998 11:25:28 Watershed file: --> A:\POSTDV2 .MOP Hydrograph file: --> A:\POSTDV00.KYD

#### Dairyland Power Coop, Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

Composite Hydrograph Summary (cfs)

	Subarea Description	11.0 hr	11.3 hr	11.6 hr	11.9 hr	12.0 hr	12.1 hr	12.2 hr	12.3 hr	12.4 hr	
	10	2	3	4	9	18	38	71	96	94	
	20	0	0	0	1	2	4	10	18	20	
	3C	1	1	1	2	6	15	33	48	49	
	4C	0	0	0	1	1	3	7	13	19	
	East	19	27	36	53	69	105	190	343	547	
	Northeast	3	4	5	10	18	36	70	109	136	
Y	North	6	9	11	17	22	33	63	127	224	
ŀ	West	6	9	12	20	32	56	102	165	209	
	Total (cfs)	37	53	69	113	168	290	546	919	1298	

Subarea Description	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13.8
Description	hr								
c	73	51	38	29	19	14	12	10	
C	18	13	10	7	5	4	3	3	3
C	39	28	21	17	11	9	7	6	6
C	20	18	14	11	7	5	4	3	3
ast	733	837	830	756	531	370	270	208	168
ortheast	132	110	85	65	40	28	23	19	17
orth	315	360	350	303	200	130	92	71	59
est	223	201	163	128	79	53	40	32	27
otal (cfs)	1553	1618	1511	1316	892	613	451	352	292

#### Page 4 Return Frequency: 100 years

## TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

## Executed: 10-01-1998 11:25:28 Watershed file: --> A:\POSTDV2 .MOP Hydrograph file: --> A:\POSTDV00.HYD

## Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

Composite Hydrograph Summary (cfs)

Subarea	14.0	14.3	14.6	15.0	15.5	16.0	16.5	17.0	17.5
Description	hr	hr	hr	hr	hr	hr	hr	hr	hr
10	8	7	7	6	5	5	4	4	4
20	2	2	2	2	1	1	1	1	1
3C	5	5	4	4	3	3	3	3	2
40	3	2	2	2	2	2	1	1	1
East	141	115	97	83	74	66	59	53	49
Northeast	15	13	12	11	10	9	8	7	7
North	51	44	38	33	30	27	24	22	20
West	24	21	18	16	14	13	12	11	10
Total (cfs)	249	209	180	157	139	126	112	102	94

Subarea	18.0	19.0	20.0	22.0	26.0	
Description	hr	hr	hr	hr	hr	
10	4	3	3	2	0	
2C	1	1	1	1	0	
3C	2	2	2	2	0	
÷C	1	1	1	1	0	
ast	47	42	37	30	0	
lortheast	6	6	5	4	0	
lorth	19	17	15	13	0	
lest	10	8	7	6	0	
*****						
otal (cfs)	90	80	71	59	0	

Executed 09-18-2000 13:11:11

Data directory: p:\data\projects\3081\40\sw*.HYD

File Summary for Composite Hydrograph

Time	POSTDV25	BSN1OUT1	BSN2OUT1	TPTPST25	
(hrs)	(cfs)	(cfs)	(cfs)	(Total)	
*******	*******		*******		
11.00	16.0	0.0	0.0	16.0	
11.10	18.0	0.2	0.2	18.4	
11.20	21.0	0.2	0.2	21.4	
11.30	23.0	0.3	0.2	23.5	
11.40	26.0	0.3	0.2	26.5	
11.50	28.0	0.3	0.2	28.5	
11.60	31.0	0.4	0.2	31.6	
11.70	38.0	0.4	0.3	38.7	
11.80	44.0	0.4	0.3	44.7	
11.90	51.0	0.5	0.3	51.8	
12.00	75.0	0.5	0.4	75.9	
12.10	138.0	0.6	0.4	139.0	
12.20	283.0	0.6	0.5	284.1	
12.30	518.0	0.7	0.5	519.2	
12.40	773.0	0.7	0.5	774.2	
12.50	964.0	0.7	0.6	965.3	2.5
12.60	1027.0	0.7	0.6	1028.3 🗻	Peak
12.70	977.0	0.7	0.6	978.3	
12.80	861.0	0.7	0.6	862.3	
12.90	727.0	0.7	0.6	728.3	
13.00	593.0	0.8	0.6	594.3	
13.10	503.0	0.8	0.6	504.4	
13.20	414.0	0.8	0.6	415.4	
13.30	361.0	0.8	0.6	362.4	
13.40	308.0	0.8	0.6	309.4	
13.50	277.0	0.8	0.6	278.4	
13.60	245.0	0.8	0.6	246.4	
13.70	225.0	0.8	0.6	226.4	
13.80	205.0	0.8	0.6	206.4	
13.90	190.0	0.8	0.6	191.4	
14.00	174.0	0.8	0.6	175.4	
14.10	165.0	0.8	0.6	166.4	
14.20	155.0	0.8	0.6	156.4	
14.30	146.0	0.9	0.6	147.5	
14.40	139.0	1.2	0.6	140.8	
14.50	133.0	1.5	0.6	135.1	
14.60	126.0	1.8	0.6	128.4	
14.70	122.0	2.0	0.6	124.6	
14.80	118.0	2.2	0.6	120.8	
14.90	115.0	2.3	0.6	117.9	

Combined Post - Development

Hydrograph 25 yr storm

Basin 1 + Basin Z +

Surrounding watershed .

Executed 09-18-2000 13:11:11

# Data directory: p:\data\projects\3081\40\sw*.HYD

File Summary for Composite Hydrograph

Time	POSTDV25	BSN10UT1	BSN2OUT1	TPTPST25
(hrs)	(cfs)	(cfs)	(cfs)	(Total)
*******				*******
15.00	111.0	2.4	0.6	114.0
15.10	109.0	2.5	0.6	112.1
15.20	107.0	2.6	0.6	110.2
15.30	104.0	2.7	0.6	107.3
15.40	102.0	2.7	0.6	105.3
15.50	100.0	2.8	0.6	103.4
15.60	98.0	2.8	0.6	101.4
15.70	96.0	2.8	0.6	99.4
15.80	94.0	2.9	0.6	97.5
15.90	92.0	2.9	0.6	95.5
16.00	90.0	2.9	0.6	93.5
16.10	88.0	2.9	0.6	91.5
16.20	86.0	2.9	0.6	89.5
16.30	85.0	2.9	0.6	88.5
16.40	83.0	2.7	0.6	86.3
16.50	81.0	2.6	0.6	84.2
16.60	80.0	2.5	0.6	83.1
16.70	78.0	2.4	0.6	81.0
16.80	77.0	2.3	0.6	79.9
16.90	75.0	2.3	0.6	77.9
17.00	74.0	2.2	0.6	76.8
17.10	73.0	2.2	0.6	75.8
17.20	72.0	2.2	0.6	74.8
17.30	71.0	2.1	0.6	73.7
17.40	70.0	2.1	0.6	72.7
17.50	69.0	2.1	0.6	71.7
17.60	69.0	2.1	0.6	71.7
17.70	68.0	2.1	0.6	70.7
17.80	68.0	2.0	0.6	70.7
17.90	67.0	2.0	0.6	69.6
18.00	67.0	2.0	0.6	69.6
18.10	66.0	2.0	0.6	68.6
18.20	65.0	2.0	0.6	67.6
18.30	64.0	2.0	0.6	66.6
18,40	63.0	2.0	0.6	65.6
18.50	62.0	2.0	0.6	64.6
18,60	61.0	2.0	0.6	63.6
18,70	60.0	2.0	0.6	62.6
18.80	59.0	2.0	0.7	61.7
18.90	58.0	2.0	0.7	60.8
19.00	57.0	2.0	0.8	59.8

-

Executed 09-18-2000 13:11:11

# Data directory: p:\data\projects\3081\40\sw*.HYD

Time			BSN10UT1	BSN2OUT1	TPTPST25
(hrs	:)	(cfs)	(cfs)	(cfs)	(Total)
			*******	*******	
19.		56.0	2.0	0.8	58.8
19.		56.0	2.0	0.9	58.9
19.		55.0	2.0	0.9	57.9
19.		55.0	2.0	0.9	57.9
19.		54.0	2.0	0.9	56.9
19.	60	53,0	1.9	0.9	55.9
19.	70	53.0	1.8	0.9	55.7
19.	80	52,0	1.6	1.0	54.6
19.	90	52.0	1.5	1.0	54.5
20.	00	51.0	1.4	1.0	53.4
20.	10	51.0	1.4	1.0	53.3
20.	20	50.0	1.3	1.0	52.3
20.	30	50.0	1.2	1.0	52.2
20.	40	49.0	1.2	1.0	51.2
20.	50	49.0	1.2	1.0	51.2
20.	60	49.0	1.1	1.0	51.1
20.	70	48.0	1.1	1.0	50.1
20.	80	48.0	1.1	1.0	50.1
20.	90	47.0	1.1	1.0	49.1
21.	00	47.0	1.0	1.0	49.0
21.	10	47.0	0.8	1.0	48.8
21.	20	46.0	0.8	1.0	47.8
21.3	30	46.0	0.8	1.0	47.8
21.4	40	45.0	0.8	1.0	46.8
21.5	50	45.0	0.8	1.0	46.8
21.0	50	45.0	0.8	1.0	46.8
21.7	70	44.0	0.8	1.0	45.8
21.8	80	44.0	0.8	1.0	45.8
21.9	90	43.0	0.8	1.0	44.8
22.0	00	43.0	0.8	1.0	44.8
22.	10	42.0	0.8	1.0	43.8
22.2	20	41.0	0.8	1.0	42.8
22.3	30	40.0	0.8	1.0	41.8
22.4	40	39.0	0.8	1.0	40.8
22.5	50	38.0	0.8	1.0	39.8
22.6	50	37.0	0.8	1.0	38.8
22.7	70	35.0	0.8	1.0	36.8
22.8		34.0	0.8	1.0	35.8
22.5	20	33.0	0.8	1.0	34.8
23.0		32.0	0.8	1.0	33.8
23.1		31.0	0.8	1.0	32.8

Data directory: p:\data\projects\3081\40\sw*.HYD

Time	POSTDV25	BSN10UT1	BSN2OUT1	TPTPST25	
(hrs)	(cfs)	(cfs)	(cfs)	(Total)	
23.20	30.0	0.8	1.0	31.8	
23.30	29.0	0.8	1.0	30.8	
23.40	28.0	0.8	1.0	29.8	
23.50	27.0	0.8	1.0	28.8	
23.60	26.0	0.8	1.0	27.8	
23.70	25.0	0.8	1.0	26.8	
23.80	24.0	0.8	1.0	25.8	
23.90	23.0	0.8	1.0	24.8	
24.00	22.0	0.8	0.9	23.7	
24.10	20.0	0.8	0.7	21.5	
24.20	19.0	0.8	0.6	20.4	
24.30	18.0	0.8	0.6	19.4	
24.40	17.0	0.8	0.6	18.4	
24.50	16.0	0.8	0.6	17.4	
24.60	15.0	0.8	0.6	16.4	
24.70	14.0	0.8	0.6	15.4	
24.80	13.0	0.8	0.6	14.4	
24.90	12.0	0.8	0.6	13.4	
25.00	11.0	0.8	0.6	12.4	
25.10	10.0	0.8	0.6	11.4	
25.20	9.0	0.8	0.6	10.4	
25.30	8.0	0.8	0.6	9.4	
25.40	6.0	0.8	0.6	7.4	
25.50	5.0	0.8	0.6	6.4	

Data directory: p:\data\projects\3081\40\sw*.HYD

File Summary for Composite Hydrograph

Time	POSTDV00	BSN10UT2	BSN2OUT2	TOTPSTOO
(hrs)	(cfs)	(cfs)	(cfs)	(Total)
*******	*******			
11.00	37.0	0.0	0.0	37.0
11.10	42.0	0.2	0.2	42.4
11.20	48.0	0.3	0.2	48.5
11.30	53.0	0.3	0.2	53.5
11.40	58.0	0.4	0.3	58.6
11.50	64.0	0.4	0.3	64.7
11.60	69.0	0.4	0.3	69.7
11.70	84.0	0.4	0.3	84.7
11.80	98.0	0.5	0.3	98.8
11.90	113.0	0.5	0.4	113.9
12.00	168.0	0.6	0.4	169.0
12.10	290.0	0.6	0.5	291.1
12.20	546.0	0.7	0.5	547.2
12.30	919.0	0.7	0.6	920.3
12.40	1298.0	0.7	0.6	1299.3
12.50	1553.0	0.8	0.6	1554.4
12.60	1618.0	2.8	1.2	1622.0 - Peak
12.70	1511.0	8.2	3.7	1522.9
12.80	1316.0	12.2	5.2	1333.4
12.90	1104.0	14.8	6.1	1124.9
13.00	892.0	15.7	6.6	914.3
13.10	752.0	15.5	6.9	774.4
13.20	613.0	14.8	7.0	634.8
13.30	532.0	14.0	7.0	553.0
13.40	451.0	13.3	7.0	471.3
13.50	402.0	12.5	7.0	421.5
13.60	352.0	11.7	6.9	370.6
13.70	322.0	10.8	6.7	339.5
13.80	292.0	10.0	6.6	308.6
13.90	270.0	9.6	6.5	286.0
14.00	249.0	9.1	6.3	264.3
14.10	236.0	8.5	6.0	250.6
14.20	222.0	8.1	5.8	235.9
14.30	209.0	7.7	5.7	222.4
14.40	199.0	7.4	5.4	211.9
14.50	190.0	7.2	5.2	202.3
14.60	180.0	7.0	4.8	191.8
14.70	174.0	6.8	4.5	185.3
14.80	168.0	6.6	4.2	178.8
14.90	163.0	6.2	4.0	173.2

Combined Post - Development

Hydrograph - 100 yr storm

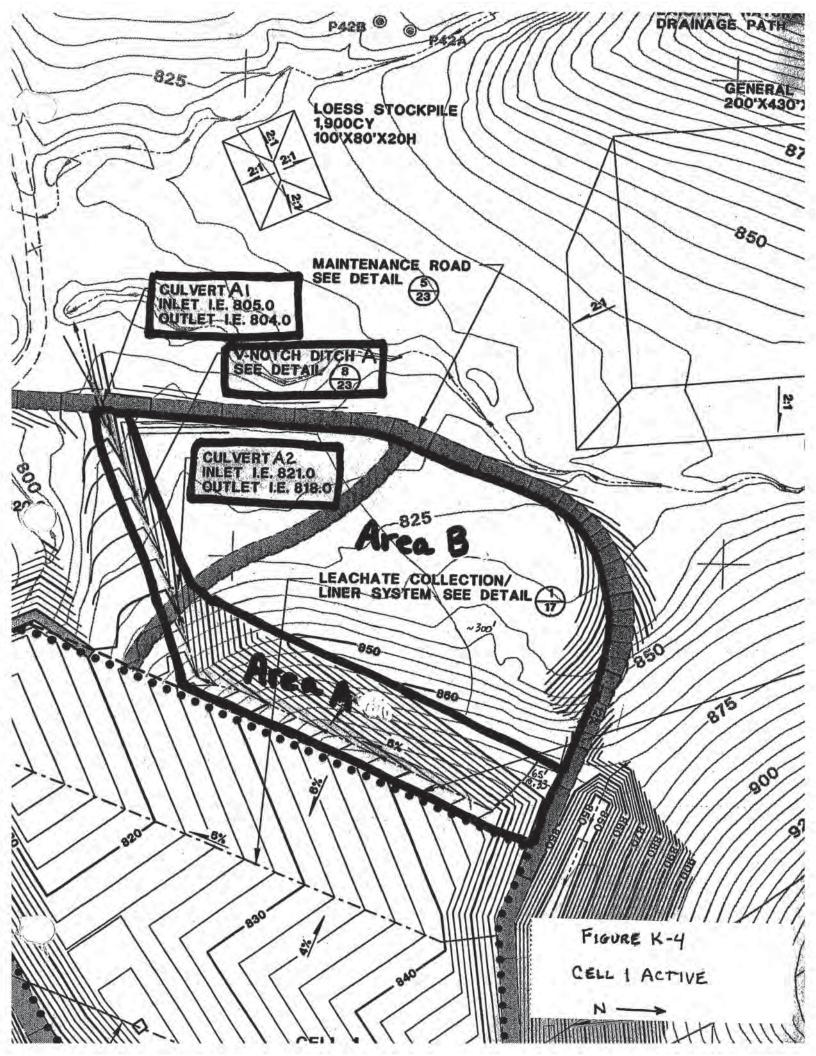
Basin 1 + Basin 2 + Surrounding Watershed.

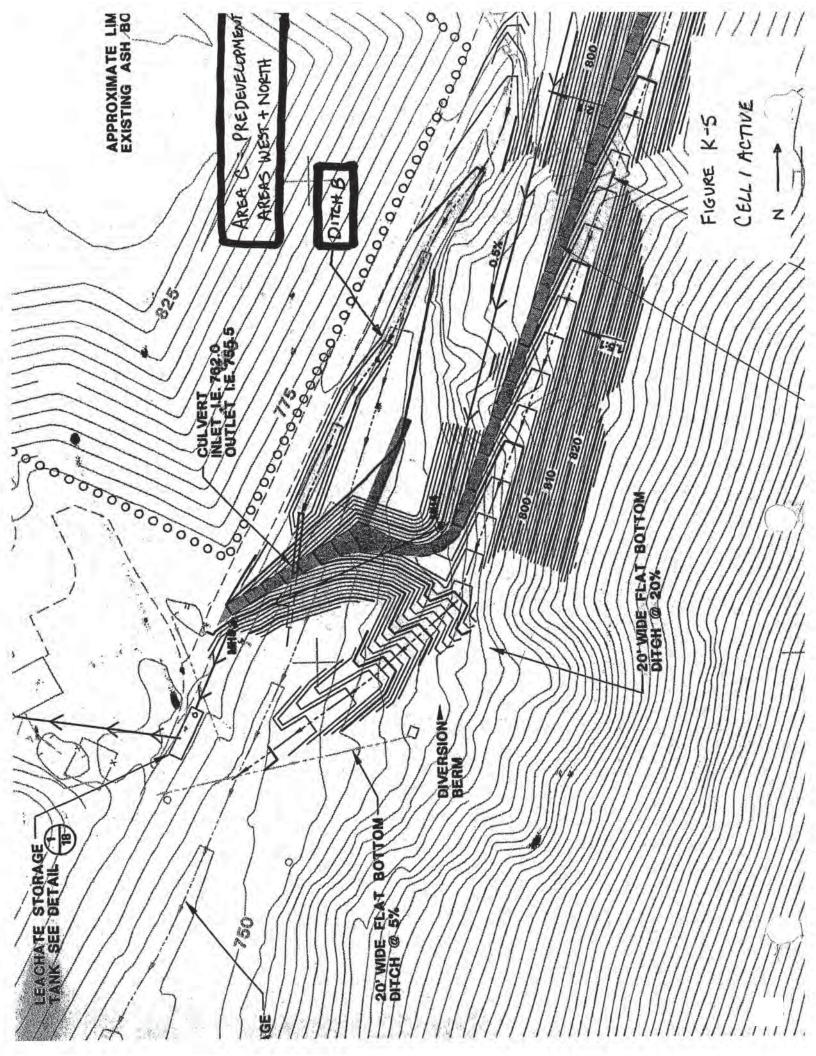
Data directory: p:\data\projects\3081\40\sw*.HYD

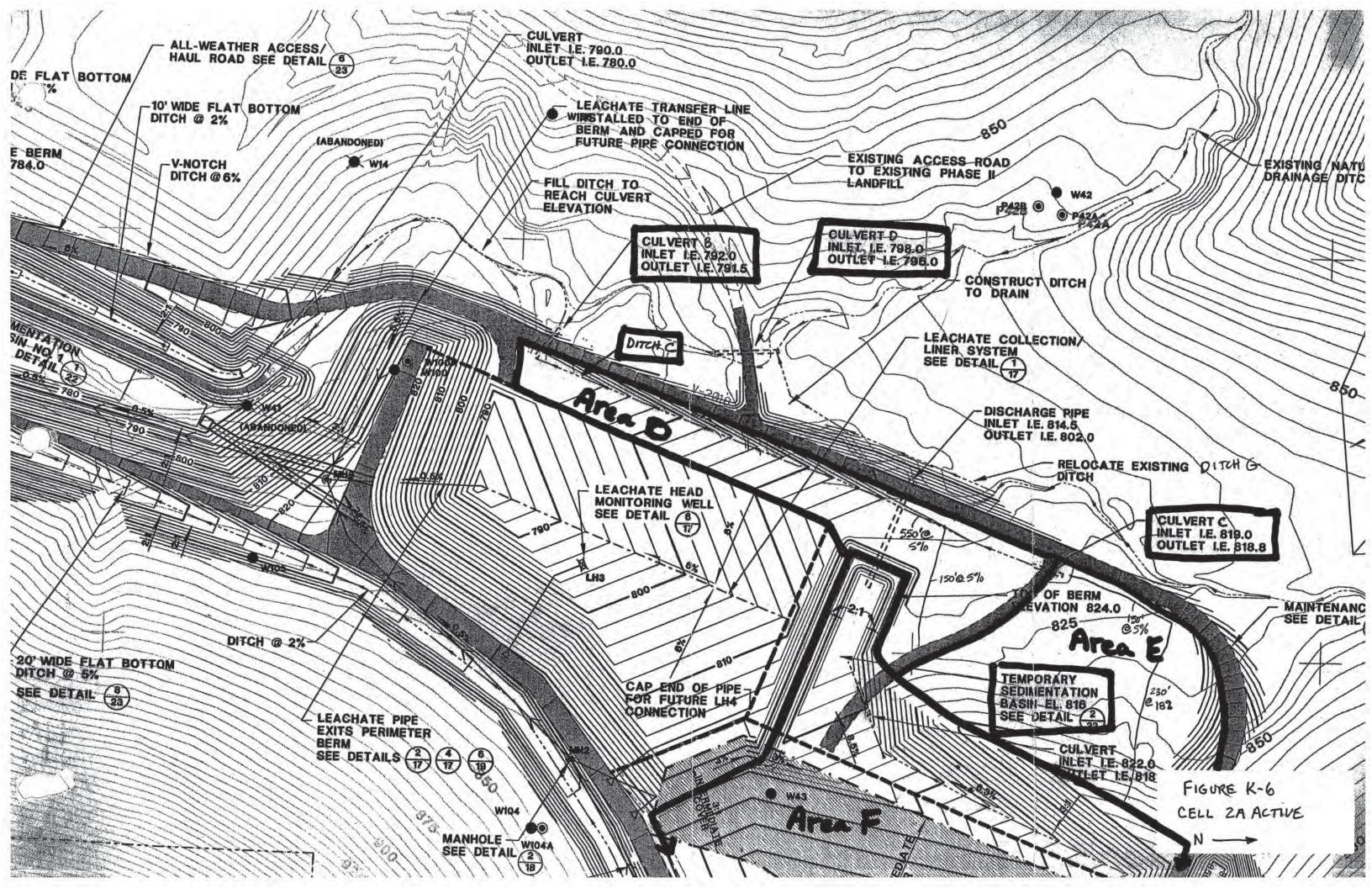
Time	POSTDV00	BSN10UT2		TOTPSTOO
(hrs)	(cfs)	(cfs)	(cfs)	(Total)
15.00	157.0	5.8	3.8	166.6
15.10	153.0	5.5	3.6	162.1
15.20	150.0	5.3	3.5	158.8
15.30	146.0	5.0	3.4	154.4
15.40	143.0	4.6	3.3	150.9
15.50	139.0	4.3	3.3	146.6
15.60	136.0	4.1	3.2	143.3
15,70	134.0	3.9	3.2	141.1
15.80	131.0	3.8	3.1	137.9
15.90	129.0	3.6	3.1	135.7
16.00	126.0	3.5	3.1	132.6
16.10	123.0	3.4	3.1	129.5
16.20	120.0	3.4	3.1	126.4
16.30	118.0	3.3	3.0	124.2
16.40	115.0	3.2	2.8	121.0
16.50	112.0	3.2	2.6	117.8
16.60	110.0	3.2	2.5	115.7
16.70	108.0	3.1	2.4	113.5
16.80	106.0	3.1	2.3	111.4
16.90	104.0	3.1	2.3	109.3
17.00	102.0	3.1	2.2	107.3
17.10	100.0	3.1	2.2	105.2
17.20	99.0	3.0	2.1	104.2
17.30	97.0	3.0	2.1	102.2
17.40	96.0	3.0	2.1	101.1
17.50	94.0	3.0	2.1	99.1
17.60	93.0	3.0	2.1	98.1
17.70	92.0	3.0	2.0	97.1
17.80	92.0	3.0	2.0	97.1
17.90	91.0	3.0	2.0	96.0
18.00	90.0	3.0	2.0	95.0
18.10	89.0	3.0	2.0	94.0
18.20	88.0	3.0	2.0	93.0
18.30	87.0	3.0	2.0	92.0
18.40	86.0	3.0	2.0	91.0
18.50	85.0	2.9	2.0	89.9
18.60		2.8	2.0	88.8
18.70	83.0	2.6	2.0	87.6
18.80	82.0	2.5	2.0	86.5
18.90	81.0	2.4	2.0	85.4
19.00	80.0	2.4	2.0	84.4

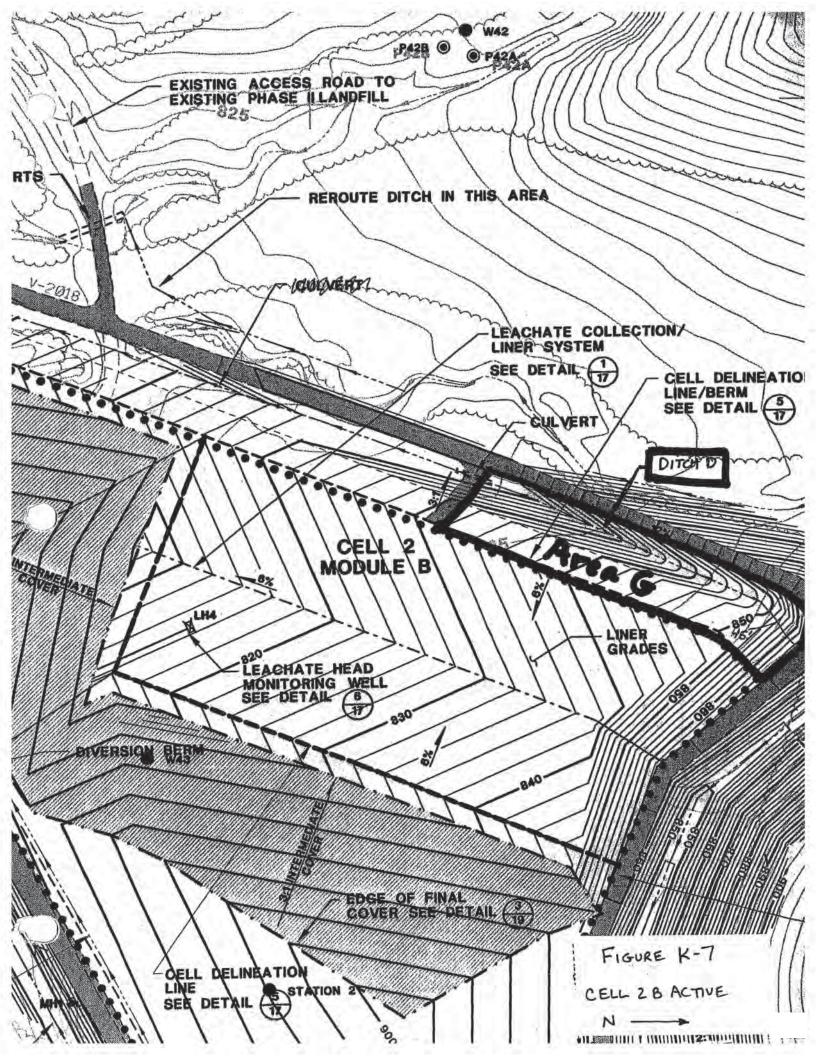
# Data directory: p:\data\projects\3081\40\sw*.HYD

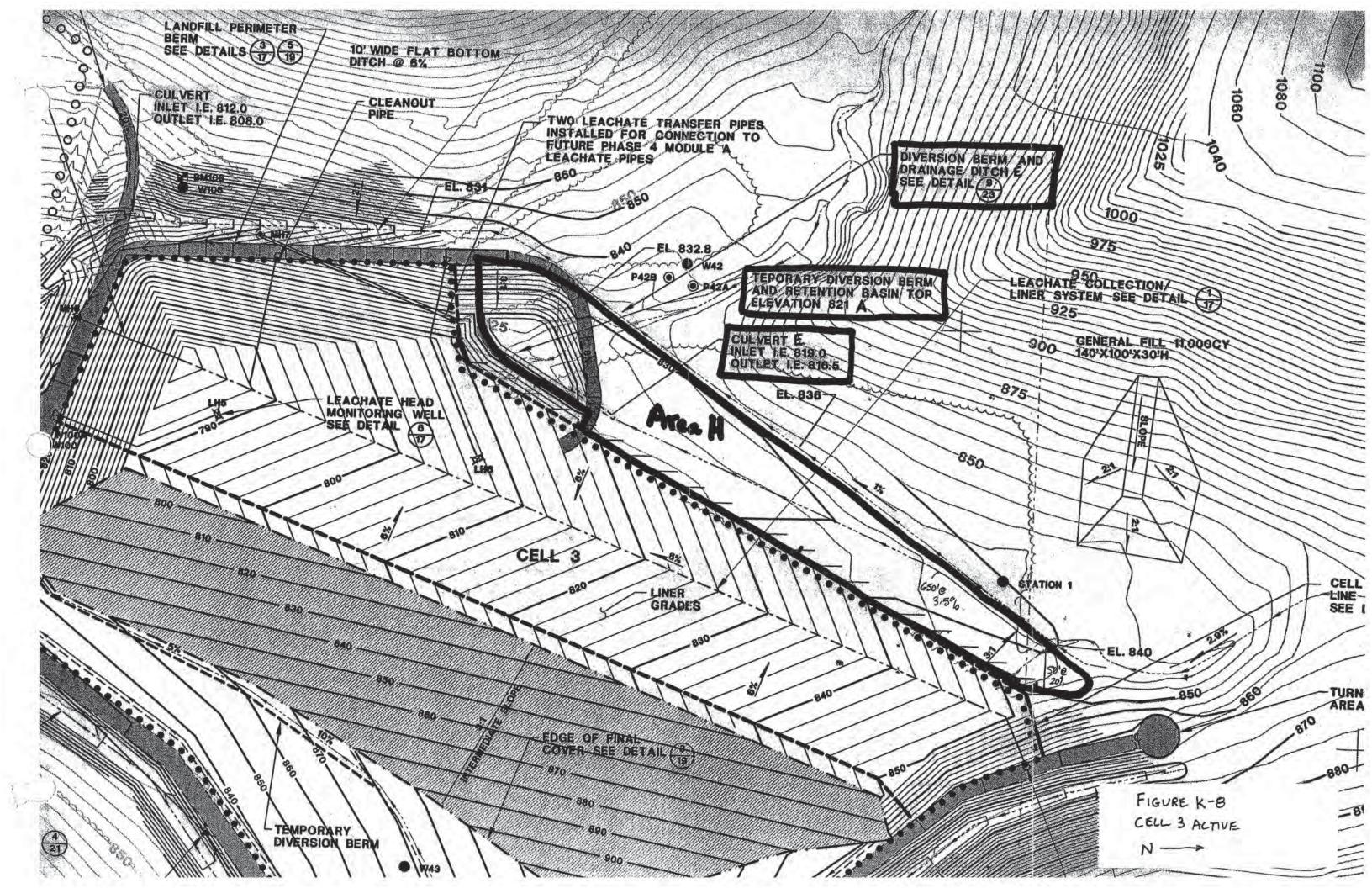
Time	POSTDVOO	BSN10UT2	BSN2OUT2	TOTPSTOO
(hrs)	(cfs)	(cfs)	(cfs)	(Total)
			*******	
19.10	79.0	2.3	2.0	83.3
19.20	78.0	2.2	2.0	82.2
19.30	77.0	2.2	2.0	81.2
19.40	76.0	2.2	2.0	80.2
19.50	76.0	2.1	2.0	80.1
19.60	75.0	2.1	1.9	79.0
19.70	74.0	2.1	1.7	77.8
19.80	73.0	2.1	1.6	76.7
19.90	72.0	2.1	1.5	75.5
20.00	71.0	2.0	1.4	74.4
20.10	70.0	2.0	1.3	73.3
20.20	70.0	2.0	1.3	73.3
20,30	69.0	2.0	1.2	72.2
20.40	69.0	2.0	1.2	72.2
20.50	68,0	2.0	1.1	71.1
20.60	67.0	2.0	1.1	70.1
20.70	67.0	2.0	1.1	70.1
20.80	66.0	2.0	1.1	69.1
20.90	66.0	2.0	1.0	69.1
21.00	65.0	2.0	1.0	68.1
21.10	64.0	2.0	1.0	67.0
21.20	64.0	2,0	1.0	67.0
21.30	63.0	2,0	1.0	66.0
21.40	63.0	2.0	1.0	66.0
21.50	62.0	2.0	1.0	65.0
21.60		2.0	1.0	64.0
21.70	61.0	2.0	1.0	64.0
21.80		2.0	1.0	63.0
21.90	60.0	2.0	1.0	63.0
22.00	59.0	2.0	1.0	62.0
22.10		2.0	1.0	61.0
22.20	56.0	2.0	1.0	59.0
22.30	55.0	2.0	1.0	58.0
22.40	52.0	2.0	1.0	56.0
22.50	52.0	2.0	1.0	55.0
22.60	50.0	2.0	1.0	53.0
22.70	49.0	2.0	1.0	52.0
22.80	47.0	2.0	1.0	50.0
22.90	46.0	2.0	1.0	49.0
23.00	44.0	2.0	1.0	47.0
23.10	43.0	1.9	1.0	45.9

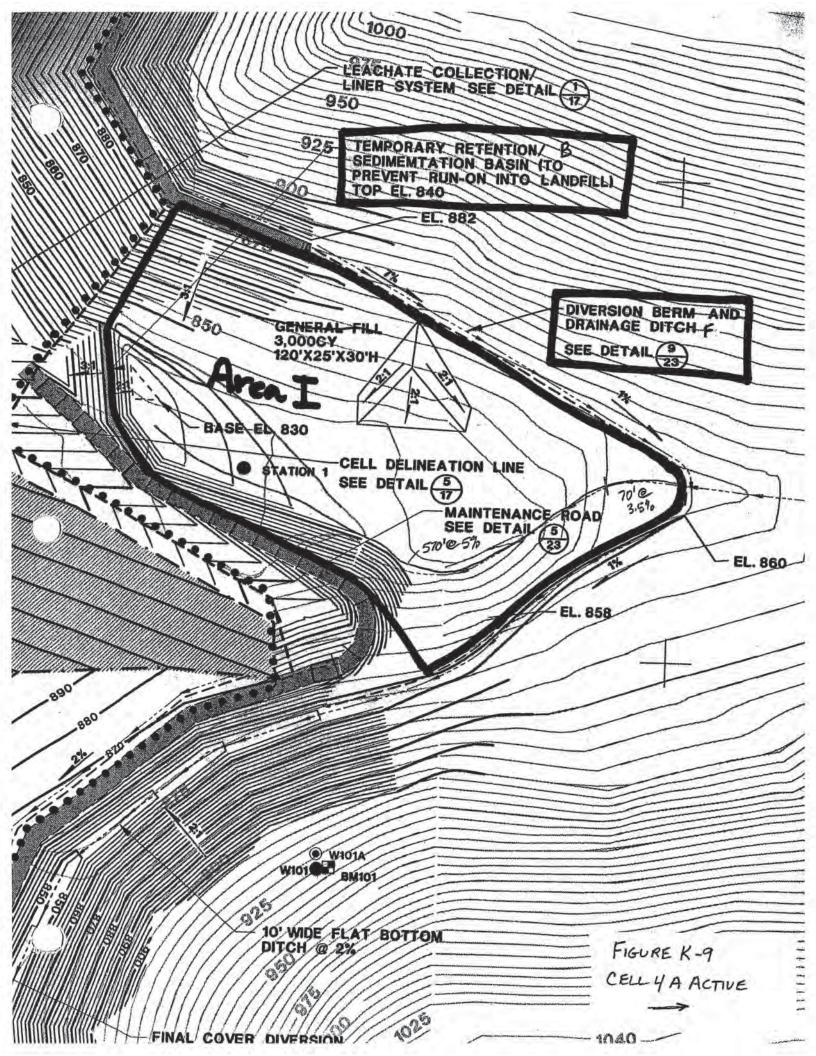

Data directory: p:\data\projects\3081\40\sw*.HYD


			Station Street	Sec. 20.	
Time	POSTDV00	BSN10UT2	BSN2OUT2	TOTPST00	
(hrs)	(cfs)	(cfs)	(cfs)	(Total)	
	*******	******		******	
23.20	41.0	1.8	1.0	43.8	
23.30	40.0	1.6	1.0	42.6	
23.40	38.0	1.5	1.0	40.5	
23.50	37.0	1.4	1.0	39.4	
23.60	35,0	1.4	1.0	37.3	
23.70	34.0	1.3	1.0	36.3	
23.80	32.0	1.2	1.0	34.2	
23.90	31.0	1.2	1.0	33.2	
24.00	30.0	1.2	0.9	32.1	
24.10	28.0	1.1	0.7	29.9	
24.20	27.0	1.1	0.6	28.7	
24.30	25.0	1.1	0.6	26.7	
24.40	24.0	1.1	0,6	25.7	
24.50	22.0	1.1	0.6	23.7	
24.60	21.0	1.0	0.6	22.6	
24.70	19.0	1.0	0.6	20.6	
24.80	18.0	1.0	0.6	19.6	
24.90	16.0	1.0	0.6	17.6	
25.00	15.0	0.9	0.6	16.5	
25.10	13.0	0.8	0.6	14.4	
25.20	12.0	0.8	0.6	13.4	
25.30	10.0	0.8	0.6	11.4	
25.40	9.0	0.8	0.6	10.4	
25.50	7.0	0.8	0.6	8.4	





**Operational Run-off Calculations** 


Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024














> SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

> > Dairyland Power Coop. Plan of Operation Operational Conditions

Subarea descr.	Tc or Tt	Time (hrs)
**********		
Area A	Tc	0.08
Area B	Tc	0.21
Area D	Tc	0.06 - Round to 0.10
Area E	Tc	0.15
Area F	Tc	0.24
Area G	Tc	0.05 - Rourd to 0.10
Area H	Tc	0.10
Area I	Tc	0.15

# Dairyland Power Coop. Plan of Operation Operational Conditions

# Tc COMPUTATIONS FOR: Area A

SHEET FLOW (Applicable to Tc only)				-
Segment ID		1		
Surface description	gras	55		
Manning's roughness coeff., n		0.1500		
Flow length, L (total < or = 300)	ft	65.0		
Two-yr 24-hr rainfall, P2	in	2.800		
Land slope, s	ft/ft	0.3330		
0.8				
.007 * (n*L)				
T =	hrs	0.04	-	0.04
0.5 0.4				
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow Length, L	ft	625.0		
Watercourse slope, s	ft/ft	0.0600		
0.5		7 0504		
Avg.V = Csf * (s)	ft/s	3.9521		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.04	-	0.04
CHANNEL FLOW				
Segment ID				
Cross Sectional Flow Area, a	sq.ft	0.00		
Wetted perimeter, Pw	sy.rt ft			
Hydraulic radius, r = a/Pw	ft			
Channel slope, s	ft/ft	0.0000		
Manning's roughness coeff., n	11/11			
Maining's roughness coerr., n		0.0000		
2/3 1/2				
1.49 * r * s				
V =	ft/s	0.0000		
n				
Flow length, L	ft	0		
T = L / (3600*V)	hrs	0.00	-	0.00
				5100
mannannannannann				umm
		TOTAL TIME (hr	s)	0.08

# Dairyland Power Coop. Plan of Operation Operational Conditions

#### Tc COMPUTATIONS FOR: Area B

SHEET FLOW (Applicable to Tc only) Segment ID			
		1	
Surface description	gras		
Manning's roughness coeff., n		0.1500	
Flow length, L (total < or = 300)		300.0	
Two-yr 24-hr rainfall, P2	in	2.800	
Land slope, s	ft/ft	0.1700	
0.8			
.007 * (n*L) T =			
0.5 0.4	hrs	0.18	= 0.18
P2 * s			
HALLOW CONCENTRATED FLOW			
Segment ID		2	
Surface (paved or unpaved)?		Unpaved	
Flow length, L	ft	220.0	
Watercourse slope, s	ft/ft	0.0200	
0.5			
Avg.V = Csf * (s)	ft/s	2.2818	
where: Unpaved Csf = 16.1345			
Paved Csf = 20.3282			
T = L / (3600*V)	hrs	0.03	= 0.03
HANNEL FLOW			
Segment ID			
Cross Sectional Flow Area, a	sq.ft	0.00	
Wetted perimeter, Pw	ft	0.00	
Hydraulic radius, r = a/Pw	ft	0.000	
Channel slope, s	ft/ft	0.0000	
Manning's roughness coeff., n		0.0000	
2/3 1/2			
1.49 * r * s			
V =	ft/s	0.0000	
n			
Flow length, L	ft	0	
T = L / (3600*V)	hrs	0.00	= 0.00

# Dairyland Power Coop. Plan of Operation Operational Conditions

# Tc COMPUTATIONS FOR: Area D

HEET FLOW (Applicable to Tc only) Segment ID					
		1			
Surface description	soil				
Manning's roughness coeff., n Flow length, L (total < or = 300)		0.0110			
		150.0			
Two-yr 24-hr rainfall, P2	in				
Land slope, s	ft/ft	0.0500			
0.8					
.007 * (n*L)					
1 =	hrs	0.02		=	0.02
0.5 0.4					
P2 * s					
HALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft	550.0			
Watercourse slope, s	ft/ft	0.0500			
0.5					
Avg.V = Csf * (s)	ft/s	3.6078			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.04		-	0.04
none com					
HANNEL FLOW					
Segment ID					
Cross Sectional Flow Area, a	sq.ft	0.00			
Wetted perimeter, Pw	ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness coeff., n		0.0000			
2/3 1/2					
1.49 * r * s					
V =	ft/s	0.0000			
n					
Flow Length, L	ft	0			
		5. Sec.			35.1
T = L / (3600*V)	hrs	0.00		=	0.00
inanananananananan		mmm			mm
		TOTAL TI	ME (hrs)		0.06

# Dairyland Power Coop. Plan of Operation Operational Conditions

# Tc COMPUTATIONS FOR: Area E

Contrast, period of the provide the local states of the					$\sim$
SHEET FLOW (Applicable to Tc only)		100			
Segment ID	. Carlos	1			
Surface description Manning's roughness coeff., n	gras				
Flow length, L (total < or = 300)		0.1500			
Two-yr 24-hr rainfall, P2	) ft in	230.0			
Land slope, s	ft/ft	2.800			
0.8	10/10	0.1000			
.007 * (n*L)					
T =	hrs	0.14		= 0.14	
0.5 0.4	111.5	0.14		- 0.14	
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft	150.0			
Watercourse slope, s	ft/ft				
	1.0/10.	0.0500			
0.5					
Avg.V = Csf * (s)	ft/s	3.6078			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.01	n l'i q	= 0.01	
CHANNEL FLOOR					
CHANNEL FLOW Segment ID					
Cross Sectional Flow Area, a		0.00			
Wetted perimeter, Pw	sq.ft ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness coeff., n	11/11	0.0000			
hanning a roughicaa coerrey n		0.0000			
2/3 1/2					
1.49 * r * s					
V =	ft/s	0.0000			
n					
Flow length, L	ft	0			

# Dairyland Power Coop. Plan of Operation Operational Conditions

### Tc COMPUTATIONS FOR: Area F

SHEET FLOW (Applicable to Tc only)				
Segment ID		Q		
Surface description	gras			
Manning's roughness coeff., n		0.1500		
Flow length, L (total $< \text{ or } = 300$ )	ft	185.0		
Two-yr 24-hr rainfall, P2	în	2.800		
Land slope, s	ft/ft	0.2500		
0.8				
.007 * (n*L)				
T =	hrs	0.10	=	0.10
0.5 0.4				
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow Length, L	ft	1370.0		
Watercourse slope, s	ft/ft	0.0300		
0.5				
Avg.V = Csf * (s)	ft/s	2.7946		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.14	1.4	0.14
CHANNEL FLOW				
Segment ID				
Cross Sectional Flow Area, a	sq.ft	0.00		
Wetted perimeter, Pw	ft	0.00		
Hydraulic radius, r = a/Pw	ft	0.000		
Channel slope, s	ft/ft	0.0000		
Manning's roughness coeff., n		0,0000		
2/3 1/2				
1.49 * r * s				
V =	ft/s	0.0000		
n				
Flow length, L	ft	0		
T = L / (3600*V)	hrs	0.00		0.00
			(ME (hrs)	0.24

# Dairyland Power Coop. Plan of Operation Operational Conditions

# Tc COMPUTATIONS FOR: Area G

SHEET FLOW (Applicable to Tc only)				
Segment ID		1		
Surface description	gras	ss		
Manning's roughness coeff., n		0.1500		
Flow length, L (total < or = 300)	ft	45.0		
Two-yr 24-hr rainfall, P2	in	2.800		
Land slope, s	ft/ft	0.3300		
0.8				
.007 * (n*L)				
T =	hrs	0.03	1	0.03
0.5 0.4				
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow length, L	ft	320.0		
Watercourse slope, s	ft/ft	0.1200		
0.5				
Avg.V = Csf * (s)	ft/s	5.5892		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.02	4.174	0.02
HANNEL FLOW				
Segment ID	1.00	6.52		
Cross Sectional Flow Area, a	sq.ft	0.00		
Wetted perimeter, Pw	ft	0.00		
Hydraulic radius, r = a/Pw	ft	0.000		
Channel slope, s	ft/ft			
Manning's roughness coeff., n		0.0000		
2/3 1/2				
1.49 * r * s	1205	3.24.11		
V =	ft/s	0.0000		
n				
Flow length, L	ft	0		
T = L / (3600*V)	hrs	0.00		0.00

# Dairyland Power Coop. Plan of Operation Operational Conditions

# Tc COMPUTATIONS FOR: Area H

SHEET FLOW (Applicable to Tc only) Segment ID				
Surface description				
Manning's roughness coeff., n	gras	0.1500		
Flow length, L (total < or = 300)	ft			
Two-yr 24-hr rainfall, P2	in	2.800		
Land slope, s	ft/ft	0.2000		
0.8	14/14	0.2000		
.007 * (n*L)				
T =	hrs	0.04		0.04
0.5 0.4	in a	0.04	-	0.04
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow length, L	ft	650.0		
Watercourse slope, s	ft/ft	0.0350		
0.5				
Avg.V = Csf * (s)	ft/s	3.0185		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.06		0.06
CHANNEL FLOW				
Segment ID				
Cross Sectional Flow Area, a	sq.ft	0.00		
Wetted perimeter, Pw	sq.it ft	0.00		
Hydraulic radius, r = a/Pw	ft			
Channel slope, s	ft/ft			
Manning's roughness coeff., n	10/10	0.0000		
naming a rodginica coerry in		0.0000		
2/3 1/2				
1.49 * r * s				
V =	ft/s	0.0000		
n		0000		
Flow length, L	ft	0		
T = L / (3600*V)	hrs	0.00	-	0.00

# Dairyland Power Coop. Plan of Operation Operational Conditions

# Tc COMPUTATIONS FOR: Area I

SHEET FLOW (Applicable to Tc only)			
Segment ID		1	
Surface description	gras		
Manning's roughness coeff., n		0.1500	
Flow length, L (total < or = 300)	ft	70.0	
Two-yr 24-hr rainfall, P2	în	2.800	
Land slope, s	ft/ft	0.0350	
0.8			
.007 * (n*L)			
T =	hrs	0.10	= 0.10
0.5 0.4			
P2 * s			
SHALLOW CONCENTRATED FLOW			
Segment ID		2	
Surface (paved or unpaved)?		Unpaved	
Flow length, L	ft	570.0	
Watercourse slope, s	ft/ft	0.0500	
0.5			
Avg.V = Csf * (s)	ft/s	3.6078	
where: Unpaved Csf = 16.1345			
Paved Csf = 20.3282			
T = L / (3600*V)	hrs	0.04	= 0.04
annual and an			
CHANNEL FLOW			
Segment ID			
Cross Sectional Flow Area, a	sq.ft	0.00	
Wetted perimeter, Pw	ft	0.00	
Hydraulic radius, r = a/Pw	ft	0.000	
Channel slope, s	ft/ft	0.0000	
Manning's roughness coeff., n		0.0000	
2/3 1/2			
1.49 * r * s			
V =	ft/s	0.0000	
n			
Flow length, L	ft	ō	
T = L / (3600*V)	hrs	0.00	= 0.00

Page 1

### TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:42 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL1 .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL1 .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 1

### >>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	1	Runoff (in)	Ia input	/p /used
Area A	1.10	69.0	0.10	0.00	6.10	Ĩ	2.79	.15	.10
Area B	2.70	69.0	0.20	0.00	6.10	Ť	2.79	.15	.10

* Travel time from subarea outfall to composite watershed outfall point. Total area = 3.80 acres or 0.00594 sq.mi

Peak discharge = 14 cfs

>>>> Computer Modifications of Input Parameters <<<<<

	Input	Values	Rounded	Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
Area A	0.10	0.00	**	**	No	
Area B	0.21	0.00	0.20	0.00	No	

* Travel time from subarea outfall to composite watershed outfall point.

** Tc & Tt are available in the hydrograph tables.

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:42 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL1 .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL1 .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 1

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
	*************	*********
Area A	5	12.1
Area B	9	12.1
************		
Composite Watershed	14	12.1

Page 1

# TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:49 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL2A .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL2A .HYD

# Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2A

# >>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	1	Runoff (in)		/p /usec
Area D	1.30	69.0	0.10	0.00	6.10	T	2.79	.15	.10
Area E	1.60	69.0	0.20	0.00	6.10	Ť.	2.79	.15	.10

* Travel time from subarea outfall to composite watershed outfall point.

Total area = 2.90 acres or 0.00453 sq.mi Peak discharge = 11 cfs

>>>> Computer Modifications of Input Parameters <<<<<

	Input	Values	Rounded	Values	la/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	la/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
Area D	0.10	0.00	**	**	No	
Area E	0.15	0.00	0.20	0.00	No	

* Travel time from subarea outfall to composite watershed outfall point.

** Tc & Tt are available in the hydrograph tables.

# TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:49 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL2A .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL2A .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2A

	Peak Discharge at	Time to Peak at	
	Composite Outfall	Composite Outfall	
Subarea	(cfs)	(hrs)	
	*************		
Area D	6	12.1	
Area E	6	12.2	
************			
Composite Watershed	11	12.1	

TR-55 TABULAR HYDROGRAPH METHOD Type I1 Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:57 Watershed file: --> p:\data\projects\3081\40\sw\op\TEMPBAS .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\TEMPBAS .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2A Temporary Basin

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN			Precip. (in)				
					*******				
Area F	7.60	69.0	0.20	0.00	6.10	1	2.79	.15	.10

Total area = 7.60 acres or 0.01187 sq.mi Peak discharge = 27 cfs

	Input	Values	Rounded	Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
rea F	0.24	0.00	0.20	0.00	No	

1.1

# TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:57 Watershed file: --> p:\data\projects\3081\40\sw\op\TEMPBAS .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\TEMPBAS .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2A Temporary Basin

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
Area F	27	12.2
Composite Watershed	27	12.2

### TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:12:03 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL2B .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL2B .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2B

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip.   (in)		Ia/p input/used
Area G	0.60	69.0	0.10	0.00	6.10	2.79	.15 .10

* Travel time from subarea outrall to composite watersned outrall point. Total area = 0.60 acres or 0.00094 sq.mi Peak discharge = 3 cfs

>>>> Computer Modifications of Input Parameters <<<<< ..... Input Values Rounded Values Ia/p Tc * Tt Tc * Tt Interpolated Subarea Ia/p Description (hr) (hr) (hr) (hr) (Yes/No) Messages ..... ...... Area G 0.10 0.00 ** ** No * Travel time from subarea outfall to composite watershed outfall point.

** Tc & Tt are available in the hydrograph tables.

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:12:03 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL2B .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL2B .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2B

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
Area G	3	12.1
Composite Watershed	3	12.1

Page 1

# TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:12:08 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL3 .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL3 .HYD

### Dairyland Power Coop. Plan of Operation Operational Conditions Cell 3

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)		Runoff (in)	Ia/p input/used
Area H	1.70	69.0	0.10	0.00	6.10	1	2.79	.15 .10

Total area = 1.70 acres or 0.00266 sq.mi Peak discharge = 7 cfs

>>>> Computer Modifications of Input Parameters <<<<< ..... Input Values Rounded Values Ia/p Subarea Tc * Tt Tc * Tt Interpolated la/p (hr) (hr) Description (hr) (hr) (Yes/No) Messages ...... ...... Area H 0.10 0.00 ** ** No **

* Travel time from subarea outfall to composite watershed outfall point.

** Tc & Tt are available in the hydrograph tables.

~

Page 2

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:12:08 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL3 .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL3 .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 3

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
***********	********	
Area H	7	12.1
**********	***********	
Composite Watershed	7	12.1

Page 1

### TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:21:09 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL4A .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL4A .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 4A

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)		Precip. (in)			Ia/p input/use
Area I	3.60	69.0	0.20	0.00	6.10	L	2.79	.15 .10

Total area = 3.60 acres or 0.00562 sq.mi Peak discharge = 13 cfs

	Input	Values	Rounded	Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
Area I	0.15	0.00	0.20	0.00	No	

#### Page 2

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:21:09 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL4A .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL4A .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 4A

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
******		
Area I	13	12.2
	************	
Composite Watershed	13	12.2



**Reference Information** 

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024

Cover description		Curve numbers for hydrologic soil group-				
Cover type and hydrologic condition	Average percent impervious area ²	A	B	с	D	
Fully developed urban areas (vegetation established)						
Open space (lawns, parks, golf courses, cemeteries, etc.) ² :						
Poor condition (grass cover < 50%)			-			
Fair condition (grass cover 50% to 75%)		68	79	86	39	
Good condition (grass cover > 75%)		- 49	(69)	79	84	
Impervious areas:		39	61	74	30	
Paved parking lots. roofs, driveways, etc.	*		* <b>-</b>	94. 		
(excluding right-of-way).			2.2			
Streets and roads:		98	98	98	98	
Paved: curbs and storm sewers (excluding						
right-of-way)						
Paved: open ditches (including right-of-way)		98	98	98	98	
Gravel (including right-of-way)		83	.69	92	93	
Dirt (including right-of-way)		76	85	89	91	
Western desert urban areas:		72	82	87	89	
Natural desert landscaping (pervious areas only)4						
Artificial desert landscaping (impervious weed		63	77	85	88	
barrier, desert shrub with 1- to 2-inch sand						
or gravel mulch and basin borders).						
Jrban districts:		96	96	96	96	
Commercial and business					100.10	
Inductrial	85	89	92	94	95	
Industrial	72	81	88	91	93	
Residential districts by average lot size:						
1/S acre or less (town houses)	65	77	85	90	92	
1/4 acre	38	61	75	83	87	
1/3 acre	30	57	72	81		
1/2 acre	25	54	70	80	85	
1 acre	20	51	68	79		
2 acres	12	46	65	77	82	
· · · · · · · · · · · · · · · · · · ·				••	04	
Developing urban areas						
ewly graded areas (pervious areas only,						
no vegetation) ⁵						
lle lands (CN's are determined using cover types similar to those in table 2.2c).		77	(86)	91	94	

# Table 2-2a .- Runoff curve numbers for urban areas!

¹Average runoff condition, and  $l_a = 0.2S$ .

"The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 24 or 24. "CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space over type.

"Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition. "Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 24 or 24.

based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

	Cover description	Curve numbers for hydrologic soil group-				
Cover type	Treatment ²	Hydrologic condition ³	A	B	С	D
Fallow	Bare soil		77	(86)	91	94
	Crop residue cover (CR)	Poor Good	76 74	86) 85 83	90 88	93
Row crops	Straight row (SR)	Poor Good	72 67	81 (78)	88	91
	SR + CR	Poor Good	71 64	80 75	85 87 82	89 90 85
-		Poor Good	70 65	79 ANC 75 = 77	84 82	88 86
	C + CR	Poor Good	69 64	78 74	83 81	87 85
	Contoured & terraced (C&T)	Poor Good	66 62	74 71	80 78	82 81
	C&T + CR	Poor Good	65 61	73 70	79 77	81 80
mall grain	SR	Poor Good	65 63	76 75	84 83	88
	SR + CR	Poor Good	64 60	75 72	83 80	87 86 84
	С	Poor Good	63 61	74 73	82 81	85 84
	C + CR	Poor Good	62 60	73 72	81 80	84 83
	C&T	Poor Good	61 59	72 70	79 78	. 82 81
	C&T + CR	Poor Good	60 58	71 69	78 77	81 80
ose-seeded or broadcast	SR	Poor Good	66	77	85	89
egumes or otation	C	Poor Good	58 64 55	72 75	81 83	85 85
neadow [.]	C&T	Poor Good	63 51	69 73 67	78 80 76	83 83 80

#### Table 2-2b .- Runoff curve numbers for cultivated agricultural lands'

¹Average runoff condition, and  $I_n = 0.2S$ . ²Crop residue cover applies only if residue is on at least 5% of the surface throughout the year. ²Hydrologic condition is based on combination of factors that affect infiltration and runoff, including (a) density and canopy of vegetative ²Hydrologic condition is based on combination of factors that affect infiltration and runoff, including (a) density and canopy of vegetative ²Hydrologic condition is based on combination of factors that affect infiltration and runoff, including (a) density and canopy of vegetative ²Hydrologic condition is based on combination of factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes in rotations, (d) percent of residue cover on the land surface (good ≥ 20%), and (e) degree of surface roughness. Poor: Factors impair infiltration and tend to increase runoff.

Ginst: Factors encourage average and better than average infiltration and tend to decrease runoff.

Cover description			Curve numbers for hydrologic soil group-			
Cover type	Hydrologic condition	A	B	с	D	
Pasture grassland, or range-continuous	Poor	68	79	86	89	
forage for grazing. ²	Fair	49	69	79	84-	
	Good	39	1	.79 `74	80	
Meadow-continuous grass, protected from grazing and generally mowed for hay.	·**	30	58	71	78	
Brush-brush-weed-grass mixture with brush	Poor	48	T	$\overline{n}$	83	
the major element. ³	Fair	35	<b>67</b> 56	. 70	77	
с. А. 4	Good	*30	48	65	73	
Woods-grass combination (orchard	Poor	57	73	82	86	
or tree farm). ⁵	Fair	43	65	76	82	
	Good	32	58	72	79	
Woods. ⁶	Poor	45	66	77	83	
	Fair	36	60	73	79 -	
	Good	430	65	70	77	
Farmsteads—buildings, lanes, driveways, and surrounding lots.	-	59	74	82	86	

#### Table 2-2c.-Runoff curve numbers for other agricultural lands'

¹Average runoff condition, and I_a = 0.2S.

² Poor: <50% ground cover or heavily grazed with no mulch.</li>
 Fair: 50 to 75% ground cover and not heavily grazed.
 Good: >75% ground cover and lightly or only occasionally grazed.

*Poor: <50% ground cover.

50 to 75% ground cover. Fair: Goud:

>75% ground cover.

⁴Actual curve number is less than 30; use CN = 30 for runoff computations.

SCN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

"Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.

Woods are grazed but not burned, and some forest litter covers the soil. Fair:

Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

#### Sheet flow

Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. With sheet flow, the friction value (Manning's n) is an effective roughness coefficient that includes the effect of raindrop impact; drag over the plane surface; obstacles such as litter, crop ridges, and rocks; and erosion and transportation of sediment. These n values are for very shallow flow depths of about 0.1 foot or so. Table 3-1 gives Manning's n values for sheet flow for various surface conditions.

For sheet flow of less than 300 feet, use Manning's kinematic solution (Overton and Meadows 1976) to compute Tt:

$$T_t = \frac{0.007 \text{ (nL)}0.8}{(P_2)0.5 \text{ s}0.4}$$
 [Eq. 3-3]

#### Table 3-1 .- Roughness coefficients (Manning's n) for sheet flow

Surface description	n¹
Smooth surfaces (concrete, asphalt, gravel, or	
bare soil)	0.011
Fallow (no residue)	0.05 👉
Cultivated soils:	
Residue cover ≤20%	0.06
Residue cover >20%	0.17 🖛
Grass:	
Short grass prairie	0.15
Dense grasses ²	0.24
Bermudagrass	0.41
Range (natural)	0.13 🕳
Woods:3	
Light underbrush	0.40
Dense underbrush	0.80

'The n values are a composite of information compiled by Engman (1986).

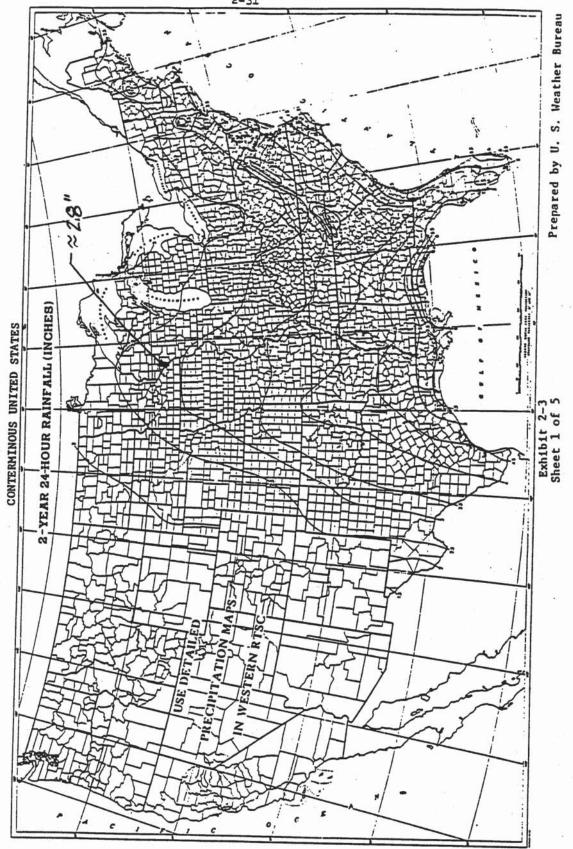
Includes species such as weeping lovegrass, bluegrass, buffalo

grass, blue grama grass, and native grass mixtures. When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

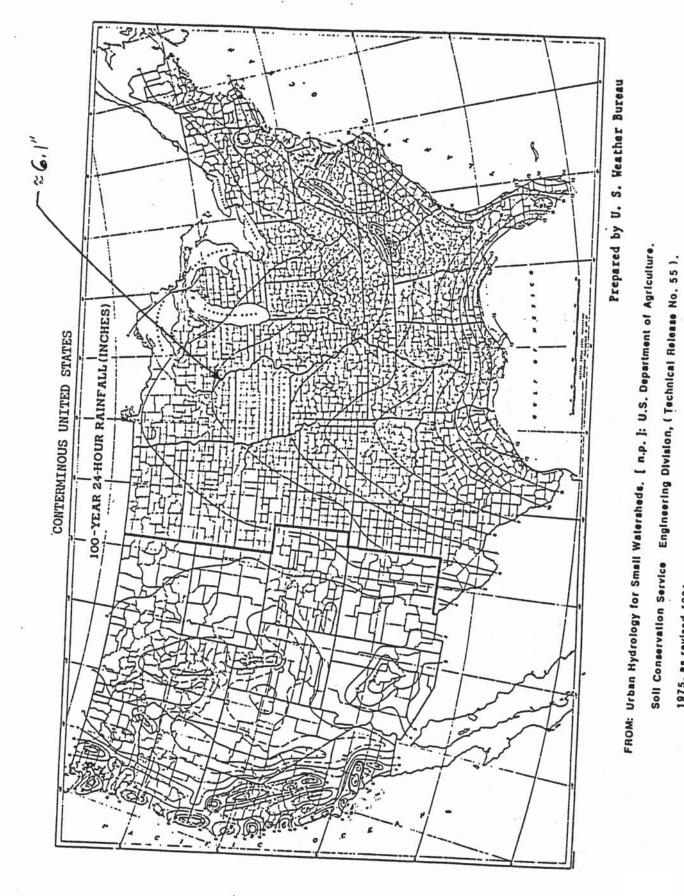
#### where

- $T_t = travel time (hr),$
- n = Manning's roughness coefficient (table 3-1).
- L = flow length (ft),
- $P_2 = 2$ -year, 24-hour rainfall (in), and
- s = slope of hydraulic grade line (land slope, ft/ft).

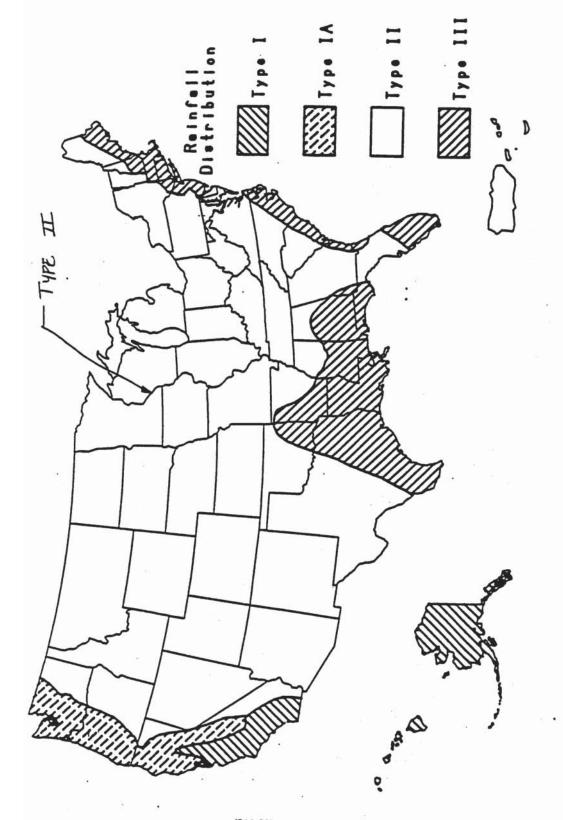
This simplified form of the Manning's kinematic solution is based on the following: (1) shallow steady uniform flow, (2) constant intensity of rainfall excess (that part of a rain available for runoff), (3) rainfall duration of 24 hours, and (4) minor effect of infiltration on travel time. Rainfall depth can be obtained from appendix B.


#### Shallow concentrated flow

After a maximum of 300 feet, sheet flow usually becomes shallow concentrated flow. The average velocity for this flow can be determined from figure 3-1, in which average velocity is a function of watercourse slope and type of channel. For slopes less than 0.005 ft/ft, use equations given in appendix F for figure 3-1. Tillage can affect the direction of shallow concentrated flow. Flow may not always be directly down the watershed slope if tillage runs across the slope.


After determining average velocity in figure 3-1, use equation 3-1 to estimate travel time for the shallow concentrated flow segment.

#### **Open channels**


Open channels are assumed to begin where surveyed cross section information has been obtained, where channels are visible on aerial photographs, or where blue lines (indicating streams) appear on United States Geological Survey (USGS) quadrangle sheets. Manning's equation or water surface profile information can be used to estimate average flow velocity. Average flow velocity is usually determined for bank-full elevation.



2-31



1975, as revised 1981.



⁽²¹⁰⁻VI-TR-55, Second Ed., June 1986)

.-Approximate geographic boundaries for SCS rainfall distributions.



## **Diversion Berm, Perimeter Ditch, and Spillway Design Calculations**

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024



#### Purpose/Methodology/Assumptions/Results/References

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024



## COMPUTATION SHEET

744 Heartland Trail (53717-8923) P. O. Box 8923 (53708-8923)			Madison, WI	(608) 831-4444		
PROJECT/PROPOSAL NAME	PREPA	PREPARED		ECKED	PROJECT/PROPOSAL NO.	
Dairyland Power Cooperativ	ve BJK	Dat 9/0		Date:		3081.40

## DIVERSION BERM, PERIMETER DITCH, AND SPILLWAY DESIGN CALCULATIONS

#### Purpose

To size the diversion berms, perimeter ditches and spillway at the proposed Dairyland Power Cooperative Landfill to adequately handle the surface water runoff from a 100-year, 24-hour storm.

#### Methodologies

Ditches, diversion berms and spillways were designed to channel the surface water runoff from the landfill drainage areas to the sedimentation basins, receiving ditches, or spillways. The direction of surface water runoff from the drainage areas surrounding the proposed landfill is towards the proposed landfill. Perimeter drainage ditches were therefore incorporated into the design to route the surface water runoff from outside the proposed landfill limits along the perimeter of the landfill area to the existing main channel at the south end of the landfill. These ditches are labeled as the NW, NE, West, SE, and SW ditches. The perimeter ditches sized in this subsection of the appendix, then, include ditches to collect runoff from the landfill drainage areas as well as ditches to collect surface water run-on from the drainage areas surrounding the landfill.

The adequacy of the diversion berms and ditches in handling the surface water runoff and runon and in limiting the amount of erosion is based on the depth of flow and velocity, respectively, in the ditch. An in-house RMT spreadsheet incorporating Manning's equation was used to assist in the design of the diversion berms and ditches. This program allows the user to input the ditch geometry, the peak flow (as determined by the surface water runoff calculation), and the vegetative retardance factor (Chow, 1959). The program then begins an iterative process which adjusts the flow depth and Manning's coefficient until the trial velocity and the resultant velocity are within 0.002 feet per second (fps) of each other. The end result is the peak flow depth and peak velocity for the geometry and peak flow entered. Design software provided by Synthetic Industries was also used to select erosion control matting for ditches and grouted riprap for spillways.

Permanent ditches, diversion berms, and spillways will be constructed as early in the site development as practicable. Where temporary ditching is required, these temporary ditches have been designed to the same standards as the permanent ditches. Calculations for the sizing of the temporary ditches are also attached.

# RMT.

## **COMPUTATION SHEET**

A Contraction of the second second second second second second second second second second second second second				SHEE	2	OF3	
744 Heartland Trail (53717-8923) P. C	P. O. Box 8923 (53708-8923)		Madison, WI (608) 831-444		FAX: (608) 831-3334	VOICE: (608) 831-1989	
PROJECT/PROPOSAL NAME	PREPARED		CHECKED		PROJECT/PR	ROPOSAL NO.	
Dairyland Power Cooperative	By: BJK	Date 9/0	-,-	Date:		3081.40	

It is noted that the storm water control structures have been designed using a 100-year, 24-hour storm event and a TR-55 Type II storm distribution. As noted in the surface water runoff calculations, the peak flows calculated using this method meet or exceed the peak flows calculated using a 25-year, time of concentration storm event (required by NR 504.09).

#### Assumptions

The following assumptions were used to design the diversion berms and perimeter ditches:

- Diversion berms, perimeter ditches and the spillway were designed to handle the runoff from the 100-year, 24-hour storm event.
- Diversion berm ditches were designed as V-notch ditches with a minimum 0.5 foot of freeboard for the 25-year, 24-hour storm. Diversion berm ditches were designed to convey the 100-year, 24-hour storm without overtopping.
- Perimeter ditches were designed as both V-notch and flat bottom (10-foot and 20-foot-wide) ditches with a minimum 0.5 foot of freeboard for the 25-year, 24-hour storm. Perimeter ditches were designed to convey the 100-year, 24-hour storm without overtopping.
- Grass-lined diversion berm and perimeter ditches were designed for a maximum velocity of 4 fps. Ditches with velocities exceeding 4 fps were designed to be lined with erosion mat or riprap, as appropriate.
- The spillway was designed as 20-foot-wide, flat-bottom spillway with a minimum 0.5 foot of freeboard.
- The peak flows in the diversion berms, perimeter ditches and the spillway were obtained from the hydrographs generated in the "Surface Water Runoff Calculations" subsection of this appendix.
- Manning's numbers were selected for both "low" retardance (Type "D") and "moderate" retardance (Type "C") as given by the U.S. Soil and Conservation Service. Type "D" is typical of spring conditions while Type "C" is typical of summer conditions. For ditches lined with erosion matting, default Manning numbers from the Synthetic Industries design software were utilized.

#### Results

The diversion berms and perimeter ditches were adequately sized to handle the surface water runoff from a 100-year, 24-hour storm event. The diversion berms at a 2 percent slope will be grass-lined. To limit erosion, permanent erosion matting will be placed in the diversion berms at a 6 percent slope, as well as in most of the perimeter ditching. Grouted riprap will be constructed in the spillways. The attached figure highlights the ditch sizing results.



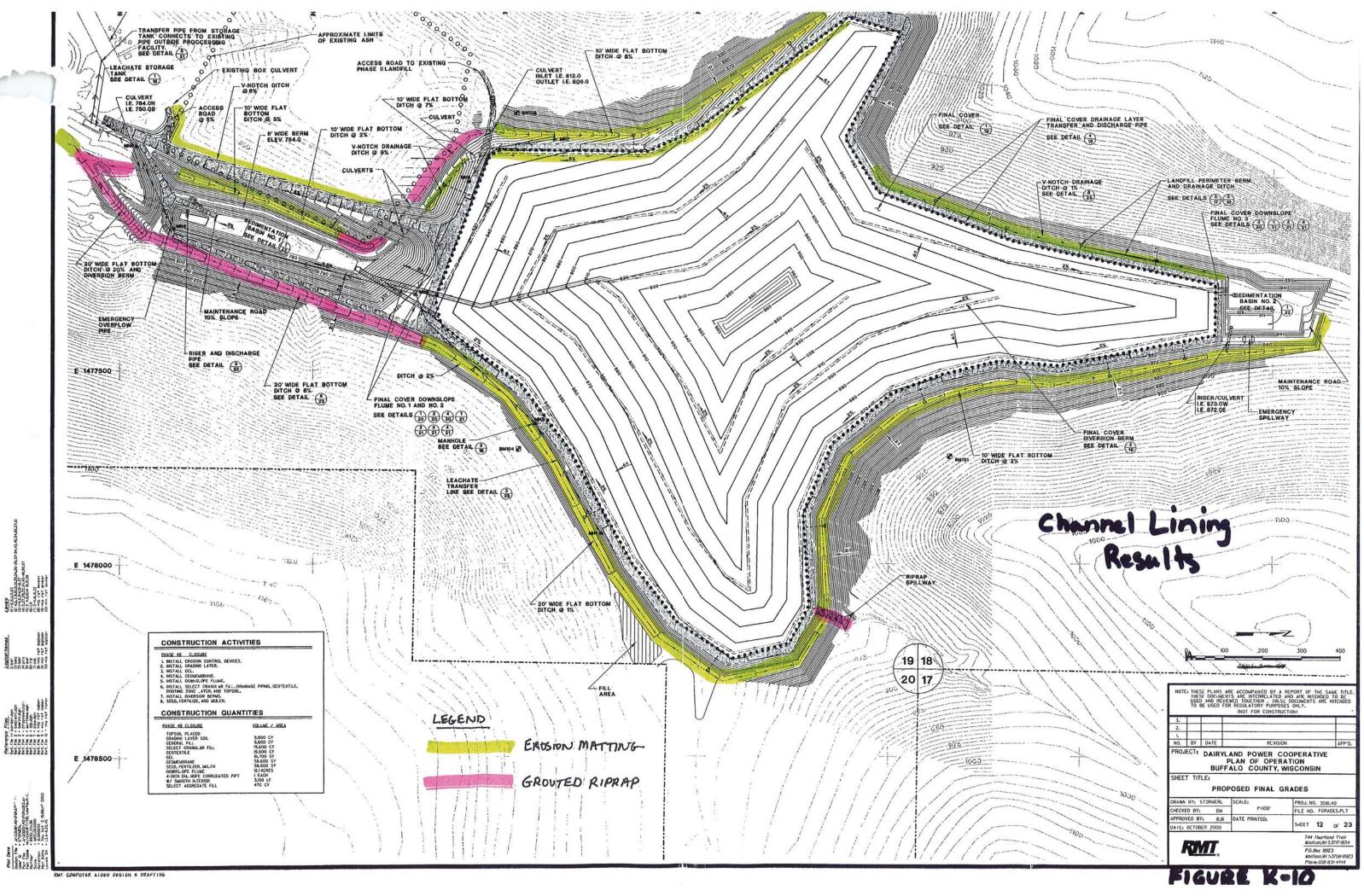
#### COMPUTATION SHEET

OF

744 Heartland Trail (53717-8923) P.	P. O. Box 8923 (53708-8923)		Madison, WI (608) 831-4444		FAX: (608) 831-3334	VOICE: (608) 831-1989
PROJECT/PROPOSAL NAME	E PREPARED		CHECKED		PROIECT/PROPOSAL NO.	
Dairyland Power Cooperative	By: BJK	Date: 9/00		Date:		3081.40

SHEET

#### References


Chow, V.T. 1959. Open Channel Hydraulics, McGraw Hill, New York.

- Wisconsin Department of Transportation. 1994. Facilities Development Manual. February 1994.
- U.S. Department of Agriculture, Soil Conservation Service. 1986. Engineering Field Manual for Conservation Practices. November 1986.

Goldman, S.J., et al. Erosion and Sediment Control Handbook. New York: McGraw-Hill. 1986.

Synthetic Industries. EC-Design 2000. Stormwater Management and Erosion Control Design Software. V.1.2.

Wisconsin DNR, Bureau of Water Resources Management. 1989. Wisconsin Construction Site Best Management Practice Handbook, Publication WR-222-89.





**Calculations – Post-closure Landfill Conditions** 

		Grass Channel Sizing Calculation	5		
Site: Proje Char		Dairyland Power Cooperative 3081.33 Diversion Berm (2%) - worst case fl Area 1F	Date: User: ow	10/1/98 BLP VIOL 10198	
L	Input Para	ameters.			
	A. Side slo	ope, Z1 (hor/vert) =		4.000	ft/ft -
	B. Side slo	ope, Z2 (hor/vert) =		2.000	ft/ft ~
	C. Bottom	width, B =		0.000	ft 🖉
	D. Design	channel slope, S =		0.020	ft/ft <
	E. Channe	l Peak Flow, Q =		25.000	cfs 🗸
	F. Enter	- 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence		1	Conditions
а.	Peak Flow	Calculations.			
	A. Trial flo	ow depth, D = (Bisection method until Va=Vb)		1.570	ft 0.4' freeboard
	B. Channel	l flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)		7.390	sq ft
	C. Wetted	Perimeter, Pw = (D*(Z1^2+1)^.5) + B + (D*(Z2^2+1)'	<b>`.5)</b>	9.981	ft
	D. Hydrau	lic radius, Rh = (Ac/Pw)		0.740	ft
	E. Velocity	and hydraulic radius, VR = (Va * Rh)		2.505	sfps
	F. Channel	flow Manning's coeff, nc = 0		0.051	
	G. Trial vel	locity, Va = (Q/Ac)		3.383	
		nt velocity, Vb = 1.49/nc) * (Rh^.667) * (S^.5)		3.383	fps < 4 Fps

RMT, Inc. Grass Channel Sizing Calculations

Invoke Solution Macro by typing - 'ctrl' D

h:\data\common\template\sc-51\grasscha.xls

#### RMT, Inc. Grass Channel Sizing Calculations

Site:	Dairyland Power Cooperative	Date:	10/1/98
Project #:	3081.33	User:	BLP
Channel:	Diversion Berm (2%) - worst case f Area 1F	low	10/98 10/98

I. Input Parameters.

П.

A. Side slope, Z1 (hor/vert) =	4.000 ft/ft <
B. Side slope, Z2 (hor/vert) =	2.000 ft/ft
C. Bottom width, B =	0.000 ft
D. Design channel slope, S =	0.020 ft/ft <
E. Channel Peak Flow, Q =	25.000 cfs -
F. Enter - 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence	2 - Spring Conditions
Peak Flow Calculations.	
A. Trial flow depth, D = (Bisection method until Va=Vb)	1.456 ft 0.5' freeboard
B. Channel flow area, Ac = $(.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)$	6.357 sq ft
C. Wetted Perimeter, $Pw = (D^*(Z1^2+1)^{.5}) + B + (D^*(Z2^2+1)^{.5})$	9.257 ft
D. Hydraulic radius, Rh = (Ac/Pw)	0.687 ft
E. Velocity and hydraulic radius, VR = (Va * Rh)	2.701 sfps
F. Channel flow Manning's coeff, nc = 0	0.042
G. Trial velocity, Va = (Q/Ac)	3.933 fps
H. Resultant velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)	3.933 fps 24 fps

Invoke Solution Macro by typing - 'ctrl' D

h:\data\common\template\sc-51\grasscha.xls

		RMT, Inc.			
		Grass Channel Sizing Calculat	ions		
		ones chance share cheam	1015		
Site:		Dairyland Power Corp.	Date:	31-July-98	
Proje	ct #:	3081.33	User:	SRC	
Chan	nel:	Ditch (8%)			
		Area 1G - Flow From Landfill P	ortion - 15 cfs	VIDIL	
		icadonico a presión de la centra d			-
I.	Input Pa	arameters.			
	A. Side s	slope, Z1 (hor/vert) =		3.000	ft/ft ,
	B. Side s	lope, Z2 (hor/vert) =		2.000	ft/ft
	C. Botto	m width, B =		0.000	ft
	D. Desig	n channel slope, S =		0.080	ft/ft -
	E. Chanr	nel Peak Flow, Q =		15.000	cfs
	F. Enter	- 1 - for Type "C" Veg. Retarden	ce	1	- summer conditions
		- 2 - for Type "D" Veg. Retarden	ce		conditions
I.	Peak Flo	w Calculations.			
	A. Irial	flow depth, D =		1.071	ft 0.9' freeboard
	R Chann	(Bisection method until Va=Vb) el flow area, Ac =			
	D. Charu	(.5*Z1*D^2) + (B*D) + (.5*Z2*D^	2)	2.870	sq ft
	C. Wette	d Perimeter, Pw =	2)	5.784	4
	123 11 276	(D*(Z1^2+1)^.5) + B + (D*(Z2^2	+1)^ 5)	5.704	IC .
	D. Hydra	ulic radius, Rh =		0.496	4
		(Ac/Pw)		0.490	it is a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
	E. Veloci	ty and hydraulic radius, VR =		2.593	sfps
		(Va * Rh)		2.070	sips
	F. Chann	el flow Manning's coeff, nc =		0.051	
		0		0.002	
	G. Trial v	velocity, Va =		5.226	fps
		(Q/Ac)			· ·
	H. Resul	tant velocity, Vb =		5.226	fps > 4425
		(1.49/nc) * (Rh^.667) * (S^.5)		C.L.L.U	fps > 4fps se permanent
		and the state of the state			se permanent
				u	2- F-11

H:\data\common\src\Grassch5.xls

erosion

	RMT, Inc.			
	Grass Channel Sizing Calculatio			
Site: Project #: Channel:	Dairyland Power Corp. 3081.33 Ditch (8%)	Date: User:	31-July-98 SRC	
	Area 1G - Flow From Landfill Por	tion - 15 cfs	verticias	<u>.</u>
In	put Parameters.			
A.	. Side slope, Z1 (hor/vert) =		3.000	ft/ft
B.	Side slope, Z2 (hor/vert) =		2.000	ft/ft
C.	Bottom width, B =		0.000	ft 1
D.	Design channel slope, S =		0.080	ft/ft ~
E.	Channel Peak Flow, Q =		15.000	cfs ,
F.	Enter - 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence		2	conditions
. Pe	ak Flow Calculations.			
A.	Trial flow depth, D = (Bisection method until Va=Vb)		0.992	ft l' freeboard
B. (	Channel flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)	ġ.	2.459	sq ft
C.	Wetted Perimeter, Pw = (D*(Z1^2+1)^.5) + B + (D*(Z2^2+1)	.)^.5)	5.353	ft
D.	Hydraulic radius, Rh = (Ac/Pw)		0.459	ft
E. 1	Velocity and hydraulic radius, VR = (Va * Rh)		2.802	sfps
F. 0	Channel flow Manning's coeff, nc = 0		0.041	
G. '	Trial velocity, Va = (Q/Ac)		6.101	fps
H.	Resultant velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)		6.101	fps > 4 fps
			use erosi	fps > 4 fps permanent on matting

H:\data\common\src\Grassch6.xls

NORTH AMERICAN GREEN - ECMDS VER.IV - CHANNEL PROTECTION - ENGLISH USER SPECIFIED CHANNEL LINING ANALYSIS

PROJECT NAME: Dairyland Power COMPUTED BY: BJK FROM STATION/REACH: Area 1G - Fl DRAINAGE AREA: PROJECT NO.: 3081.33 DATE: 10-06-1998 TO STATION/REACH: DESIGN FREQUENCY: 100

 Channel Bottom Side Slope Lt.
 Side Slope Rt.
 Channel Slope

 Width (ft)
 (Horz. to 1)
 (Horz. to 1)
 (ft/ft)

 0.00
 3.0
 2.0
 0.080

.....

Discharge (cfs)	Peak Flow Period (hrs)	Velocity (ft/sec)	Area (ft^2)	Hydraulic Radius (ft)	Normal Depth (ft)	
						014
15.0	2.0	5.34	2.81	0.49	1.06	

.....

Lining Growth Veg. Manning Permissible Calculated Safety Remark Type Habit Den Coefficient Shear (lb/sf) Shear (lb/sf) Factor P300 0.049 8.00 5.29 1.51 STABLE Staple E

Phase 3 (Mature Vegetation)

	RMT, Inc.			
	Grass Channel Sizing Calculation	tions		
Site: Project #: Channel:	Dairyland Power Corp. 3081.33 Ditch (1%)	Date: User:	31-July-98 SRC	
	Area 2B		NONT 10KK	-
I. Input Par	rameters.			
A. Side sl	lope, Z1 (hor/vert) =		3.000	ft/ft
B. Side sl	ope, Z2 (hor/vert) =		2.000	ft/ft -
C. Botton	n width, B =		0.000	ft -
D. Desigr	n channel slope, S =		0.010	ft/ft
E. Chann	el Peak Flow, Q =		73.000	cfs -
F. Enter	- 1 - for Type "C" Veg. Retarder - 2 - for Type "D" Veg. Retarder		1	- Summer conditions
II. Peak Flow	w Calculations.			
A. Trial f	low depth, D = (Bisection method until Va=Vb)		2.593	ft 0,4' freeboard
B. Channe	el flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D	^2)	16.814	sq ft
C. Wetted	l Perimeter, Pw = (D*(Z1^2+1)^.5) + B + (D*(Z2^2	2+1)^.5)	14.000	ft
D. Hydra	ulic radius, Rh = (Ac/Pw)		1.201	ft
E. Velocit	y and hydraulic radius, VR = (Va * Rh)		5.214	sfps
F. Channe	el flow Manning's coeff, nc = 0		0.039	
G. Trial v	elocity, Va = (Q/Ac)		4.342	
	ant velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)		4.341	fps > 4 fps
			use eros	fps > 4 fps permanent ion matting

H:\data\common\src\Grassch7.xls

	RMT, Inc. Grass Channel Sizing Calculati	ons		
Site: Project #: Channel:	Dairyland Power Corp. 3081.33 Ditch (1%) Area 2B	Date: User:	31-July-98 SRC ↓Ю [⊮] ω]άδ	
I. Input Par				-
а. приста	rameters.			
A. Side sl	lope, Z1 (hor/vert) =		3.000	ft/ft _
B. Side sl	ope, Z2 (hor/vert) =		2.000	ft/ft -
C. Botton	n width, B =		0.000	ft <
D. Desigr	n channel slope, S =		0.010	ft/ft ~
E. Channe	el Peak Flow, Q =		73.000	cfs 1
F. Enter	- 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence		2	
II. Peak Flow	v Calculations.			
	low depth, D = (Bisection method until Va=Vb)		2.512	ft 0.5' freebard
	el flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2	)	15.774	sq ft
C. Wetted	Perimeter, Pw = (D*(Z1^2+1)^.5) + B + (D*(Z2^2+	1)^.5)	13.560	ft
D. Hydrau	ulic radius, Rh = (Ac/Pw)		1.163	ft
E. Velocity	y and hydraulic radius, VR = (Va * Rh)		5.383	sfps
F. Channe	l flow Manning's coeff, nc = 0		0.036	
G. Trial ve	elocity, Va = (Q/Ac)		4.628	fps
	ant velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)			fps > 4 fps
			use erosi	permanent on matting

H:\data\common\src\GRASSCH8.xls

10/6/98

1

NORTH AMERICAN GREEN - ECMDS VER.IV - CHANNEL PROTECTION - ENGLISH USER SPECIFIED CHANNEL LINING ANALYSIS

PROJECT NAME: Dairyland Paower Coop.	PROJECT NO .: 3081.33
COMPUTED BY: BJK	DATE: 10-06-1998
FROM STATION/REACH: Area 28	TO STATION/REACH:
DRAINAGE AREA:	DESIGN FREQUENCY: 100

Channel Bottom	Side Slope Lt.	Side Slope Rt.	Channel Slope	
Width (ft)	(Horz. to 1)	(Horz. to 1)	<ul> <li>A second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s second second s second second se</li></ul>	
0.00	3.0	2.0	0.010	

Discharge (cfs)	Peak Flow Period (hrs)	Velocity (ft/sec)	Area (ft^2)	Hydraulic Radius (ft)	Normal Depth (ft)	
73.0	2.0	3.64	20.08	1.31	2.83	oK

Lining Growth Veg. Manning Permissible Calculated Safety Remark Type Habit Den Coefficient Shear (lb/sf) Shear (lb/sf) Factor P300 0.049 8.00 1.77 4.52 STABLE Staple E

Phase 3 (Mature Vegetation)

	rtland	1	_						697	-		10	-	821		-		-	-		_		- 16	101.0	1	080	1	. OF	-	3	5	-
	T/PRC	1.7.4			8923	M		n, wi	53/1			10		-	EM		~ 1		1.1.1.1	100			- 100		-	-	CT/	PRO	POSA	L NO	5.	-
	AIRY				ow	ER	4	TOP.					-	By.	6	R	3	19/	17	B	to		Ti	19	21:	30	61.	27	1			
	1					1			×					1	Rev	BLF	133	r.	1019	3												
	11	1	T	T	1			1	1	T	T	٦	5		-	+0	9	-	0					1					1	1		
D	TZ	H	0	31	GN	0	A	ru	4	170	a	5	-	De	51	61		IN	Fa	RI	n	m	21	1	12	5 7	R .	24	the	ST	DRI	M
~	T	4	Ŧ	T	T			T			T					11.1							61						1	i	1	
11				1													10	1.5						273							10	
50	UTH		spi	de	NAI	•							e.		2											5					$\leq$	
1 R			T	T	T						•		15			1		1.54	1		1						1		1	1	1	1
	W	OT	*	= 20	1			PE	AK	F	lon	1-	4	N	R	BI	m	16	0	en	NI	60	A	RE	15			10				
	54	ORE	=	20	%			3	C +	.4	C	1	EA	FT	+	NO	AT	TE	tst	-+	NO	ET	4 4	B	15 1	N2	00	TR	PW	1-	1	
	Mm	12	AF	TH	= 4	1			1	1		_	1.4					1.1							21	2						
		-	+				-	18	+	N	+	1	14	5	+	6	5	+	19	4	+	10	-	7	46	cf	s	(2	5-	YE	AR)	
1		+	+	+			_	-1	1	- 1-	-	Ļ		_		1	L	_		2		-		4	A	av	nd	10	75	0	6-	Co
		-	+	+	-		-	2	5+	18	5 +	8	2	1±	11	0+	- 30	60	+ 2	21	3	Ji	374			_	+7	1.1.1	<u>i)</u>	1	-	
101			+	-				+	+	+	+	+		-	-	N	0+	-:	A	re	F	a	5 0	-	-	-	12S	+>=	5 4	ne	1	-
E	DI	TOP	+ (	27	() (	(9	74	4	+	+	+	+	-	-	-			-	-	- 4	nd	e	17	. 6	H	25	Cle	p-1	YR.	Fa	low	57
		-	+	+	-		+	-	+	-	+	+				-			-			-			- /	-	-	+-	-	-	-	-
	WiD	_	_		-		-	PEA			-	- 1			-	-							-		-			-	-	-		-
	SLO				5'	-	-	30	1	40		E	1.57	11	N	PR	HE	151	+ 1	NO	27	4 4	64	\$11	/ 2		TE	200	-	12		-

E DITCH KIRD			1.1						1.163			
	5A	me	FL	rus	15	100	E			1111		
WIDTH-ZO'		11	-				1.1	12	1.1			
SLOPE - 190		11						14 11				
MIN DEDTH -6'										181		

E	0	ITC	M	-	+				-	-	-	-						-					2				111		_	+	-
ì	W	07		10	1				P	A	1	10	w	-	co.	~7	RI	BL	77	16		R	m	re	κ.	AR	EA	5		+	-
ľ	Su	PE	==	2%			112	1											5						_	1.1					
-	MIN	1	EF	n+	•	10t			4	1	c	*	N	RI	#	+	6	151	N	2	00	T		Ł							
1										1	+	19	ч	+	10		2	15	0	FS		(2	5-	VEI	K	5	1			-	5
	+	-	+		-					8	+	36	0+	1	1	-	-	399	CF	-	CI	00	- 71	A	F	mu	ou	)		-	+
		1				110									+	-N	-	_	-	_	- 1	2.	. 1	ks	(	5.	-)		nd	A .	r
1			1								12			1				1.1.1.1	-5	1.00		loc		1.1.1							
	Orto	h													1									10		10					
1	in	44	4=	10		1		Pe	uk	F	lo	6	-0	bn	tri	bu	h	19	0	an	has	le	Ar	La	1	1		1.11	1	T	
b .	51	0	1.	2	7.						C	4 1	Jor	the	es	- +	N	5	H	1	B	1.	5 7	10						1	+

510pe = 2% Min Depth = 10't 1

= 18 + 110 + 360 + 21 = 509 cfs (100 4r)

				-	923	Madia	ion, WI S	3708-	8923	(6	08) 8	-		_	X: 18	08)8	and the second second	of Local Division of Local Division in which the		NCE	(60	8) 83			¥ / 5	0000		-	_	_
OJECT	/ PROP	OSAL	NAME	00		0 ,	0.00	2					6J		Deter			HEC:	B	10	Tra	4	-			2Y				
DAI	RYL	AN	0	pa	DE	K C	2000		-	-	-	-	CAR	_	-		14	00	0	10			-							
											_	_	_	_						_	_				-		_			_
1 1		1				-									_	-	1	-	-	4	+	+	1	+	-	_	1	1		
NW	PI	TE	*								3	-			-	+	4	+	-	4	+	+	+	-	+				_	_
TI		T				-		-		-	-	-	_	-	_	-	+	+	+	+	-	-	+	-		-	1	1	+	-
					-1	TH		-	P	EA	-	FO	au	1+	- 4	on	TR	10	vp	4	-	DR	AN	VA	4	A	RE	AS		-
and the owner whether the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of	DPE		-		-	_		-		-		_	_	-	_	-	+	-	-		+	-	-	-	+	-	-		- ton	_
M	ND	EP	H	-4	H	-	+	-		-	2	B	-	4	в	CF	5	4	25	X	4	-1	4	+	+	+	-	1		-
	- 1 0 1	-				-	++	-	-	-	-	_	-	-	_	-	+	10	-	-	-	-		1	-	+	-	+	+	-
		1	-			-	++	-	-		-	-	-	-	3	1	-	4	201	14	4	ny	ou	4	-	+	+	+	+	-
		-	-	-	-	-	++	+	-	-	-	-			-	+	+	+	+	+	-	+	+	+	-	-	+	i		-
WE	ST	DI	E.h	4		-		-	-		-	-	-		-	-	+	+	+	+	+	-	+	+	+	1	ī		1	-
++	-	+	-	-		-		0	-		-	-	1	-	-	-	-	-	14	1	-		AA	5	-	ER	ret	-	+	-0
	107			2		-	++	1	EA	F	-4	a	-	0	N	10	24	-	40	4	-			-	-	-	-	+	+	
	OPE			0	,		++	-	+		20		-	Ale		A	00		1	1	1	-	-	-		+	+	+	+	
11	NO	P	1	6			++	+	+		-0	- 1		VE	-	//		+	-	1	1	-	1	-		-	1		+	
		+	-	-		-		-	-		10	+	1	1.	-	: 12	,	d	R	1	24	- 1	EA			1	+	+	1	
+		+	-	-			++	-	1		-	-			-	14	+	7	-	1	-	-1		1			1	1	+	
+	+	-	-					-	-	-	12	+	2	23	11	24	11	1	FS	1	HO	04	EA	R	F	the	out	5	1	-
+		+	1	-			11	+	1		i -		17	_	Los		C	-	.5	_	-			-		M			+	Ē
		+	-			-		1			•	1		-			-		5	_	_					FA		1	1	
+ 1	-	+	1				++		1								1		-		-	-0		-	-			1	1	Ū
sw	Dm	te	1				++			-												1					1			
	1	1	1			-	$\uparrow \uparrow$											1											1	
1.00	OTH	-	h'					P	AN	F	L	w	-	ro.	UT	21	NV2	ZN	6	0	RA	IN	10	C	AR	EA	S			
Kin	PE	- 2	20	57.	7	20	11	1	T	1	-																			
	u be						11		1		10	c	4	20	-	4 4	JE	57	-	RE	A	1	1	1.1						
1			T					1		1	1													161						
	- 13	1		E		12212					46		10	+	111			16	70	FS		12	5-	YEA	k)	1				
											ľ																			
1.1		1						1			94	+	20	+	20	59	1	3	23	cf	(	100	-4	EA	e	FAI	10	w)	-	1
10		1	1-			1210	TT		T		Γ		Γ	Γ		F		S	2	12	-		-	-			_	AN	0	
																C	12	.4	the	50	100	- Y	EAI	A.F	m	kor	(ب			
MA IN	1 CH	m	NE	-													4													
11		I	T	i																										L
W	DTH	1~	20	1'1	411	1		Pe	AX	F	10	w	-0	PA	T	10	UT	N	4	DR	AN	VA	E	A	RE	#5				
	DPE													1.1				-				-								
MA	NID	EP	74 -	+	6	1		1	¢,	20	+	30	+	4	¢+	E	457	+	N	E+	N	RT	+ +	W	ES7	+	BA	sm	1 1	
1		1																		-										
11		1				24			18	BT	C	FS	+	8	+	1	2		90	5	EF	5	(2	5	YR	0				
	1 by	T		1						18						21	_	-	164			-		1		F	ne	ow	) -	
-		1						1	1	1	1		L	10	1												1			
11		1					TT		1	1				11	FLO	20	Q	12.	6 1	RS	16	25.	YEI	AR	Y	AN.	60	212	2.6	H

744 Heartland Trail Madison, WI 53717-1934 Tel. (608) 831-4444 • Fax (608) 831-3334

SHEET 3 OF 3

PROJECT / PROPOSAL NAME / LOCATION:		PROJECT / PROPOSAL NO.
SUBJECT: Dairyland Power Coop		3081.40
PREPARED BY:	DATE: 9 00	FINAL D
CHECKED BY:	DATE:	REVISION D

AREA IG DITCH

PEAK FLOW - CONTRIBUTING DRAINAGE AREA = 15 CFS FLOW FROM LF.

PHASE 2 DITCH

WIOTAL: V-NOTCH SLOPE : 6% MIN DEPTH: 2'

Width - V-NOTCH

SLOPE . 8%

MIN DEPTH = 4'

PEAK FLOW - CONTRIBUTING DRAINAGE ARED

~ 1.5 ACRES DF PHASE Z LOVER DRAINAGE AREA -1C = 42 ACRES  $\frac{1.5}{42}$  (96 CFs) = 3.4 CFs

USE 4 CFS

Page 1 of 4

#### Analysis By:

Jser Information:	Generated by EC-Design:
Bernie Krantz RMT, Inc. 744 Heartland Trail	SYNTHETIC INDUSTRIES
	Geosynthetic Products Division
Madison, WI 53717	4019 Industry Drive • Chattanooga, TN 37416 • USA (423) 899-0444 • (800) FIX-SOIL www.fixsoil.com

#### **General Information:**

Project Details:		Project Notes:
Project Name: Description:	DPC Plan of Operation Channel Lining	
State\Country:	WI	
City:	La Crosse	
Units:	English	
Created:	01/19/99 @ 10:43	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

#### Disclaimer:

The information presented herein is for general information only. While every effort has been made to ensure its accuracy, this information should not be used for a specific application without independent professional examination and verification of its suitability, applicability and accuracy.

#### Channel Analysis Information:

Channel Analysis Name: South Spillway

Name:

#### **Channel Geometry & Hydraulics:**

Bed Slope (ft/ft):0.20000Req. Freeboard (ft):0.00Channel Length (ft):270.00Bottom Width (ft):20.00
Channel Depth (ft): 4.00
Soll Filled:
Soil Filled: No
÷.

#### Analysis Results:

	Note and	和広場は自然のまた	自己の で しゅうり	Velocity		TRA LINGER	Shear S	tress (lbs/	saft)	Flow	and the second second	17 - A.H.
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	0K7
	Left:	PYRAMAT	0.0280	24.0	23.3	1.0	20.2	9.4	0.5			
Analysis #1	Bottom	PYRAMAT	0.0280	27.3	23.3	0.9	26.0	9.4	0.4	2.0857	1374.0	No
	Right:	PYRAMAT	0.0280	24.0	23.3	1.0	20.2	9.4	0.5			
	Left:	GABIONS	0.0270	28.6	17.0	0.6	17.3	35.0	2.0	-	-	
Analysis #2	Bottom	GABIONS	0.0270	32.6	17.0	0.5	22.4	35.0	1.6	1.7968	1374.0	No
	Right:	GABIONS	0.0270	28.6	17.0	0.6	17.3	35.0	2.0			
	Left:	ROCK RIPRAP	0.0300	26.6	50.0	1.9	18.3	45.0	2.5			
Analysis #3	Bottom	ROCK RIPRAP	0.0300	30.4	50.0	1.6	23.8	45.0	1.9	1.9093	1374.0	Yes
Control Control	Right:	ROCK RIPRAP	0.0300	26.6	50.0	1.9	18.3	45.0	2.5			100
							-					

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	50.4146	1.7190	0.0351	4.6638	4.6638	29.3276	27.2540	1374.0	3.06
Analysis #2	42.3935	1.5121	0.0270	4.0178	4.0178	28.0356	32.4106	1374.0	3.94
Analysis #3	45.4772	1.5935	0.0300	4.2694	4.2694	28.5387	30.2130	1374.0	3.55

Page 2 of 4

#### **Channel Analysis Information:**

Channel Analysis Name: SE Ditch (2%)

Name:

#### **Channel Geometry & Hydraulics:**

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 1374.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.02000Req. Freeboard (ft):0.00Channel Length (ft):200.00Bottom Width (ft):20.00Channel Depth (ft):5.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

## Analysis Results:

Tan Sala and		and the second	2 Martine	Velocity	(ft/s)	ar galance an	Shear St	ress (lbs/s	aft)	Flow		mine and
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	10.0	16.5	1.6	4.2	4.7	1.1	1		
Analysis #1	Bottom	LANDLOK TRM	0.0250	11.3	16.5	1.5	5.3	4.7	0.9	4.2678	1374.0	No
	Right:	LANDLOK TRM 435	0.0250	10.0	16.5	1.6	4.2	4.7	1.1			
	Left:	LANDLOK TRM	0.0250	10.0	16.8	1.7	4.2	6.5	1.6	(		
	Bottom	LANDLOK TRM	0.0250	11.3	16.8	1.5	5.3	6.5	1.2	4.2678	1374.0	Yes
	Right:	LANDLOK TRM	0.0250	10.0	16.8	1.7	4.2	6.5	1.6		1221	
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			-
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			1.14

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	121.7841	3.1158	0.0397	9.5431	9.5431	39.0862	11.2823	1374.0	.890
Analysis #2	121.7841	3.1158	0.0397	9.5431	9.5431	39.0862	11.2823	1374.0	.890
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

#### Channel Analysis Information:

Name:

Channel Analysis Name: SE Ditch (5%)

#### Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00	Discharge (cfs): 1374.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.05000Req. Freeboard (ft):0.00Channel Length (ft):750.00Bottom Width (ft):20.00Channel Depth (ft):5.00
Right Slope (xH:1V); 2.00	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soll Filled: No
Outside Bend: Factor of Safety: 1.10		Functional Longevity: 999

#### Analysis Results:

The second		的原始主要的影		Velocity			Shear S	tress (Ibs/s		Flow		
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK
1.000-00	Left:	LANDLOK TRM	0.0260	14.3	19.1	1.3	7.8	7.5	1.0	1.0	1.001	
Analysis #1	Bottom	LANDLOK TRM	0.0260	16.2	19.1	1.2	10.0	7.5	0.8	3.2178	1374.0	No
	Right:	LANDLOK TRM	0.0260	14.3	19.1	1.3	7.8	7.5	1.0	1.1		
C	Left:	PYRAMAT	0.0280	14.3	23.3	1.6	7.8	9.4	1.2			-
Analysis #2	Bottom	PYRAMAT	0.0280	16.2	23.3	1.4	10.0	9.4	0.9	3.2184	1374.0	No
	Right:	PYRAMAT	0.0280	14.3	23.3	1.6	7.8	9.4	1.2	1.2		
1.2.1.1.1	Left:	ROCK RIPRAP	0.0300	17.6	50.0	2.8	6.6	45.0	6.8		1	
Analysis #3	Bottom	ROCK RIPRAP	0.0300	19.9	50.0	2.5	8.5	45.0	5.3	2.7285	1374.0	Yes
101101	Right:	ROCK RIPRAP	0.0300	17.6	50.0	2.8	6.6	45.0	6.8			
		and the second second		Address of the second			1.					

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	85.0635	2.4735	0.0378	7.1952	7.1952	34.3903	16.1526	1374.0	1.47
Analysis #2	85.0856	2.4739	0.0378	7.1967	7.1967	34.3933	16.1484	1374.0	1.47
Analysis #3	69.4578	2.1569	0.0280	6.1010	6.1010	32.2020	19.7818	1374.0	1.96

Page 2 of 4

#### **Channel Analysis Information:**

Channel Analysis Name: SE Ditch (1%)

Name:

#### Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry;
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 1374.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.01000Req. Freeboard (ft):0.00Channel Length (ft):1000.0Bottom Width (ft):20.00Channel Depth (ft):6.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

## Analysis Results:

		Velocity (ft/s) Shear Stress (Ibs/sqft) Manning's Max Safety May Safety						Flow	S Deventor Viente			
	Side	Lining Type	Manning's	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	7.7	16.5	2.2	2.6	4.7	1.8			1
Analysis #1	Bottom	LANDLOK TRM	0.0250	8.6	16.5	1.9	3.3	4.7	1.4	5.2542	1374.0	Yes
	nalysis #1 Bottom Right: Left:	LANDLOK TRM 435	0.0250	7.7	16.5	2.2	2.6	4.7	1.8			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.000	1.000	1
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		1.00	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	160.2976	3.6852	0.0413	11.7488	11.7488	43.4975	8.5716	1374.0	.615
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

#### **Channel Analysis Information:**

Channel Analysis Name: NE Ditch

Name:

#### Channel Geometry & Hydraulics:

Bed Slope (ft/ft): 0.02000 Req. Freeboard (ft): 0.00 Channel Length (ft): 1800.0
Bottom Width (ft): 10.00
Channel Depth (ft): 5.00 Soll Filled:
Soil Filled: No

#### Analysis Results:

Million State Strategy		N 1997 E. 3	A SHIER WAS	Velocity		3 1 N	Shear St	ress (lbs/	sqft)	Flow		Par Su
之中的。	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	7.1	16.5	2.3	3.1	4.7	1.5	11.00		
Analysis #1	Bottom	LANDLOK TRM	0.0250	7.9	16.5	2.1	3.9	4.7	1.2	3.1235	399.0	Yes
	Right:	LANDLOK TRM 435	0.0250	7.1	16.5	2.3	3.1	4.7	1.5			
	Left:	1.1.1	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	L mm -		1
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		22220	
64	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom	Sec. 1. 1. 1. 1.	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
		1	1 and a second				1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.					

		Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
	Analysis #1	50.7483	2.1173	0.0440	6.9844	6.9844	23.9689	7.8623	399.0	.735
Ī	Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
•	Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 2 of 4

## Channel Analysis Information:

Channel Analysis Name: East Ditch

Name:

#### Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Stopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 509.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.02000Req. Freeboard (ft):0.00Channel Length (ft):350.00Bottom Width (ft):10.00Channel Depth (ft):5.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend:YesBend Radius (ft):200.00Outside Bend:L	Vegetated: Yes Vegetation Class: C	Soll Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

## Analysis Results:

	Manning's Max. Safety					Shear St	ress (lbs/s	sqft)	Flow		A. Franks	
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK7
	Left:	LANDLOK TRM	0.0250	7.8	16.5	2.1	3.6	4.7	1.3	-		
Analysis #1	Bottom	LANDLOK TRM	0.0250	8.6	16.5	1.9	4.4	4.7	1.1	3.4942	509.0	No
	Right:	LANDLOK TRM	0.0250	7.8	16.5	2.1	3.6	4.7	1.3	and the second		
	Left:	LANDLOK TRM	0.0250	7.8	16.8	2.2	3.6	6.5	1.8			
Analysis #2	Bottom	LANDLOK TRM	0.0250	8.6	16.8	1.9	4.4	6.5	1.5	3.4942	509.0	Yes
	Right:	LANDLOK TRM 450	0.0250	7.8	16.8	2.2	3.6	6.5	1.8			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
R	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	Pro Paris		

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	59.3615	2.3164	0.0429	7.8133	7.8133	25.6267	8.5746	509.0	.760
Analysis #2	59.3615	2.3164	0.0429	7.8133	7.8133	25.6267	8.5746	509.0	.760
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

#### **Channel Analysis Information:**

Name: Channel Analysis Name: NW Ditch

#### Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 73.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.01000Req. Freeboard (ft):0.00Channel Length (ft):1000.0Bottom Width (ft):0.01Channel Depth (ft):4.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

#### Analysis Results:

	A4 22	and the second	Stand I Town States	Velocity		ABS ES V	Shear St	ress (lbs/s		Flow		
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	3.4	16.5	4.8	2.1	4.7	2.3	1.		
Analysis #1	Bottom	LANDLOK TRM	0.0250	3.4	16.5	4.8	2.0	4.7	2.3	3.2826	73.0	Yes
	Right:	LANDLOK TRM	0.0250	3.4	16.5	4.8	2.1	4.7	2.3	CE VICE	12	
S. Contra	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			1
Analysis #2	Bottom	1	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
1	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
1.122	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	10000000		
			A	A								

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	21.5836	1.4693	0.0564	7.3401	7.3401	14.6902	3.3822	73.0	.331
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 2 of 4

#### **Channel Analysis Information:**

Channel Analysis Name: West Ditch

Name:

#### Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 241.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.06000Req. Freeboard (ft):0.00Channel Length (ft):1020.0Bottom Width (ft):10.00Channel Depth (ft):6.00
Channel Bend:	Vegetation:	Soll Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

## Analysis Results:

an an an an an an an an an an an an an a	1.00		1 Charles II	Velocity		Statement and	Shear S	tress (lbs/s	aft)	Flow		
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	PYRAMAT	0.0280	8.9	23.3	2.6	5.1	9.4	1.8	1		
Analysis #1	Bottom	PYRAMAT	0.0280	10.1	23.3	2.3	6.6	9.4	1.4	1.7595	241.0	Yes
	Right:	PYRAMAT	0.0280	8.9	23.3	2.6	5.1	9.4	1.8	1 and		
	Left:	LANDLOK TRM	0.0260	8.9	19.1	2.1	5.1	7.5	1.5			
Analysis #2	Bottom	LANDLOK TRM	0.0260	10.1	19.1	1.9	6.6	7.5	1.1	1.7684	241.0	No
	Right:	LANDLOK TRM	0.0260	8.9	19.1	2.1	5.1	7.5	1.5			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	Sector.	1.1.1	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	23.7860	1.3312	0.0439	3.9343	3.9343	17.8685	10.1320	241.0	1.24
Analysis #2	23.9376	1.3367	0.0438	3.9541	3.9541	17.9083	10.0679	241.0	1.23
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

#### **Channel Analysis Information:**

Name:

Channel Analysis Name: SW Ditch (7%)

## Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 323.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.07000Req. Freeboard (ft):0.00Channel Length (ft):225.00Bottom Width (ft):10.00Channel Depth (ft):4.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

#### Analysis Results:

	· · · · · · · · · · · · · · · · · · ·				Shear St			Flow	「ない」の「単語語」		
Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	<b>OK</b> ?
Left:	PYRAMAT	0.0280	10.6	23.3	2.2	6.6	9.4	1.4	1.200	1.000	10.1
Bottom	PYRAMAT	0.0280	12.0	23.3	1.9	8.4	9.4	1.1	1.9335	323.0	No
Right:	PYRAMAT	0.0280	10.6	23.3	2.2	6.6	9.4	1.4	1		11
Left:	ROCK RIPRAP	0.0300	13.4	50.0	3.7	5.5	45.0	8.2			1
Bottom	ROCK RIPRAP	0.0300	15.2	50.0	3.3	7.1 45.0	6.4	1.6178	323.0	Yes	
Right:	ROCK RIPRAP	0.0300	13.4	50.0	3.7	5.5	45.0	8.2			
Left:		0.0280	0.0	0.0	0.0	0.0	0.0	0.0	1		
Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	100.000		
	Left: Bottom Right: Left: Bottom Right: Left: Bottom	Left: PYRAMAT PYRAMAT PYRAMAT PYRAMAT PYRAMAT PYRAMAT CLeft: ROCK RIPRAP ROCK RIPRAP ROCK RIPRAP ROCK RIPRAP	Left: Bottom Right:PYRAMAT PYRAMAT PYRAMAT0.0280 0.0280Left: Bottom ROCK RIPRAP ROCK RIPRAP ROCK RIPRAP 0.03000.0300 0.0300Left: Bottom0.0280 0.0300	SideLining TypeManning's "n"ActualLeft:PYRAMAT0.028010.6BottomPYRAMAT0.028012.0Right:PYRAMAT0.028010.6Left:ROCK RIPRAP0.030013.4BottomROCK RIPRAP0.030015.2Right:ROCK RIPRAP0.030013.4Left:ROCK RIPRAP0.030013.4Left:0.02800.00.0	Side         Lining Type         Manning's "n"         Max. Actual         Max. Allowed           Left:         PYRAMAT         0.0280         10.6         23.3           Bottom         PYRAMAT         0.0280         12.0         23.3           Right:         PYRAMAT         0.0280         10.6         23.3           Left:         ROCK RIPRAP         0.0300         13.4         50.0           Bottom         ROCK RIPRAP         0.0300         15.2         50.0           Right:         ROCK RIPRAP         0.0300         13.4         50.0           Left:         BOCK RIPRAP         0.0300         13.4         50.0           Left:         BOCK RIPRAP         0.0280         0.0         0.0           Left:         BOLOW         0.0280         0.0         0.0	Side         Lining Type         Manning's "n"         Max. Actual         Max. Allowed         Safety Factor           Left:         PYRAMAT         0.0280         10.6         23.3         2.2           Bottom         PYRAMAT         0.0280         12.0         23.3         1.9           Right:         PYRAMAT         0.0280         10.6         23.3         2.2           Left:         ROCK RIPRAP         0.0300         13.4         50.0         3.7           Bottom         ROCK RIPRAP         0.0300         15.2         50.0         3.3           Right:         ROCK RIPRAP         0.0300         13.4         50.0         3.7           Left:         Bottom         0.0280         0.0         0.0         0.0           Left:         0.0280         0.0         0.0         0.0         0.0           Bottom         0.00280         0.0         0.0         0.0         0.0	Side         Lining Type         Manning's "n"         Max. Actual         Safety Allowed         Actual           Left:         PYRAMAT         0.0280         10.6         23.3         2.2         6.6           Bottom         PYRAMAT         0.0280         12.0         23.3         1.9         8.4           Right:         PYRAMAT         0.0280         10.6         23.3         2.2         6.6           Left:         PYRAMAT         0.0280         13.4         50.0         3.7         5.5           Bottom         ROCK RIPRAP         0.0300         15.2         50.0         3.3         7.1           Right:         ROCK RIPRAP         0.0300         13.4         50.0         3.7         5.5           Left:         ROCK RIPRAP         0.0300         13.4         50.0         3.7         5.5           Left:         Bottom         0.0280         0.0         0.0         3.7         5.5           Left:         Bottom         0.0280         0.0         0.0         0.0         0.0           Bottom         0.00280         0.0         0.0         0.0         0.0         0.0	Side         Lining Type         Manning's "n"         Max. Actual         Safety Allowed         Max. Factor         Max. Actual         Max. Allowed           Left:         PYRAMAT         0.0280         10.6         23.3         2.2         6.6         9.4           Bottom         PYRAMAT         0.0280         12.0         23.3         1.9         8.4         9.4           Right:         PYRAMAT         0.0280         10.6         23.3         2.2         6.6         9.4           Left:         ROCK RIPRAP         0.0300         13.4         50.0         3.7         5.5         45.0           Bottom         ROCK RIPRAP         0.0300         13.4         50.0         3.7         5.5         45.0           Right:         ROCK RIPRAP         0.0300         13.4         50.0         3.7         5.5         45.0           Left:         BOCK RIPRAP         0.0300         13.4         50.0         0.0         0.0         0.0           Left:         BOLTOM         0.0280         0.0         0.0         0.0         0.0         0.0         0.0	Side         Lining Type         Manning's "n"         Max. Actual         Safety Allowed         Max. Factor         Safety Actual         Max. Allowed         Safety Factor           Left:         PYRAMAT         0.0280         10.6         23.3         2.2         6.6         9.4         1.4           Bottom         PYRAMAT         0.0280         12.0         23.3         1.9         8.4         9.4         1.1           Right:         PYRAMAT         0.0280         10.6         23.3         2.2         6.6         9.4         1.4           Left:         ROCK RIPRAP         0.0300         13.4         50.0         3.7         5.5         45.0         8.2           Bottom         ROCK RIPRAP         0.0300         15.2         50.0         3.3         7.1         45.0         6.4           Right:         ROCK RIPRAP         0.0300         13.4         50.0         3.7         5.5         45.0         8.2           Left:         0.0280         0.0         0.0         0.0         0.0         0.0         0.0         0.0           Bottom:         0.0280         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <t< td=""><td>Side         Lining Type         Manning's "n"         Max. Actual         Safety Allowed         Max. Factor         Max. Actual         Safety Actual         Max. Allowed         Safety Factor         Depth Allowed         Depth Factor           Left: Bottom         PYRAMAT PYRAMAT         0.0280         10.6         23.3         2.2         6.6         9.4         1.4         1.9335           Right:         PYRAMAT         0.0280         10.6         23.3         2.2         6.6         9.4         1.4         1.9335           Right:         PYRAMAT         0.0280         10.6         23.3         2.2         6.6         9.4         1.4         1.9335           Left:         ROCK RIPRAP         0.0300         13.4         50.0         3.7         5.5         45.0         8.2         1.6178           Bottom         ROCK RIPRAP         0.0300         15.2         50.0         3.3         7.1         45.0         6.4         1.6178           Right:         ROCK RIPRAP         0.0300         13.4         50.0         3.7         5.5         45.0         8.2           Left:         0.0280         0.0         0.0         0.0         0.0         0.0         0.0         0.0</td><td>Side         Lining Type         Manning's "n"         Max. Actual         Safety Allowed         Max. Factor         Max. Actual         Safety Allowed         Max. Factor         Safety Allowed         Depth Factor         Depth (ft)         Discharge (cfs)           Left: Bottom Right:         PYRAMAT PYRAMAT         0.0280         10.6         23.3         2.2         6.6         9.4         1.4         1.9335         323.0           Left: Bottom Right:         PYRAMAT         0.0280         13.4         50.0         3.7         5.5         45.0         8.2         1.6178         323.0           Left: Bottom Right:         ROCK RIPRAP ROCK RIPRAP         0.0300         13.4         50.0         3.7         5.5         45.0         8.2         1.6178         323.0           Left: Bottom Right:         0.0280         0.0         0.0         3.3         7.1         45.0         6.4         1.6178         323.0           Left: Bottom         0.0280         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0&lt;</td></t<>	Side         Lining Type         Manning's "n"         Max. Actual         Safety Allowed         Max. Factor         Max. Actual         Safety Actual         Max. Allowed         Safety Factor         Depth Allowed         Depth Factor           Left: Bottom         PYRAMAT PYRAMAT         0.0280         10.6         23.3         2.2         6.6         9.4         1.4         1.9335           Right:         PYRAMAT         0.0280         10.6         23.3         2.2         6.6         9.4         1.4         1.9335           Right:         PYRAMAT         0.0280         10.6         23.3         2.2         6.6         9.4         1.4         1.9335           Left:         ROCK RIPRAP         0.0300         13.4         50.0         3.7         5.5         45.0         8.2         1.6178           Bottom         ROCK RIPRAP         0.0300         15.2         50.0         3.3         7.1         45.0         6.4         1.6178           Right:         ROCK RIPRAP         0.0300         13.4         50.0         3.7         5.5         45.0         8.2           Left:         0.0280         0.0         0.0         0.0         0.0         0.0         0.0         0.0	Side         Lining Type         Manning's "n"         Max. Actual         Safety Allowed         Max. Factor         Max. Actual         Safety Allowed         Max. Factor         Safety Allowed         Depth Factor         Depth (ft)         Discharge (cfs)           Left: Bottom Right:         PYRAMAT PYRAMAT         0.0280         10.6         23.3         2.2         6.6         9.4         1.4         1.9335         323.0           Left: Bottom Right:         PYRAMAT         0.0280         13.4         50.0         3.7         5.5         45.0         8.2         1.6178         323.0           Left: Bottom Right:         ROCK RIPRAP ROCK RIPRAP         0.0300         13.4         50.0         3.7         5.5         45.0         8.2         1.6178         323.0           Left: Bottom Right:         0.0280         0.0         0.0         3.3         7.1         45.0         6.4         1.6178         323.0           Left: Bottom         0.0280         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0<

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	26.8125	1.4379	0.0419	4.3235	4.3235	18.6470	12.0466	323.0	1.40
Analysis #2	21.4118	1.2424	0.0300	3.6174	3.6174	17.2348	15.0851	323.0	1.94
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 2 of 4

#### **Channel Analysis Information:**

Channel Analysis Name: SW Ditch (2%)

Name:

#### Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 323.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.02000Req. Freeboard (ft):0.00Channel Length (ft):300.00Bottom Width (ft):10.00Channel Depth (ft):4.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

#### Analysis Results:

				Velocity		Orderer	Shear St	tress (lbs/		Flow	A Contractor	新编
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	PYRAMAT	0.0280	6.5	23.3	3.6	2.8	9.4	3.3	1.011	1001	
Analysis #1	Bottom:	PYRAMAT	0.0280	7.3	23.3	3.2	3.5	9.4	2.7	2.8325	323.0	Yes
Right:	Right:	PYRAMAT	0.0280	6.5	23.3	3.6	2.8	9.4	3.3		100.000	
S. A. C.	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
Right:	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	10000	0.00	
Left:	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
Righ	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	SACS OF	0.15	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	44.3719	1.9575	0.0451	6.3337	6.3337	22.6675	7.2794	323.0	.709
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

#### Page 2 of 4

#### **Channel Analysis Information:**

Channel Analysis Name: SW Ditch (5%)

Name:

#### Channel Geometry & Hydraulics:

rge (cfs): 323.00 uration (hrs): 1.00 e Velocity (ft/s): 0.00	Bed Slope (ft/ft): 0.05000 Req. Freeboard (ft): 0.00 Channel Length (ft): 240.00
	Bottom Width (ft): 10.00 Channel Depth (ft): 4.00
tion:	Soll Filled:
ated: Yes ation Class: C	Soil Filled: No
	ated: Yes

#### Analysis Results:

Charles March	Ser in the	A CALL STREET	The Street Parts	Velocity (ft/s)			Shear S	tress (lbs/s	saft)	Flow		
S	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	PYRAMAT	0.0280	9.3	23.3	2.5	5.2	9.4	1.8	1.2.4	1.1.1	1.00
Analysis #1	Bottom	PYRAMAT	0.0280	10.5	23.3	2.2	6.7	9.4	1.4	2.1429	323.0	Yes
	Right:	PYRAMAT	0.0280	9.3	23.3	2.5	5.2	9.4	1.8	1. C.	10.00	
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		1	
Analysis #2	Bottom	1.1	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0,0	0.0	0.0	0.0	10-245		
Left:	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
Ri	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.000	10.0	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	30.6135	1.5632	0.0427	4.7917	4.7917	19.5835	10.5509	323.0	1.17
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

# EC-Design 2000 Channel Analysis Report

Page 2 of 4

### **Channel Analysis Information:**

Name: Channel Analysis Name: Main Channel

### Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 1660.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.01300Req. Freeboard (ft):0.00Channel Length (ft):3500.0Bottom Width (ft):20.00Channel Depth (ft):6.00
Channel Bend:	Vegetation:	Soll Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

### Analysis Results:

一些一些	Le Marine	Constant of	Velocity		E sale	Shear S	ress (lbs/s	saft)	Flow		Gal and a second
Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	0К7
Left:	LANDLOK TRM	0.0250	9.1	16.5	1.8	3.4	4.7	1.4			
Bottom	LANDLOK TRM	0.0250	10.2	16.5	1.6	4.3	4.7	1.1	5.3260	1660.0	No
Right:	LANDLOK TRM	0.0250	9.1	16.5	1.8	3.4	4.7	1,4			
Left:	LANDLOK TRM	0.0250	9.1	16.8	1.8	3.4	6.5	1.9	-		
Bottom	LANDLOK TRM	0.0250	10.2	16.8	1.6	4.3	6.5	1.5	5.3260	1660.0	Yes
Right:	LANDLOK TRM	0.0250	9.1	16.8	1.8	3.4	6.5	1.9	1.00		
Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			-
Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
Right:	1 m m m m m	0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
	Left: Bottom: Right: Left: Bottom: Right: Left: Bottom:	Left: Bottom Right: LANDLOK TRM LANDLOK TRM LANDLOK TRM Bottom Right: LaNDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM	Left: Bottom Right:LANDLOK TRM LANDLOK TRM LANDLOK TRM0.0250 0.0250Left: Bottom Right:LANDLOK TRM LANDLOK TRM LANDLOK TRM 0.02500.0250Left: Bottom Bottom0.0000 0.0000	SideLining TypeManning's "n"ActualLeft: Bottom Right:LANDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM D.02500.02509.1Left: Bottom Right:LANDLOK TRM LANDLOK TRM LANDLOK TRM D.02500.02509.1Left: Bottom Right:LANDLOK TRM LANDLOK TRM D.02500.02509.1Left: Bottom Bottom0.02509.1Left: Bottom0.00000.0	Side         Lining Type         "n"         Actual         Allowed           Left:         LANDLOK TRM         0.0250         9.1         16.5           Bottom         LANDLOK TRM         0.0250         10.2         16.5           Right:         LANDLOK TRM         0.0250         9.1         16.5           Left:         LANDLOK TRM         0.0250         9.1         16.8           Bottom:         LANDLOK TRM         0.0250         9.1         16.8           Bottom:         LANDLOK TRM         0.0250         9.1         16.8           Bottom:         LANDLOK TRM         0.0250         9.1         16.8           Left:         LANDLOK TRM         0.0250         9.1         16.8           Bottom:         LANDLOK TRM         0.0250         9.1         16.8           Bottom:         LANDLOK TRM         0.0250         9.1         16.8           Left:         Bottom:         0.0000         0.0         0.0	Side         Lining Type         Manning's "n"         Max. Actual         Max. Allowed         Safety Factor           Left:         LANDLOK TRM         0.0250         9.1         16.5         1.8           Bottom         LANDLOK TRM         0.0250         9.1         16.5         1.6           Right:         LANDLOK TRM         0.0250         9.1         16.5         1.6           Left:         LANDLOK TRM         0.0250         9.1         16.8         1.8           Left:         LANDLOK TRM         0.0250         9.1         16.8         1.6           Bottom         LANDLOK TRM         0.0250         9.1         16.8         1.6           Bottom         LANDLOK TRM         0.0250         9.1         16.8         1.8           Left:         LANDLOK TRM         0.0250         9.1         16.8         1.8           Bottom         LANDLOK TRM         0.0250         9.1         16.8         1.8           Left:         Bottom:         0.00000         0.0         0.0         0.0           Bottom:         0.00000         0.0         0.0         0.0         0.0	Side         Lining Type         Manning's "n"         Actual         Max. Allowed         Safety Factor         Actual           Left:         LANDLOK TRM         0.0250         9.1         16.5         1.8         3.4           Bottom         LANDLOK TRM         0.0250         10.2         16.5         1.6         4.3           Right:         LANDLOK TRM         0.0250         9.1         16.5         1.8         3.4           Left:         LANDLOK TRM         0.0250         9.1         16.5         1.8         3.4           Left:         LANDLOK TRM         0.0250         9.1         16.8         1.8         3.4           Bottom:         LANDLOK TRM         0.0250         9.1         16.8         1.8         3.4           Left:         LANDLOK TRM         0.0250         9.1         16.8         1.8         3.4           Bottom:         LANDLOK TRM         0.0250         9.1         16.8         1.8         3.4           Left:         Bottom:         0.0000         0.0         0.0         0.0         0.0           Bottom:         Counce         0.0000         0.0         0.0         0.0         0.0	Side         Lining Type         Manning's "n"         Actual Actual         Max. Allowed         Safety Factor         Max. Actual         Max. Allowed           Left:         LANDLOK TRM LANDLOK TRM         0.0250         9.1         16.5         1.8         3.4         4.7           Bottom Right:         LANDLOK TRM LANDLOK TRM         0.0250         9.1         16.5         1.6         4.3         4.7           Left:         LANDLOK TRM         0.0250         9.1         16.5         1.8         3.4         4.7           Left:         LANDLOK TRM         0.0250         9.1         16.8         1.8         3.4         6.5           Bottom Right:         LANDLOK TRM         0.0250         9.1         16.8         1.8         3.4         6.5           Left:         LANDLOK TRM         0.0250         9.1         16.8         1.8         3.4         6.5           Left:         LANDLOK TRM         0.0250         9.1         16.8         1.8         3.4         6.5           Left:         Bottom         0.0000         0.0         0.0         0.0         0.0         0.0           Bottom         0.0000         0.0         0.0         0.0         0.0         <	Side         Lining Type         Manning's "n"         Max. Actual         Safety Allowed         Max. Factor         Max. Actual         Safety Actual         Factor           Left: Bottom Right:         LANDLOK TRM LANDLOK TRM         0.0250         9.1         16.8         1.8         3.4         6.5         1.9           Left: Bottom Right:         LANDLOK TRM         0.0250         9.1         16.8         1.6         4.3         6.5         1.5           Left: Bottom         0.0250         9.1         16.8         1.8         3.4         6.5         1.9           Left: Bottom         0.0000         0.0         0.0         0.0         0.0         0.0         0.0         0.0	Side         Lining Type         Manning's "n"         Actual Actual         Max. Allowed         Safety Factor         Max. Allowed         Safety Factor         Depth (ft)           Left: Bottom Right:         LANDLOK TRM LANDLOK TRM LANDLOK TRM         0.0250         9.1         16.5         1.8         3.4         4.7         1.4         5.3260           Left: Bottom Right:         LANDLOK TRM LANDLOK TRM         0.0250         9.1         16.5         1.8         3.4         4.7         1.4         5.3260           Left: Bottom Right:         LANDLOK TRM LANDLOK TRM         0.0250         9.1         16.8         1.8         3.4         6.5         1.9         5.3260           Left: Bottom Right:         LANDLOK TRM LANDLOK TRM         0.0250         9.1         16.8         1.8         3.4         6.5         1.9         5.3260           Left: Bottom Right:         LANDLOK TRM         0.0250         9.1         16.8         1.8         3.4         6.5         1.9         5.3260           Left: Bottom:         0.0000         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0	Side         Lining Type         Manning's "n"         Max. Actual         Safety Allowed         Max. Factor         Max. Actual         Safety Actual         Depth Actual         Depth (ft)         Discharge (cfs)           Left:         LANDLOK TRM LANDLOK TRM Right:         0.0250         9.1         16.5         1.8         3.4         4.7         1.4         5.3260         1660.0           Left:         LANDLOK TRM LANDLOK TRM         0.0250         9.1         16.5         1.6         4.3         4.7         1.4         5.3260         1660.0           Left:         LANDLOK TRM LANDLOK TRM         0.0250         9.1         16.5         1.8         3.4         4.7         1.4         5.3260         1660.0           Left:         LANDLOK TRM Bottom         0.0250         9.1         16.8         1.8         3.4         6.5         1.9         5.3260         1660.0           Left:         LANDLOK TRM         0.0250         9.1         16.8         1.8         3.4         6.5         1.9         5.3260         1660.0           Left:         Bottom:         LANDLOK TRM         0.0250         9.1         16.8         1.8         3.4         6.5         1.9         5.3260         1660.0 <tr< td=""></tr<>

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	163.2521	3.7256	0.0400	11.9093	11.9093	43.8185	10.1683	1660.0	.723
Analysis #2	163.2521	3.7256	0.0400	11.9093	11.9093	43.8185	10.1683	1660.0	.723
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

#### Channel Analysis Information:

Name:

Channel Analysis Name: Area 1G Ditch

### Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 15.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.08000Req. Freeboard (ft):0.00Channel Length (ft):140.00Bottom Width (ft):0.10Channel Depth (ft):4.00
Channel Bend:	Vegetation:	Soll Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

### Analysis Results:

a de transfilia	a) - 0	·····································	1 A. C. S. S. S.	Velocity			Shear St	tress (lbs/		Flow	a liter and the second	Santo.
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	4.7	16.5	3.5	6.3	4.7	0.8	1.00	1.1	1.1
Analysis #1	Bottom:	LANDLOK TRM	0.0250	4.6	16.5	3.5	6.2	4.7	0.8	1.2450	15.0	No
	Right:	LANDLOK TRM	0.0250	4.7	16.5	3.5	6.3	4.7	0.8	11.22	21.1	
1986	Left:	LANDLOK TRM	0.0250	4.7	16.8	3.6	6.3	6.5	1.0			
Analysis #2	Bottom	LANDLOK TRM	0.0250	4.6	16.8	3.6	6.2	6.5	1.1	1.2450	15.0	No
1000	Right:	LANDLOK TRM	0.0250	4.7	16.8	3.6	6.3	6.5	1.0			
	Left:	PYRAMAT	0.0280	4.7	23.3	5.0	6.3	9.4	1.5			
Analysis #3	Bottom	PYRAMAT	0.0280	4.7	23.3	5.0	6.2	9.4	1.5	1.2502	15.0	Yes
	Right:	PYRAMAT	0.0280	4.7	23.3	5.0	6.3	9.4	1.5	1.1		
		the second second second second second second second second second second second second second second second se	De Circus	1			and the second second			the second second	- 1	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	3.2247	0.5689	0.0624	2.7840	2.7840	5.6680	4.6516	15.0	.737
Analysis #2	3.2247	0.5689	0.0624	2.7840	2.7840	5.6680	4.6516	15.0	.737
Analysis #3	3.2511	0.5713	0.0622	2.7956	2.7956	5.6912	4.6138	15.0	.741

# EC-Design 2000 Channel Analysis Report

Page 2 of 4

### **Channel Analysis Information:**

Channel Analysis Name: Phase 2 Ditch

Name:

### Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 4.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 4.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.06000Req. Freeboard (ft):0.00Channel Length (ft):560.00Bottom Width (ft):0.01Channel Depth (ft):2.00
Channel Bend:	Vegetation:	Soll Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

### Analysis Results:

1. 如此	大学の	COULD BE AVERAGE AND	ALCONTRACTOR OF	Velocity	(ft/s)	and the second	Shear St	tress (lbs/s	saft)	Flow	1	
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	ОК?
	Left:	LANDLOK TRM	0.0250	2.3	16.5	7.1	4.0	4.7	1.2		1	1
Analysis #1	Bottom	LANDLOK TRM	0.0250	2.0	16.5	8.1	3.1	4.7	1.5	0.8207	4.0	Yes
	Right:	LANDLOK TRM	0.0250	2.1	16.5	8.0	3.1	4.7	1.5		140	
0.0000	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1		
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
1.000	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
10121211	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		1000	1007

建港板	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	2.0287	0.3880	0.0955	3.3837	1.8351	5.2288	1.9717	4.0	.415
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

#### Page 4 of 4

### Suggested Vegetation for: La Crosse,WI

All Season Grasse	S				
Species	Scentific Name	Retardance Class	Seed Rate (lbs/ac)	Height at Maturity (in)	Recommended Planting Dates
Alsike Clover	Trifolium hybridum	A - E	15		4/1 - 5/31 or8/16 - 10/15
Reed Canarygrass	Phalaris arundinacea	A-E	20		4/1 - 5/31 or 8/16 - 10/15
Colonial Bentgrass	Agrostis tenius	A - E	50		4/1 - 5/31 or 8/16 - 10/15
Creeping Bentgrass	Agrostis palustris	A - E	50		4/1 - 5/31 or 8/16 - 10/15
Poa Trivialis	Poa trivialis	A - E	50		4/1 - 5/31 or 8/16 - 10/15
Creeping Foxtrail	Alopecurus arundinaceus	A - E	50	19 19 19 19 19 19 19 19 19 19 19 19 19 1	4/1 - 5/31 or 8/16 - 10/15
Meadow Foxtail	Alopecurus pratensis	A - E	50		4/1 - 5/31 or 8/16 - 10/15
Perennial Ryegrass	Lolium perenne	A - E	240	the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the second states of the secon	4/1 - 5/31 or 8/16 - 10/15
RedTop	Agrostis alba	A - E	80		4/1 - 5/31 or 8/16 - 10/15
Meadow Fescue	Festuca elatior	A - E	160		4/1 - 5/31 or 8/16 - 10/15
Cold Season Grass	es Scentific Name	Retardance Class	Seed Rate (Ibs/ac)	Height at Maturity (in)	Recommended Planting Dates
Crested Wheatgrass	Agropyron desertorum	A		2 - 3	
Green Needlegrass	Stipa viridula	A		3 - 4	
Russian WildRye	Psathyrostachys gunceus	A		3 - 4	
Smooth Bromegrass	Bromus inermis	A		3 - 4	
Tall Fescue	Festuca arundinacea	A		3 - 4	
Tall Wheatgrass	Elytriga pontica	A		4 - 5	
Western Wheatgrass	Agropyron smithii	A		2 - 3	
Warm Season Gras	Ses				
Species	Scentific Name	Retardance Class	Seed Rate (Ibs/ac)	Height at Maturity (in)	Recommended Planting Dates
Bermuda Grass	Cynodon dactylon	C		3/4 - 2	
Big Bluestem	Andropogon gerardii	В		4 - 6	
Blue grama	Boutelova gracillis	В		1 - 2	анан — — — — — — — — — — — — — — — — — —
Buffalo grass	Buchloe dactyloides	D		1/3 - 1	
Green Sprangletop	Leptochloa dubia	A		3 - 4	
ndian grass	Sorghastrum nutans	A		5 - 6	
Kleingrass	Panicum coloratum	A		3 - 4	
Little bluestem	Schizachyrium scoparium	A		3 - 4	
Plains bristlegrass	Setaria macrostachya	В		1 - 2	
Sand bluestem	Andropogon hallii	· A		5 - 6	
Sideoats grama	Bouteloua curtipendula	A		2 - 3	
	Douteioua curtiperiouia				
Switch grass	Panicum Virgatum	A		4 - 5	
Switch grass /ine mesquitegrass		AB		4 - 5 1 - 2	





**Calculations – Operational Landfill Conditions** 

744-Heartland Trail Madison, WI 53717-1934 Tel. (608) 831-4444 • Fax (608) 831-3334

RM

FORM 383A

PROJECT / PROPOSAL NAME / LOCATION: DPC - PO SUBJECT: OPERATIONAL DITCH 31211		PROJECT / PROPOSAL NO. <b>3078.40</b>
PREPARED BY: BJ-	DATE: 10/00	FINAL 😿
CHECKED BY:	DATE:	REVISION 🗖

OPERATIONAL C		(ALCULATIONS)		
DITCH	LOCATION	100-YR FLOW	SLOPE	SMAPE
V-NOTCH DITCH	A CELL I ACTIVE	5 CPS	6%	V-NOTEH
DITCH B	CELL I ACTIVE	561 583 CFS'	2%	10' FLAT
DITCH С	CELL ZA ACTIVE	6 Cfs	6.3%	V-NOTCH
DITCH D	CELL 2B ACTIVE	3 CFS	12%	V-NOTCH
DITCH E	CELL 3 ALTIVE	561 583 CFS' V	1%	10' FLAT
DITCH F	CELL YA ACTIVE	373 433 CF5 2	1010	10' FLAT
Ditch G	CELL ZA ACTIVE	360 CF54		(34.)
2. 3 4	PERMANANT DITCHES SI CALCULATIONS.	12-ED UNDER PO	ST-DEVEL	OPMENT
3 4.	PERMANANT DITCHES SI	12-ED UNDER PO	TH + 28 @ ST-DEVELI	OPMENT
3 4.	PERMANANT DITCHES SI CALCULATIONS. FLOW FROM PREDEVELOPMIES	NT AN AREA NO	<b>ПН +</b> 28 @ ST-DEVELI РТН (See p.98	)
3 4.	PERMANANT DITCHES SI CALCULATIONS. FLOW FROM PREDEVELOPMIES	NT AN AREA NO	<b>ПН +</b> 28 @ ST-DEVELI РТН (See p.98	)
3 4.	PERMANANT DITCHES SI CALCULATIONS. FLOW FROM PREDEVELOPMIES	NT AN AREA NO	<b>ПН +</b> 28 @ ST-DEVELI РТН (See p.98	)
3 4.	PERMANANT DITCHES SI CALCULATIONS. FLOW FROM PREDEVELOPMIES	NT ANDER PO NT ANA AREA NO 561 CFS	<b>ГН +</b> 28 @ ST-DEVELI РТН (See p.99 590	)
3 4.	PERMANANT DITCHES SI CALCULATIONS. FLOW FROM PREDEVELOPMIES	NT ANDER PO NT ANA AREA NO 561 CFS	<b>ПН +</b> 28 @ ST-DEVELI РТН (See p.98	)
3 4. Sw Ditc.H	PERMANANT DITLIES SI CALCULATIONS. FLOW FROM PREDEVELOPMIES CELL 2A ACTIVE	NT ANDER PO NT ANA AREA NO 561 CFS	<b>ГН +</b> 28 @ ST-DEVELI PTH (See p.99 590	)
3 1. 5W DITC.H	PERMANANT DITLIES SI CALCULATIONS. FLOW FROM PREDEVELOPMIES CELL 2A ACTIVE	NT ANDER PO NT ANA AREA NO 561 CFS	<b>ПН +</b> 28 @ ST-DEVELI PTH (See p.99 590	DPMENT 5) 10' FLAT
3 1. 5W DITCH	PERMANANT DITLIES SI CALCULATIONS. FLOW FROM PREDEVELOPMIS CELL 2A ACTIVE	NT ANDER PO NT ANA AREA NO 561 CFS	<b>ПН +</b> 28 @ ST-DEVELI PTH (See p.99 590	DPMENT 5) 10' FLAT
3 f. Sw Ditc.H	PERMANANT DITLIES SI CALCULATIONS. FLOW FROM PREDEVELOPMIS CELL 2A ACTIVE	NT ANDER PO NT ANA AREA NO 561 CFS	<b>ПН +</b> 28 @ ST-DEVELI PTH (See p.99 590	DPMENT 5) 10' FLAT
3 1. 5W DITCH	PERMANANT DITLIES SI CALCULATIONS. FLOW FROM PREDEVELOPMIC CELL ZA ACTIVE	NT ANDER PO NT ANA AREA NO 561 CFS	<b>ПН +</b> 28 @ ST-DEVELI PTH (See p.99 590	0PMENT 5) 10' FLAT
3 f. Sw Ditc.H	PERMANANT DITLIES SI CALCULATIONS. FLOW FROM PREDEVELOPMIES CELL 2A ACTIVE	NT ANDER PO NT ANA AREA NO 561 CFS	<b>ПН +</b> 28 @ ST-DEVELI PTH (See p.99 590	0PMENT 5) 10' FLAT
3 f. Sw Ditc.H	PERMANANT DITLIES SI CALCULATIONS. FLOW FROM PREDEVELOPMIC CELL ZA ACTIVE	NT ANDER PO NT ANA AREA NO 561 CFS	<b>ПН +</b> 28 @ ST-DEVELI PTH (See p.99 590	0PMENT 5) 10' FLAT

Site: Project <del>#</del> Channel		Date: User:	10/00 BJK		
I.	Input Parameters.				
	A. Side slope, Z1 (hor/vert) =			3.000	ft/ft
	B. Side slope, Z2 (hor/vert) =			16.000	ft/ft
	C. Bottom width, B =			0.000	ft
	D. Design channel slope, S =			0.060	ft/ft
	E. Channel Peak Flow, Q =			5.000	cfs
	F. Enter - 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence			2	
II.	Peak Flow Calculations.				
	A. Trial flow depth, D = (Bisection method until Va=Vb)			0.533	ft
	B. Channel flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)			2.703	sq ft
	C. Wetted Perimeter, Pw = (D*(Z1^2+1)^.5) + B + (D*(Z2^2+1)^.	.5)		10.239	ft
	D. Hydraulic radius, Rh = (Ac/Pw)			0.264	ft
	E. Velocity and hydraulic radius, VR = (Va * Rh)			0.488	sfps
	F. Channel flow Manning's coeff, nc = 0			0.081	
	G. Trial velocity, Va = (Q/Ac)			1.850	fps
	H. Resultant velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)			1.850	fps √0K

RMT, Inc. Grass Channel Sizing Calculations

Invoke Solution Macro by typing - 'ctrl' D

h:\data\common\template\sc-51\grasscha.xls

1

# EC-Design 2000 Channel Analysis Report

**这些人,这些人的问题,**这些人的问题,

### **Channel Analysis Information:**

Name:

Channel Analysis Name: Ditch B

### **Channel Geometry & Hydraulics:**

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW	Discharge (cfs): 583.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.02000Req. Freeboard (ft):0.00Channel Length (ft):530.00
Left Slope (xH:1V): 3.00 Right Slope (xH:1V): 3.00	Average velocity (105). 0.00	Bottom Width (ft): 10.00 Channel Depth (ft): 4.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: No Vegetation Class:	Soil Filled: Yes
Factor of Safety: 1.00		Functional Longevity: 48

### Analysis Results:

	Side	Lining Type	Manning's "n"	Velocity Actual	(ft/s) Max. Allowed	Safety Factor	Shear St Actual	Max. Allowed	Safety Factor	Flow Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	13.4	16.5	1.2	2.5	6.2	2.5			
Analysis #1	Bottom	LANDLOK TRM	0.0250	14.5	16.5	1.1	2.9	6.2	2.1	2.3594	583.0	Yes
-	Right:	LANDLOK TRM 450	0.0250	13.4	16.5	1.2	2.5	6.2	2.5			_
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		*	
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
								215				

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	40.2945	1.6168	0.0200	7.4611	7.4611	24.9222	14.4685	583.0	1.58
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

### RMT, Inc. Grass Channel Sizing Calculations

Site: Project Channe		Dairyland Power Cooperative 3081.40 Ditch C	Date: User:	10/00 BJK			
I.	Input Param	neters.					
	A. Side slop	e, Z1 (hor/vert) =			3.000	ft/ft	
	B. Side slope	e, Z2 (hor/vert) =			16.000	ft/ft	
	C. Bottom w	idth, B =			0.000	ft	
	D. Design ch	annel slope, S =			0.063	ft/ft	
	E. Channel I	Peak Flow, Q =			6.000	cfs	
	F. Enter	<ul> <li>- 1 - for Type "C" Veg. Retardence</li> <li>- 2 - for Type "D" Veg. Retardence</li> </ul>			2	4	
II.	Peak Flow C	alculations.					
	A. Trial flov	v depth, D = (Bisection method until Va=Vb)			0.550	ft	
	B. Channel f	low area, Ac = $(.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)$			2.870	sq ft	
	C. Wetted Pe	erimeter, $Pw =$ (D*(Z1^2+1)^.5) + B + (D*(Z2^2+1)^.5)			10.549	ft	
	D. Hydrauli	c radius, Rh = (Ac/Pw)			0.272	ft	
×	E. Velocity a	nd hydraulic radius, VR = (Va * Rh)			0.569	sfps	
	F. Channel f	low Manning's coeff, nc = 0			0.075		
	G. Trial velo	city, Va = (Q/Ac)			2.091	fps	
		t velocity, Vb = 1.49/nc) * (Rh^.667) * (S^.5)			2.091	fps 🗸	OK

Invoke Solution Macro by typing - 'ctrl' D

h:\data\common\template\sc-51\grasscha.xls

		Grass Channel Sizing Calculations					
Site: Project Channe	el:	Dairyland Power Cooperative 3081.40 Ditch D	Date: User:	10/00 BJK			
I.	Input Paran	neters.					
	A. Side slop	e, Z1 (hor/vert) =			3.000	ft/ft	
	B. Side slope	e, Z2 (hor/vert) =			3.000	ft/ft	
	C. Bottom w	ridth, B =			0.000	ft	
	D. Design cl	nannel slope, S =			0.120	ft/ft	
	E. Channel I	Peak Flow, Q =			3.000	cfs	
	F. Enter	- 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence			2		
II.	Peak Flow C	Calculations.					
	A. Trial flow	v depth, D = (Bisection method until Va=Vb)			0.547	ft	
	B. Channel f	Flow area, Ac = $(.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)$			0.897	sq ft	
	C. Wetted P	erimeter, $Pw =$ (D*(Z1^2+1)^.5) + B + (D*(Z2^2+1)^.5)			3.459	ft	
		c radius, Rh = (Ac/Pw)			0.259	ft	
		nd hydraulic radius, VR = (Va * Rh)			0.867	sfps	
		low Manning's coeff, nc = 0			0.063		
	G. Trial velo	(Q/Ac)			3.344	-	,
		t velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)			3.344	fps	VOK

RMT, Inc.

Invoke Solution Macro by typing - 'ctrl' D

h:\data\common\template\sc-51\grasscha.xls

# EC-Design 2000 Channel Analysis Report

Page 2 of 4

### **Channel Analysis Information:**

Name:

Channel Analysis Name: Ditch E

### Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes:	Discharge (cfs):583.00Flow Duration (hrs):1.00Average Velocity (ft/s):0.00	Bed Slope (ft/ft): 0.01000 Req. Freeboard (ft): 0.00 Channel Length (ft): 1000.0
Left Slope (xH:1V): 3.00 Right Slope (xH:1V): 10.00		Bottom Width (ft): 10.00 Channel Depth (ft): 3.00
Channel Bend:	Vegetation:	Soll Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: No Vegetation Class:	Soil Filled: Yes
Factor of Safety: 1.00		Functional Longevity: 60

### Analysis Results:

		·····································				Velocity (ft/s) Shear Stress (lbs			sqft)	Flow		STATES OF
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	ОК?
	Left:	LANDLOK TRM	0.0250	8.9	16.5	1.9	1.3	6.2	4.9			
Analysis #1	Bottom	LANDLOK TRM	0.0250	9.6	16.5	1.7	1.5	6.2	4.2	2.3865	583.0	Yes
	Right:	LANDLOK TRM	0.0250	9.3	16.5	1.8	1.4	6.2	4.5			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			-
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
141	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	60.8850	1.4660	0.0200	7.5468	23.9840	41.5308	9.5754	583.0	1.06
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

# EC-Design 2000 Channel Analysis Report

### **Channel Analysis Information:**

Name:

Channel Analysis Name: Ditch F

### **Channel Geometry & Hydraulics:**

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 3.00	Discharge (cfs): 433.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.01000Req. Freeboard (ft):0.00Channel Length (ft):750.00Bottom Width (ft):10.00Channel Depth (ft):3.00
Right Slope (xH:1V): 5.00 Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: No Vegetation Class:	Soil Filled: Yes
Factor of Safety: 1.00	· · · · · · · · · · · · · · · · · · ·	Functional Longevity: 0

### Analysis Results:

	Side	Lining Type	Manning's "n"	Velocity Actual	(ft/s) Max. Allowed	Safety Factor	Shear St Actual	tress (lbs/s Max. Allowed	Safety Factor	Flow Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	9.1	16.5	1.8	1.2	6.2	5.1			
Analysis #1	Bottom	LANDLOK TRM	0.0250	9.9	16.5	1.7	1.4	6.2	4.4	2.2978	433.0	Yes
	Right:	LANDLOK TRM	0.0250	9.5	16.5	1.7	1.3	6.2	4.7			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1		
-14	Left:	P.	0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
										1		

· · · · · · · · · · · · · · · · · · ·	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	44.0967	1.5215	0.0200	7.2662	11.7164	28.9826	9.8193	433.0	1.10
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

# EC-DESIGN(R) 2000 Channel Analysis Report

Project Informati	on									
)roject Name: Description:	DPC Cell 2A	operational Calcs			Last U Units: Neares		8/25/2003 English	10:58:10 A		
	r from	to stope section culture 1 will section			nourco					
Channel Design										
Channel Name: SW	/ Ditch - (	Operational 100 yr		Units	English		Des	ign life:	1,200	month
Design Criteria		Vegetation and So	il	Channel	Geometry	Y	Fl	ow/Velocity		
Flow Rate (Q)		Vegetated Vegetation Class Soil Filled	Yes B No	100	e (ft/ft) eboard (f Length (			ischarge (cf ow Duration vg. Velocity	n (hrs)	61.000 1.000 5.490
Channel Side Slopes 	2.000 2.000	Channel Bend Bend Radius (ft) Outside Bend	No 0.000	Bottom '	Width (ft) Depth (f	) 10.00	Req	luired Fact Safety	or	1.00
Results										
Lining Materials		••	Computed	elocity (ft/ Max Allowed	Safety	Shear S Computed	tress (lbs Max Allowed	Safety	-	Flow h (ft) 5.070
Left PYRAMA Bottom PYRAMA Right PYRAMA	Т	-	5.100 5.510 5.100	23.340 23.340 23.340	4.580 4.240 4.580	2.720 3.170 2.720	9.400 9.400 9.400	3.460 2.970 3.460		÷
Calculation Resul	ts:	-			a di ser	анан — С				
Flow Depth (f Flow Area (ft)	it)	5.070 102.230		Bott Rigl	om Wette at Wetted	Perimeter (1 ed Perimeter Perimeter	er (ft) (ft)	11.350 9.990 11.350		5 Y MID # 6945
Hydraulic Rad Composite 'n'	dius (ft)	3.130 0.0580		Avg	l Wetted . Velocity . Dischary	17. IV		32.690 5.490 561.000		

<b>Project Information</b>								
roject Name: DPC Description: Cell 2.	A operational Calcs			Last U Units:		8/25/2003 English	10:53:12 A	A
Notes: FUR 5% SLUP SECTION 25-	E IRSTURM			Neares	t City:			
Channel Design								
Channel Name: SW Ditch -	Operational 25 yr		Units	: English	i	Desi	ign life:	48 months
Design Criteria	Vegetation and So	oil	Channel	Geometr	v	Fle	ow/Velocit	v
Flow Rate (Q)	Vegetated Vegetation Class Soil Filled	Yes B No		pe (ft/ft) eeboard (i Length (			scharge (c ow Duratio /g. Velocit	on (hrs) 1.000
Channel Side Slopes	Channel Bend	No		Width (ft				an an an the second second
Yeft (H:1 V)         2.000           rkight (H:1 V)         2.000	Bend Radius (ft) Outside Bend	0.000		Depth (f		Req	uired Fac afety	tor 1.00
Results								
		V	elocity (ft/	(s)	Shear S	tress (lbs	/sqft)	Avg. Flow
Lining Materials		Computed	Max Allowed	Safety Factor	Computed	Max Allowed	Safety Factor	Depth (ft) 2.610
Left PYRAMAT		8.030	23.340	2.910	6.450	9.400	1.460	
Bottom PYRAMAT		9.020	23.340	2.590	8.140	9.400	1.150	
Right PYRAMAT		8.030	23.340	2.910	6.450	9.400	1.460	
Calculation Results:								
Flow Depth (ft)	2.610		Left	Wetted I	Perimeter (	ît)	5.830	
Flow Area (ft)	39.690		Bott	om Wette	ed Perimeter Perimeter	er (ft)	10.000 5.830	
			Tota	al Wetted	Perimeter	(ft)	21.660	
Hydraulic Radius (ft)	1.830		Avg	. Velocity	(ft/s)		8.940	
	0.0554				ge (cf/s)		55.000	

### EC-DESIGN(R) 2000 Channel Analysis Report

Project Information								
)roject Name: DPC			Last U	odate:	8/25/2003	11:00:48 A	4	
Description: Cell 2A operational C	Calcs		Units:	1	English			
	1		Nearest	t City:				
Notes:								
- 5		17						
Channel Design								
Channel Name: Phase III South Slope Dite	ch	Units	English		Desi	gn life:	24	months
Design Criteria Vegetation a	and Soil	Channel	Geometry	7	Flo	w/Velocity	v	
Flow Rate (Q) Vegetated	No	Bed Slop	oe (ft/ft)	0.00	50 <b>Di</b>	scharge (c	f/s)	4.000
Vegetation	Class	Reg Fre	eboard (f	it) 0.00	)0    Flo	ow Duratio	on (hrs)	1.000
Soil Filled	Yes		535. 		Av	g. Velocit	y (ft/s)	6.280
		Channel	Length (	<b>ft)</b> 500.00	00   L			
Channel Side Slopes Channel Be	nd No	Bottom	Width (ft)	1.00	00			
Left (H:1 V) 2.000 Bend Radiu	is (ft) 0.000	Channel	Depth (f	t) 1.50		uired Fac afety	tor	1.00
Right (H:1 V) 3.000 Outside Ber	ıd		• •			ally		
Results								
	V	elocity (ft/	Ľ.	Shear S	tress (lbs		Avg.	
Lining Materials	Computed	Max Allowed	Safety Factor	Computed	Max Allowed	Safety Factor	Depth	0.340
Left LANDLOK TRM 450	6.080	16.490	2.710	1.050	6.250	5.950		
Bottom LANDLOK TRM 450	6.730	16.490	2.450	1.280	6.250	4.880		
Right LANDLOK TRM 450	6.350	16.490	2.600	1.140	6.250	5.480		
			a Ne sur					
Calculation Results:				1		*:		
<b>Flow Depth (ft)</b> 0.340				Perimeter (1		0.770		
Flow Area (ft) 0.640				ed Perimeter		1.000		
				Perimeter Perimeter	· · · · ·	2.850		
					(11)			
Hydraulic Radius (ft) 0.220		-	. Velocity	· · ·		6.280		
Composite 'n' 0.0200		Avg	. Dischar	ge (cf/s)		4.000		n neuro de

Project Information							_
)roject Name: DPC Description: Cell 2A operatio Notes:	nal Calcs	48	Last Up Units: Nearest	1	8/25/2003 English	11:00:48 A	A
					9-11-11-11-1		
Channel Design							
Channel Name: Ditch G		Units:	English		Desi	gn life:	48 months
Design Criteria Vegetat	ion and Soil	Channel (	Geometry	1	Flo	w/Velocit	y
Flow Rate (Q)     Vegetat       Vegetat     Vegetat       Soil Fill     Soil Fill	tion Class led No	Bed Slope Req. Free Channel I	board (f	- -	00 Flo	scharge (c ow Duratio g. Velocit	on (hrs) 1.000
	adius (ft) 0.000	Bottom W Channel I			Req	uired Fac afety	tor 1.00
Results							
Lining Materials		elocity (ft/s Max Allowed	Safety		tress (lbs Max Allowed	Safety	Avg. Flow Depth (ft) 2.040
Left LANDLOK TRM 450	10.170	16.490	1.620	1.610	6.250	3.880	
Bottom LANDLOK TRM 450	11.090	16.490	1.490	1.910	6.250	3.270	
Right LANDLOK TRM 450	10.170	16.490	1.620	1.610	6.250	3.880	
Calculation Results:							
Flow Depth (ft) 2.040		Left	Wetted P	erimeter (1	ť)	6.460	
Flow Area (ft) 32.920				d Perimete		9.990	
		-		Perimeter Perimeter	· · · · · ·	6.460 22.910	
Hydraulic Radius (ft) 1.440			Velocity		n ¢	10.930	
Composite 'n' 0.0210		•	Discharg			60.000	



**Reference Information** 

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024 roughness) varies with VR. The term VR is the product of velocity and the hydraulic radius. This relationship will be referred to as the "n-VR relationship", which is the recommended basis for vegetated channel design.

The five general retardance curves, designated as A, B, C, D, and E in Exhibit 7-1, have been developed for various cover conditions. The vegetal conditions under which the various retardance values apply are shown in Exhibit 7-2. These cover classifications are based on tests in experimental channels when the covers were green and generally uniform.

Most of the vegetation used in waterways does not exceed 18 inches in height and may be much shorter at times during the year. Therefore, it is recommended that when designing the channel for safe velocity, a retardance not greater than "D" be used. After designing the channel for safe velocity, it must be checked for capacity to accommodate the peak flow under conditions where vegetation gives the highest retardance. The retardance used in this instance is the curve corresponding to the expected vegetal cover and, in most cases, it will be retardance "C", though curve "B"

All pertinent design data and computations should be recorded.

#### DESIGN DATA

The following information is required for designing a waterway:

- Watershed area in acres, together with the soil characteristics, cover and topography. This information is used to estimate runoff by the procedures set forth in Chapter 2 of this manual.
- Grade of the proposed waterway in percent slope (this is the fall in feet per 100 feet of length).
- 3. Vegetal cover adapted to site conditions.
- 4. Erodibility of the soil in the waterway.
- 5. Expected height at which vegetative cover will be maintained.
- 6. The permissible velocity for the conditions encountered.
- Allowance for space that will be occupied by the vegetative lining.
- Allowance for freeboard, if required by State Standards and Specifications.

### NON-EROSIVE VELOCITY OF FLOW

In designing grassed waterways, care must be taken to insure that the design velocity is well within the limits of permissible velocities given in Exhibit 7-3. These values apply to average, uniform stands of each type of cover.

Source: U.S. Department of Agriculture, Soil Conservation Service. <u>Engineering Field Manual</u>. November 1986.

2 2	Slope	Permissible	velocity <u>1</u> /	]
Cover	(percent)	Erosion re- sistant soils (ft.per sec.)	Easily eroded soils (ft.per sec.)	
Bermudagrass	0-5 5-10 over 10	8 7 6	6 5 4	1
Bahia Buffalograss Kentucky bluegrass Smooth brome Blue grama Tall fescue	0-5 5-10 over 10	7 6 5	5 4 3	
Grass mixtures Reed canarygrass	<u>2/</u> 0-5 5-10	15	4	U51
Lespedeza sericea Weeping lovegrass Yellow bluestem Redtop Alfalfa Red fescue	<u>3</u> / 0-5	3.5	2.5	
Common lespedeza <u>4</u> / Sudangrass <u>4</u> /	<u>5</u> / 0-5	3.5	2.5	

- 1/ Use velocities exceeding 5 feet per second only where good covers and proper maintenance can be obtained.
- 2/ Do not use on slopes steeper than 10 percent except for vegetated side slopes in combination with a stone, concrete, or highly resistant vegetative center section.
- 3/ Do not use on slopes steeper than 5 percent except for vegetated side slopes in combination with a stone, concrete, or highly resistant vegetative center section.
- 4/ Annuals--use on mild slopes or as temporary protection until permanent covers are established.
- 5/ Use on slopes steeper than 5 percent is not recommended.

Exhibit 7-3. Permissible velocities for channels lined with vegetation

Source: U.S. Department of Agriculture, Soil Conservation Service. <u>Engineering Field Manual</u>. November 1986.

7-14



## **Culvert/Downslope Flume Design Calculations**

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024

\madison-vfp\Records\-\WPMSN\PJT2\525154\0000\R5251540000-004_Control Plan.docx



### Purpose/Methodology/Assumptions/Results/References

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024



### **COMPUTATION SHEET**

744 Heartland Trail (53717-8923) P	. O. Box 892	3 (53708-8923)	Madison, WI	(608) 831-4	444 FAX:	(608) 831-3334	VOICE: (608) 831-1989
PROJECT/PROPOSAL NAME	PI	REPARED	CH	IECKED		PROJECT/PR	OPOSAL NO.
Dairyland Power Cooperativ	ve B	7: Dat JK 9/		S	Date: 0/00		3081.40

### CULVERT DESIGN CALCULATIONS

### Purpose

To determine the appropriate culvert and downslope flume sizes for the anticipated peak flows resulting from the 100-year, 24-hour storm at the proposed Dairyland Power Cooperative Landfill.

### Methodologies

Culvert design involves the process of selecting an appropriate culvert size capable of allowing the estimated peak storm water runoff to pass through it without creating surface water breaching (i.e., berm overflow) or excessive backwater levels. Culvert sizing was performed using design charts developed by the U.S. Department of Transportation Federal Highway Administration.

Downslope flumes will convey flow from the final cover diversion berms to the sedimentation basin. Downslope flumes were also sized using design charts developed by the U.S. Department of Transportation Federal Highway Administration. The energy dissipater for the downslope flume was sized using design guidance from the US Department of the Interior, Bureau of Reclamation.

### Assumptions

The following assumptions were used in the culvert and downslope flume sizing analysis:

- 1. Culvert and downslope flume layout and allowable headwater levels are shown on the accompanying plan set.
- 2. Tailwater depths were assumed based on anticipated flows within the ditching. For culverts discharging into sedimentation basins, the tailwater elevation in the basin from the routing calculations.
- 3. Culverts are assumed to be corrugated metal culvert pipes or concrete box culverts.
- 4. Culverts were designed to maintain a minimum 1 to 2 feet of freeboard, depending on the location.



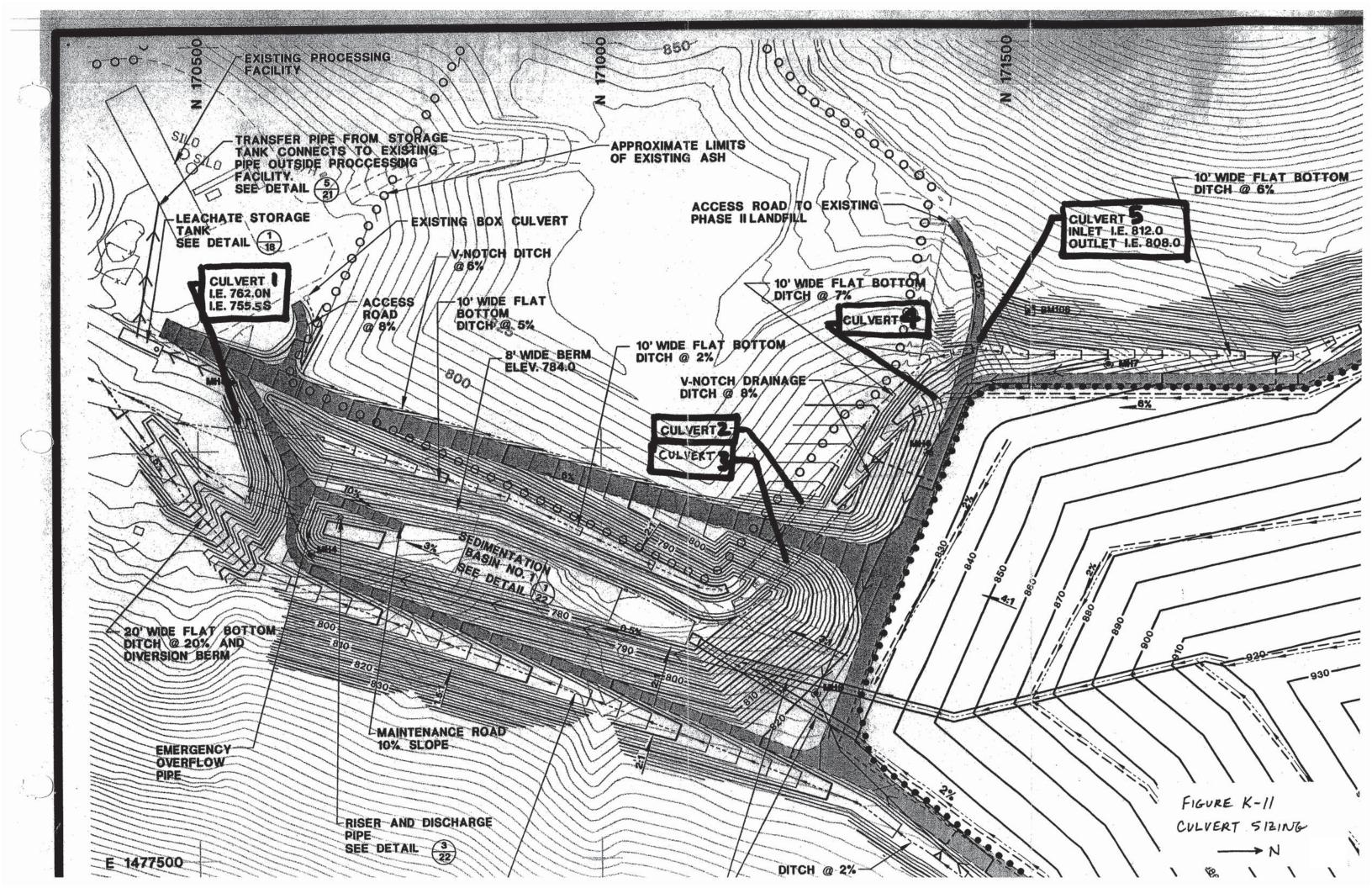
### COMPUTATION SHEET

744 Heartland Trail (53717-8923) P.	O. Box 8923 (5370)	8-8923)	Madison, WI	(608) 83	31-4444	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	
PROJECT/PROPOSAL NAME	PREPARI	ED	CH	ECKED		PROJECT/PR	OPOSAL NO.
Dairyland Power Cooperative	e BJK	Dai 9/		St	Date: 10/00		3081.40

### Results

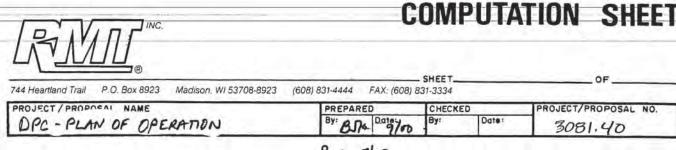
The table below summarizes the results of the culvert pipe sizing analyses:

CULVERT	SLOPE (%)	LENGTH (ft)	100-YR. FLOW (cfs)	SIZE
Culvert #1	7.0	96	323	4'x 7' Box
Culvert #2	7.7	126	323	4'x 7' Box
Culvert #3	11.2	125	15	30" CMP
Culvert #4	9.3	75	15	30" CMP
Culvert #5	5	85	323	4' x 7' Box

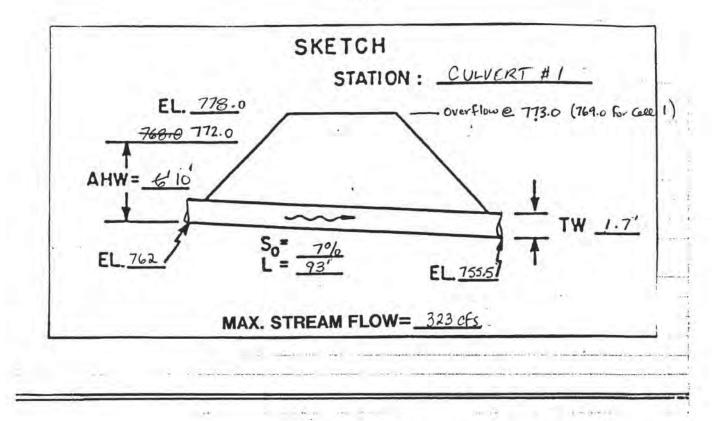

Note:

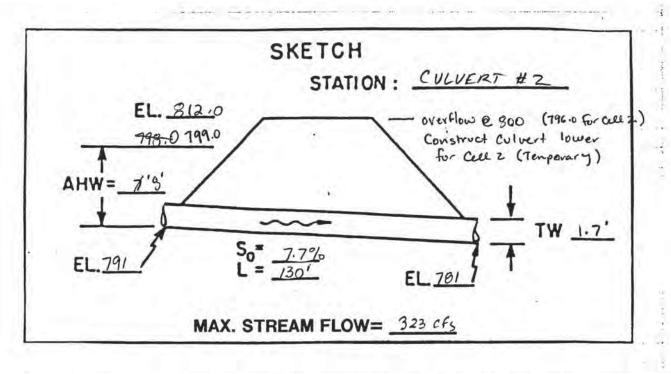
Culvert lengths to be adjusted based on available culvert section lengths.

Downslope pipe and energy dissipater sizing are shown on the engineering details included in the Plan Set.

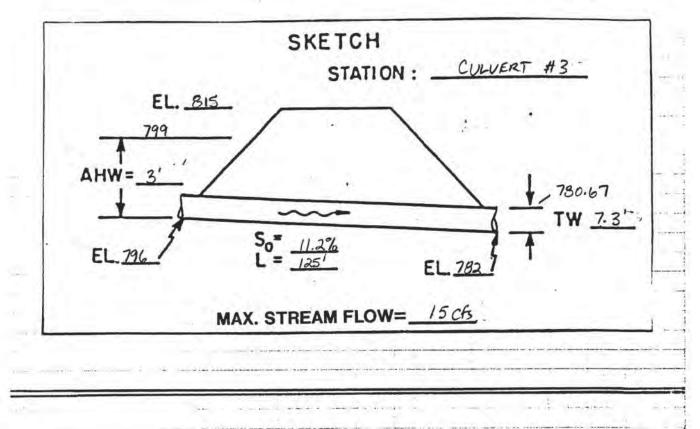

#### References

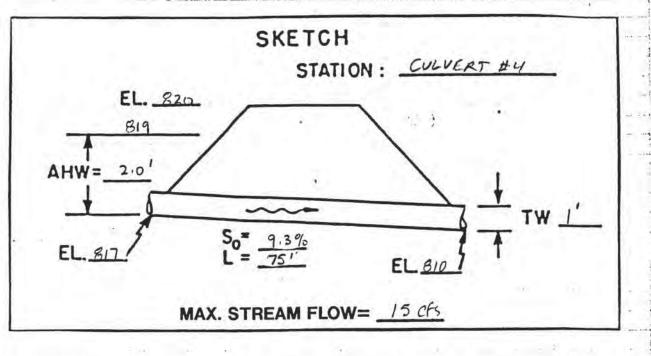
- U.S. Department of Transportation. Hydraulics charts for the selection of highway culverts. Hydraulic engineering circular no. 5. December 1965.
- U.S. Department of the Interior, Bureau of Reclamation. Hydraulic Design of Stilling Basins and Energy Dissipaters. Engineering Nomograph No. 25. May 1984.

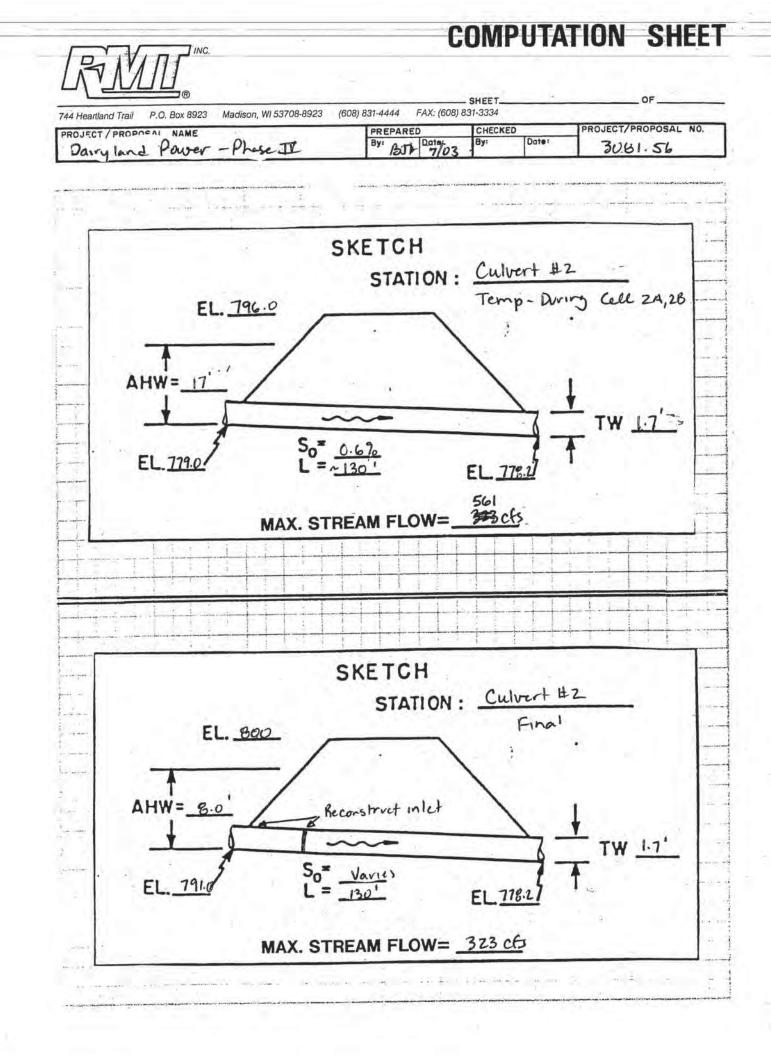



**Calculations – Post-closure Landfill Conditions** 






BIN				C	UMI	PUIA	IIUN SHEE
744 Heartland Trail	P.O. Box 8923	Madison, WI 53708-8923 (6	08) 831-4444	FAX: (608) 8	SHEET	-	OF
PROJECT / PROP		OPERATION	By:		CHECKE By:	Date:	PROJECT/PROPOSAL NO.

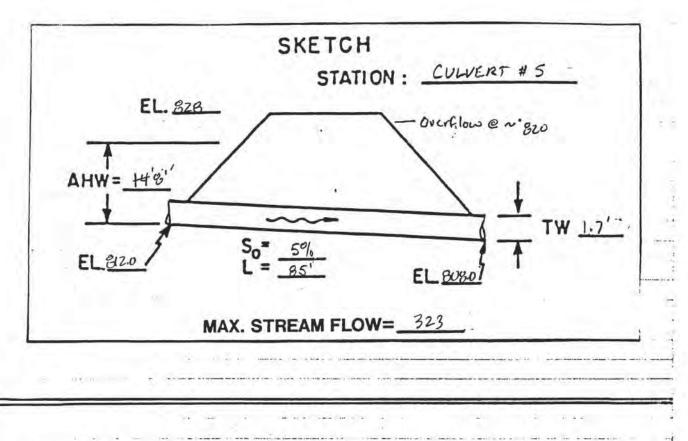


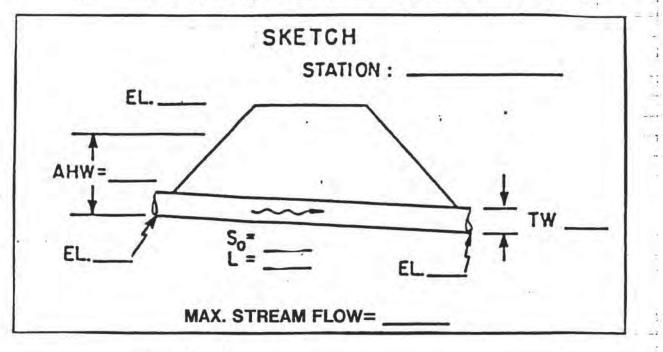




### Culvert Calculator Report Culvert 2 - Operational

Solve For: Headwater Elevation


Culvert Summary					
Allowable HW Elevation	796.00 ft	Ê I I I	Headwater Depth/ Height	3.86	
Computed Headwater Elevation	794.45 ft		Discharge	561.00	cfs
Inlet Control HW Elev	792.30 ft		Tailwater Elevation	779.90	ft
Outlet Control HW Elev	794.45 ft	<u> </u>	Control Type	Outlet Control	£
Grades					
Upstream Invert	779.00 ft		Downstream Invert	778.20	ft
Length	130.00 ft		Constructed Slope	0.006154	ft/ft
Hydraulic Profile					-
Profile	Pressure		Depth, Downstream	4.00	ft
Slope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	4.00	ft
Velocity Downstream	20.04 ft/	/s	Critical Slope	0.022277	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 4 ft		Rise	4.00	ft
Number Sections	1	-			
Outlet Control Properties					-
Outlet Control HW Elev	794.45 ft	t -	Upstream Velocity Head	6.24	ft
Ke	0.50	<u>.</u>	Entrance Loss	3.12	ft
Inlet Control Properties	- 2 %				
Inlet Control HW Elev	792.30 ft	1	Flow Control	Submerged	
Inlet Type 18 to 33.7 ° wingwall fl	are, d=0.0830		Area Full	28.0	ft²
к	0.48600		HDS 5 Chart	9	
M	0.66700		HDS 5 Scale	2	
С	0.02490		Equation Form	2	
Y	0.83000				


### Culvert Calculator Report Culvert 2 - Final

Solve For: Headwater Elevation

Culvert Summary				
Allowable HW Elevation	799.00 ft	Headwater Depth/ Height	1.78	1.5
Computed Headwater Elevation	798.10 ft	Discharge	323.00	cfs
Inlet Control HW Elev	797.44 ft	Tailwater Elevation	779.90	ft
Outlet Control HW Elev	798.10 ft	Control Type	Entrance Control	1
Grades			_	
Upstream Invert	791.00 ft	Downstream Invert	778.20	ft
Length	130.00 ft	Constructed Slope	0.098462	ft/ft
Hydraulic Profile				-
Profile	S2	Depth, Downstream	1.60	ft
Slope Type	Steep	Normal Depth	1.32	ft
Flow Regime	Supercritical	Critical Depth	4.00	ft
Velocity Downstream	28.87 ft/s	Critical Slope	0.007385	ft/ft
Section				
Section Shape	Box	Mannings Coefficient	0.013	
Section Material	Concrete	Span	7.00	ft
Section Size	7 x 4 ft	Rise	4.00	ft
Number Sections	1			-
Outlet Control Properties	2 1 mar			
Outlet Control HW Elev	798.10 ft	Upstream Velocity Head	2.07	ft
Ke	0.50	Entrance Loss	1.03	ft
Inlet Control Properties				
Inlet Control HW Elev	797.44 ft	Flow Control	Submerged	1.25
Inlet Type 18 to 33.7 ° wingwall	flare, d=0.0830	Area Full	28.0	ft ²
к	0.48600	HDS 5 Chart	9	
M	0.66700	HDS 5 Scale	2	
С	0.02490	Equation Form	2	
Y	0.83000			

#### CUMPUTATION SHEET INC. SHEET OF 744 Heartland Trail P.O. Box 8923 Madison, WI 53708-8923 (608) 831-4444 FAX: (608) 831-3334 PROJECT / PROPOSAL NAME CHECKED PREPARED PROJECT/PROPOSAL NO. By Bro Qin 3091.40 Date By: OPC POO





Internet there are a matternet

Ξ	DATE: 9/2000 TCH	STATION : SEE SKETTHES		EL	Y=	_	COMMENTS	^	Not Rec.	Recommended		Recommended		Not Rec.	Recommended	1
DE	SKETCH	STAT		L=STREAM VELOCITY =	SIREAM VELOCITY=	No -LSA	NTR(		_	6.5 1.3 58		10' - 50		6 4.1	6 21	= ge'and 126' RESPECTIVELY
		EL.	AHW=	EL	1.7	SUL HW=H+ha-LSA	F		1	0.4 1.1	-	1.7 4.0	1	7.3 7.3	7.3' 7.3'	
	TION		ч 	1	HEADWATER CON	OUTLET CONTROL	H de de+D	-	10 10 10 2 2	2		10.4 10.4 8.c		11 11 97	0.8 1.3 1.9	2+1+2
	INFORMATION		TW ₁ = TW ₂ =	025 050 0R 0,000	HEAD	INLET CONT. 0	HW Ke	6-	5.65 0.4	2.6		0.4	_	S	5.0 1.1	OF CULVERTS
ĺ	CHANNEL			SCHARGE , SAY SCHARGE , SAY		SIZE INLE		2- 1.2	Shit xit	-	7'X 1 11	T	24" 1.15	-	LL'0 05	0
	HYDROLOGIC AND CHANNEL		= SEE Skemmes	O1 = DESIGN DISCHARGE , SAY Q2 = CHECK DISCHARGE , SAY	RT	D NOIL	11761	41	323 ERT 46101		323	NON COLVERT 46174	15	T		
	нүрас		0 ² = 0 02	<u> </u>	CULVERT	LENTRANCE TUCH		CMP	CULVERT # 1 BOX CULVERT		CULVERT # 2		CUEVERT # 3	11	CMP SIMMADV 0	NEWINO

Figure 7

•

. .

10010			*										DE	SIGNE	DESIGNER: BJA	×
-Uolo Al	HYDROLOGIC AND CHANNEL	ANN		INFORMATION	RM	ATIO	z					SI	SKETCH STATIC	DATE: 0		SEE SKETTHES
01 = <u>SEE SK</u> ETCHES	e TCM	S	WI	n 'i		T		AH	AHW=		11	L B	1 13	$\left\{ \right\}$		
$Q_1 = DESIGN DISCHARGE, SAY Q_{25}$ $Q_2 = CHECK DISCHARGE, SAY Q_{50} OR Q_{100}$	DISCHAP	RGE , S	AY O.	2 I S	0010	1~		ц	· ]	MEAN	STRE	So= L= EAM VE	MEAN STREAM VELOCITY=			¥ {
CULVERT DESCRIPTION Q	SIZE	IN	INLET CONT.	INO	HEADWATER	DWATE	- 12	COMPUTATION	151	TION	SIKEAM	AM VE		1		
IENTRANCE TYPE)			30	MH	×e	Ξ	0	d+D	1 F	Poq	W PO LSO HI	HW	ONTROL W H	VELOCI	COST	COMMENTS
12	30	11.0		,61	0.5	1.0	1.3	6.1	1.0	6.1	1	1	,6.1			Recommended
CULVERT # 5 323 BOX CULVERT 46/FI	×,2 1	- Ze		200		30	0.4	4.0	1.1	4.0		30	4			0
+	_		-										2.0	1		Kecommended
+	-		+											1		
-			-										10	1		
			-				1							+		

Figure 7

#### TABLE 1 - ENTRANCE LOSS COEFFICIENTS

Outlet Control, Full or Partly Full

Entrance head loss  $H_e = k_e \frac{v^2}{2g}$ 

#### Type of Structure and Design of Entrance

Coefficient ke

1.4

#### Pipe, Concrete

1

. 1

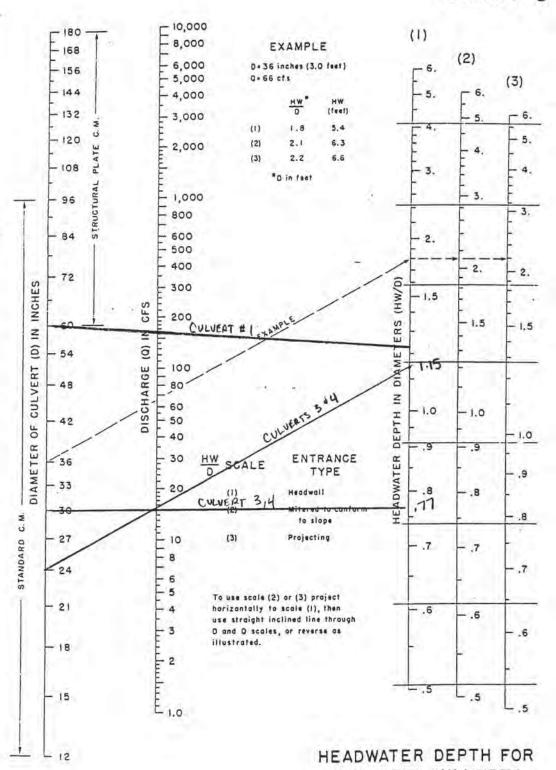
Se 1.

Projecting from fill, socket end (grow	ove	e-e	end	1)		6	÷	0.2
Projecting from fill, sq. cut end .				4		÷		0.5
Headwall or headwall and wingwalls								
Socket end of pipe (groove-end)		• '			÷			0.2
Square-edge				÷		÷,		0.5
Rounded (radius = 1/12D)					÷			0.2
Mitered to conform to fill slope								0.7
*End-Section conforming to fill slope				÷				0.5
Beveled edges, 33.7° or 45° bevels .				i.		à.		0.2
Side-or slope-tapered inlet								0.2

#### Pipe, or Pipe-Arch, Corrugated Metal

Projecting from fill (no headwall)	0.9	ž
Headwall or headwall and wingwalls square-edge	0:5	5
Mitered to conform to fill slope, paved or unpaved		
· slope	0.7	
*End-Section conforming to fill slope	0.5 - CULVERTS 3,4	
Beveled edges, 33.7° or 45° bevels	0.2	
Side-or slope-tapered inlet	0.2	

#### Box, Reinforced Concrete

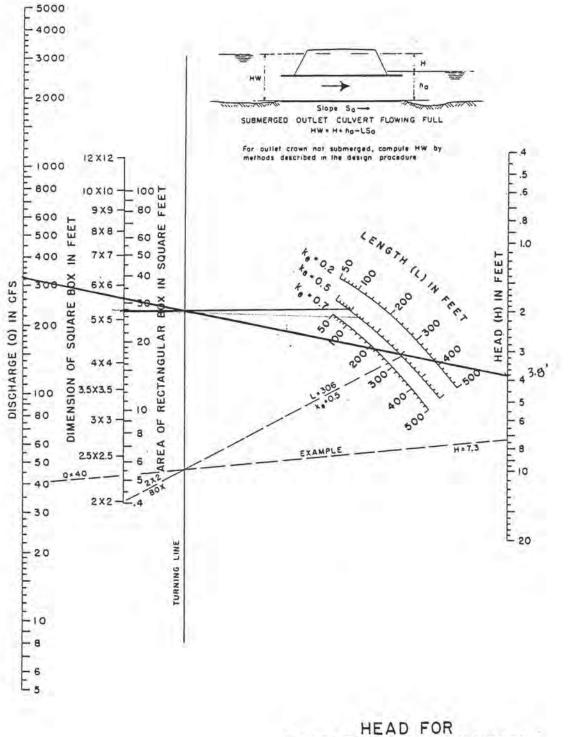

Headwall parallel to embankment (no wingwalls)	
Square-edged on 3 edges	0.5
Rounded on 3 edges to radius of 1/12 barrel	
dimension, or beveled edges on 3 sides	0.2
Wingwalls at 30° to 75° to barrel	
Square-edged at crown	0.4 - CULVERTS 1,2
Crown edge rounded to radius of 1/12 barrel	
dimension, or beveled top edge	0.2
Wingwall at 10° to 25° to barrel	
Square-edged at crown	0.5
Wingwalls parallel (extension of sides)	
Square-edged at crown	0.7
Side-or slope-tapered inlet	0.2

*Note:

"End Section conforming to fill slope," made of either metal or concrete, are the sections commonly available from manufacturers. From limited hydraulic tests they are equivalent in operation to a headwall in both inlet and outlet control. Some end sections, incorporating a closed taper in their design have a superior hydraulic performance." These latter sections can be designed using the information given for the beveled inlet, p. 5-13.

-12 F 600 (1) (3) (2) - 11 F 8 500 L10 8 EXAMPLE 5'x 2' 80x Q = 75 cfs Q/B = 15 cfs/ft. 10 F 400 7 8 6 adata a handa e 7 HW D 6 9 300 Inlet feet 5 6 1.75 3.5 5 (1) 5 8 (2) 1,90 3.8 4 200 (3) 2.05 4.1 4 3 7 E 3 3 CFS PER FOOT 100 6 (D/MH) 80 2 2. 60 HEADWATER DEPTH IN TERMS OF HEIGHT 5 1.5 1.5 RATIO OF DISCHARGE TO WIDTH (Q/B) IN HEIGHT OF BOX (D) IN FEET 40 1.5 30 have have 20 - 1.0 1.0 - 1.0 .9 Angle of 3 Wingwall Flare .9 .9 * 10 .8 8 8 .8 6 WINGWALL FLARE .7 .7 HW SCALE -.6 4 2 30" to 75" (1) 3 .6 ,6 90" and 15" (2) - .5 (3) O* (extensions E 2 of sides) - .5 .5 To use scale (2) or (3) project horizontally to scale (1), then - .4 use straight inclined line through D and Q scales, or reverse as Ę) illustrated. - ,8 .4 .4 E .6 L .35 .35 - .30 1 .5 HEADWATER DEPTH FOR BOX CULVERTS WITH INLET CONTROL

CHART I




2. i o

C. M. PIPE CULVERTS WITH INLET CONTROL

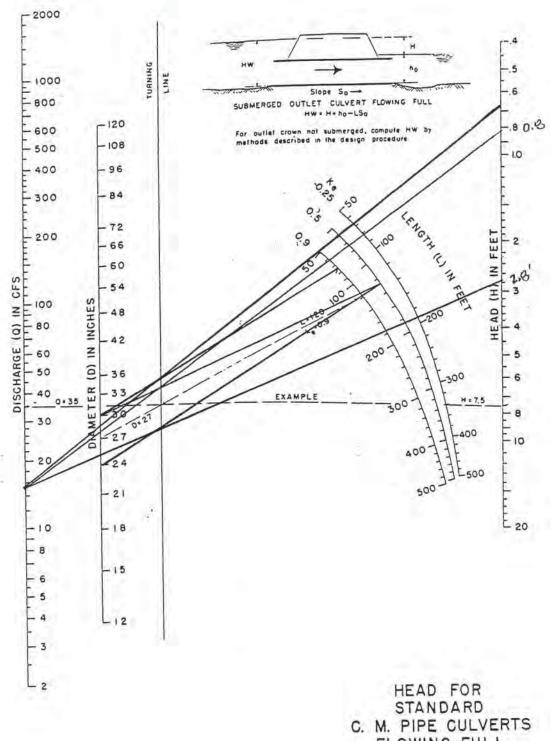

CHART 5

CHART 8 '



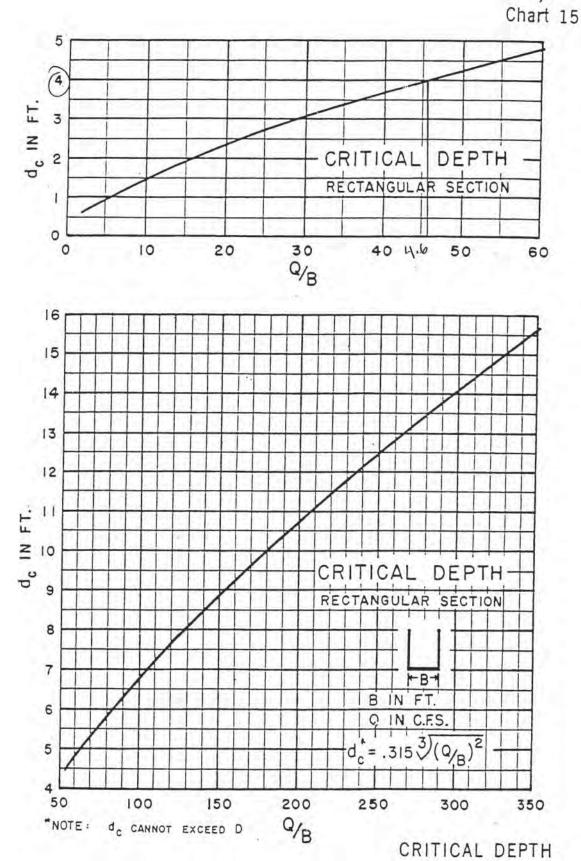
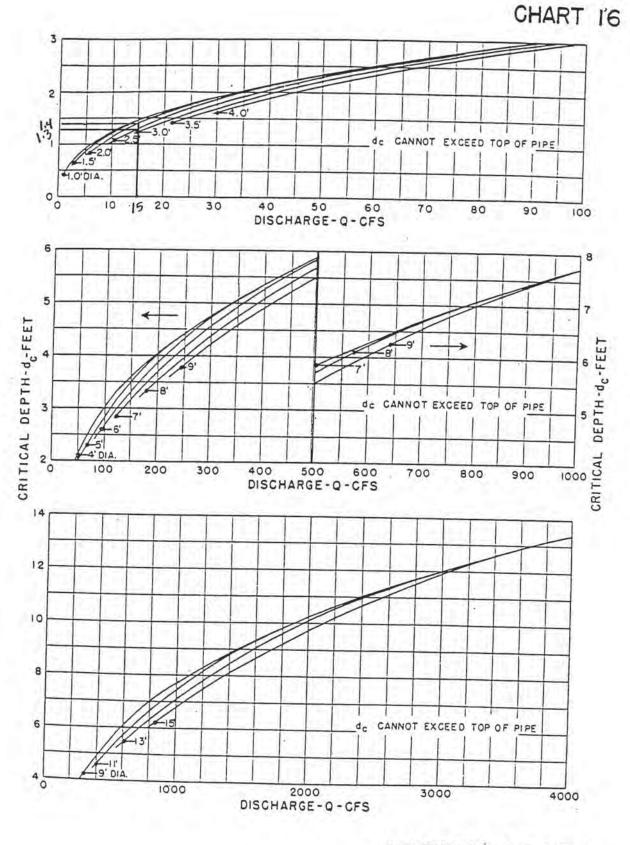

CONCRETE BOX CULVERTS FLOWING FULL n = 0.012

CHART H




÷

FLOWING FULL n=0.024



RECTANGULAR SECTION

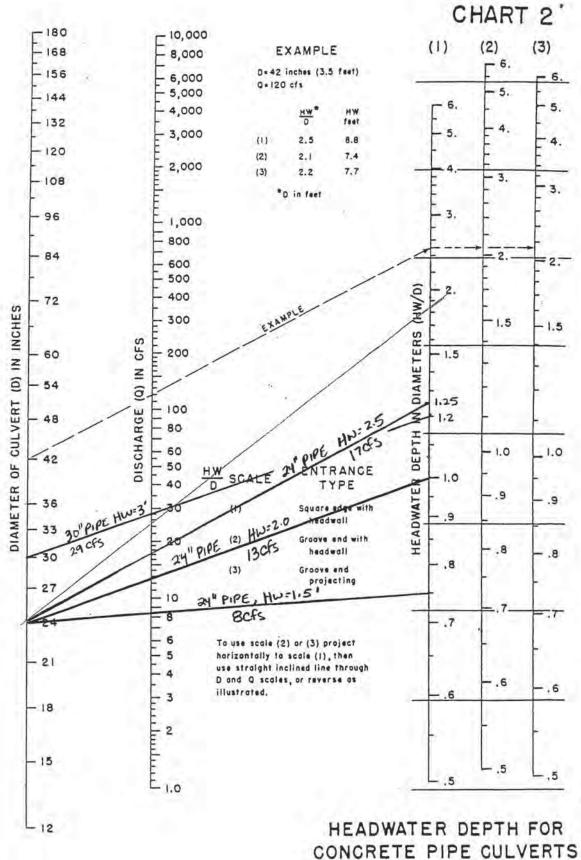
2



CRITICAL DEPTH CIRCULAR PIPE

744 Heartland Trail Madison, WI 53717-1934 Tel. (608) 831-4444 • Fax (608) 831-3334		SHEETOF
	AND POWER - POO	PROJECT / PROPOSAL NO.
TEORIE JI LING	01	3081.40
PREPARED BY: B.J.K	DATE: 9/00	FINAL D
CHECKED BY:	DATE:	REVISION 🗖

## DOWNSLOPE FLUME SIZING


1. SIZE INLET PIPES



NOTE: PEAK FLOWS OBTAINED FROM RUNOFF CALCULATIONS PEAK FLOWS ADDED TO OBTAIN TOTALS (CONSERVATIVE)

ESTABLISH INLET PIPE SIZES AND BERM HEIGHTS USING INLEF CONTROL NOMOGRAPHS!

FLOW RANGE	INL FT PIPE SIZE	Hwy	REQ'O BERM HEIGHT
0-B cfs	24"	1.5'	2.5'
9-13 cfs	24"	2.0'	2.5'
14-17 CFS	24"	2.5	3.0'
18-29 CFS	30"	3.0'	3.5'



WITH INLET CONTROL

744 Heartland Trail           Madison, WI 53717-1934           • Tel. (608) 831-4444 • Fax (608) 831-3334		SHEETOF
PROJECT / PROPOSAL NAME / LOCATION: DAIRY SUBJECT: FLUME SIZING	LAND POWER - POO	PROJECT/PROPOSAL NO. 3081 40
PREPARED BY: BJK	DATE: 9100	FINAL D
CHECKED BY:	DATE:	REVISION O

CHECK STRAIGHT PIPE FLUME SIZING

WORST-CASE FLOW - FLUME #1

SLOPE = 20% (AT RIDGE) PIPE DIA = 1.5' MAX FLOW = 48 CFS

FULL PIPE FLOW :

 $\begin{aligned} \mathcal{Q} &= \frac{1.49}{7L} R^{2/3} 5^{1/2} A \\ \mathcal{R} &= 0.010 \text{ for HOPE PIPE} \\ R &= D/4 = 1.5/4 = 0.375 \\ 5 &= 0.20 \text{ FHFH} \\ A &= \pi D^2/4 = \pi (1.5)^2/4 = 1.77 \text{ FH}^2 \\ \end{aligned}$   $\begin{aligned} \mathcal{Q} \text{ FULL} &= \frac{1.49}{0.01} (0.375)^{2/3} (0.20)^{1/2} (1.77) \end{aligned}$ 

= 61 cfs > 48 cfs 0K V

A WATER RESOURCES TECHNICAL PUBLICATION

Engineering Monograph No. 25

# Hydraulic Design of Stilling Basins and Energy Dissipators

By A. J. PETERKA

Denver, Colorado



United States Department of the Interior



BUREAU OF RECLAMATION



NOV 22 1999

# STILLING BASIN FOR PIPE OR OPEN CHANNEL OUTLETS

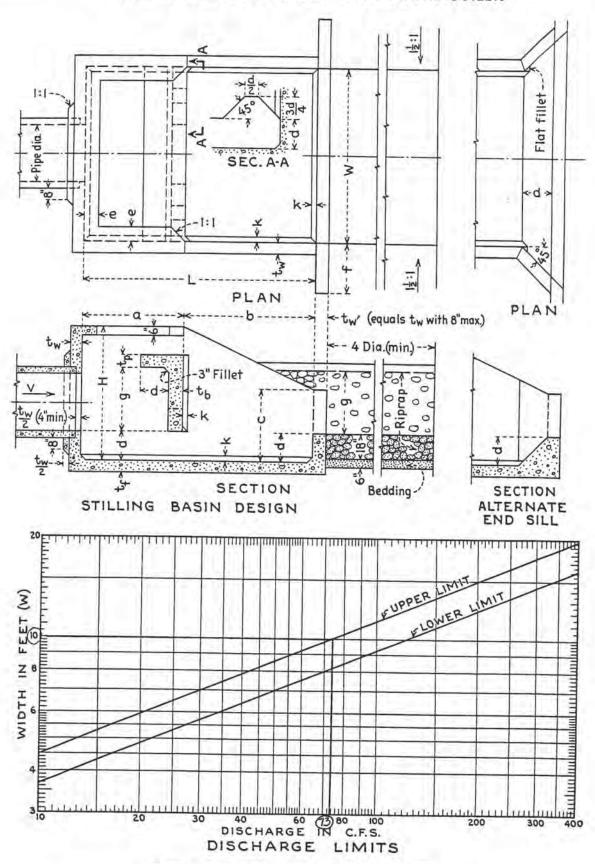



FIGURE 42.-Impact-type energy dissipator (Basin VI).

83

86

÷.

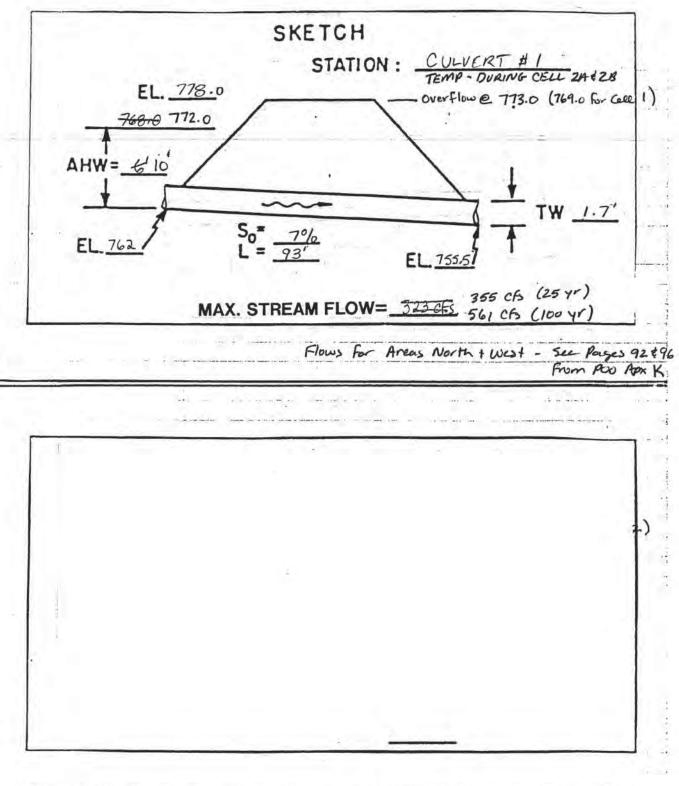
# HYDRAULIC DESIGN OF STILLING BASINS AND ENERGY DISSIPATORS

	1		dis-													-	Callon		
	Dia In.	Area (sq ft)	cliarge Q	M	п	Г	đ	q	o	p	ø	1	8	3	t,	th	t,	ж	Suggest
1	(1)	(2)	(3)	(4)	(2)	(9)	(2)	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	t (61)
	18	1.77	2 21	5-6	4-3	7-4	3-3	4-1	2-4	0-11	0-6	1-6	2-1	4	616	4	4	6	
	24	3.14	38	6-9	5-3	0-6	3-11	5-1	2-10	1-2	0-6	5-0	9-6	2	612	2 4	0 4	0 0	
	30	4.91	69	8-0	6-3	10-8	4-7	1-9	3-4	1	0-8	2-6	3-0-2	9 4	615			0 0	1
73ch3	₩ 36	7.07	85	9-3	7-3	12-4	5-3	1-2	3-10	1-7	0-8	3-0	3-6		211	- 0	- 0	0 0	
	42	9.62	115	10-6	8-0	14-0	0-9	8-0	4-5-	1-9	0-10	3-0	3-11	- 0	010		0 0	0 4	
	48	12.57	151	11-9	0-6	15-8	6-9	8-11	4-11	2-0	01-0	5-0	110	0 0	012		0 0	* -	
	54	15.90	101	13-0	6-6	17-4	7-4	10-0	2-2	2-2	1-0	3-0	11-1	01	1012		0 0	* *	
	60	19.63	236	14-3	10-9	19-0	8-0	11-0	5-11	2-5	9	3-0	5-4	11	1114		0 0	+ 4	
	72	28. 27	339	16-6	12-3	22-0	9-3	12-9	6-11	2-9	1-3	3-0	6-2	12	12%	12	0 00	9	14.0

TABLE 11.-Stilling basin dimensions (Basin VI). Impact-type energy dissipator.

1 Suggested pipe will run full when velocity is 12 feet per second or half full when velocity is 24 feet per second. Size may be modified for other velocities by Q=AV, but relation between Q and basin dimensions shown must be maintained.

³ For discharges less than 21 second-feet, obtain basin width from curve of Fig. 42. Other dimensions proportional to W;  $H = \frac{3W}{4}$ ,  $L = \frac{4W}{3}$ ,  $d = \frac{W}{6}$ , etc.


¹ Determination of riprap size explained in Sec. 10.



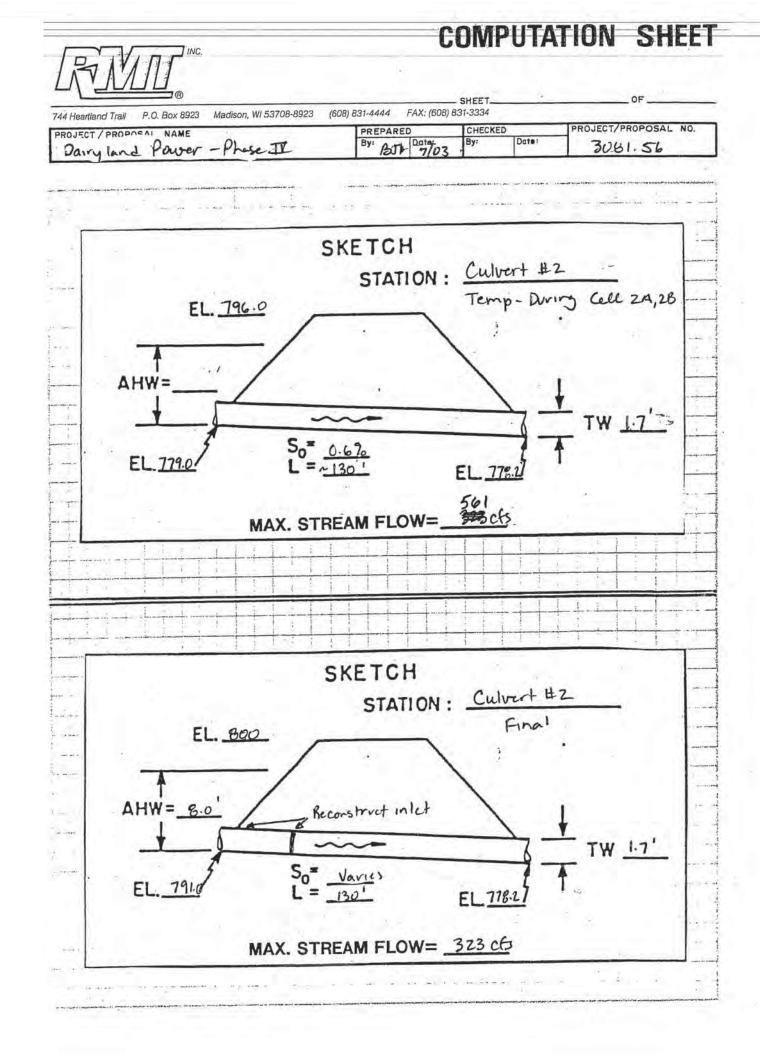
## **Calculations – Temporary Culverts, Operational Conditions**

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024

COMPUTATION SHEET JINC. SHEET OF 744 Heartland Trail P.O. Box 8923 Madison, WI 53708-8923 (608) 831-4444 FAX: (608) 831-3334 PROJECT / PROPOSAL NAME CHECKED PREPARED PROJECT/PROPOSAL NO. By: BJA Dotayo Date: DPC - PLAN OF OPERATION By: 3081.40 REV 7/03



## Culvert Calculator Report Culvert 1 - Operational (25-Year)


Solve For: Headwater Elevation

Culvert Summary Allowable HW Elevation	773.00 ft	Harden Bandlin Lite	101	-
Computed Headwater Elevation	769.75 ft	Headwater Depth/ Height	1.94 355.00	
Inlet Control HW Elev	769.18 ft	Discharge Tailwater Elevation	757.20	and a second
Outlet Control HW Elev	769.75 ft	Control Type	Entrance Control	
Grades				-
Upstream Invert	762.00 ft	Downstream Invert	755.50	ft
Length	93.00 ft	Constructed Slope	0.069892	ft/ft
Hydraulic Profile			_	
Profile	S2	Depth, Downstream	2.10	ft
Slope Type	Steep	Normal Depth	1.58	ft
Flow Regime	Supercritical	Critical Depth	4.00	ft
Velocity Downstream	24.17 ft/s	Critical Slope	0.008921	ft/ft
Section				
Section Shape	Box	Mannings Coefficient	0.013	
Section Material	Concrete	Span	7.00	ft
Section Size	7 x 4 ft	Rise	4.00	ft
Number Sections	1			
1				
Dutlet Control Properties				
Outlet Control HW Elev	769.75 ft	Upstream Velocity Head	2.50	ft
Ke	0.50	Entrance Loss	1.25	ft
nlet Control Properties				
inlet Control HW Elev	769.18 ft	Flow Control	Submerged	1
Inlet Type 18 to 33.7 ° wingwall	flare, d=0.0830	Area Full	28.0	ft²
<	0.48600	HDS 5 Chart	9	
M	0.66700	HDS 5 Scale	2	
C	0.02490	Equation Form	2	
Y	0.83000			

## Culvert Calculator Report Culvert 1 - Operational (100-Year)

Joive For: Headwater Elevation

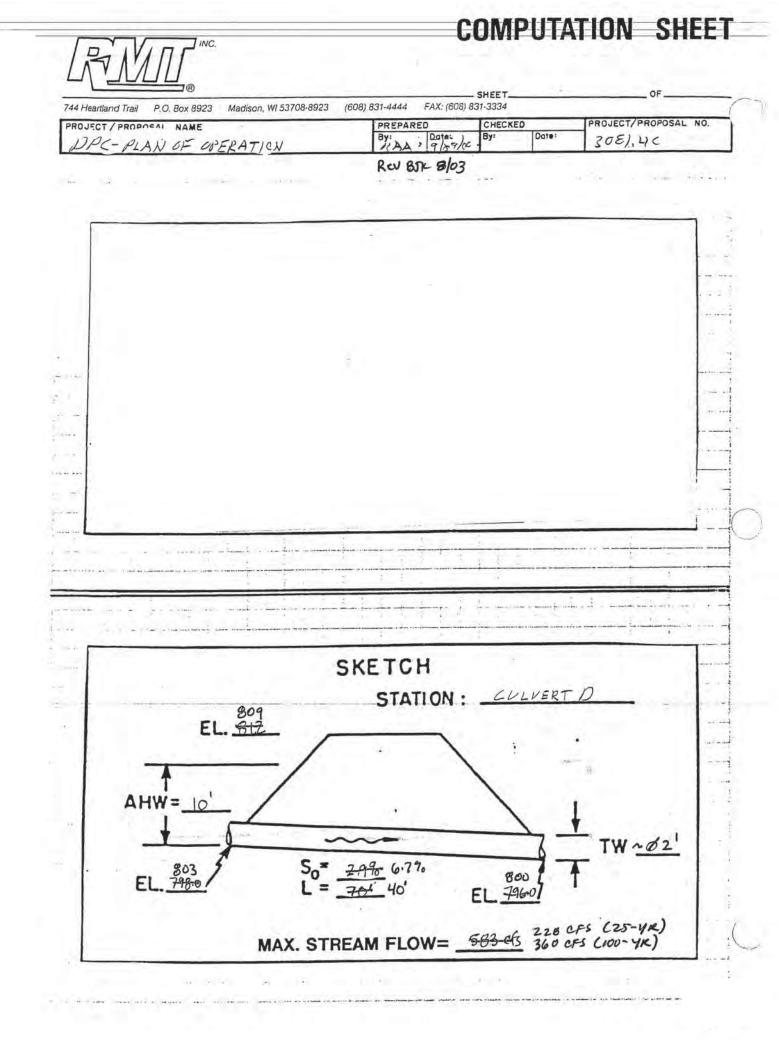
Culvert Summary					_
Allowable HW Elevation	773.00		Headwater Depth/ Height	3.34	
Computed Headwater Elevation	775.36		Discharge	561.00	
Inlet Control HW Elev	775.18		Tailwater Elevation	757.20	ft
Outlet Control HW Elev	775.36	ft	Control Type	Entrance Control	-
Grades					
Upstream Invert	762.00	ft	Downstream Invert	755.50	ft
Length	93.00	ft	Constructed Slope	0.069892	ft/ft
Hydraulic Profile					-
Profile	S2		Depth, Downstream	2.93	ft
Slope Type	Steep		Normal Depth	2.18	fť
Flow Regime	Supercritical		Critical Depth	4.00	ft
Velocity Downstream	27.37	ft/s	Critical Slope	0.022277	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.013	in.
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 4 ft		Rise	4.00	ft
Number Sections	1				
)					
Sutlet Control Properties					
Outlet Control HW Elev	775.36	ft	Upstream Velocity Head	6.24	
Ke	0.50		Entrance Loss	3.12	ft
Inlet Control Properties					
nlet Control HW Elev	775.18	ft	Flow Control	Submerged	
nlet Type 18 to 33.7 ° wingwall	flare, d=0.0830		Area Full	28.0	ft2
к	0.48600		HDS 5 Chart	9	
M	0.66700		HDS 5 Scale	2	
C	0.02490		Equation Form	2	
Y	0.83000				



## Culvert Calculator Report Culvert 2 - Operational

Suive For: Headwater Elevation

Culvert Summary				
Allowable HW Elevation	796.00 ft	Headwater Depth/ Height	3.86	
Computed Headwater Elevation	794.45 ft	Discharge	561.00	cfs
Inlet Control HW Elev	792.30 ft	Tailwater Elevation	779.90	ft
Outlet Control HW Elev	794.45 ft	Control Type	Outlet Control	<u> </u>
Grades				
Upstream Invert	779.00 ft	Downstream Invert	778.20	ft
Length	130.00 ft	Constructed Slope	0.006154	ft/ft
Hydraulic Profile	-			
Profile	Pressure	Depth, Downstream	4.00	ft
Slope Type	N/A	Normal Depth	N/A	ft
Flow Regime	N/A	Critical Depth	4.00	ft
Velocity Downstream	20.04 ft/s	Critical Slope	0.022277	ft/ft
Section				
Section Shape	Box	Mannings Coefficient	0.013	
Section Material	Concrete	Span	7.00	ft
Section Size	7 x 4 ft	Rise	4.00	ft
Number Sections	1			
outlet Control Properties				
Outlet Control HW Elev	794.45 ft	Upstream Velocity Head	6.24	ft
Ke	0.50	Entrance Loss	3.12	ft
nlet Control Properties				
Inlet Control HW Elev	792.30 ft	Flow Control	Submerged	1.00
Inlet Type 18 to 33.7 ° wingwall fla	are, d=0.0830	Area Full	28.0	ft ²
к	0.48600	HDS 5 Chart	9	
M	0.66700	HDS 5 Scale	2	
C	0.02490	Equation Form	2	
Y	0.83000			


.

## **Culvert Calculator Report** Culvert 2 - Final

Solve For: Headwater Elevation

Culvert Summary					
Allowable HW Elevation	799.00	ft	Headwater Depth/ Height	1.78	
Computed Headwater Elevation	798.10	ft	Discharge	323.00	cfs
Inlet Control HW Elev	797.44	ft	Tailwater Elevation	779.90	ft
Outlet Control HW Elev	798.10	ft	Control Type	Entrance Control	
Grades					
Upstream Invert	791.00	ft	Downstream Invert	778.20	ft
Length	130.00	ft	Constructed Slope	0.098462	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.60	ft
Slope Type	Steep		Normal Depth	1.32	ft
Flow Regime	Supercritical		Critical Depth	4.00	ft
Velocity Downstream	28.87	ft/s	Critical Slope	0.007385	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 4 ft		Rise	4.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	798.10	ft	Upstream Velocity Head	2.07	ft
Ke	0.50	-	Entrance Loss	1.03	ft
Inlet Control Properties					
Inlet Control HW Elev	797.44	ft	Flow Control	Submerged	
Inlet Type 18 to 33.7 ° wingwall	flare, d=0.0830		Area Full	28.0	ft ²
к	0.48600		HDS 5 Chart	9	
M	0.66700		HDS 5 Scale	2	
С	0.02490		Equation Form	2	
Y	0.83000				

Page 1 of 1



## Culvert Calculator Report Culvert D - 25 Year

#### olve For: Headwater Elevation

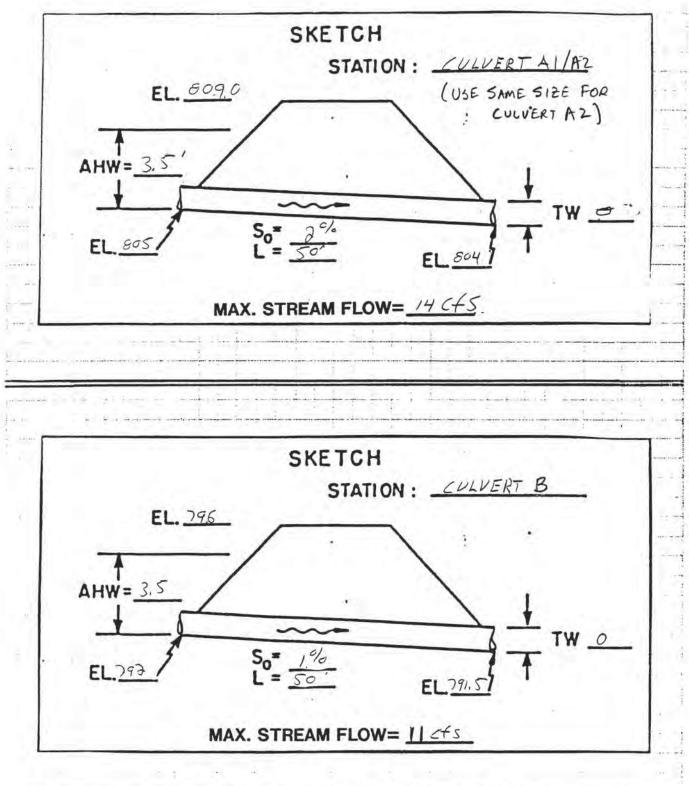
Culvert Summary		-			
Allowable HW Elevation	809.00	ft	Headwater Depth/ Height	1.40	
Computed Headwater Elevation	808.61	ft	Discharge	228.00	cfs
Inlet Control HW Elev	807.84	ft	Tailwater Elevation	802.00	ft
Outlet Control HW Elev	808.61	ft	Control Type	Entrance Control	
Grades					
Upstream Invert	803.00	ft	Downstream Invert	800.00	ft
Length	45.00	ft	Constructed Slope	0.066667	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.74	ft
Slope Type	Steep		Normal Depth	1.19	ft
Flow Regime	Supercritical		Critical Depth	3.21	ft
Velocity Downstream	18.70	ft/s	Critical Slope	0.003975	ft/ft
Section					-
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 4 ft.		Rise	4.00	ft
Number Sections	1				
	200				
Outlet Control Properties					
Outlet Control HW Elev	808.61	ft	Upstream Velocity Head	1.60	ft
Ke	0.50		Entrance Loss	0.80	ft
nlet Control Properties					-
inlet Control HW Elev	807.84	ft	Flow Control	Submerged	
nlet Type 18 to 33.7 ° wingwall t	flare, d=0.0830		Area Full	28.0	ft2
K.	0.48600		HDS 5 Chart	9	
M	0.66700		HDS 5 Scale	2	
C	0.02490		Equation Form	2	
Y	0.83000				

## Culvert Calculator Report Culvert D - 100 Year

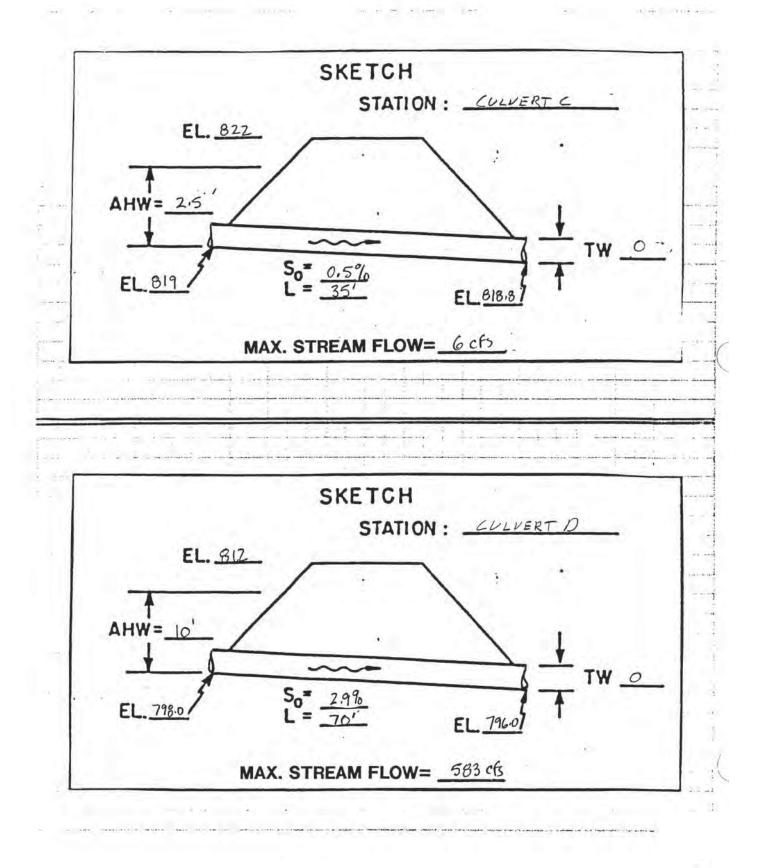
#### olve For: Headwater Elevation

Culvert Summary					
Allowable HW Elevation	809.00	10	Headwater Depth/ Height	1.96	
Computed Headwater Elevation	810.85	ft	Discharge	360.00	cfs
Inlet Control HW Elev	810.30	ft	Tailwater Elevation	802.00	ft
Outlet Control HW Elev	810.85	ft	Control Type	Entrance Control	<u>.</u>
Grades					
Upstream Invert	803.00	ft	Downstream Invert	800.00	ft
Length	45.00	ft	Constructed Slope	0.066667	ft/ft
Hydraulic Profile				1.000	
Profile	S2		Depth, Downstream	2.52	ft
Slope Type	Steep		Normal Depth	1.63	ft
Flow Regime	Supercritical		Critical Depth	4.00	ft
Velocity Downstream	20.38	ft/s	Critical Slope	0.009174	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.013	0
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 4 ft		Rise	4.00	ft
Number Sections	1	-			
)		_			_
Outlet Control Properties					
Outlet Control HW Elev	810.85	ft	Upstream Velocity Head	2.57	
Ke	0.50	_	Entrance Loss	1.28	ft
nlet Control Properties	-				
Inlet Control HW Elev	810.30	ft	Flow Control	Submerged	1.7
nlet Type 18 to 33.7 ° wingwall	flare, d=0.0830		Area Full	28.0	ft ²
K	0.48600		HDS 5 Chart	9	
M	0.66700		HDS 5 Scale	2	
C	0.02490		Equation Form	2	
Y	0.83000				

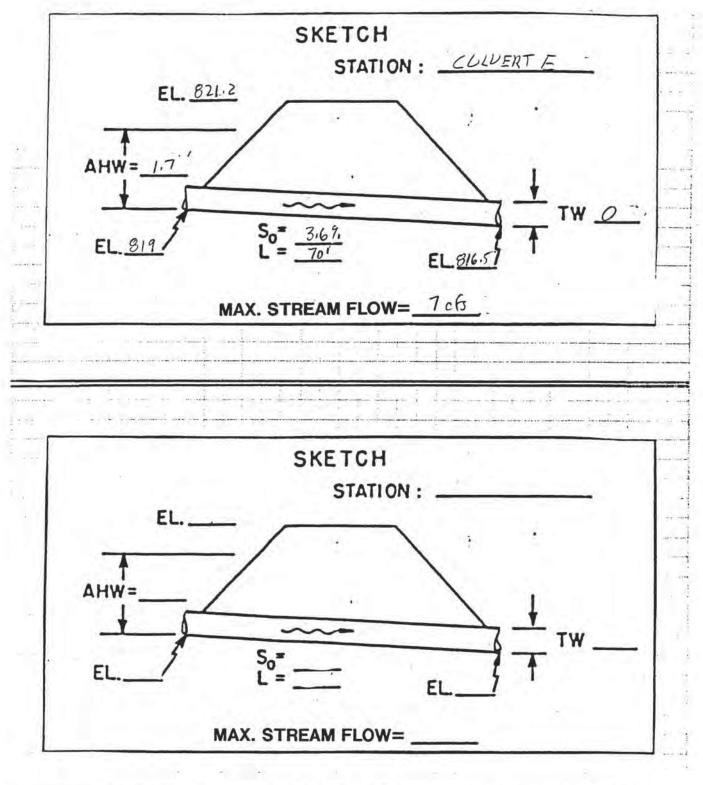
## Culvert Calculator Report Flume MH


Solve For: Headwater Elevation

(


Culvert Summary		1	≥ 827.5, adjacent pipe in	rlet	
Allowable HW Elevation	8.00		Headwater Depth/ Height	1.98	
Computed Headwater Elev	ation 825.18	ft	Discharge	73.00	cfs
Inlet Control HW Elev	825.18	ft	Tailwater Elevation	780.67	ft
Outlet Control HW Elev	824.72	ft	Control Type	Inlet Control	
Grades				-	
Upstream Invert	819.25	ft	Downstream Invert	779.00	ft
Length	185.00	ft	Constructed Slope	0.217568	ft/ft
Hydraulic Profile		-	2		
Profile	S2		Depth, Downstream	0.91	ft
Slope Type	Steep		Normal Depth	0.86	ft
Flow Regime	Supercritical		Critical Depth	2.70	ft
Velocity Downstream	40.57	ft/s	Critical Slope	0.006248	ft/ft
Section			A		
Section Shape	Circular	_	Mannings Coefficient	0.010	
Section Material	PVC		Span	3.00	ft
Section Size	36 inch		Rise	3.00	ft
Number Sections	- 1				
1					
Outlet Control Properties					
Outlet Control HW Elev	824.72	ft	Upstream Velocity Head	1.85	ft
Ke	0.50	_	Entrance Loss	0.92	ft
Inlet Control Properties					
Inlet Control HW Elev	825.18	ft	Flow Control	Submerged	14
Inlet Type So	quare edge w/headwall		Area Full	7.1	ft²
к	0.00980		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale		
C	0.03980		Equation Form	1	
Y	0.67000				

I WIRKER JUPPLY LARRY WOOD 262 -255- 3030 lid and 500 5/27/03 5 GEVEN 7 VF BARREL PLATE I" 2200 - 2,500 (inch. \$500 for lid) ER TO PLAN SHEET 6) 3.75' 400 SERIES POINT SEE PLAN SHEETS 5 & 6 SE 500 SERIES POINT V 825.19 1% SLOPE 824.0 SEE PLAN SHEETS 5 & 6 ELEVATION VARIES MIN. 82275 320,7 N MIN. (GCL) LEACHATE GEOTEXTILE CUSHION COLLECTION/ 319.25 60 MIL HDPE GEOMEMBRANE -SYSTEM 2' MIN SEE DETAIL ( COMPACTED SELECT LOW PERMEABILITY SOIL


FIN				U	UMPUI	ATION SHEET
744 Heartland Trail	P.O. Box 8923	Madison, WI 53708-8923	(608) 831-44	44 FAX: (608)	- SHEET	OF
PROJECT / PROP		PERATION	PRE By:	A , Dote:	CHECKED	PROJECT/PROPOSAL NO. 308/,40



LANDI "NC.		UNIPUTA	ATION SHEET
744 Heartland Trail P.O. Box 8923 Madison, WI 53708-8923 (60	08) 831-4444 FAX: (608) 8	SHEET	OF
DPC-PLAN OF OBERATION	By: Date:	CHECKED By: Date:	PROJECT/PROPOSAL NO.



RAN					JIVIF	014	ATION	SHEEI
744 Heartland Trail	P.O. Box 8923	Madison, WI 53708-8923	(608) 831-4444	FAX: (608) 83	HEET			_ OF
PROJECT / PROP	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	OPERATION	PREPAR By: AA		CHECKED By:	Date:	PROJECT/P 3081,1	PROPOSAL NO.



DESIGNER: UAA	ETCH			Counterro	-	OK	Xo	RECOMMENDED	 	OK
ESIGNE	CH CH		1 3	11100	AE1 00					
	SKETCH	5	STREAM VELOCITY =			5	6			
	0	5 19	So" L"	AM V	MH		ss.e	1.1		9
		IN			LSo		-	0.1		2.0
			MEAN	MAX. STREAM ATION HW=H + h ₀ -LS ₀	04 1.7		54.1	1.6		<u>7</u>
		#MHY	3	151 1	2			0	-	0
		AL .	ω.	1012E	1.7		Shil	1.6		5-1
	N			- 181	141		1.4	6.1		0.0
	ATIC	F	1-	HEADWATER OUTLET	1		1.6	0.8	1	4.0
	ORM	1	0100	HEAD	0.9		0:0	6.0		Fio
	INF	TW ₁ = 1	025 050 0R	INLET CONT.	3.3		m	2.0	1.2	2
.T	ANNEL INFORMATION		E , SAY	INLET	51.1		e	1.0	100	SNOIL
100		TCHES	SCHARG	SIZE	1th C	+	1,81	24"	24"	
5	C ANE	SEE SKETCHES	ESIGN DI	a	14		7	-	0	OMME
PROJECT: 201 C	HYDROLOGIC AND CH	01 = <u>564</u>	( Q1 = DESIGN DISCHARGE , SAY Q25 Q2 = CHECK DISCHARGE , SAY Q50 OR Q100	CULVERT DESCRIPTION ENTRANCE TYPE)	CULVERT A CIND-PROTECTINE		CONVERTE	CULVERTB CMP	CULVERT C	REC

<u>,</u> 1

Figure 7

÷

4

DESIGNER: JAA	DATE: 9/39/00 TCH STATION: SEE SKETCHES		[+-		COMMENTS	ok					
H H	919:	/	EL		COST	1			-	-	
ESIGNI	DATE: TCH TATION	$\int$	, , ,	"	ELOCIT.	^			1		
ā	DATI SKE TCH STATIC	3	LIDCII	VELOCITY=	W H W	1.4					
	S	$\langle B \rangle$	MEAN STREAM VELOCITY =	AM VE	HW			is.			
			STRE	STREAM	- ho -L	2.5		and			
	E.	116	EAN	ATION	$\frac{HW=H+h_0-LS_0}{W}$	トニ		1,2			
		MHM		5	F	0		1640			
		AH -	Ш	COMPUTATION	H dc dc+D	1:1		cu			
	z	1		- 13	de de	0.8		ins			1
	INFORMATION	1	-	HEADWATER	Ŧ	4.0		PERMARNI	1	Ì	1
	ORM		0100	HEAD	×	6.0		PER			
	INF	TW ₁ =	225 50 OR	INLET CONT	MH	1.4		w 1/2			7
i.	INEL	, EE	SAY C	NLET	MI	1.0	1	hand	1	+	
00	CHAN	ES.	ARGE	5176		24" 0	+	SAME	+	+	ATION
1	QN	ETCH.	DISCI	Ū		N	1		+	-	MEND
10	SIC A	XX	Q1 = DESIGN DISCHARGE , SAY Q25 Q2 = CHECK DISCHARGE , SAY Q50 OR Q100	0	-	7		583			ECOM
FROJECT: LIPC	HYDROLOGIC AND CHANNEL	01 = <u>SEE SKETCHES</u> 02 =	$\begin{pmatrix} 0_1 \\ 0_2 \\ 2 \end{pmatrix}$	CULVERT	LULVERTE	CINP-PILO JECTINA		CULVERT D 7'XY'BOX			SUMMARY & RECOMMENDATIONS

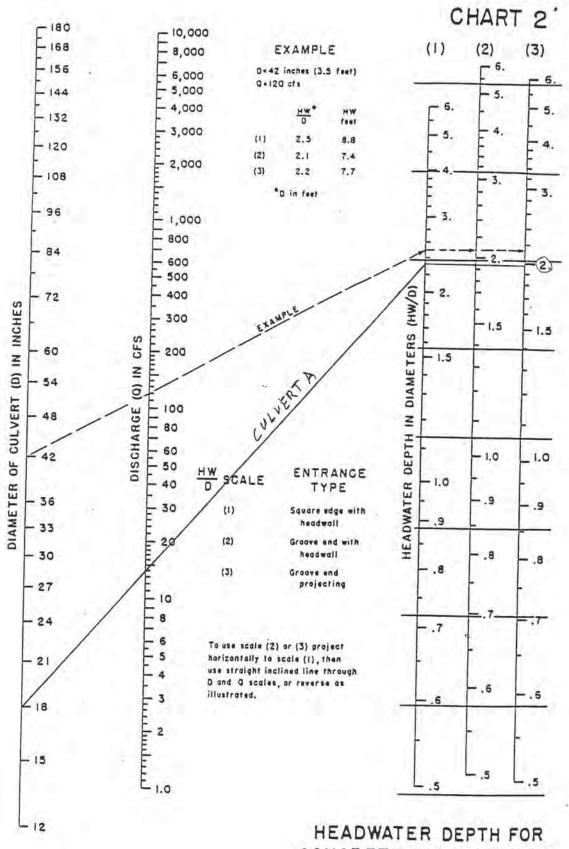
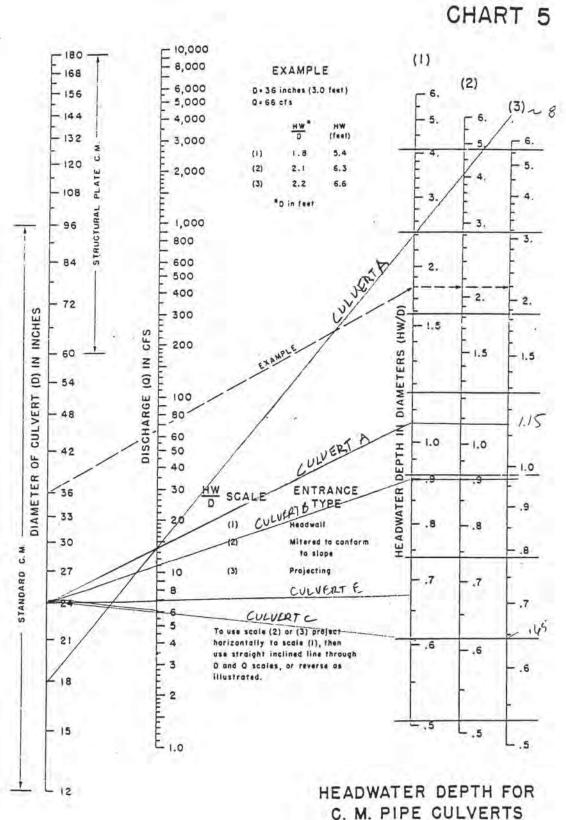

8

Figure 7

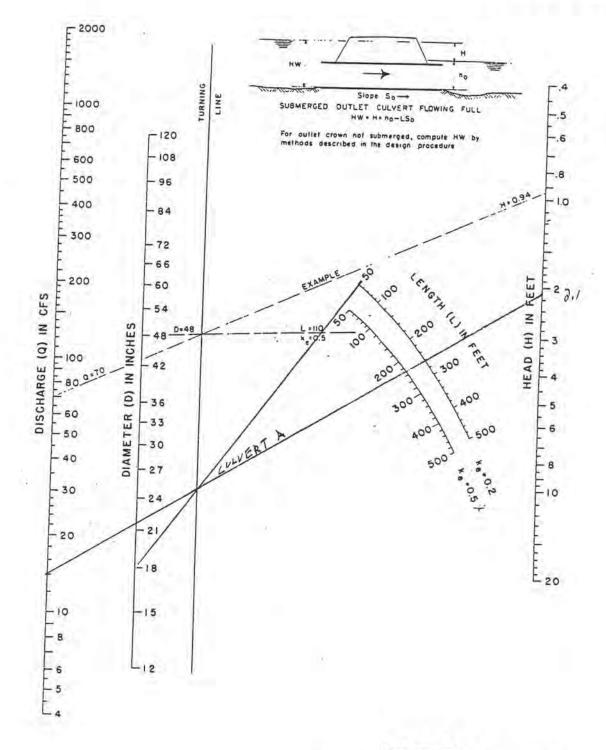
ŝ


.

-



0.770


CONCRETE PIPE CULVERTS WITH INLET CONTROL



.

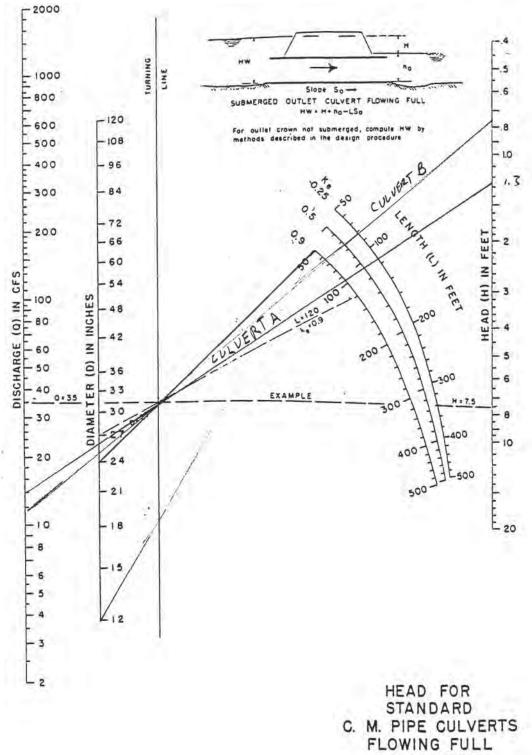

WITH INLET CONTROL

CHART 9



HEAD FOR CONCRETE PIPE CULVERTS FLOWING FULL n=0.012

CHART H



n=0.024

4.0 1.4 3.0 de CANNOT EXCEED TOP OF PIPE 0.0 O'DIA. CULVERTA" C/E 10 DISCHARGE-Q-CFS CULVERT B + CRITICAL DEPTH-d_FEET CRITICAL DEPTH-dc-FEET de CANNOT EXCEED TOP OF PIPE +7 6' 5' 4'DIA DISCHARGE -Q - CFS T de CANNOT EXCEED TOP OF PIPE 43' 9' DIA 10.00 DISCHARGE - Q - CFS

CRITICAL DEPTH CIRCULAR PIPE

CHART I'6

#### TABLE 1 - ENTRANCE LOSS COEFFICIENTS

Outlet Control, Full or Partly Full

Entrance head loss  $H_e = k_e \frac{v^2}{2g}$ 

### Type of Structure and Design of Entrance

Coefficient ke

٩.

#### Pipe, Concrete

4 . 10

New York

. th

24

8

1. A. A.

1.

Projecting from fill, socket end (groove-end)				0.2
Projecting from fill, sq. cut end	4		÷ .	0.51
Headwall or headwall and vingwalls Socket end of pipe (groove-end)	1			0.2
Square-edge			1997 - M	0.5
Rounded (radius = 1/12D)	÷	•	• •	0.2
Mitered to conform to fill slope *End-Section conforming to fill slope				0.7
Beveled edges, 33.7° or 45° bevels				0.5
Side-or slope-tapered inlet				0.2
	1.20	-	2	

#### Pipe, or Pipe-Arch, Corrugated Metal

Projecting from fill (no headwall)	0.9
Headwall or headwall and wingwalls square-edge	0:5
Mitered to conform to fill slope, paved or unpaved	
• slope	0.7
*End-Section conforming to fill slope	0.5
Beveled edges, 33.7° or 45° bevels	0.2
Side-or slope-tapered inlet	0.2

#### Box, Reinforced Concrete

Headwall parallel to embankment (no wingwalls)	
Square-edged on 3 edges	0.5
dimension, or beveled edges on 3 sides	0.2
Wingvalls at 30° to 75° to barrel	
Square-edged at crown	0.4
Crown edge rounded to radius of 1/12 barrel	
dimension, or beveled top edge	0.2
Wingwall at 10° to 25° to barrel	
Square-edged at crown	0.5
Wingwalls parallel (extension of sides)	
Square-edged at crown	0.7
Side-or slope-tangend (alst	
Side-or slope-tapered inlet	0.2

*Note: "End Section conforming to fill slope," made of either metal or concrete, are the sections commonly available from manufacturers. From limited hydraulic tests they are equivalent in operation to a headwall in both inlet and outlet control. Some end sections, incorporating a closed taper in their design have a superior hydraulic performance." These latter sections can be designed using the information given for the beveled inlet, p. 5-13.



**Vegetation Information** 

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024

\madison-vfp\Records\-\WPMSN\PJT2\525154\0000\R5251540000-004_Control Plan.docx

1016198

*****	*********	
	ER.IV - SLOPE PROTECTION - ENGLISH ANENT PROTECTION RESULTS	
*********	*********	
	<i>J</i> .	
PROJECT NAME: Dairyland Power Coop. COMPUTED BY: BJK	PROJECT NO.: 3081.33	
SLOPE DESCRIPTION: 2:1 Slopes	DATE: 10-06-1998	
	,	
Slope Gradient: 2.00:1	Slope Length: 50 feet	
Soil Type: Clay Loam (K= 0.21) 🗸	Annual R Factor: 125.0	
Slope Reach Material Type Densit feet	ty LS C	
0 - 30 Est.Veg. Mix 75-95 30 - 50 P300 Mix 75-95		
30 - 30 - 500 MIX 75-954	7.35 .002	
Slope Reach Material Type Densit	y ASLbare ASLmat SLT Sf Recommend	
feet	inch inch inch	
0 - 30 Est. Veg. Mix 75-95%	0.641 0.013 0.03 2.3 STABLE	For slope's 0'-30' Use Mix No. 20 Vegetation
30 - 50 P300 Mix 75-95%		NO. 20 Vegetation
0 - 50 Composite	0.844 0.009	For slopes > 30', use permanant
	0.844 0.009	Prosing matters on batton
Vegetation Density=Percentage of soil c	overage provided by vegetation	erosion matting on bottom Portion of slope (below 30')
C=Cover material performance factor (Fr	action of soil loss of unprotected)	
ASLbare=Average Soil Loss potential of		And No. 20 Vesetation on
ASLmat=Average Soil Loss potential w/ma	terial (uniform inches)	upper portion

SLT=Soil Loss Tolerance for slope segment (uniform inches) Sf=Safety Factor

Composite=Average soil loss from total slope length (uniform inches)

- See Attached For Vegetation Types

65	ercent	No. No. 60 70			e	2			12	15	15	12 5	30		35	4	4			8	25	nber 1. or mixtures ss otherwise pam, heavy
	ixture Proportions, Percent	No. No. 40 50	35	20	20	+	+	-	-	-	-	-	-				_		100			r Septer mixture ind unles
	re Propo	No. N 30 4	10	30 2	25 22	+	10	+	+	+	+	-	-	2	3	+	+	+	-	-	-	arted afte he seed gineer, a vhere a
sidois	Mjxtu	No. 20	6		24	40		+	+	$\left  \right $	+		30			+	+	-	0	-	$\left  - \right $	tings sta ion of t the en the fo ojects v
Southeres	╢╛	No. 10	40	25				s				1	20		+	$\vdash$	+	10	-	-	$\left  \right $	all plan selecti oval of ce with on pro
	Germi-	nation min.%	80	85	85	85	85	85	90	PLS*	PLS*	PLS*	8	85	8	8	8	90	80	85	90	ual oats in fa Used. The h the appro accordance ed for use
	Purity		85	97	67	98	88	92	98				67	96	79	67	98	95	95	67	98	eat for annu urre to be   Il meet wit shall be ir is intended ninate.
		Species	Kentucky Bluegrass	Red Fescue	Hard Fescue	Tall Fescue	Salt Grass	Redtop	Timothy	Little Bluestem	Sideoats Grama	Canada Wild Rye	Perennial Ryegrass	Improved Fine Perennial Ryegrass	Annual Ryegrass	Alsike Clover	Red Clover	White Clover	Birdsfoot Trefoil	Japenese Millet	Annual Oats*	<ul> <li>Substitute winter wheat for annual oats in fall plantings started after September 1.</li> <li>630.2.1.5.1.1.2 Mixture to be Used. The selection of the seed mixture or mixtures for use on the project shall meet with the approval of the engineer, and unless otherwise provided in the contract, shall be in accordance with the following:</li> <li>Seed Mixture No. 10 is intended for use on projects where average loam, heavy cay or moist soils predominate.</li> </ul>
			1	1	1	1	ł	1	1	1	1	1	1			1				-		P Se Se Se Se Se Se Se Se Se Se Se Se Se
Accentable	Varieties	Creeping		muraved turf tame	Fult's	-				Improved Fine		1			1 I					-		for us clay o
Species		Kentucky Bluegrass Poa pratensis Red Fescue Festuca rubra Creeping	Hard Fescue Festuca ovina Improved	var. duriuscula Tall Fescue	Salt Grass	RedtopAgrostis alba	Little Bluestem*	Sideoats Grama* Bouteloua curtipendula	Canada Wild Rye*	Perennial Ryegrass Lolium perenne	Annual Ryegrass	Alsike Clover	White Clover Trifolium repens	Birdsfoot Trefoil Lotus corniculatus	var. frumentacea Annual OatsAnnual Oats	Alfalfa Medicago sativa	Bromegrass			Winter Wheat		

630

			¥.	<u>v                                    </u>
STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION	DARD	JR	HIGHWAY AND STRUCTURE DNSTRUCTION	LIBRARY BG-00019.27 TTD 0 3 100
STATE OF V DEPARTMENT OF	STANDARD SPECIFICATIONS	FOR	HIGHWAY AND STRUCTURE CONSTRUCTION	NOIL LING OF THE NOIL THE THE PARTINE
	×			*
	in L			

****** VEGETATION SELECTION ***** ***** North American Green *****

Region Number: 1

Predominant Soil Type: Clay - Clay Loam

Moisture Regime Conditions: Normal Moisture

Planned Maintenance: Medium - High Maintenance

		Growth	Seed	Rate	
	Longevity	Habit	lb/ac	kg/ha	
Grasses					
Tall Fescue (Festuca arundinacea)	Р	в	200	224	(NO. 20)
Chewings Fescue (Festuca rubra, commutata)	, P	в	120	134	(No.10)
Kentucky Bluegrass (Poa pratensis)	Р	s	80	90	(No 10, No. 20)
Perennial Ryegrass (Lolium perenne)	Р	в	160	179	(NO. 10, NO 20)
Annual Ryegrass (Lolium multiflorum)	Α	в	160	179	000.10,100 201
Orchardgrass (Dactylis glomerata)	Р	в	40	45	
Timothy (Phleum pratense)	P	в	80	90	
Creeping Red Fescue (Festuca rubra)	Ρ	s	120	134	
Legumes					
Alsike Clover (Trifolium hybridum)	Р		15	17	
White Dutch Clover (Trifolium repens)	P		5	6	
White Sweet Clover (Melilotus alba)	Ρ		15	17	

1 8.



# Appendix B: Surface Water Run-Off Control System Calculations

- Leachate Storage Capacity for the 25-Year 24-Hour Storm Event
- References



# Leachate Storage Capacity for the 25-Year 24-Hour Storm Event

**708** Heartland Trail, Suite 3000, Madison, WI 53717 • www.TRCsolutions.com

PROJECT / LOCATION: DPC: Alma Offsite Disposal Facility, Phase IV Landfi	Ι	PROJECT / PROPOSAL NO.	
SUBJECT: Active Area Leachate Disposal Capacity			421717.0000
PREPARED BY: B. Kahnk	DATE: 4/27/2021	FINAL	Х
CHECKED BY: J. Hotstream	DATE: 4/29/2021	REVISION	X

<u>Purpose</u>: Determine the leachate storage capacity from a 25 year, 24-hour storm event during the critical leachate generation scenario.

#### Assumptions:

1. Critical leachate generation scenario occurs during the current condition with approximately 12.7 acres are operational (Portions of Cell 2 and the entirety of Cell 3) and approximately 7.6 acres have final cover. (See Figure 1 for this scenario).

2. The 25 year, 24-hour storm event is 5.40 inches (refer to attached sheet).

3. No portion of the leachate drainage layer within the open area is saturated.

4. The leachate drainage sand has a porosity of 30 percent. The bottom ash has a porosity of 25 percent.

5. The minimum thickness of the drainage layer is 1.0 foot.

6. A minimum of 1 foot of bottom ash was installed above the drainage layer in Cell 2A over an area of approximately 2.3 acres.

7.A minimum of 4 feet of bottom ash was installed above the drainage layer during the Cell 3A construction. Using a maximum elevation of 820 feet, this bottom ash covers an area of approximately 2.75 acres.

#### Method:

1. Determine the volume of rain collected in the open areas during the critical condition from a 25 year, 24-hour storm event.

2. Calculate the available storage volume for leachate in the drainage layer. Due to the slope of the landfill perimeter berm, the capacity of the drainage layer is based on the area of the drainage layer at or below an elevation of 820 feet. Elevation 820 represents the lowest top of berm base grade elevation documented during construction of Cell 3A (refer to attached base grades sheet).

3. The available storage volume within the pipe trenches, transfer piping, and leachate collection tank is ignored.

4. Calculate the available storage volume for leachate in the 4 feet of bottom ash placed above the drainage layer during Cell 3A construction and 1 foot of bottom ash placed above the drainage layer during Cell 2A construction.

5. Calculate the volume of storage required for the 25 year, 24-hour storm event.

TRC 708 Heartland Trail, Suite 3000, Madison, WI 53717 • www.TRCsolutions.com					
PROJECT / LOCATION: DPC: Alma Offsite Disposal Facility, Phase IV Landfill			PROJECT / PROPOSAL NO.		
SUBJECT: Active Area Leachate Disposal Capacity			421717.0000		
PREPARED BY: B. Kahnk DATE: 4/27/2021			X		
CHECKED BY: J. Hotstream	DATE: 4/29/2021	REVISION			

Step 1. Determine volume of run-off collected during the 25 year, 24-hour storm event

Area: 12.7 acres - Area open (portions of Cell 2 and the entirety of Cell 3)

Rain Event: 5.43 inches

 $Runoff Volume(ft^{3}): Rain Event (inches) \times \frac{1ft}{12 inches} \times Area (acres) \times \frac{43,560 ft^{2}}{1 acre}$ 

Runoff Volume: 250,328 cubic feet

Step 2. Calculate the available storage volume for leachate in the drainage layer.

Area:	9.2 acres - see attached base grades plan
Thickness:	1 foot
Porosity:	0.3
$C$ $(C)^{3}$	43,560 $ft^2$

Storage Capacity( $ft^3$ ): Area (acres)  $\times \frac{43,500 ft^2}{1 \text{ acre}} \times Thickness (foot) \times Porosity$ 

Storage Capacity: 120,226 cubic feet

Step 3. Ignore storage in pipe trenches, transfer piping and leachate collection tank

Step 4. Calculate the available storage volume in the bottom ash placed above the drainage layer

Cell 2A:		Cell 3A:	
Area:	2.3 acre(s)	Area:	2.75 acre(s)
Thickness:	1 feet	Thickness:	4 feet
Porosity:	0.25	Porosity:	0.25
Storage Capacity(ft Cell 2A:	³ ): Area (acres) $\times \frac{43,5}{1}$	$\frac{560 ft^2}{acre} \times Thickness (f$	foot) × Porosity
Storage Capacity:	25,047 cubic feet	Storage Capacity:	119,790 cubic feet

Total Storage Capacity (Cell 2A + Cell 3A): 144,837 cubic feet

TRC 708 Heartland Trail, Suite 3000, Madison, WI 53717 • www.TRCsolutions.com					
PROJECT / LOCATION: DPC: Alma Offsite Disposal Facility, Phase IV Landfill			PROJECT / PROPOSAL NO		
SUBJECT: Active Area Leachate Disposal Capacity			421717.0000		
PREPARED BY: B. Kahnk DATE: 4/27/2021			Х		
CHECKED BY: J. Hotstream DATE: 4/29/2021					

Step 5. Calculate the storage required for the 25 year, 24-hour storm event.

Required Storage:

Required Storage = Run Off Volume – Drainage Layer Capacity – Bottom Ash Capacity

Run-Off Volume:	250,328	cubic feet from Step 1
Drainage Layer:	120,226	cubic feet, from Step 2
Bottom Ash:	144,837	cubic feet from Step 4

Required Storage: -14,734 cubic feet

The negative required storage calculated above indicates that there is sufficient storage capacity in the leachate collection drainage layer and the bottom ash that was placed in the cells above the drainage layer to contain the runoff from a 25 year, 24-hour storm event.



References

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024

\madison-vfp\Records\-\WPMSN\PJT2\525154\0000\R5251540000-004_Control Plan.docx

Precipitation Frequency Data Server



NOAA Atlas 14, Volume 8, Version 2 Location name: Alma, Wisconsin, US* Latitude: 44.3657°, Longitude: -91.9171° Elevation: 1074 ft* * source: Google Maps



#### POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_& aerials

PDS-	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration					recurrence	interval (y	ears)			
	1	2	5	10	25	50	100	200	500	1000
5-min	0.366 (0.300-0.455)	<b>0.436</b> (0.357-0.543)	<b>0.555</b> (0.453-0.692)	<b>0.657</b> (0.532-0.822)	<b>0.801</b> (0.626-1.03)	<b>0.915</b> (0.697-1.20)	<b>1.03</b> (0.757-1.38)	<b>1.16</b> (0.809-1.58)	<b>1.32</b> (0.887-1.85)	<b>1.45</b> (0.946-2.0
10-min	0.536 (0.439-0.666)	<b>0.639</b> (0.523-0.795)	<b>0.813</b> (0.663-1.01)	0.962 (0.779-1.20)	<b>1.17</b> (0.917-1.52)	<b>1.34</b> (1.02-1.75)	<b>1.51</b> (1.11-2.02)	<b>1.69</b> (1.19-2.31)	<b>1.94</b> (1.30-2.71)	<b>2.13</b> (1.39-3.0
15-min	0.653 (0.535-0.812)	<b>0.779</b> (0.638-0.969)	<b>0.991</b> (0.809-1.24)	<b>1.17</b> (0.950-1.47)	<b>1.43</b> (1.12-1.85)	<b>1.64</b> (1.25-2.14)	<b>1.84</b> (1.35-2.46)	<b>2.06</b> (1.45-2.82)	<b>2.36</b> (1.58-3.31)	<b>2.59</b> (1.69-3.6
30-min	0.908 (0.744-1.13)	<b>1.09</b> (0.894-1.36)	<b>1.40</b> (1.14-1.74)	<b>1.66</b> (1.34-2.08)	<b>2.03</b> (1.58-2.62)	<b>2.32</b> (1.76-3.03)	<b>2.62</b> (1.92-3.49)	<b>2.92</b> (2.05-4.00)	3.34 (2.24-4.68)	<b>3.66</b> (2.39-5.1
60-min	<b>1.19</b> (0.978-1.48)	<b>1.42</b> (1.16-1.77)	<b>1.82</b> (1.48-2.27)	<b>2.17</b> (1.76-2.72)	2.69 (2.12-3.51)	<b>3.13</b> (2.39-4.11)	<b>3.58</b> (2.63-4.81)	<b>4.07</b> (2.86-5.60)	<b>4.76</b> (3.20-6.70)	<b>5.31</b> (3.46-7.5
2-hr	<b>1.48</b> (1.22-1.82)	<b>1.75</b> (1.44-2.15)	<b>2.23</b> (1.84-2.76)	<b>2.68</b> (2.19-3.33)	<b>3.36</b> (2.67-4.37)	<b>3.94</b> (3.04-5.15)	<b>4.55</b> (3.38-6.09)	<b>5.22</b> (3.70-7.15)	<b>6.18</b> (4.20-8.66)	<b>6.96</b> (4.57-9.8
3-hr	<b>1.67</b> (1.38-2.04)	<b>1.95</b> (1.62-2.39)	<b>2.48</b> (2.05-3.05)	<b>2.99</b> (2.46-3.69)	<b>3.79</b> (3.04-4.93)	<b>4.48</b> (3.48-5.86)	<b>5.24</b> (3.92-7.00)	<b>6.07</b> (4.33-8.31)	7.28 (4.97-10.2)	8.28 (5.46-11.
6-hr	<b>1.96</b> (1.64-2.38)	<b>2.28</b> (1.91-2.77)	<b>2.90</b> (2.41-3.53)	<b>3.50</b> (2.90-4.28)	<b>4.47</b> (3.63-5.79)	<b>5.32</b> (4.18-6,93)	<b>6.27</b> (4.73-8.33)	7.32 (5.27-9.96)	8.86 (6.11-12.3)	<b>10.1</b> (6.74-14.
12-hr	<b>2.23</b> (1.88-2.68)	<b>2.59</b> (2.18-3.12)	<b>3.29</b> (2.76-3.96)	<b>3.96</b> (3.30-4.79)	5.02	<b>5.96</b> (4.71-7.68)	6.99 (5.31-9.21)	8.13 (5.90-11.0)	9.80 (6.81-13.5)	<b>11.2</b> (7.49-15.
24-hr	<b>2.53</b> (2.15-3.01)	<b>2.91</b> (2.47-3.46)	<b>3.63</b> (3.07-4.33)	<b>4.33</b> (3.64-5.(9)	5.43 (4.47-6.89)	<b>6.40</b>	7.46 (5.72-9.75)	8.65 (6.33-11.6)	<b>10.4</b> (7.26-14.2)	<b>11.8</b> (7.97-16.
2-day	<b>2.94</b> (2.52-3.46)	<b>3.29</b> (2.81-3.87)	<b>3.97</b> (3.39-4.69)	4.65 (3.94-5.53)	(4.79-7.25)	<b>6.75</b> (5.44-8.56)	7.86 (6.08-10.2)	9.10 (6.72-12.1)	<b>10.9</b> (7.72-14.9)	<b>12.5</b> (8.48-17.
3-day	<b>3.23</b> (2.79-3.79)	<b>3.58</b> (3.08-4.19)	<b>4.26</b> (3.65-5.01)	<b>4.95</b> (4.21-5.84)	<b>6.07</b> (5.07-7.59)	7.07 (5.72-8.91)	8.19 (6.37-10.6)	<b>9.45</b> (7.01-12.5)	<b>11.3</b> (8.02-15.3)	<b>12.8</b> (8.79-17.
4-day	3.48 (3.00-4.05)	<b>3.85</b> (3.32-4.49)	<b>4.57</b> (3.93-5.35)	<b>5.28</b> (4.51-6.21)	6.42 (5.37-7.98)	7.43 (6.03-9.31)	8.55 (6.67-11.0)	9.81 (7.30-12.9)	<b>11.6</b> (8.29-15.7)	<b>13.2</b> (9.04-17.
7-day	<b>4.09</b> (3.56-4.73)	<b>4.59</b> (3.99-5.31)	<b>5.48</b> (4.75-6.37)	6.30 (5.42-7.35)	<b>7.54</b> (6.31-9.20)	8.58 (6.97-10.6)	<b>9.70</b> (7.58-12.3)	<b>10.9</b> (8.15-14.2)	<b>12.6</b> (9.03-16.9)	<b>14.0</b> (9.70-19.
10-day	<b>4.64</b> (4.05-5.34)	<b>5.24</b> (4.57-6.03)	<b>6.27</b> (5.45-7.24)	7.17 (6.20-8.32)	8.50 (7.11-10.3)	9.58 (7.80-11.7)	<b>10.7</b> (8.39-13.4)	<b>11.9</b> (8.91-15.4)	<b>13.6</b> (9.73-18.1)	<b>14.9</b> (10.4-20.
20-day	<b>6.27</b> (5.53-7.14)	7.04 (6.19-8.02)	8.32 (7.29-9.51)	9.40 (8.19-10.8)	<b>10.9</b> (9.19-13.0)	<b>12.1</b> (9.95-14.7)	<b>13.4</b> (10.6-16.6)	<b>14.7</b> (11.0-18.7)	<b>16.4</b> (11.8-21.6)	17.7

T

7.70

(6.82 - 8.72)

9.58

(8.53 - 10.8)

11.2

(10.0-12.6)

30-day

45-day

60-day

8.60

(7.61 - 9.75)

10.7

(9.51 - 12.1)

12.6

(11.2-14.1)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

11.3

(9.91 - 12.9)

13.9

(12.3-15.8)

16.3

(14.4-18.5)

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

13.0

(11.0-15.3)

15.9

(13.4 - 18.5)

18.5

(15.7-21.4)

143

(11.8 - 17.2)

17.3

(14.3-20.6)

20.1

(16.6-23.7)

15.7

(12.4 - 19.3)

18.8

(14.9-22.9)

21.5

(17.1-26.1)

17.0

(12.9 - 21.6)

20.2

(15.3-25.3)

22.9

(17.4-28.7)

18.8

(13.6-24.6)

21.9

(15.9 - 28.5)

24.7

(18.0-31.8)

20.2

(14.2 - 26.9)

23.3

(16.4-30.8)

25.9

(18.4-34.2)

Back to Top

10.1

(8.89-11.5)

12.5

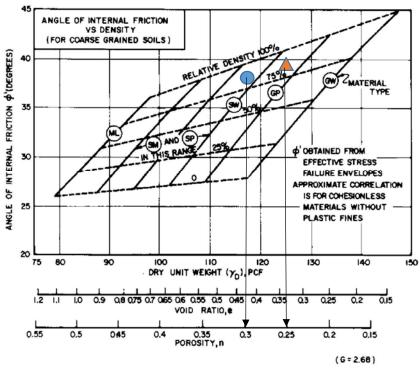
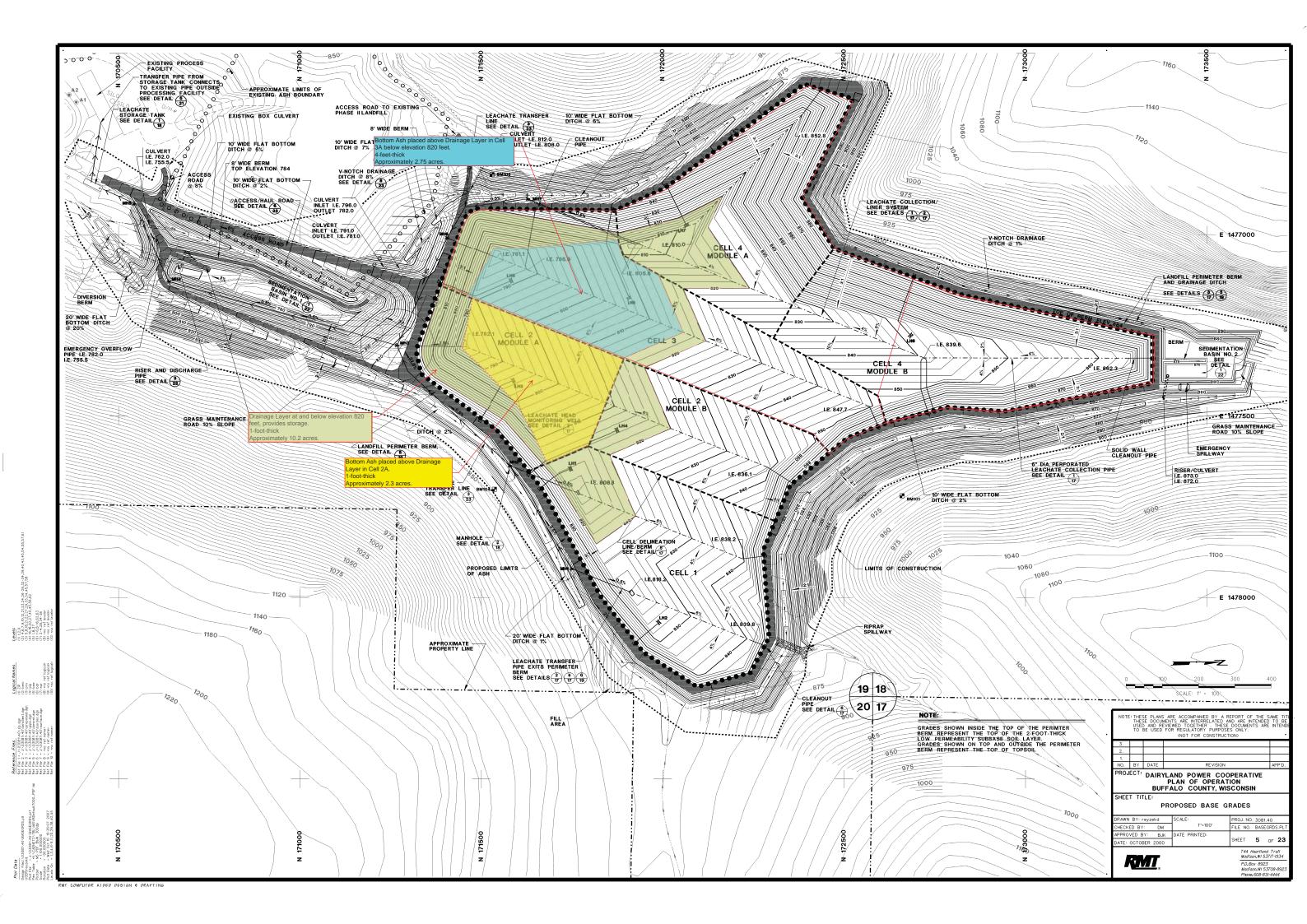
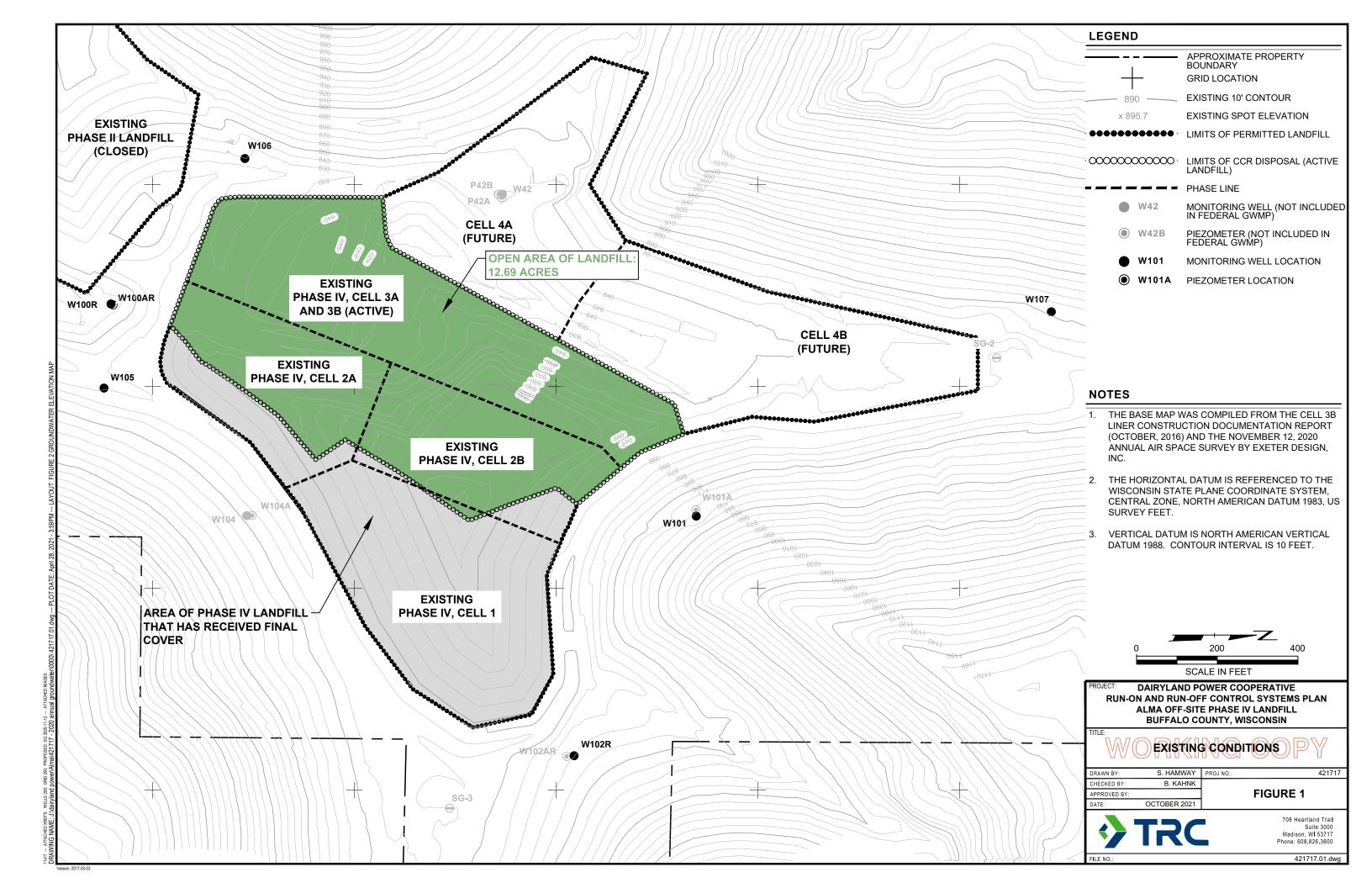
(11.1 - 14.1)

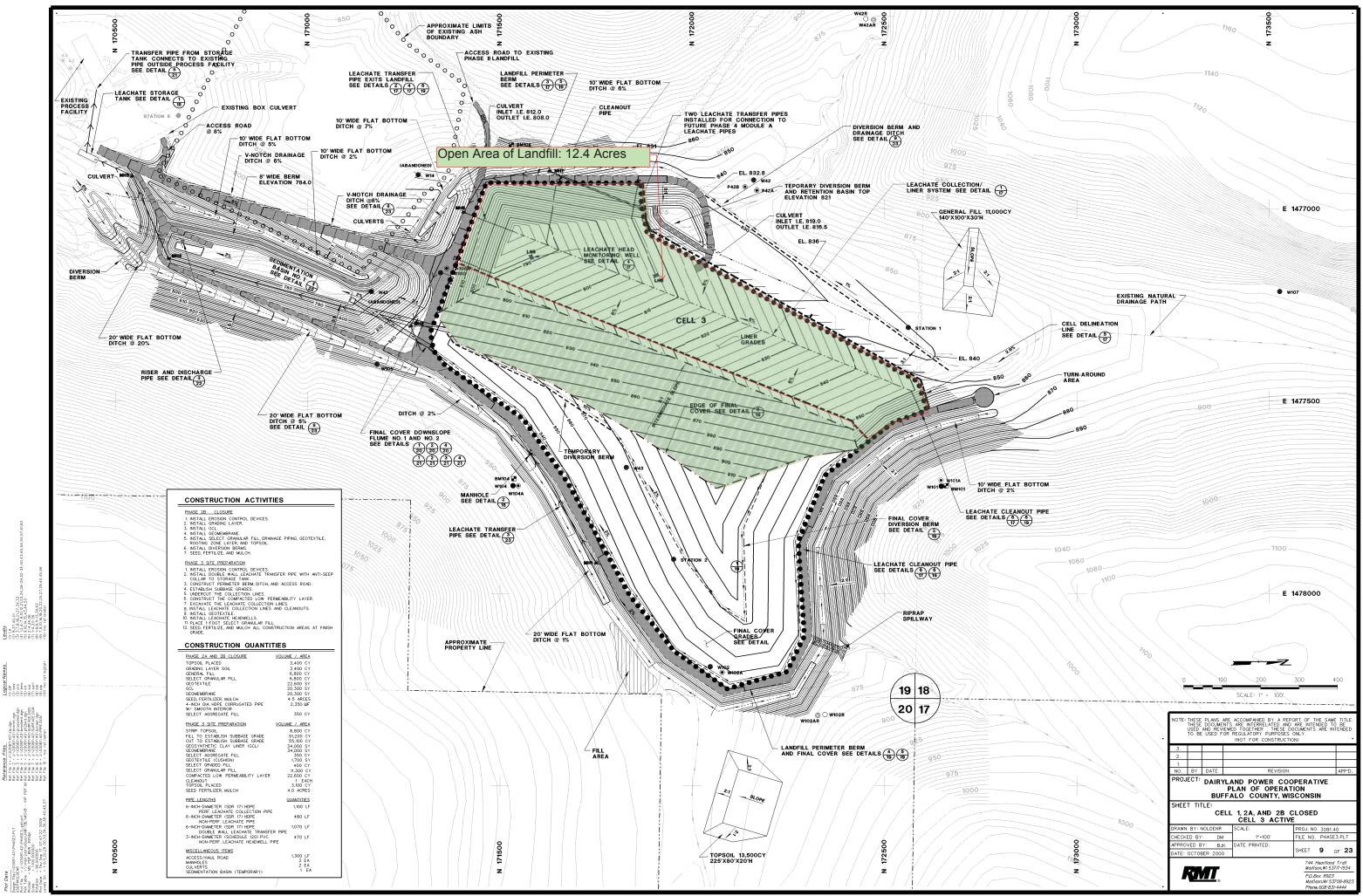
14.7

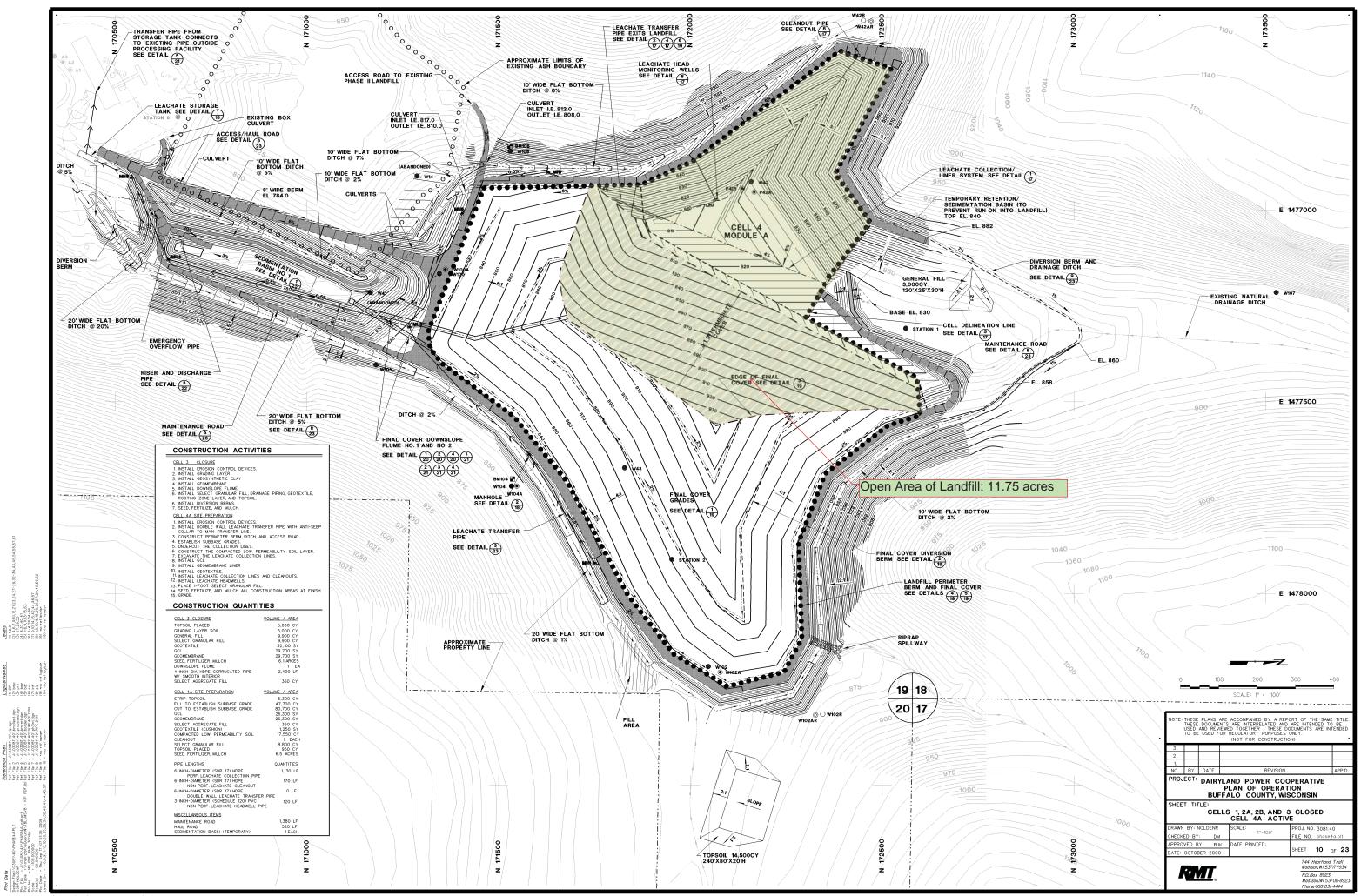
(13.0-16.5)

<b>C</b> TRC	708 Heartland Trail, Suite 3000, Madison, WI 53717 • www.TRCsolutions.com SH					
PROJECT / LOCATION	N: DPC: Alma Offsite Disposal Facility, Phase I	PROJECT / PROPOSAL NO.				
SUBJECT: Active Area Leachate Disposal Capacity			243332.0002			
PREPARED BY: J. Hotstream DATE: 8/31/2016			FINAL			
CHECKED BY: DATE: F			REVISION			

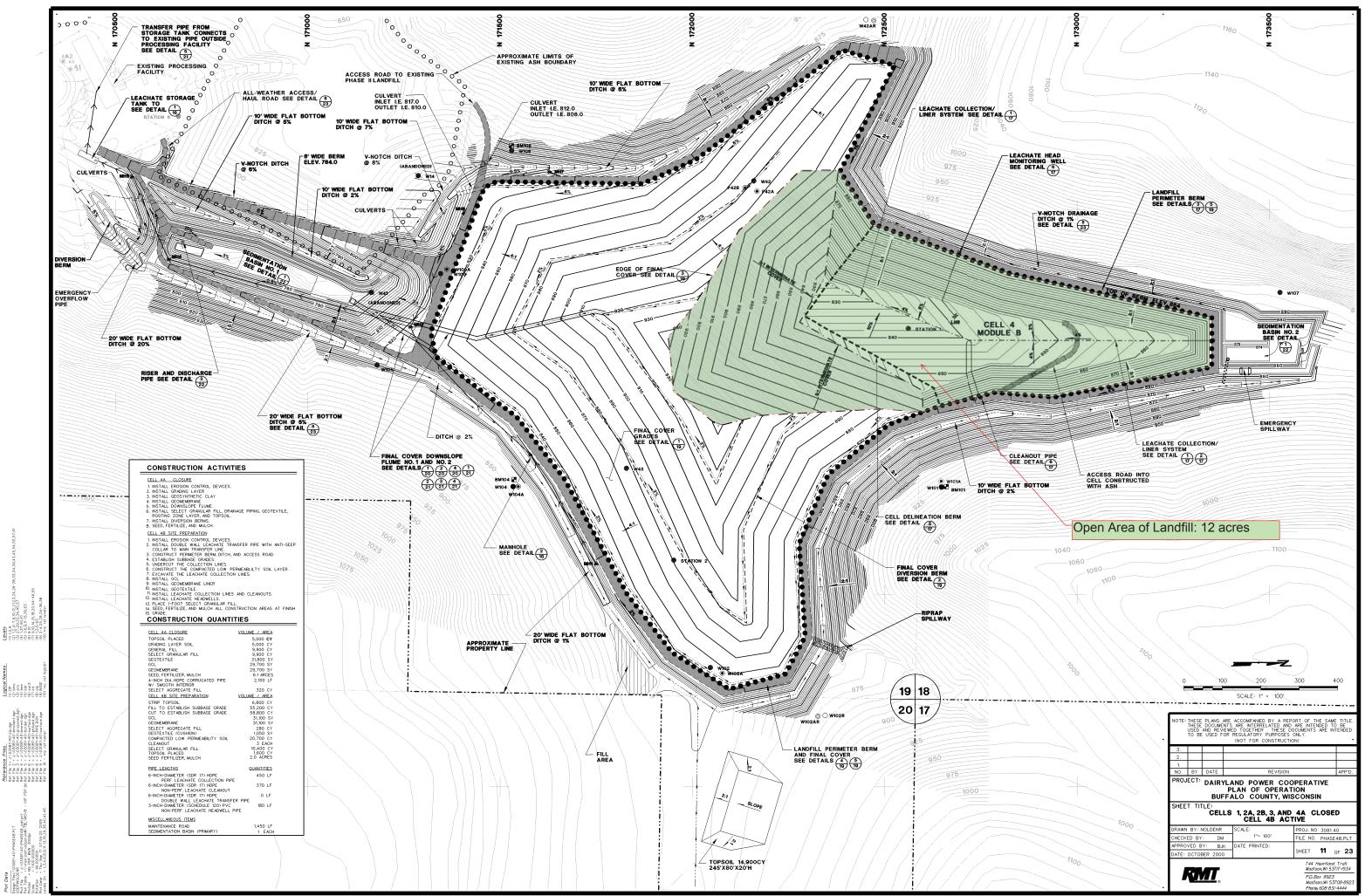
#### Volume Relationships of Sand



Figure from NavFac DM 7.1 (1986)


Drainage Layer Sand - Poorly Graded Sand (SP)

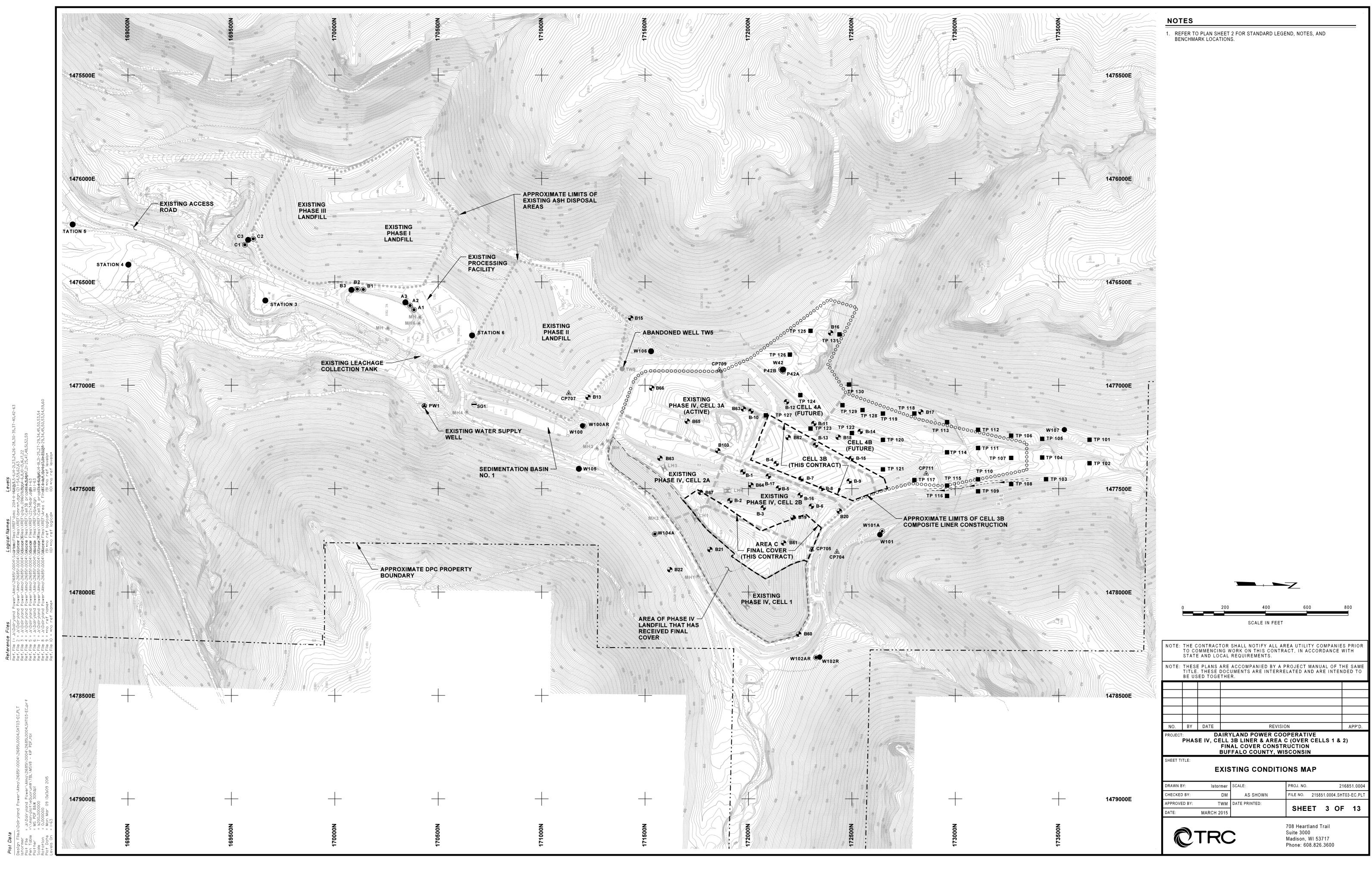
Bottom Ash - Poorly Graded Sand (SP) to Poorly Graded Gravel (GP)

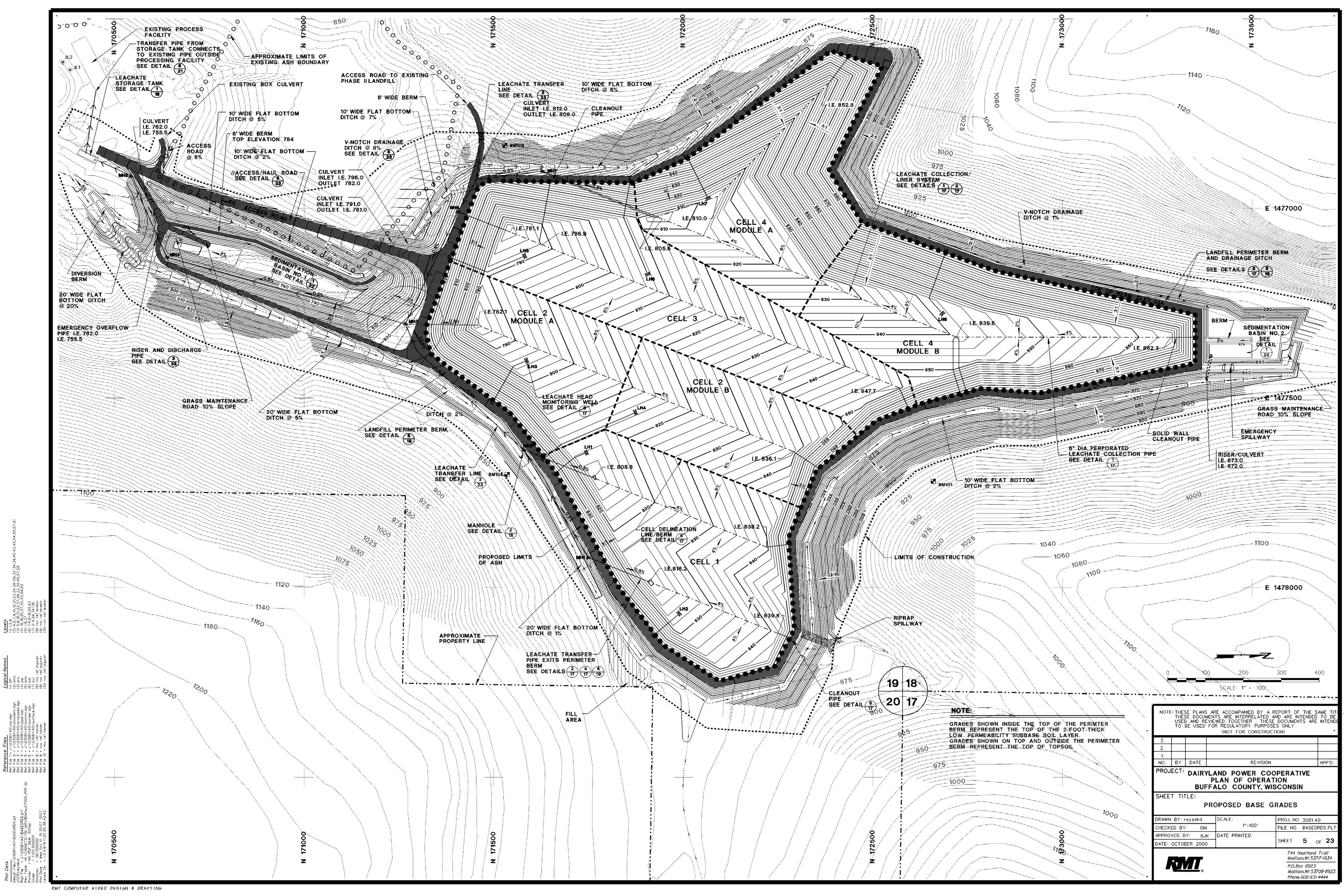


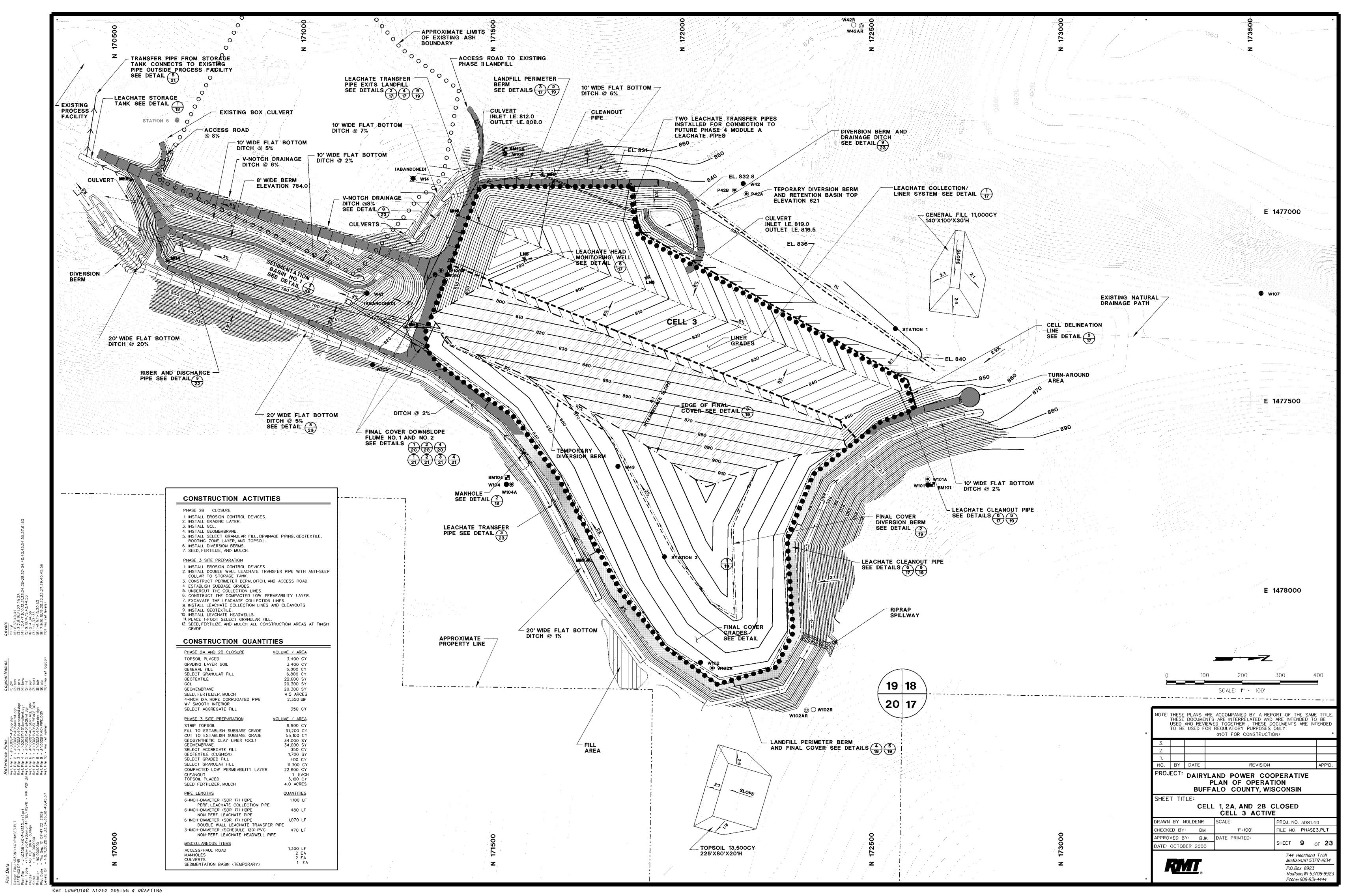


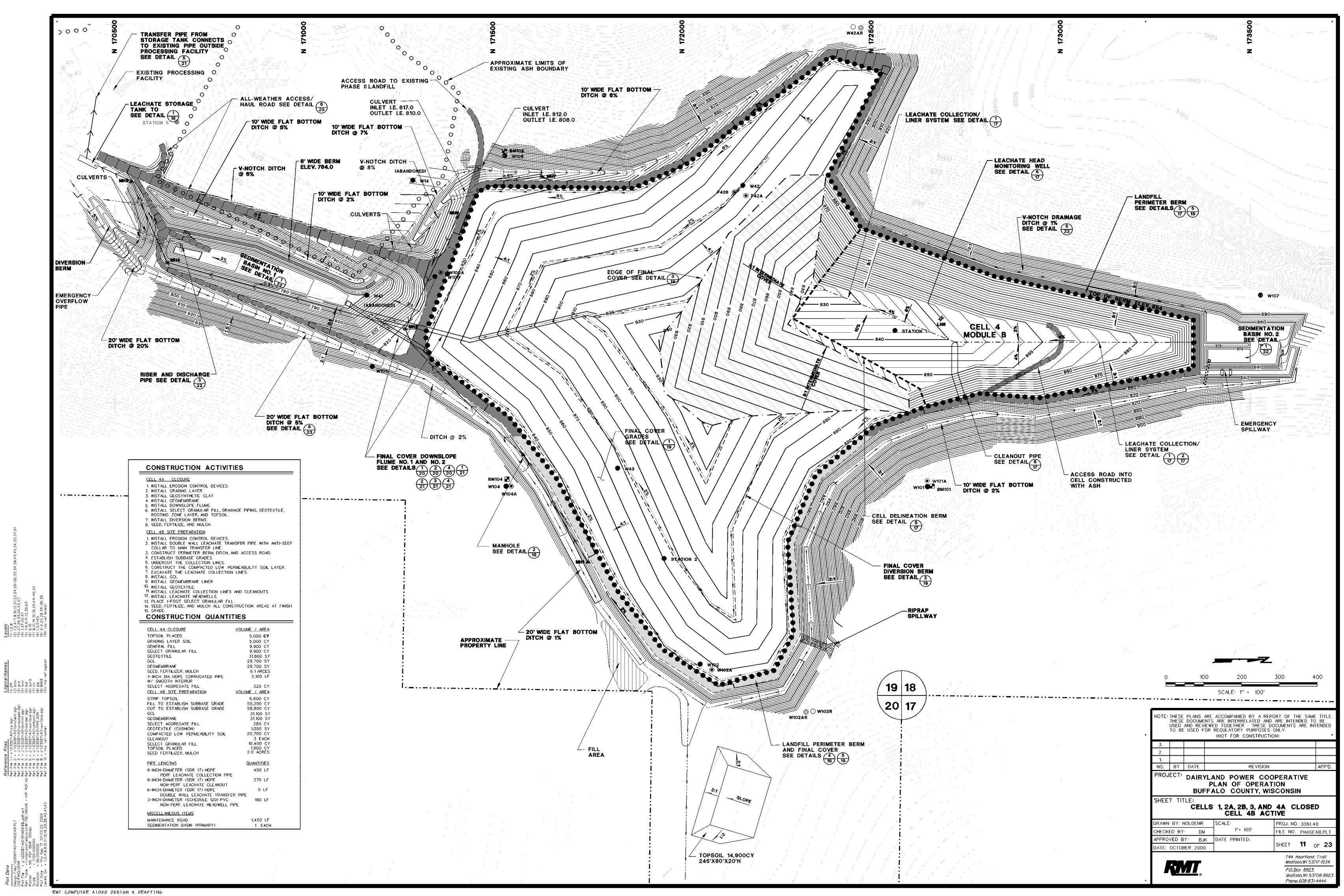


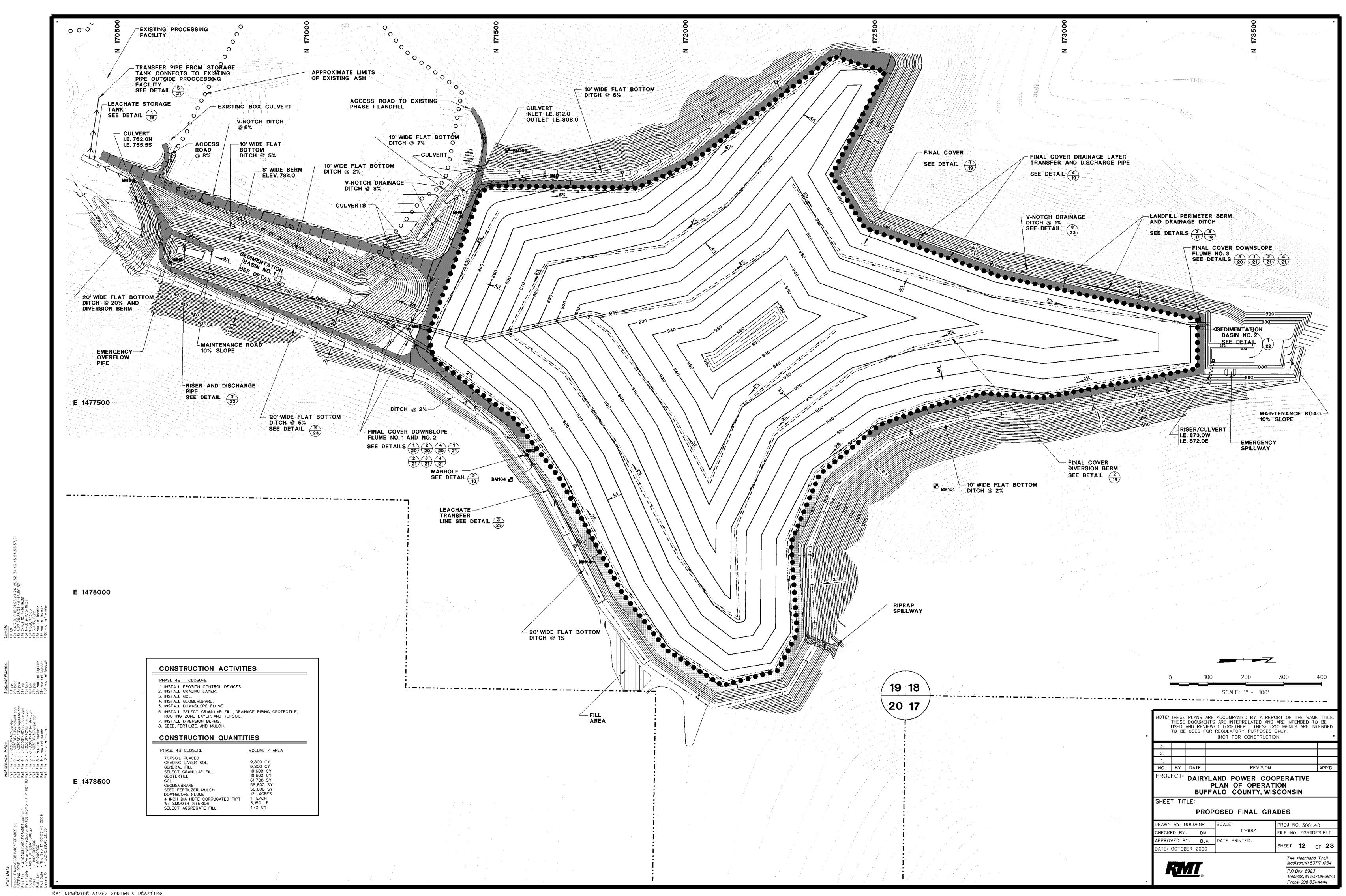


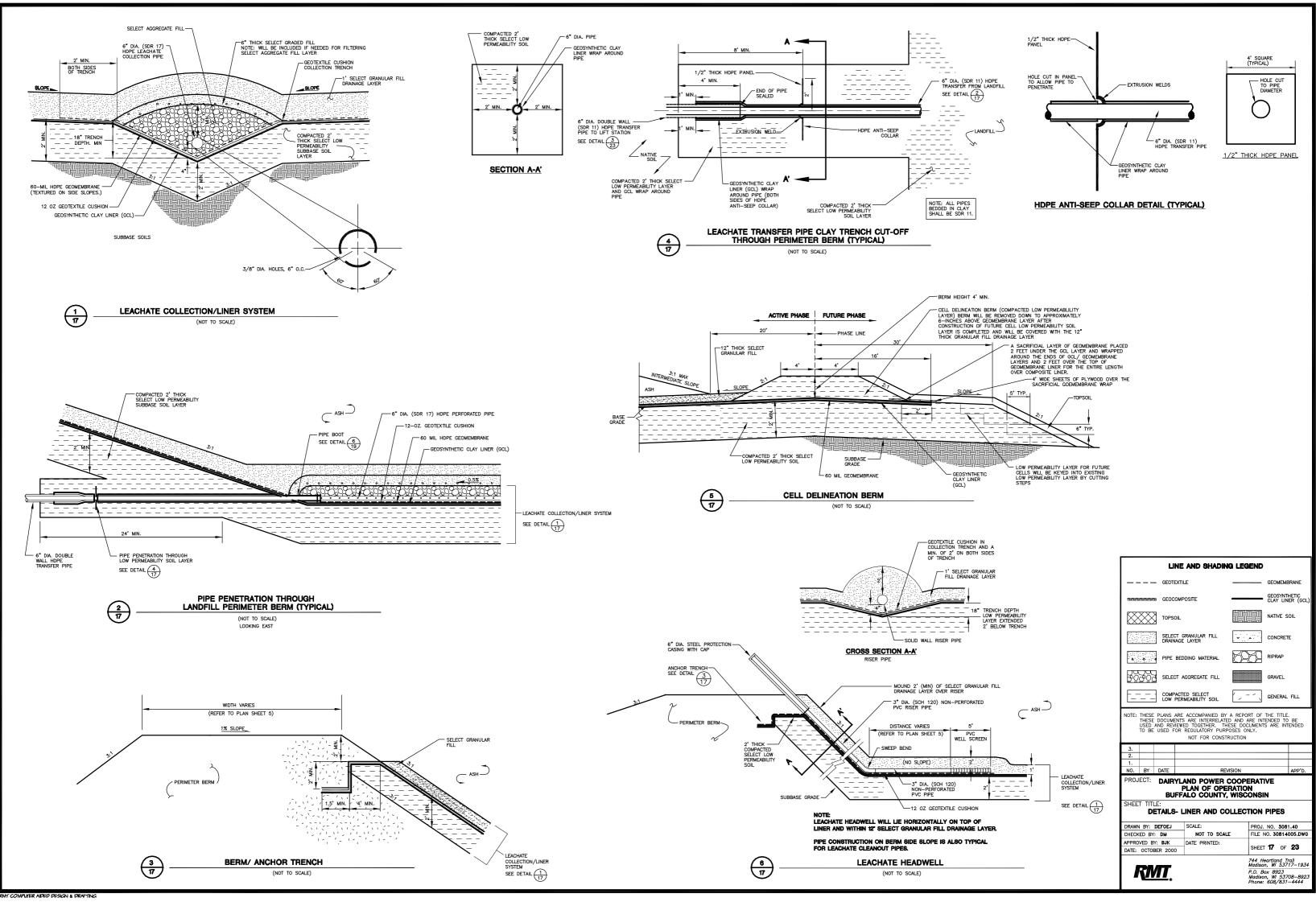


RMT COMPUTER AIDED DESIGN € DRAFTING



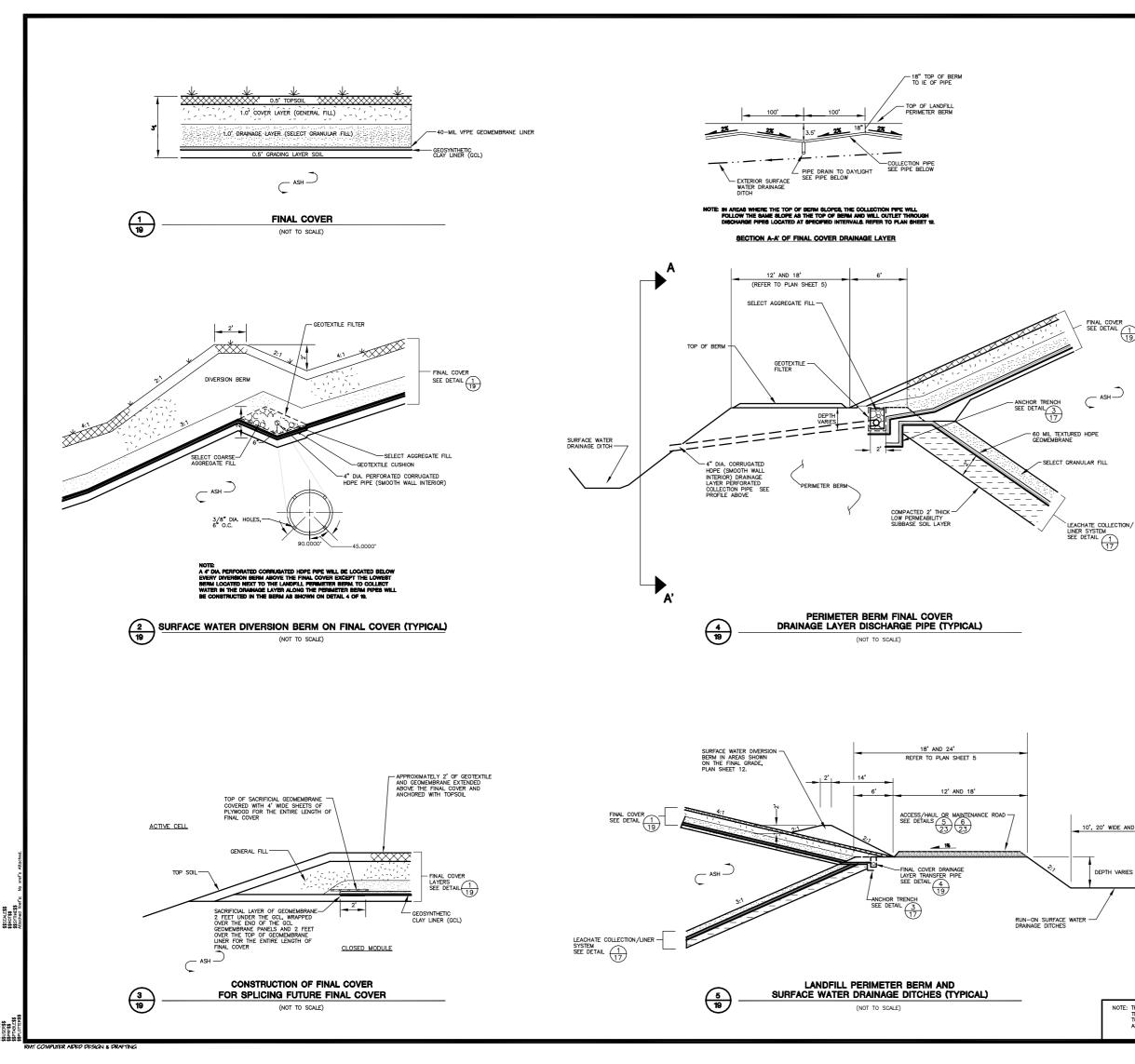


## Appendix C: Relevant October 2000 POO Plan Sheets


- Sheet 3 Existing Conditions Map Phase IV, Cell 3B Liner & Area C (Over Cells 1 & 2) Final Cover Construction
- Sheet 5 Proposed Base Grades
- Sheet 9 Phasing Plan Cell 1, 2A, and 2B Closed; Cell 3 Active
- Sheet 11 Phasing Plan Cell 1, 2A, 2B, 3, and 4A Closed; Cell 4B Active
- Sheet 12 Proposed Final Grades
- Sheet 17 Details Liner and Collection Pipes
- Sheet 19 Details Final Cover
- Sheet 22 Details Sedimentation Basins
- Sheet 23 Details Miscellaneous

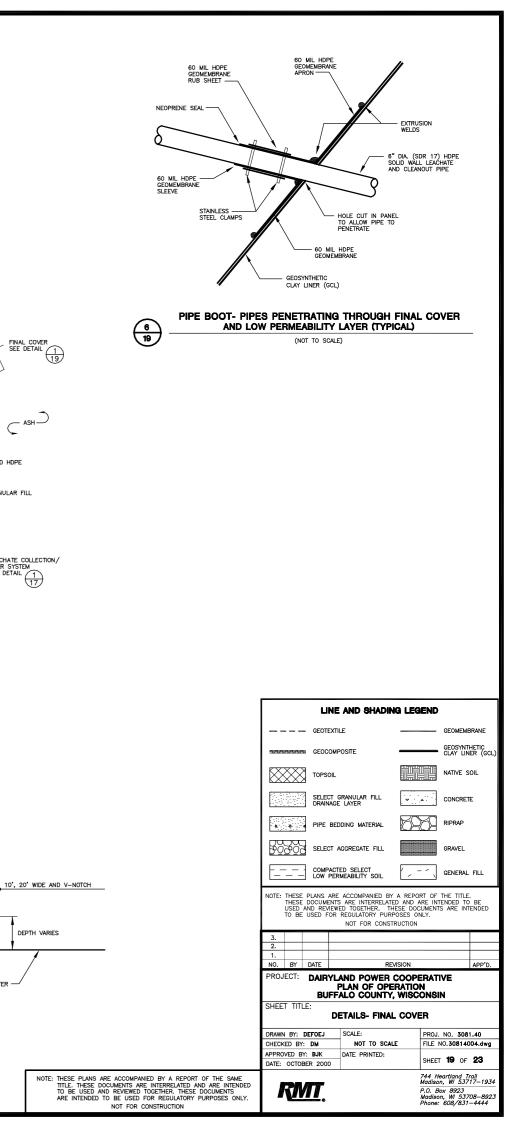


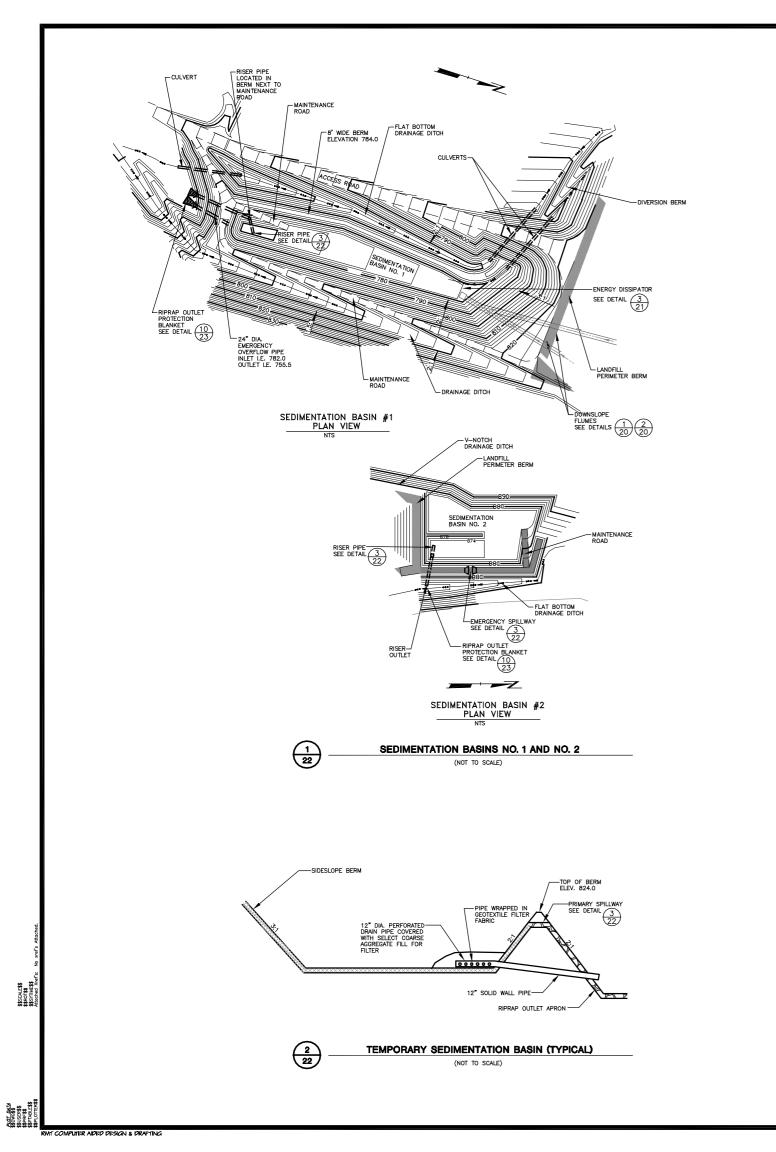


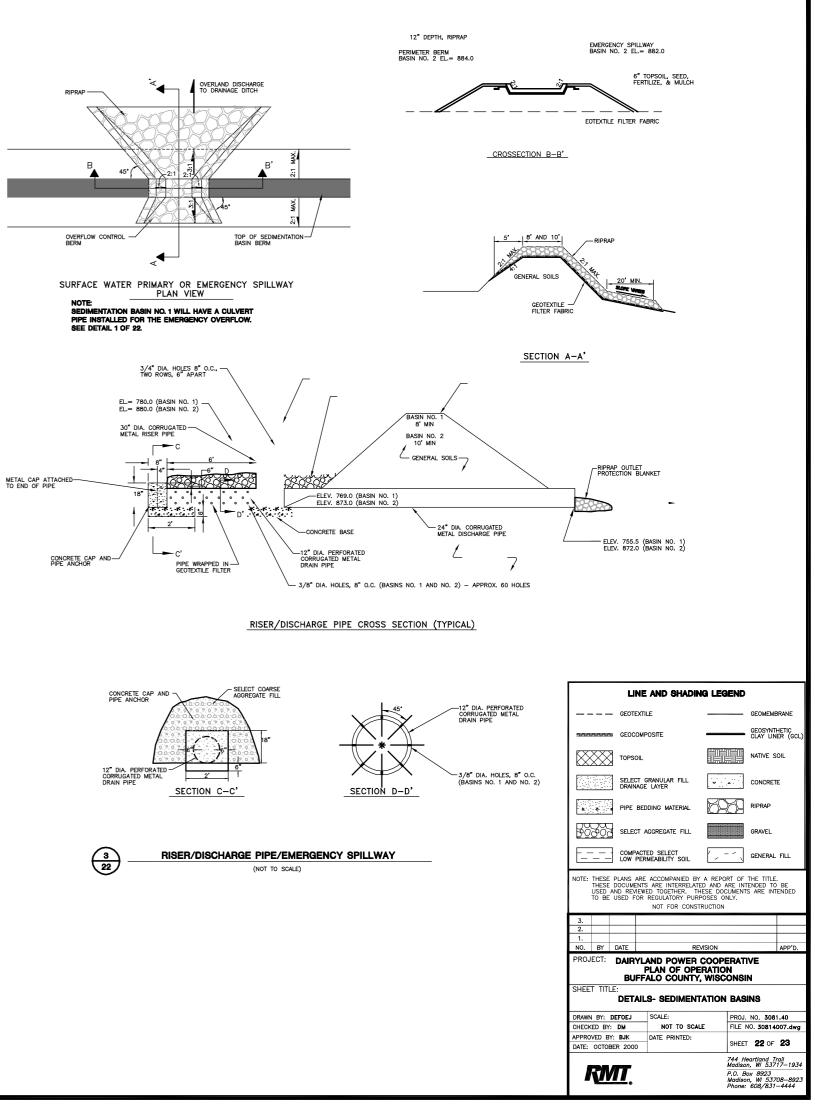


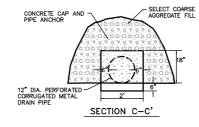



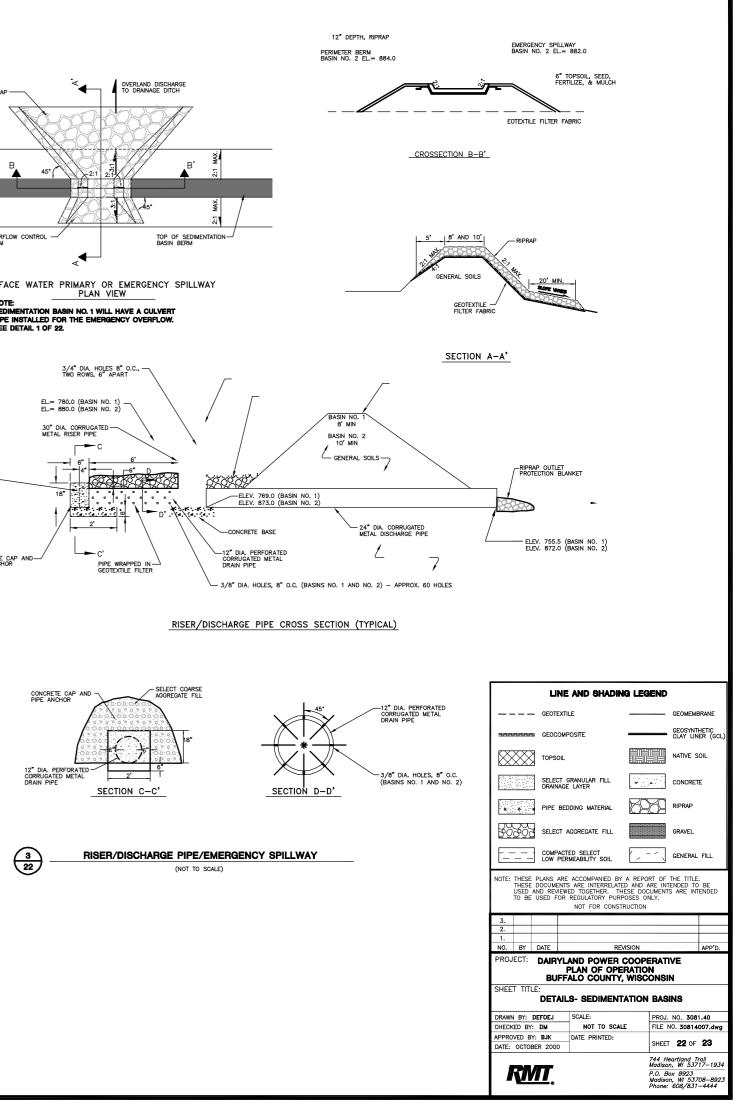


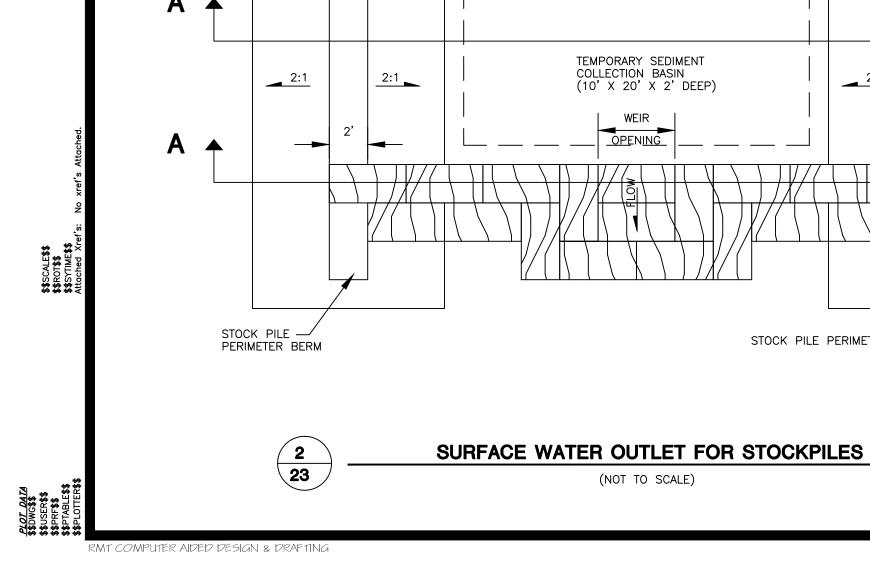



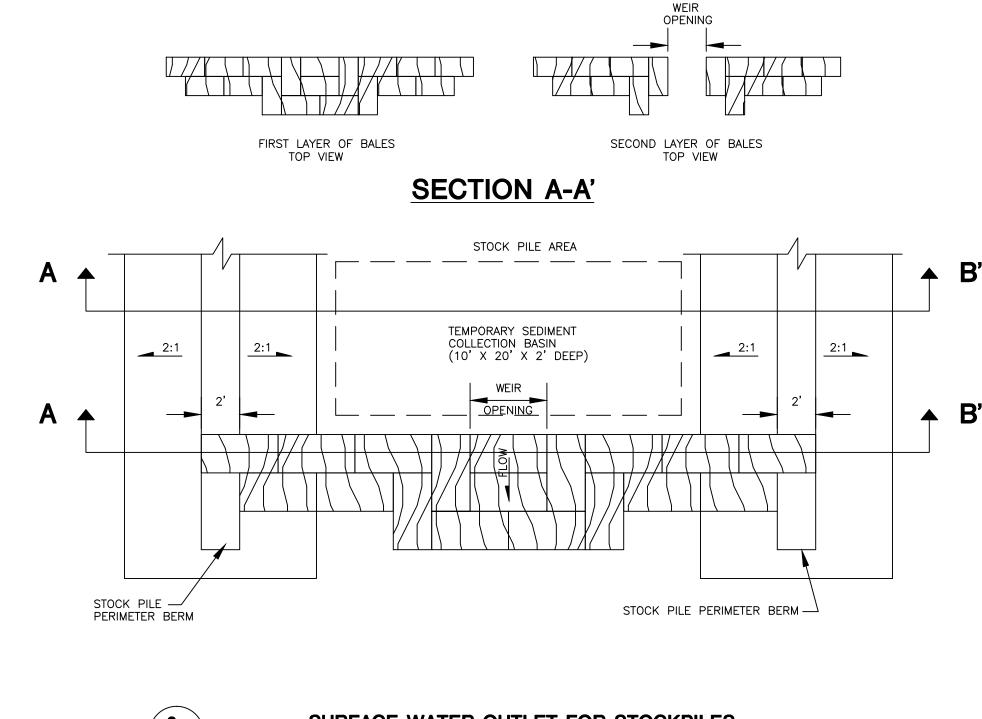


PLOT DATA SSDWGSS SSDWGSS SSPRFSS SSPRFSS SSPRFSS


\$\$SCALE\$\$ \$\$ROT\$\$ \$\$SYTIME\$\$





PLOT DATA 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 150WGSS 100WGSS 150WGSS 150W

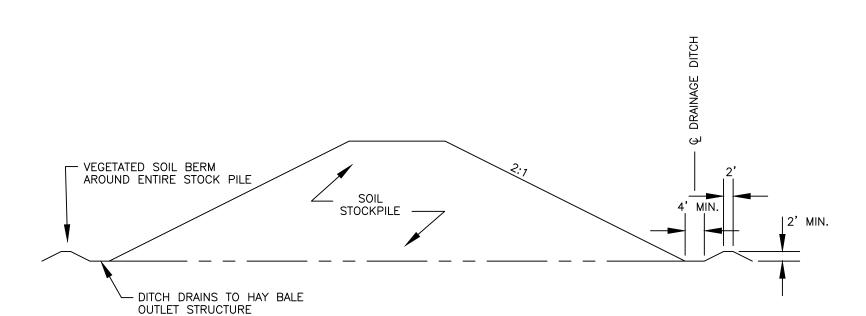


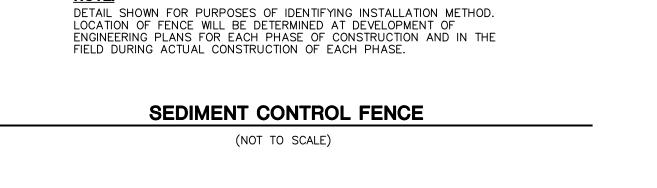












V_____ 2 LAYERS OF HAY BALES

-NO BALES (WEIR OPENING)





2"x2" DRIVEN POSTS — (8' CENTERS)

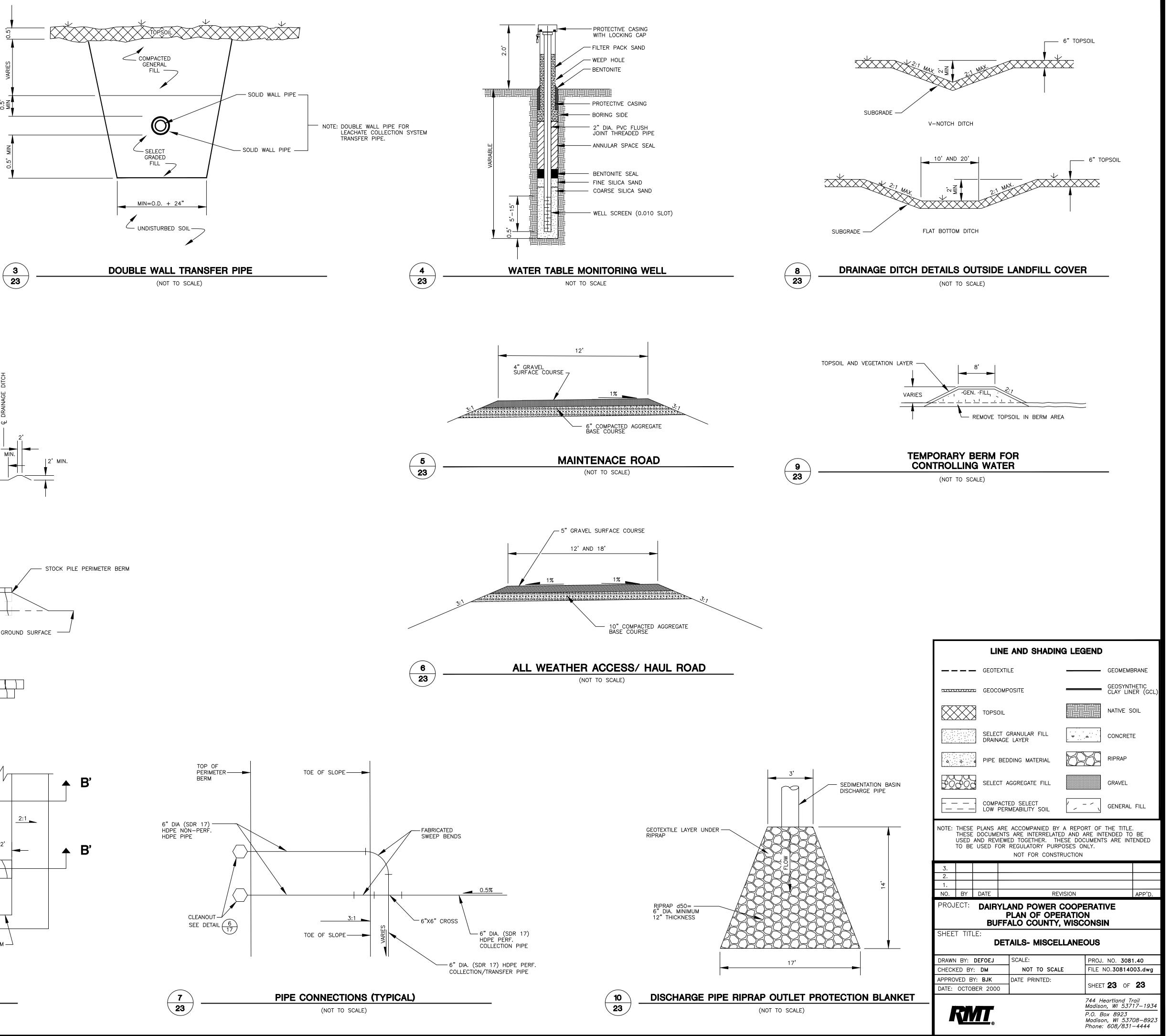
GEOTEXTILE FABRIC —

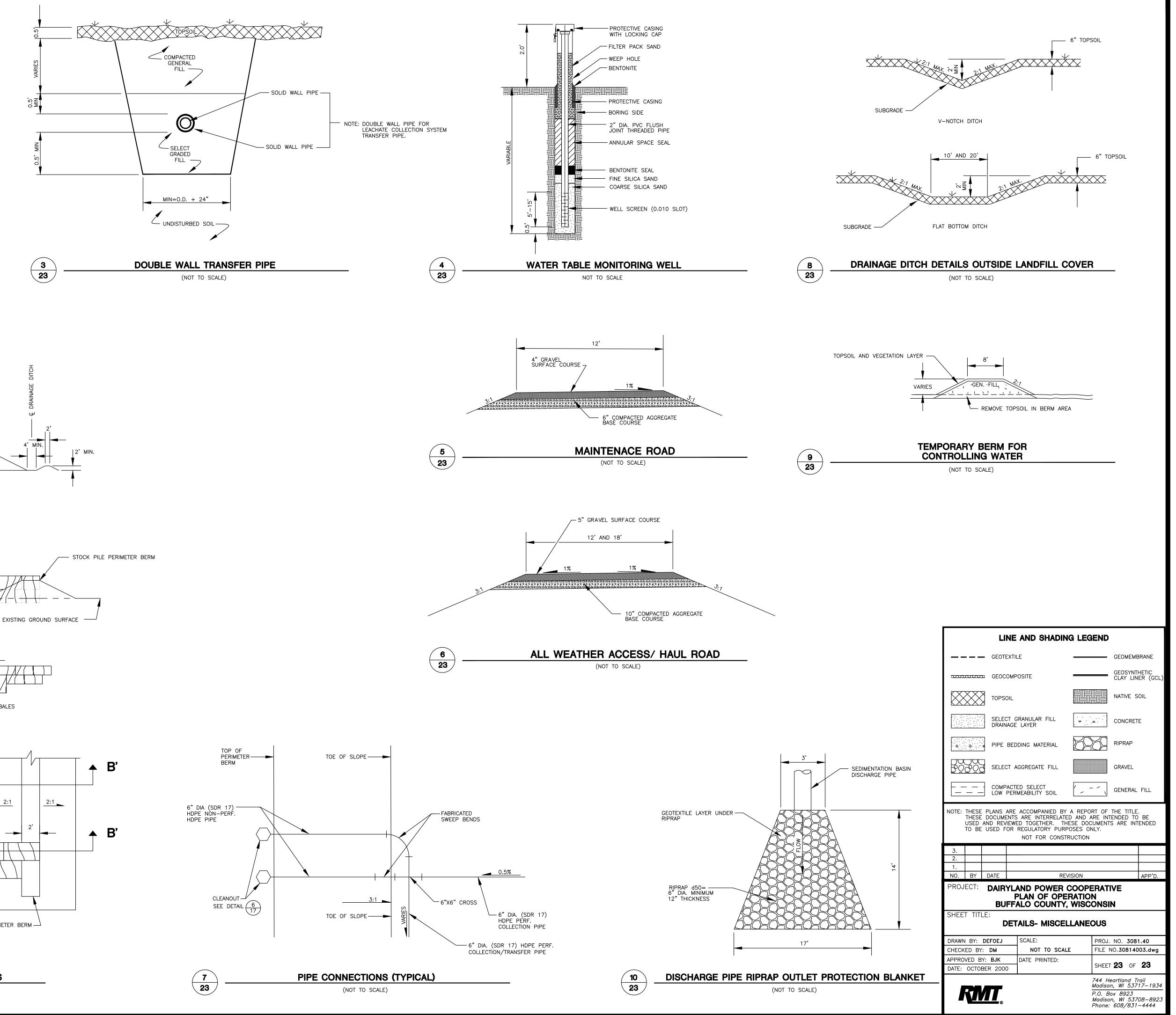
SOIL ANCHOR (CONTINOUS) -----

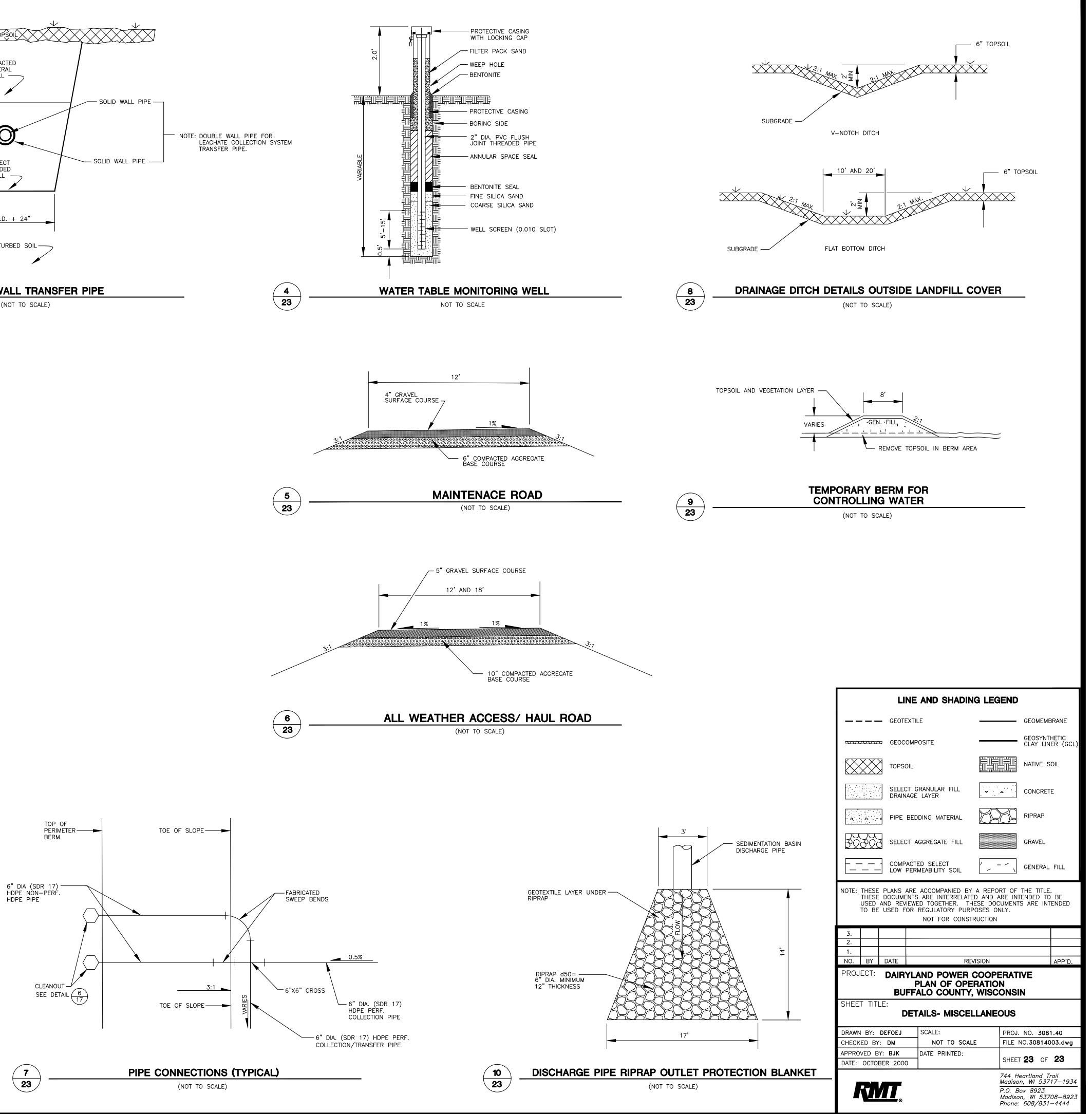
NOTE:

EXISTING GROUND SURFACE

**1** 


23


STOCK PILE


BASIN

2' DEEP SEDIMENT COLLECTION

DRAINAGE







Attachment 13

**Revised Post Closure Care Plan** 



# **Post-Closure Plan**

Alma Offsite Disposal Facility, Phase IV Landfill Alma, Wisconsin

January 2024

#### **Prepared For:**

Dairyland Power Cooperative 3200 East Avenue South La Crosse, Wisconsin 54601

#### **Prepared By:**

TRC 999 Fourier Drive, Suite 101 Madison, Wisconsin 53717

Breanne Kahnk

BreAnne Kahnk, P.E. Project Engineer

Todd W. Martin

Todd W. Martin Principal Project Manager





## **TABLE OF CONTENTS**

REVIS	ION HIS	STORY		ii
1.0	INTRO	DUCTION	۱	1
2.0	POST-	CLOSURI	E CARE	2
	2.1	Post-Closu	ure Period	2
	2.2	Post-Closu	ure Contact	2
	2.3	Inspection	, Monitoring and Maintenance	2
		2.3.1 Fir	nal Cover Maintenance	2
		2.3.2 Ve	egetation Maintenance	2
		2.3.3 St	orm Water Runoff Management System Maintenance	3
		2.3.4 Le	eachate Collection System Maintenance and Monitoring	3
		2.3.5 Gr	roundwater Monitoring Well Maintenance and Monitoring	3
	2.4	Post-Closu	ure Uses	4
	2.5	Post-Closu	ure Care Termination	4
	2.6	Revision o	of the Post-Closure Plan	4
3.0	NOTIF	ICATIONS	S	5
	3.1	Operating	Record	5
	3.2	Notification	n Requirements	5
	3.3	Publicly Ad	ccessible Internet Site	5
4.0	ENGIN	EER'S CE	ERTIFICATION	6



## **REVISION HISTORY**

Revision Number	Revision Date	Section Revised	Summary of Revisions
01	01/12/2023	1-3	Updated text per WDNR regulations.
02	10/11/2023	2	Revised 2.3.5 to reference ch. NR 507



## 1.0 Introduction

This Post-Closure Care Plan (Plan) was prepared by TRC Environmental Corporation (TRC) on behalf of Dairyland Power Cooperative (DPC) for the Alma Offsite Disposal Facility, Phase IV Landfill (Landfill) where coal combustion residuals (CCR) are disposed. The approximately 32.1 acre Landfill is located in Sections 18 and 19, T21N, R12W, Town of Belvidere, Buffalo County, Wisconsin. DPC owns and operates the landfill in compliance with the Plan of Operation as permitted by the Wisconsin Department of Natural Resources (WDNR).

This Plan meets the post-closure (long-term) care requirements of the United States Environmental Protection Agency's (USEPA) CCR Rule, Title 40 Code of Federal Regulations (40 CFR) Parts 257 and 261 Subpart D - "Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments" and s. NR 506.084. Post-closure care requirements apply to the owners or operators of CCR landfills subject to closure criteria under 40 CFR 257.102. Because DPC plans to conduct closure of the Landfill through leaving the CCR material in-place, post-closure/long-term care requirements are necessary. Following closure of the CCR landfill (placement of final cover), the owner or operator shall begin to conduct long-term care for the Landfill in accordance with this Plan.



## 2.0 Post-Closure Care

#### 2.1 Post-Closure Period

Following closure of the CCR landfill, the site owner is required to maintain and monitor the closed site for a minimum of 40 years. The post-closure period begins on the date identified in the notification of closure of the CCR unit as required by 40 CFR 257.102(h) and s. NR 506.084(1). Post-closure care will be provided to maintain integrity and effectiveness of the final cover system, the leachate collection system in accordance with 40 CFR 257.70(d), and groundwater monitoring system in accordance with 40 CFR 257.90 through 40 CFR 257.98. These goals are consistent with those detailed in s. NR 514.07(10)(d)(1)(b),(c), and (d).

#### 2.2 Post-Closure Contact

The post-closure contact for this facility will be:

Manager, Water and Waste Programs Dairyland Power Cooperative 3200 East Avenue South La Crosse, WI 54601 Phone: 608-787-1311 ccrinfodesk@dairylandpower.com

#### 2.3 Inspection, Monitoring and Maintenance

The site will be inspected annually during the post-closure care period. The Landfill postclosure/long-term monitoring program was initially outlined in the 2000 Plan of Operation. A written record of the inspection(s) will be made and retained in the operating record. The inspector will assess the condition and need for repair of the final cover, vegetation, monitoring points, and storm water control features.

Minor repairs may be required to maintain the integrity and functionality of the drainage structures, roads, monitoring points, etc. Repairs will be made as warranted.

#### 2.3.1 Final Cover Maintenance

Because the CCR is handled dry, moisture conditioned, and compacted in the Landfill, settlement of the final cover system is not anticipated. However, erosion may require minor final cover repairs. Areas of the final cover where ponding or erosion are observed will be repaired to maintain the integrity of the final cover system. Minor repairs may be required to maintain the integrity and functionality of the drainage structures, storm water controls, roads, monitoring points, etc.

#### 2.3.2 Vegetation Maintenance

During inspections, areas lacking vegetation where it is required will be noted. Reworked surfaces, areas of failed or eroded vegetation, and repaired surfaces will be revegetated appropriately. Vegetation maintenance includes mowing. Mowing will be conducted as needed or on a semi-annual basis, whichever is more frequent. Mowing is not required where native prairie grass vegetative cover has been installed as previously approved by the WDNR.



#### 2.3.3 Storm Water Runoff Management System Maintenance

Erosion controls and avoiding ponding of water are addressed by the design, grading, construction, and establishing vegetation on the landfill final cover to ensure proper run-on and run-off of storm water. During site inspections, diversion berms, perimeter dikes, roads, slopes, and storm water sedimentation basins will be inspected for erosion, seeps, depressions, obstructions to flow, vegetation cover, and other maintenance concerns. Maintenance associated with sediment accumulations and erosion will be performed as needed.

#### 2.3.4 Leachate Collection System Maintenance and Monitoring

The leachate collection system will be maintained as needed during the post-closure care period. Features of the system that will be inspected annually include manholes, surface features, transfer piping, controls, the storage tank, and leachate collection volumes. Leachate lines will be cleaned and televised on an annual basis at a minimum. Miscellaneous repairs will be performed on an as-needed basis. The leachate storage tank will be replaced as necessary.

The leachate monitoring program will continue to be conducted during the post-closure period. At a minimum, leachate sampling from the storage tank will occur on a bi-annual basis and leachate head wells will be recorded annually, as presented in the 2000 Plan of Operation and the Environmental Sampling Plan.

Leachate collected in the leachate collection tanks will be utilized on-site for approved activities or hauled to the DPC wastewater treatment plant (WWTP), located in Alma, Wisconsin or the La Crosse Waste Water Utility WWTP location in La Crosse, Wisconsin for treatment and disposal. Miscellaneous repairs will be performed on an as-needed basis to maintain the integrity and effectiveness of the system.

#### 2.3.5 Groundwater Monitoring Well Maintenance and Monitoring

The groundwater monitoring system will be maintained and monitored per ch. NR 507 throughout the post-closure care period. Groundwater monitoring wells will be sampled as outlined in the Environmental Sampling Plan during the post-closure care period. Results associated with CCR wells will be presented in the annual Groundwater Monitoring and Corrective Action Report submitted to the WDNR and posted to the publicly accessible website. The remainder of the results will be submitted to the WDNR as required. Groundwater monitoring records will be maintained in the operating record.

Sampling procedures and the groundwater monitoring program, as described in the Environmental Sampling Plan, will be followed throughout the post-closure care period. The parameters, frequency, and monitoring locations are summarized within the Environmental Sampling Plan.

If adverse trends develop, then the WDNR will be notified and further evaluation will be performed. If corrective action becomes necessary, then a plan will be developed and submitted to the WDNR for approval.



#### 2.4 Post-Closure Uses

After the Landfill is closed, the site will be secured and maintained by the owner as open green space and recreation. These uses do not conflict with long-term care plans for the area. The final use is intended to prohibit agricultural uses, building construction, and excavation of the final cover or CCR. These uses are protective of the final cover system and do not increase the potential threat to human health or the environment.

#### 2.5 **Post-Closure Care Termination**

Post-closure care termination may be considered after a period of 40 years from the notification of closure. In the event that the Landfill is operating under assessment groundwater monitoring in accordance with 40 CFR 257.95, the Owner will continue to perform post-closure care and groundwater monitoring in accordance with 40 CFR 257.95 until the Landfill returns to detection monitoring.

No later than 60 days following completion of the post-closure care period, the owner or operator of the CCR landfill shall post the notification of completion of post-closure care period to the operating record in accordance with 40 CFR 257.104(e) and s. NR 506.084(2)(b). Section 3 provides details on notification requirements.

#### 2.6 Revision of the Post-Closure Plan

This Post-Closure Plan should be amended and submitted to the WDNR at least 60 days prior to a planned change that will substantially affect this plan or within 60 days of an unanticipated event after post-closure activities have commenced. If the Post-Closure Care Plan is revised after long-term care activities have commenced, the owner or operator shall submit the modification request to the WDNR no later than 30 days following the triggering event. Modifications to the Post-Closure Care Plan shall be completed in accordance with s. NR 514.04(6).



## 3.0 Notifications

### 3.1 Operating Record

The following items will be maintained in the operating record for a minimum of five years:

- 40 CFR 257.105(h): applicable requirements for groundwater monitoring
- 40 CFR 257.105(i)(12): the current post-closure plan and any amendment of the plan; the current version of the post-closure plan will be maintained in the facility's operating record irrespective of time,
- 40 CFR 257.105(i)(13): the notification of completing post-closure care
- Inspection reports

#### 3.2 Notification Requirements

The following required notifications will be provided before the close of business on the day the notification is required to be completed:

- 40 CFR 257.106(h): applicable requirements for groundwater monitoring
- 40 CFR 257.106(i)(12): the availability of the written post-closure plan and any amendment of the plan
- 40 CFR 257.106(i)(13): the availability of completion of post-closure care

#### 3.3 Publicly Accessible Internet Site

The following required items will be posted on the publicly accessible internet site:

- 40 CFR 257.107(h): *applicable* requirements for groundwater monitoring
- 40 CFR 257.107(i)(12): the written post-closure plan and any amendment of the plan
- 40 CFR 257.107(i)(13): the notification of completion of post-closure care

Information should be posted within 30 days of placing the pertinent information in the operating record. Records will be made available to the public for at least five years following the date on which the information was posted on the internet site.



## 4.0 Engineer's Certification

Pursuant to 40 CFR 257.104 and by means of this certification I attest that:

- (i) I am familiar with the requirements of the federal CCR rule (40 CFR 257);
- (ii) this Post-Closure Plan has been prepared in accordance with good engineering practice; and
- (iii) this Post-Closure Plan meets the requirements of 40 CFR 257.104(d).

For the purpose of this document, "certify" and "certification" shall be interpreted and construed to be a "statement of professional opinion." The certification is understood and intended to be an expression of my professional opinion as a Wisconsin licensed professional engineer, based upon knowledge, information, and belief. The statement(s) of professional opinion are not and shall not be interpreted or construed to be a guarantee or a warranty of the analysis herein.

NNE N BR \$ KAHNK 46825 MIDDLETON Signature of Registered Professional Engineer SSIONAL Registration No. E-46825 State: Wisconsin MANAL MANAL

Attachment 14

**Revised Closure and Post-Closure Costs** 

# Table 1: Engineering Opinion of Probable CostSite Closure - Phase IV LandfillDairyland Power Cooperative, Alma Off-Site Disposal FacilityPlan Modification - August 2023

Item									
No.	Major Cost Item	Unit Cost ⁽¹⁾	Quantity		Cost ⁽²⁾				
1	Mobilization ⁽³⁾	LS	\$110,000.00	1	\$	110,000			
	Final Cover System: ⁽⁴⁾⁽⁵⁾⁽⁶⁾								
2	Barrier Layer (24" Fine Grained Soil)	CY	\$10.20	40,100	\$	410,000			
3	GCL	SF	\$0.75	540,200	\$	406,000			
4	40-mil LLDPE Geomembrane	SF	\$0.61	540,200	\$	330,000			
5	Granular Drainage Layer (12")	SY	\$9.45	60,100	\$	568,000			
6	Vegetative Layer (18")	SY	\$3.21	90,100	\$	290,000			
7	Topsoil (6")	CY	\$6.89	10,100	\$	70,000			
8	Seed, Fertilize, and Mulch	Acre	\$2,290.00	12.4	\$	29,000			
9	Surface Water Control System ⁽⁷⁾	LS	\$150,000.00	1	\$	150,000			
10	Silt Fence	LF	\$3.50	1,000	\$	4,000			
	Engineering Fees:								
11	Construction Plans	LS	\$34,000.00	1	\$	34,000			
12	Construction Observation	Week	\$10,000.00	25	\$	250,000			
13	Documentation Report	LS	\$34,000.00	1	\$	34,000			
				Subtotal:	\$	2,685,000			
			Continger	ncy (10 percent):	\$	268,500			
	Total cost (2023 dollars):								

Assumptions:

⁽¹⁾ Unit cost were inflated to 2023 dollars from 2019 dollars through the Owner Financial Responsibility Inflation Factor Table. An inflation factor of 1.1477 was generally used on the previous 2019 unit costs.

⁽²⁾ Some totals may not agree due to rounding.

⁽³⁾ Mobilization is assumed to be approximately 5 percent of construction cost.

⁽⁴⁾ The total final cover area is approximately 12.4 acres.

⁽⁵⁾ Proper drainage grades are established upon closure, and no additional grading costs are assumed.

⁽⁶⁾ Barrier layer, granular drainage layer, vegetative layer, and topsoil will be obtained from on-site stockpiles/borrow areas.

⁽⁷⁾ Includes diversion berms, downslope flumes, energy dissipaters, final cover drainage piping. Second stormwater basin assumed to be constructed during liner event.

Updated By: B. Kahnk 08/03/2023 Checked By: T. Martin 10/11/2023

# Table 2: Opinion of Probable CostLong-term Care, Phase IV LandfillDairyland Power Cooperative, Alma Off-Site Disposal FacilityPlan Modification - August 2023

						•
Major Cost Itom	Unit	۱.,	nit Cost ⁽¹⁾	Quantity	A	verage Cost Per Year
Major Cost Item Land Surface Care and Site Maintenance	Unit		IIII COSI	Quantity		Fei Teai
Reseed/Erosion Damage	Acre	\$	830.00	32	\$	27,000.00
Lawn Mowing	LS	\$	5,310.00	1	\$	6,000.00
Snow Plowing	LS	\$	3,000.00	1	\$	3,000.00
Road Maintenance	LS	\$	2,000.00	1	\$	2,000.00
Storm Water Control Structures Maintenance	LS	\$	8,300.00	1	\$	9,000.00
Repair Cover from Settlement	Acre	\$	340.00	32	\$	11,000.00
Sedimentation Basin Cleaning	LS	\$	830.00	1	\$	1,000.00
Groundwater Monitoring Maintenance		ľ			,	,
Inspections and Maintenance/Purge/Resurvey, Pumps ⁽²⁾	LS	\$	4,000.00	0.025	\$	1,000.00
Well Replacement/Abandonment ⁽³⁾	LS	\$	10,000.00	0.375	\$	4,000.00
Leachate Collection System			·			
Leachate Collection Line Cleaning	LS	\$	3,320.00	1	\$	4,000.00
Operation and Maintenance	LS	\$	4,980.00	1	\$	5,000.00
Leachate Disposal	Gallon	\$	0.0415	876,000	\$	37,000.00
Environmental Monitoring ⁽⁴⁾						
Groundwater Monitoring (15 wells)	LS	\$	9,000.00	1	\$	9,000.00
Leachate Monitoring (1 tank)	LS	\$	1,000.00	1	\$	1,000.00
Surface Water Monitoring (2 locations)	LS	\$	1,000.00	1	\$	1,000.00
Data Preparation/Submittal	LS	\$	3,000.00	1	\$	3,000.00
Inspection and Reporting						
Annual Inspections	LS	\$	3,400.00	1	\$	4,000.00
Annual Report	LS	\$	5,000.00	1	\$	5,000.00
	<u> </u>	<u> </u>	Long-term C	are Subtotal:	\$	133,000.00
			Conting	gency (10%):	\$	13,300.00
			Yearly	Grand Total:	\$	146,300.0
	4	0-ye	ar Long-tern	n Care Cost:	\$	5,852,000.0

Note:

⁽¹⁾ Costs are in 2023 dollars according to Wisconsin DNR Owner Financial Responsibility Inflation Factor Table. Some totals may not agree due to rounding.

(2) Resurvey/rehabilitation - Assumed to occur once per 40 years.

⁽³⁾ Replace 15 wells over 40 years.

⁽⁴⁾ Assumes semiannual monitoring.

Update By: B. Kahnk 8/10/2023 Checked By: T. Martin 10/11/2023 Attachment 15

PAL and ACL Calculations

#### Attachment 15.1: Summary Table of PAL Calculations Plan of Operation Modification for Initial Permitting of CCR Landfill - Addendum 1 Dairyland Power Cooperative, Alma Off-Site Disposal Facility Phase IV Landfill Town of Belvidere, Buffalo County, Wisconsin

Parameter (units)	Well	# Samples	# Samples for Calcs Count	Avg.	StDev for Calc ⁽¹⁾	Min. Increase ⁽²⁾	Avg. + 3StDev	Avg. + Min. Increase	PAL, Calculated	PAL, Rounded ⁽³⁾
Alkalinity (mg/L)	W-100R	8	8	299.375	2.875	100	308.00	399.38	399.38	400
Alkalinity (mg/L)	W-100AR	8	8	309.125	3.357	100	319.20	409.13	409.13	410
Alkalinity (mg/L)	W-101	8	8	291.125	3.182	100	300.67	391.13	391.13	400
Alkalinity (mg/L)	W-102R	8	8	277	2.000	100	283.00	377.00	377.00	380
Alkalinity (mg/L)	W-105	8	8	284	2.204	100	290.61	384.00	384.00	390
Alkalinity (mg/L)	W-106	8	8	292.5	1.195	100	296.09	392.50	392.50	400
Alkalinity (mg/L)	W-107	8	8	308.375	2.387	100	315.54	408.38	408.38	410
Calcium, total (µg/L)	W-100R	8	8	75518.75	5231.477	25	91213.18	75543.75	91213.18	92000
Calcium, total (µg/L)	W-100AR	8	8	76671.25	3905.825	25	88388.73	76696.25	88388.73	89000
Calcium, total (µg/L)	W-101	8	8	67706.25	3229.847	25	77395.79	67731.25	77395.79	78000
Calcium, total (µg/L)	W-102R	8	8	61010	2511.465	25	68544.40	61035.00	68544.40	69000
Calcium, total (µg/L)	W-105	8	8	64871.25	2930.039	25	73661.37	64896.25	73661.37	74000
Calcium, total (µg/L)	W-106	8	8	68117.5	2483.838	25	75569.01	68142.50	75569.01	76000
Calcium, total (µg/L)	W-107	8	8	71852.5	4584.507	25	85606.02	71877.50	85606.02	86000
Conductance (µmhos/cm)	W-100R	8	8	574.25	5.625	200	591.13	774.25	774.25	780
Conductance (µmhos/cm)	W-100AR	8	8	590.25	8.876	200	616.88	790.25	790.25	800
Conductance (µmhos/cm)	W-101	8	8	579.5	11.464	200	613.89	779.50	779.50	780
Conductance (µmhos/cm)	W-102R	8	8	528.625	7.726	200	551.80	728.63	728.63	730
Conductance (µmhos/cm)	W-105	8	8	547.75	7.402	200	569.96	747.75	747.75	750
Conductance (µmhos/cm)	W-106	8	8	597.375	8.070	200	621.59	797.38	797.38	800
Conductance (µmhos/cm)	W-107	8	8	661.375	11.686	200	696.43	861.38	861.38	870
Hardness, total (mg/L as CaCO3)	W-100R	8	8	322.25	17.027	100	373.33	422.25	422.25	430
Hardness, total (mg/L as CaCO3)	W-100AR	8	8	335.875	21.404	100	400.09	435.88	435.88	440
Hardness, total (mg/L as CaCO3)	W-101	8	8	327.125	21.788	100	392.49	427.13	427.13	430
Hardness, total (mg/L as CaCO3)	W-102R	8	8	300	16.178	100	348.53	400.00	400.00	400
Hardness, total (mg/L as CaCO3)	W-105	8	8	311.625	16.818	100	362.08	411.63	411.63	420
Hardness, total (mg/L as CaCO3)	W-106	8	8	337.75	21.171	100	401.26	437.75	437.75	440
Hardness, total (mg/L as CaCO3)	W-107	8	8	373	16.630	100	422.89	473.00	473.00	480

#### Attachment 15.1: Summary Table of PAL Calculations Plan of Operation Modification for Initial Permitting of CCR Landfill - Addendum 1 Dairyland Power Cooperative, Alma Off-Site Disposal Facility Phase IV Landfill Town of Belvidere, Buffalo County, Wisconsin

Parameter (units)	Well	# Samples	# Samples for Calcs Count	Avg.	StDev for Calc ⁽¹⁾	Min. Increase ⁽²⁾	Avg. + 3StDev	Avg. + Min. Increase	PAL, Calculated	PAL, Rounded ⁽³⁾
Lithium, total (µg/L)	W-100R	8	8	1.625	0.128	-	2.01	-	2.01	2.1
Lithium, total (µg/L)	W-100AR	8	8	1.9125	0.136	-	2.32	-	2.32	2.4
Lithium, total (µg/L)	W-101	8	8	1.6	0.233	-	2.30	-	2.30	2.3
Lithium, total (µg/L)	W-102R	8	8	1.18125	0.113	-	1.52	-	1.52	1.6
Lithium, total (µg/L)	W-105	8	8	1.4375	0.119	-	1.79	-	1.79	1.8
Lithium, total (µg/L)	W-106	8	8	1.45	0.093	-	1.73	-	1.73	1.8
Lithium, total (µg/L)	W-107	8	8	1.675	0.089	-	1.94	-	1.94	2.0
Total Dissolved Solids (TDS) (mg/L)	W-100R	8	8	377.75	34.648	200	481.69	577.75	577.75	580
Total Dissolved Solids (TDS) (mg/L)	W-100AR	8	8	379.25	53.893	200	540.93	579.25	579.25	580
Total Dissolved Solids (TDS) (mg/L)	W-101	8	8	352	31.924	200	447.77	552.00	552.00	560
Total Dissolved Solids (TDS) (mg/L)	W-102R	8	8	301.25	30.174	200	391.77	501.25	501.25	510
Total Dissolved Solids (TDS) (mg/L)	W-105	8	8	331.125	31.643	200	426.05	531.13	531.13	540
Total Dissolved Solids (TDS) (mg/L)	W-106	8	8	348	30.426	200	439.28	548.00	548.00	550
Total Dissolved Solids (TDS) (mg/L)	W-107	8	8	368.25	48.553	200	513.91	568.25	568.25	570
Notes [.]									Prenared by: L	Auner 11/22/2023

Notes:

PAL = preventive action limit

PALs are calculated following NR 140.20(2), except lithium, which follows NR 507.18(5)(d).

Per NR 507.27, PALs are not required for pH or temperature; however, they have been included.

- = Not applicable

#### Footnotes:

⁽¹⁾ Determined per NR 140.20(2)

⁽²⁾ Minimum increase as specified in NR 140.20 Table 3, except for pH and temperature, for which values are based on NR 140.20(2)(a) and (b), respectively.

⁽³⁾ PALs are rounded up two significant figures following WDNR guidance document WA 1105.

Prepared by: L. Auner, 11/22/2023 Checked by: S. Sellwood, 11/27/2023

\\madison-vfp\Records\-\WPMSN\PJT2\525154\0000\5251540000-001_PAL and ACL Calcs.xlsx

#### Attachment 15.2: Summary Table of ACL Calculations Plan of Operation Modification for Initial Permitting of CCR Landfill - Addendum 1 Dairyland Power Cooperative, Alma Off-Site Disposal Facility Phase IV Landfill Town of Belvidere, Buffalo County, Wisconsin

Parameter (units)	Well	# Samples	# Samples for Calcs Count		ES Exc Count ⁽¹⁾	PAL Exc Count ⁽¹⁾		StDev for Calc ⁽²⁾	PAL	ES	≥1 ES Exc	≥2 PAL Exc	Avg. > PAL and at Least 1 Detect	ACL Calculated	ACL Rounded ⁽³⁾
Nitrate + Nitrite (mg/L as N)	W-100R	8	8	8	0	8	2.2000	0.0926	2	10		Y	Y	2.385	2.4
Nitrate + Nitrite (mg/L as N)	W-100AR	8	8	8	0	5	2.0125	0.1246	2	10		Y	Y	2.262	2.3
Nitrate + Nitrite (mg/L as N)	W-101	8	8	8	0	8	3.0625	0.2387	2	10		Y	Y	3.540	3.6
Nitrate + Nitrite (mg/L as N)	W-102R	8	8	8	0	0	1.7375	0.1061	2	10					
Nitrate + Nitrite (mg/L as N)	W-105	8	8	8	0	8	2.1500	0.1195	2	10		Y	Y	2.389	2.4
Nitrate + Nitrite (mg/L as N)	W-106	8	8	8	0	8	3.8750	0.3495	2	10		Y	Y	4.574	4.6
Nitrate + Nitrite (mg/L as N)	W-107	8	8	8	0	8	6.0375	0.2560	2	10		Y	Y	6.549	6.6

Notes:

ACL = alternative concentration limit

ACLs are proposed following WDNR guidance document WA 1105.

ES = NR 140 enforcement standard

PAL = NR 140 preventive action limit

Footnotes:

⁽¹⁾ Per WDNR guidance, concentrations below the limit of quantitation (i.e., J flagged results) are not counted as exceedances of NR 140 standards for the purpose of determining the need for ACLs.

⁽²⁾ Determined per NR 140.20(2)

⁽³⁾ ACLs were rounded up two significant figures.

Prepared by: L. Auner, 11/22/2023 Checked by: S. Sellwood, 11/27/2023 Attachment 16

Additional Waste Stream Request



## Additional Waste Stream Request

#### Alma Offsite Disposal Facility, Phase IV Landfill Alma, Wisconsin

January 2024

#### Prepared For:

Dairyland Power Cooperative 3200 East Avenue South La Crosse, Wisconsin 54601

#### Prepared By:

TRC 999 Fourier Drive, Suite 101 Madison, Wisconsin 53717





#### **TABLE OF CONTENTS**

1.0	INTRO	DUCTION	1
2.0	REQU	EST OF NEW WASTE STREAM ACCEPTANCE	1
	2.1	Background and Waste Characterization	1
	2.2	Schedule	1
	2.3	Handling	2

#### ATTACHMENTS

Attachment 16.1: Laboratory Results



#### 1.0 Introduction

On behalf of Dairyland Power Cooperative (DPC) TRC Environmental Corporation (TRC) is including a request to accept a new waste stream in this s. NR 514.075 Plan Modification for Initial Permitting response to Incompleteness Comments. The waste will originate from the temporarily closed EJ Stoneman Landfill (license #3122) in Cassville, Grant County, Wisconsin and be disposed of in the Alma Off-Site Ash Disposal Facility, Phase IV Landfill in Alma, WI (AOS Phase IV Landfill), License #4126. We request that the Wisconsin Department of Natural Resources (WDNR) review and approve this request.

#### 2.0 Request of New Waste Stream Acceptance

#### 2.1 Background and Waste Characterization

The proposed new waste stream will be generated from the removal of waste currently interred at the EJ Stoneman Landfill in Cassville, Wisconsin. This waste stream includes the coal combustion residual (CCR) waste material interred in the landfill (combination of fly ash and bottom ash) along with CCR contaminated soils encountered during the removal of the landfill. The CCR waste material was generated at the former EJ Stoneman Generating Station located adjacent to the landfill.

The EJ Stoneman Landfill was approved in November 1987 and was constructed and operated until 1998. Approximately 23,000 cubic yards (approximately 20,000 tons) of the permitted disposal capacity of 83,400 cubic yards was consumed prior to halting waste placement in 1998. A temporary cover consisting of 6-inches of vegetated cover soil was constructed over the 2.6-acre landfill in 1998 and the temporary cover currently remains in-place. It is DPC's intention to remove the CCR waste from the EJ Stoneman Landfill along with CCR contaminated soils to fully decommission this landfill. DPC's plan for removal, further management of potentially impacted soils, and decommissioning the landfill will be presented in a Plan Modification for license number 3122 (EJ Stoneman Landfill).

Testing of the existing waste in the EJ Stoneman was completed in 2009. This testing is included in **Attachment 16.1**. The waste material was categorized as a dark to black sand/silt mixed waste mixture. During sampling the waste material at the surface was not observed to be saturated; however, sampling at depth was not completed. DPC would complete paint filter testing and GCL compatibility testing for the material and supply that information to the WDNR prior to removal of the waste. If material is encountered that would not meet the paint filter test, the material would be dried out prior to its removal and transportation to the Alma Phase IV Landfill.

#### 2.2 Schedule

Disposal of this material is anticipated to occur during a limited time period, within a span of a couple months during the course of one calendar year. The exact timing is yet to be determined. Prior to removal and disposal of the material, a plan modification for the EJ Stoneman Landfill will need to be submitted and approved. In addition, the next module of the Phase IV Disposal Area in Alma, Wisconsin will have been constructed. The overall timeline of this material's disposal is generally dependent on these two factors.



#### 2.3 Handling

The waste material removed from the EJ Stoneman Landfill will increase the tonnage of ash waste residual material to be landfilled at the Alma Phase IV Landfill by approximately 20,000 tons to 21,000 tons during the year that it is landfilled. The potentially impacted soil is not anticipated to cause a significant increase in the tonnage. It is anticipated that all material will be moved to the Alma Phase IV Landfill within a one-year period, so in the years following this removal disposal rates are anticipated to return to normal.

Since the material is currently interred within the EJ Stoneman Landfill, the material will be excavated from the EJ Stoneman Landfill and placed within dump trucks and/or barges. The dump trucks and/or barges will be covered so that the release of dust particles is minimized during the haul between Cassville and Alma, Wisconsin. If additional moisture conditioning is required for the material, it will be moisture conditioned to approximately 10 to 15 percent (for dust control) before being placed in the landfill (followed by grading and compaction). These activities will be discussed in further detail in a Plan Modification for license number 3122 (EJ Stoneman Landfill).



#### Attachment 16.1: Laboratory Results



## **2008 Ash Products**

## **Data Package**

August 13, 2008





## 2008 Ash Products Sample Sources and Classifications

		Wisconsin NR 538
Product	Sample Date	<b>Classification</b>
Cassville Landfill Ash Old Landfill	7/23/08	Category 2
Cassville Leachate Pad Ash	7/23/08	Category 3



### 2008 ASTM Leachate Analyses

Cassville Landfill Products

Leachate Date: 7/31/08

Parameter	Req. Det. Limit (mg/L)	Reported Detection Limit (mg/L)	Wi DNR Cat. 2 & 3 Limits (from Table 2A) (mg/L)	Wi DNR Category 4 Limits (from Table 3) (mg/L)	ASTM Cassville Landfill Ash	ASTM Cassville Leachate Pad Ash	Analysis Date	Analysis Method
Aluminum	0.10	0.020			<0.020	<0.020	8/6/08	6010B
Antimony	0.005	0.002	0.012		0.0021	<0.002	8/5/08	7010
Arsenic	0.005	0.0010	0.050		0.016	0.012	8/5/08	7010
Barium	0.04	0.010	4.0		0.029	0.021	8/5/08	6010B
Beryllium	0.001	0.0005	0.004		<0.0005	<0.0005	8/5/08	6010B
Boron	0.004	0.020	1.9	4.8	0.25	0.16	8/5/08	6010B
Cadmium	0.0002	0.002	0.005	0.025	0.0022	0.0023	8/5/08	6010B
Calcium	1.0	0.50			11	7.7	8/6/08	6010B
Chromium	0.003	0.003	0.10	0.50	<0.0030	<0.0030	8/5/08	6010B
Copper	0.003	0.005			0.0053	<0.005	8/5/08	6010B
Iron	0.05	0.010			<0.010	<0.010	8/6/08	6010B
Lead	0.003	0.0020	0.015		<0.0020	<0.0020	8/5/08	7010
Magnesium	1.0	0.50			1.8	1.6	8/6/08	6010B
Manganese	0.01	0.005	0.25		0.022	<0.005	8/5/08	6010B
Nickel	0.01	0.015			<0.015	<0.015	8/5/08	6010B
Selenium	0.001	0.002	0.10	0.25	<0.0020	<0.0020	8/5/08	7010
Silver	0.0005	0.025	0.10	0.25	<0.025	<0.025	8/5/08	6010B
Thallium	0.003	0.0020	0.004		<0.0020	<0.0020	8/6/08	7010
Zinc	0.02	0.010			0.019	<0.010	8/5/08	6010B
Sulfate (mg/L)	1.0	1.1	1250	2500	<1.1	11	8/8/08	9038
рН	0.1 units	NA		·	9.35	9.62	7/31/08	Hydrolab
Conductivity	10 umhos/cm	10			85	125	7/31/08	Hydrolab
Mercury			0.002		<0.0024	<0.0048		Calc.

#### **Chemical Services Laboratory**



3251 East Ave. South La Crosse, WI 54601 (608)788-4000

#### **Chemical Analysis Report Form**

Sample ID:	EJS Landfill A	sh		Report Date:	8/13/08			
Sampling Location: Collected By: Delivered By:	Cassville, Wl Dave Lesky Dave Lesky			Sample Type: Leach Date Date Collected: Date Received:	ASTM D3987- 7/31/08 7/23/08 7/23/08	85 Leachate		
Parameter	N	lethod	LOD	LOQ	Result	Limit	Units	Notes
Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium		6010B 7010 7010 6010B 6010B 6010B 6010B	0.020 0.0020 0.0010 0.010 0.0005 0.020 0.0020	0.067 0.0067 0.0033 0.033 0.0017 0.067 0.0067 1.7	<0.020 0.0021 0.016 0.029 <0.0005 0.25 0.0022 11	NA 0.012 0.050 4.0 0.004 1.9 0.005 NA	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	A # #
Calcium Chromium Copper Iron		6010B 6010B 6010B 6010B	0.50 0.0030 0.0050 0.010	0.010 0.017 0.033	<0.0030 0.0053 <0.010	0.10 1.3 1.5	mg/L mg/L mg/L	#
Lead Magnesium Manganese Nickel Selenium Silver		7010 6010B 6010B 6010B 7010 6010B 7010	0.0020 0.50 0.005 0.015 0.0020 0.025 0.0020	0.0067 1.7 0.017 0.050 0.0067 0.083 0.0067	<0.0020 1.8 0.022 <0.015 <0.0020 <0.025 <0.0020	0.015 NA 0.25 0.20 0.10 0.10 0.004	mg/L mg/L mg/L mg/L mg/L mg/L	
Thallium Zinc Sulfate		6010B 9038	0.0020	0.033 3.7	0.019 <1.1	NA 1250	mg/L mg/L	#
LOD = Limit of Detection				# = Results between		-f tural lineita		

LOQ = Limit of Quantitation

NA = Not Applicable

A = Matrix Spike Recovery was outside of control limits

B = Matrix Duplicate recovery was outside of control limits

The laboratory analyses reported above were determined in accordance with approved EPA Methodology and the latest edition of STANDARD METHODS.

Dairyland Power Cooperative Chemical Services Laboratory is a Wisconsin Registered Testing Laboratory. Our Wisconsin Registration ID Number is 632023810.

Submitted by:

Dairyland Power Cooperative Chemical Services Laboratory

Tad Schwartzhoff, Analytical Chemist II.

#### **Chemical Services Laboratory**



3251 East Ave. South La Crosse, WI 54601 (608)788-4000

#### **Chemical Analysis Report Form**

Sample ID:	EJS Leachate	e Pad Ash		Report Date:	8/13/08			
Sampling Location: Collected By: Delivered By:	Cassville, WI Dave Lesky Dave Lesky			Sample Type: Leach Date Date Collected: Date Received:	ASTM D3987 7/31/08 7/23/08 7/23/08			
-		Mathad	LOD	LOQ	Result	Category 2 Limit	Units	Notes
Parameter		Method	LOD	LOQ	Ilesuit	5ee 11 11 10		
Aluminum Antimony		6010B 7010	0.020	0.067 0.0067	<0.020 <0.002	NA 0.012 0.050	mg/L mg/L mg/L	A
Arsenic		7010	0.0010 0.010	0.0033 0.033	0.012 0.021	4.0	mg/L	#
Barium Beryllium		6010B 6010B	0.0005	0.0017	<0.0005	0.004	mg/L	
Boron		6010B	0.020	0.067	0.16 0.0023	1.9 0.005	mg/L mg/L	#
Cadmium		6010B	0.0020 0.50	0.0067 1.7	7.7	NA	mg/L	π
Calcium		6010B 6010B	0.0030	0.010	<0.0030	0.10	mg/L	
Chromium		6010B	0.0050	0.017	< 0.005	1.3	mg/L	
Copper Iron		6010B	0.010	0.033	< 0.010	1.5	mg/L	
Lead		7010	0.0020	0.0067	<0.0020	0.015	mg/L	
Magnesium		6010B	0.50	1.7	1.6	NA	mg/L	#
Manganese		6010B	0.005	0.017	<0.005	0.25	mg/L	
Nickel		6010B	0.015	0.050	<0.015	0.20	mg/L	
Selenium		7010	0.0020	0.0067	<0.0020	0.10	mg/L	
Silver		6010B	0.025	0.083	<0.025	0.10	mg/L	
Thallium		7010	0.0020	0.0067	<0.0020	0.004	mg/L	
Zinc		6010B	0.010	0.033	<0.010	NA	mg/L	
Sulfate		9038	1.1	3.7	11	1250	mg/L	
LOD = Limit of Detection	nan bain bain ann dain dagt agus unai ann ann dain ann dail dige agus ann ann bain bain dain dag dag	n dan dan tahi bah dan dan dan dan dari disi dan san san kali dan dan dan tahi		# = Results between	LOD and LOQ		an and and any one are use the first fair for the	

LOD = Limit of Detection

# = Results between LOD and LOQ

LOQ = Limit of Quantitation

A = Matrix Spike Recovery was outside of control limits

NA = Not Applicable

B = Matrix Duplicate recovery was outside of control limits

The laboratory analyses reported above were determined in accordance with approved EPA Methodology and the latest edition of STANDARD METHODS.

Dairyland Power Cooperative Chemical Services Laboratory is a Wisconsin Registered Testing Laboratory. Our Wisconsin Registration ID Number is 632023810.

Submitted by:

Dairyland Power Cooperative Chemical Services Laboratory

Tad Schwartzhoff, Analytical Chemist II.

### **2008 Total Elemental Analysis**

#### Cassville Landfill Ash

		<b>WI DNR</b>				
	Reported	Category 2	Cassville	Cassville		
	Detection	Limits	Landfill	Leachate Pad	Analysis	Analysis
Parameter	Limit	(From Table 2B)	Ash	Ash	Date	Method
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
Aluminum	50		7,726	8,708	8/6/08	6010B
Antimony	0.10		0.96	1.5	8/6/08	7010
Arsenic	0.10	21	8.5	40	7/30/08	7010
Barium	1.0		92	127	8/5/08	6010B
Beryllium	0.10	7	1.6	2.6	8/5/08	6010B
Boron	1.0		17	26	8/5/08	6010B
Cadmium	0.25		1.6	1.9	8/5/08	6010B
Calcium	50		9,186	5,822	8/6/08	6010B
Chromium	0.50	er en en en en en en en en en en en en en	18	23	8/5/08	6010B
Cobalt	2.0		5.7	9.6	8/5/08	6010B
Copper	0.50		16	23	8/5/08	6010B
Iron	50		15,593	16,505	8/6/08	6010B
Lead	2.5		13	26	7/30/08	7010
Magnesium	50		2,544	2,481	8/6/08	6010B
Manganese	0.50		273	197	8/5/08	6010B
Molybdenum	2.0		<2.0	5.2	8/7/08	6010B
Nickel	1.0		17	26	8/5/08	6010B
Selenium	0.10		1.7	1.9	8/5/08	7010
Silver	1.3		<1.3	<1.3	8/5/08	6010B
Strontium	13		39	51	8/7/08	6010B
Thallium	0.10		0.53	0.68	7/30/08	7010
Vanadium	1.3		35	47	8/7/08	6010B
Zinc	0.50		73	66	8/5/08	6010B
% Solids			85%	79%	7/29/08	n Alexandra (Alexan) Na San Angela
Mercury			0.047	0.096	8/7/08	7471A

* **Notes** Values are reported on a dry weight basis

Merury was analyzed by TestAmerica in University Park, IL



**Chemical Services Laboratory** 

3251 East Ave. South La Crosse, WI 54601 (608)788-4000

#### **Chemical Analysis Report Form**

Sample ID: E	EJS Landfill A	sh		Report Date:	8/7/08	
Collected By: D	Cassville, WI Dave Lesky Dave Lesky			Sample Type: Date Collected: Date Received:	Ash Mixture 7/23/08 7/23/08	
Parameter		Method	LOD	LOQ	Result	Notes
Aluminum, Total (mg/ Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Boron, Total Cadmium, Total Calcium, Total Chromium, Total Cobalt, Total Copper, Total Iron, Total Lead, Total Magnesium, Total Manganese, Total Molybdenum, Total	/kg, dry wt.)	6010B 7010 7010 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 7010 6010B 6010B 6010B	$\begin{array}{c} 50\\ 0.10\\ 0.10\\ 1.0\\ 0.10\\ 1.0\\ 0.25\\ 50\\ 0.50\\ 2.0\\ 0.50\\ 2.5\\ 50\\ 2.5\\ 50\\ 0.50\\ 2.0\\ 1.0\\ 0.50\\ 2.0\\ 1.0\\ 0.50\\ 2.0\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ $	$167 \\ 0.33 \\ 0.33 \\ 3.3 \\ 0.33 \\ 3.3 \\ 0.83 \\ 167 \\ 1.7 \\ 6.7 \\ 1.7 \\ 167 \\ 8.3 \\ 167 \\ 1.7 \\ 167 \\ 8.3 \\ 167 \\ 1.7 \\ 6.7 \\ 3.3 \end{bmatrix}$	7,726 0.96 8.5 92 1.6 17 1.6 9,186 18 5.7 16 15,593 13 2,544 273 <2.0 17	A B A A, # B B
Nickel, Total Selenium, Total Silver, Total Strontium, Total Thallium, Total Vanadium, Total Zinc, Total % Solids	LOQ :	6010B 7010 6010B 6010B 7010 6010B 6010B	1.0 0.10 1.3 13 0.10 1.3 0.50 N/A	5.5 0.33 4.3 42 0.33 4.3 1.7 N/A # = Results between A = Matrix Spike Re B = Matrix Duplicate	1.7 <1.3 39 0.53 35 73 85%	

The laboratory analyses reported above were determined in accordance with approved EPA Methodology

and the latest edition of STANDARD METHODS.

Dairyland Power Cooperative Chemical Services Laboratory is a Wisconsin Registered Testing Laboratory. Our Wisconsin Registration ID Number is 632056590.

Submitted by:

Dairyland Power Cooperative Chemical Services Laboratory

Tad Schwartzhoff, Analytical Chemist II.



#### **Chemical Services Laboratory**

3251 East Ave. South La Crosse, WI 54601 (608)788-4000

#### **Chemical Analysis Report Form**

Sample ID:	EJS Leachat	e Pad Ash		Report Date:	8/7/08	
Sampling Location: Collected By: Delivered By:	Cassville, WI Dave Lesky Dave Lesky			Sample Type: Date Collected: Date Received:	Ash Mixture 7/23/08 7/23/08	
Parameter		Method	LOD	LOQ	Result	Notes
Aluminum, Total (r	na/ka dry wt)	6010B	50	167	8,708	
Antimony, Total	ng/kg, ury wi.)	7010	0.10	0.33	1.5	А
Antimony, Total Arsenic, Total		7010	0.10	0.33	40	~
Barium, Total		6010B	1.0	3.3	127	
Beryllium, Total		6010B	0.10	0.33	2.6	
Boron, Total		6010B	1.0	3.3	26	В
Cadmium, Total		6010B	0.25	0.83	1.9	A
Calcium, Total		6010B	50	167	5,822	
Chromium, Total		6010B	0.50	1.7	23	
Cobalt, Total		6010B	2.0	6.7	10	А
Copper, Total		6010B	0.50	1.7	23	
Iron, Total		6010B	50	167	16,505	В
Lead, Total		7010	2.5	8.3	26	В
Magnesium, Total		6010B	50	167	2,481	
Manganese, Total		6010B	0.50	1.7	197	
Molybdenum, Tota		6010B	2.0	6.7	5.2	#
Nickel, Total		6010B	1.0	3.3	26	
Selenium, Total		7010	0.10	0.33	1.9	В
Silver, Total		6010B	1.3	4.3	<1.3	
Strontium, Total		6010B	13	42	51	
Thallium, Total		7010	0.10	0.33	0.68	
Vanadium, Total		6010B	1.3	4.3	47	
Zinc, Total		6010B	0.50	1.7	66	
% Solids			N/A	N/A	100%	201 192 201 192 192 192 192 192 192 193 193 193 193 193 193 193 193 193 193
				# = Results between	LOD and LOQ	
LOD = Limit of Detection	LOQ	= Limit of Quantitati	ion	A = Matrix Spike Rec	overy was outside of	control limits

LOD = Limit of Detection

LOQ = Limit of Quantitation

B = Matrix Duplicate recovery was outside of control limits

The laboratory analyses reported above were determined in accordance with approved EPA Methodology and the latest edition of STANDARD METHODS.

Dairyland Power Cooperative Chemical Services Laboratory is a Wisconsin Registered Testing Laboratory. Our Wisconsin Registration ID Number is 632056590.

Submitted by:

Dairyland Power Cooperative Chemical Services Laboratory

Tad Schwartzhoff, Analytical Chemist II.



#### ANALYTICAL REPORT

Job Number: 500-13006-1 Job Description: Cassville Landfill

> For: Dairyland Power Co-op PO BOX 817 3200 East Avenue South La Crosse, WI 54602

Attention: Tad Schwartzhoff

Margaret Knist

Margaret Kniest Project Manager II margaret.kniest@testamericainc.com 08/11/2008

These test results meet all the requirements of NELAC for accredited parameters.

The Lab Certification ID# is 100201.

All questions regarding this test report should be directed to the TestAmerica Project Manager whose signature appears on this report. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.

TestAmerica Laboratories, Inc. TestAmerica Chicago 2417 Bond Street, University Park, IL 60466 Tel (708) 534-5200 Fax (708) 534-5211 <u>www.testamericainc.com</u>



#### Job Narrative 500-J13006-1

Comments

No additional comments.

#### Receipt

The samples were received at 16.8,17.2 degrees.

All other samples were received in good condition within temperature requirements.

#### Metals

No analytical or quality issues were noted.

#### **EXECUTIVE SUMMARY - Detections**

Client: Dairyland Power Co-op

Job Number: 500-13006-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
500-13006-1	CASSVILLE LANDF	ILL ASH			
Mercury Percent Moisture Percent Solids		47 21 79	21 0.10 0.10	ug/Kg % %	7471A PercentMoisture PercentMoisture
500-13006-2	CASSVILLE LEACH	ATE PAD ASH			
Mercury Percent Moisture Percent Solids		96 19 81	21 0.10 0.10	ug/Kg % %	7471A PercentMoisture PercentMoisture

#### METHOD SUMMARY

Client: Dairyland Power Co-op

Job Number: 500-13006-1

.

Description	Lab Location	Method	Preparation Method
Matrix: Solid			
Mercury in Solid or Semisolid Waste (Manual Cold Vapor	TAL CHI	SW846 7471A	
Technique) Mercury in Solid or Semi-Solid Waste (Manual Cold	TAL CHI		SW846 7471A
Lab References:			
TAL CHI = TestAmerica Chicago			

#### Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### METHOD / ANALYST SUMMARY

Client: Dairyland Power Co-op

Job Number: 500-13006-1

Method	Analyst	Analyst ID
SW846 7471A	Klee, George O	GOK
EPA PercentMoisture	Boyd, Cheryl L	CLB

#### SAMPLE SUMMARY

Client: Dairyland Power Co-op

Job Number: 500-13006-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
500-13006-1	CASSVILLE LANDFILL	Solid	07/23/2008 1200	08/05/2008 0945
500-13006-2	ASH CASSVILLE LEACHATE PAD ASH	Solid	07/23/2008 1200	08/05/2008 0945

## SAMPLE RESULTS

#### **Analytical Data**

Job Number: 500-13006-1

Client: Dairyland Power Co-op

#### Client Sample ID: CASSVILLE LANDFILL ASH

Lab Sample ID: Client Matrix:	500-13006-1 Solid	% Moisture: 20.6	Date Sampled: Date Received:	07/23/2008 1200 08/05/2008 0945
	7471A Mercury in S	Solid or Semisolid Waste (N	lanual Cold Vapor Technique)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 08/07/2008 1237 08/07/2008 0900	Analysis Batch: 500-43989 Prep Batch: 500-43984	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume	
Analyte	DryWt Corrected	: Y Result (ug/Kg)	Qualifier	RL
Mercury		47		21

#### **Analytical Data**

Client: Dairyland Power Co-op

Job Number: 500-13006-1

#### Client Sample ID: CASSVILLE LEACHATE PAD ASH

Lab Sample ID: Client Matrix:	500-13006-2 Solid		% Moisture: 18.6	Date Sampled: Date Received:	07/23/2008 1200 08/05/2008 0945
	7471A Mercury	in Solid or	Semisolid Waste (Ma	nual Cold Vapor Technique)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 08/07/2008 1239 08/07/2008 0900		is Batch: 500-43989 atch: 500-43984	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume:	
Analyte	DryWt Correc	ted: Y	Result (ug/Kg)	Qualifier	RL
Mercury			96		21

		General Chemistry			
Client Sample ID:	CASSVILLE LANDFILL	ASH			
Lab Sample ID: Client Matrix:	500-13006-1 Solid		Date Sampled: Date Received		23/2008 1200 05/2008 0945
Analyte	Result	Qual Units	RL	Dil	Method
Percent Moisture	21 Anly Batch: 500-43817	% Date Analyzed 08/06/2008 0138	0.10	1.0	PercentMoisture
Percent Solids	79 Anly Batch: 500-43817	% Date Analyzed 08/06/2008 0138	0.10	1.0	PercentMoisture
Client Sample ID:	CASSVILLE LEACHATE	E PAD ASH			
Lab Sample ID: Client Matrix:	500-13006-2 Solid		Date Sampled Date Received		23/2008 1200 05/2008 0945
Analyte	Result	Qual Units	RL	Dil	Method
Percent Moisture	19 Anly Batch: 500-43817	% Date Analyzed 08/06/2008 0138	0.10	1.0	PercentMoisture
Percent Solids	81 Anly Batch: 500-43817	% Date Analyzed 08/06/2008 0138	0.10	1.0	PercentMoisture

## QUALITY CONTROL RESULTS

#### **Quality Control Results**

Client: Dairyland Power Co-op

Job Number: 500-13006-1

#### **QC** Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Metals					
Prep Batch: 500-43984					
LCS 500-43984/2-A	Lab Control Spike	Т	Solid	7471A	
MB 500-43984/1-A	Method Blank	Т	Solid	7471A	
500-13006-1	CASSVILLE LANDFILL ASH	Т	Solid	7471A	
500-13006-2	CASSVILLE LEACHATE PAD ASH	Т	Solid	7471A	
Analysis Batch:500-4398	9				
LCS 500-43984/2-A	Lab Control Spike	Т	Solid	7471A	500-43984
MB 500-43984/1-A	Method Blank	Т	Solid	7471A	500-43984
500-13006-1	CASSVILLE LANDFILL ASH	Т	Solid	7471A	500-43984
500-13006-2	CASSVILLE LEACHATE PAD ASH	Т	Solid	7471A	500-43984
Report Basis					
T = Total					
General Chemistry					
Analysis Batch:500-4381	7 CASSVILLE LANDFILL ASH	т	Solid	PercentMoisture	
500-13006-1		Т	Solid	PercentMoisture	
500-13006-2	CASSVILLE LEACHATE PAD ASH	I	SUIU	reicentivioisture	

Report Basis

T = Total

**Quality Control Results** 

Job Number: 500-13006-1

Client: Dairyland Power Co-op

Method Blank - Batch: 500-43984				Method: Preparati	7471A on: 7471A	
Lab Sample ID:MB 500-43984/1-AClient Matrix:SolidDilution:1.0Date Analyzed:08/07/2008Date Prepared:08/07/2008	Analysis Batch: 5 Prep Batch: 500- Units: ug/Kg			Lab File ID Initial Weig		
Analyte	Result		Qual			RL
Mercury	ND					17
Lab Control Spike - Batch: 500-43984				Method: Preparat	7471A ion: 7471A	
Lab Sample ID:LCS 500-43984/2-AClient Matrix:SolidDilution:1.0Date Analyzed:08/07/2008 1229Date Prepared:08/07/2008 0900	Analysis Batch: 500-43989 Prep Batch: 500-43984 Units: ug/Kg			Lab File ID Initial Weig		
Analyte	Spike Amount	Result	% R	ec.	Limit	Qual
Mercury	167	167	100		80 - 120	

Calculations are performed before rounding to avoid round-off errors in calculated results.



#### CHAIN OF CUSTODY REPORT

1380 Busch Parkway Buffalo Grove, Illinois 60089-4505 (847) 808-7766 FAX (847) 808-7772

									~ ⁵¹	00-13006
Client: DAVEYLAND POWER COO	PERATIVE	Project Name:	CASS	ALLE	LANDFIL	L	TAT (in	days):	Sid (5-7)	4 3 2 1
Address: 3251 EAST AVE, S		Project Numbe						SH reques	:ts:	DATE RESULTS NEEDED:
LA CROSSE, WI SAK Phone #: (608) 787-1441	-01	PO#:		Quot	e ID:		🔲 ambie	al laboratory ant 📋 ice		) lemp.
Phone #: (000) 787-1991 Fax #: ()	and a second provide an international desired as the operation of the second second second second second second	State & Program:		Javoice i other an	will be sent to the Ci rangements have be	en made.	Deliverabl	e Package: □ Other	Delivery Me Shipped	ethod: TAD Client D
PM/Report 10: Ton Sunwartz 4055	: / /	7 7	/	of Bottles	. 3 8	7 / / ,	T	$\Box$	11	THIS SECTION FOR LAB USE ONLY
Email: TCSC DAIRTNET. COM	$\Delta / \mathbb{R} / \mathbb{R}$	R. W.	Preser	vative Use		1/14				LABORATORY
Sampler: Dave Lesser FIELD ID, LOCATION	Solution Providence	Collecter Sunate Manine Manine		2 5 ×	Train and the second second					ID NUMBER
1 CASSMUS LANDFILL ASH	7/23/05	ASH			1 X					
2 CASMUE LEAGUATE DAD ASH	7/22/38	Asu			X					H
3										р Ч
4										
5										ក ខ ក្
6										
7										
8										
9										
10										
RELINQUISHED HAN STATOO		Ł	015 08	RELINQUI	SHED		nte Ref	RECEIVED		0477) 19 <b>4</b> 0-
RELINGUISHED	RECEIVED		OATE	RELINQUI	SHED		att.	RECEIVED	<u></u>	
- 4.47		k.,,k.ek.eskeeskeeskeele	$\frac{T + t \in \mathcal{A}(\frac{t}{2})}{t + 1 - t + t}$			-	жĘ			
COMMENTS:		Addates yok cyccoccess with his surgest matters agry styp	nar under a verstenste der eine sterne sterne soner andere sterne soner soner soner soner soner soner soner so					10.11.15	-	1 05 1
									PAGE	OF

#### Login Sample Receipt Check List

Client: Dairyland Power Co-op

Job Number: 500-13006-1

Login Number: 13006 Creator: Lunt, Jeff T			List Source: TestAmerica Chicago
List Number: 1		0	
Question	T / F/ NA	Comment	
Radioactivity either was not measured or, if measured, is at or below background	True		
The cooler's custody seal, if present, is intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	False		
Cooler Temperature is recorded.	True	16.8,17.2	
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
There are no discrepancies between the sample IDs on the containers and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True		
If necessary, staff have been informed of any short hold time or quick TAT needs	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		

DAIRYLAND POWER COOPERATIVE AS RECEIVED COAL ANALYSIS Special Tests From ID Number 532 To ID Number 540

Sample Date	ID	Air Dry											
Date	Number	Moisture	Inherent Moisture	Total Moisture	BTU	Ash	Sulfur	Volatiles	Fixed Carbon	MAF BTU	SO2 Ib/MBTU	Special Test	Comments
5/20/2009	9 532	25.60	1.74	26.89	3247	0.00	0.000	0.00	0.00	4441	0.00		-1# AD LOI=18.78
5/20/2009	9 533	20.99	1.40	22.10	2742	0.00	0.000	0.00	0.00	3519	0.00		-1# AE LOI=12.79
5/20/2009	9 534	22.60	1.96	24.11	3330	0.00	0.000	0.00	0.00	4388	0.00		-1# AF LOI=16.42
5/20/2009	9 535	13.75	1.30	14.88	3099	0.00	0.000	0.00	0.00	3640	0.00		-1# BD LOI =11.29
5/20/2009	9 536	14.12	1.82	15.68	3646	0.00	0.000	0.00	0.00	4325	0.00		_1# BE LOI=20.14
5/20/2009	9 537	17.04	1.73	18.48	3109	0.00	0.000	0.00	0.00	3814	0.00		-1#BF LOI=15.88
5/20/2009	9 538	22.80	1.73	24.13	2718	0.00	0.000	0,00	0.00	3583	0.00		-1# CD LOI=15.88
5/20/2009	9 539	15.59	1.85	17.15	3280	0.00	0.000	0.00	0.00	3959	0.00		-1# CE LOI=18.55
5/20/2009	9 540	22.31	1.60	23.55	3040	0.00	0.000	0.00	0.00	3977	0.00		-1# CF LOI=18.17

T Cassuille Sample ID

29-May-09