

July 24, 2024

Mr. Tony Peterson Waste and Materials Management Program Wisconsin Department of Natural Resources Eau Claire Service Center 1300 W. Clairemont Avenue Eau Claire, WI 54701

Subject: Dairyland Power Cooperative – Alma Off-Site Disposal Facility Phase IV Landfill Plan of Operation Modification for Initial Permitting of Coal Combustion Residuals (CCR) Landfills – Addendum 2, Town of Belvidere, Buffalo County, Wisconsin (License #4126)

Dear Mr. Peterson:

On behalf of Dairyland Power Cooperative (DPC), this letter provides responses to the Wisconsin Department of Natural Resources (WDNR)'s April 15, 2024 Incompleteness Determination (Incompleteness Letter) for the Plan of Operation Approval Modification for Initial Permitting of CCR Landfills at the DPC Alma Off-Site Disposal Facility, Phase IV Landfill (Phase IV Landfill). This is Addendum 2 to the January 30, 2023 Plan of Operation Modification for the Phase IV Landfill (January 2023 Plan Mod).

This addendum is presented in the form of a letter such that each item requiring additional information is shown in bold text followed by DPC's response. If additional materials are needed to supplement the textual response, these supplemental materials are provided within attachments to this Addendum 2.

Attachment 1 contains the certification statement for this Addendum. **Attachment 2** provides the Incompleteness Letter and communication from the WDNR following the May 2, 2024 meeting between WDNR, TRC, and DPC.

1. Section NR 504.04(5)(j), Wis. Adm Code: Provide a revised leachate removal system for Cell 4 which includes a sump and side slope riser design.

<u>Response</u>: DPC previously obtained an exemption from this requirement in the May 2001 Conditional Plan of Operation Approval. Based on the May 2, 2024 meeting conducted between WDNR, DPC, and TRC it is our understanding that WDNR is re-evaluating this granted exemption due to changes to chs. NR 500-538 resulting from the promulgation of the federal CCR rules. It should be noted that the Federal CCR Rule does not include specific design requirements for the leachate collection and removal system other than the following: (1) designed and operated to maintain less than 30-centimeters depth of leachate over the composite liner, (2) constructed of materials that are chemically resistant to CCR....and of sufficient strength and thickness to prevent collapse under the pressures exerted by the overlying waste, and (3) designed and operated to minimize clogging during the active life and post-closure care period. Therefore, the promulgation of the Federal CCR rule should not impact the existing status of the previously approved exemption request.

However, as requested by the WDNR, DPC is re-requesting an exemption from s. NR 504.04(5)(j) to allow for the required horizontal liner penetration to accommodate the existing design of the gravity drained system for Cells 4A and 4B of the Alma Off-Site Phase IV Landfill. To justify this request, the following information has been provided below: discussion of the existing gravity

leachate collection system design including its pipe penetration, evaluation of the existing system, components of the future system that are currently installed for Cell 4, discussion of the benefits and preferred use of the system, and quality control that is conducted during construction.

As noted above, DPC currently utilizes a gravity drain leachate collection system for the conveyance of generated leachate to the existing leachate collection tank in all of the constructed cells of the Landfill, Cells 1 through 3. This accounts for approximately 63 percent of the total permitted landfill acreage. In the existing cells, this accounts for four existing penetrations through the base liner of the landfill. In the future Cell 4, two additional pipe penetrations would be constructed as proposed in the 2000 Plan of Operation.

The gravity drain leachate collection system consists of the 6-inch perforated SDR 11 HDPE leachate collection pipe located within the limits of waste. The 6-inch perforated pipe generally runs north to south along the base of the landfill. Near the southern toe of slope, the perforated pipe transitions to a non-perforated 6-inch diameter SDR 11 HDPE pipe while remaining within the limits of waste, north of the liner penetration location. Following the liner penetrations, the piping transitions to a dual encased pipe (non-perforated 6-inch diameter SDR 17 within a non-perforated 10-inch diameter SDR 11). This dual encased pipe is routed into currently constructed manholes and gravity drains to the leachate collection tank south of the Phase IV Landfill.

The liner penetrations are designed to contain leachate within the lined landfill and the dual encased transfer pipes. A double HDPE pipe boot is installed at the location where the transfer piping exits the liner system. The double HDPE boot consists of two pipe boots that are welded to the non-perforated pipe and are offset from each other. At each liner penetration, the inner pipe boot was installed first and welded to the pipe and then the secondary boot was placed over the initial boot and welded in a way that the second pipe boot covers the initial pipe boot welds. A detail of the double pipe boot and liner penetration components that were installed during the construction of Cell 3A is included in **Attachment 3**. The double pipe boot provides additional protection against migration of leachate into the environment.

Outside the base grades (top of soil barrier layer) the transfer piping is wrapped in a geosynthetic clay liner (GCL) wrap. The GCL wrap was installed along the length of the non-perforated pipe outside the limits of waste to where the pipe transitions from the single pipe to a dual encased pipe, approximately 24 feet from the base of the landfill. The GCL wrap provides a low permeability layer that acts as a secondary containment around the pipe in case of potential leaks. In addition, a minimum 2-foot-thick low-permeability soil (soil barrier layer) that is used to construct the base of the composite liner system is also placed in all directions around the pipe from the liner penetration to beyond the termination of the GCL wrap. Approximately 21 feet from the base of the landfill the GCL wrapped 6-inch non-perforated pipe passes through a 4-foot by 4-foot HDPE anti-seep collar that is installed within the southern berm of the of the Phase IV Landfill. The anti-seep collar provides additional protection from potential leakage. These features provide multiple layers of safety measures to minimize the potential for migration of leachate from the liner penetration.

The existing gravity drain system has operated as designed and intended. No significant problems have been noted. DPC regularly jets the leachate collection lines and if indications of clogging arise, additional jetting occurs at the site.

> Groundwater monitoring has been conducted at the Phase IV Landfill during its active life. When reviewing the previous 6 years of groundwater monitoring reports, the Phase IV Landfill has not seen any statistically significant increases (SSIs) within the wells of the monitoring network and the site has continued to remain within detection monitoring. During the regular inspection of the existing leachate conveyance system, evidence of leaks of have not been noted. Groundwater results from downgradient wells have not shown evidence of leaks through the liner system, and liquids have not been identified within the dual encased piping located beyond the anti-seep collar.

> Because the non-perforated piping associated with Cell 4, Module A and B is routed within a portion of the Cell 3 build-out, a portion of Cell 4, Module A's gravity conveyance system was installed during liner construction of Cell 3A in 2012. This installed infrastructure consists of manhole MH7 along with the dual encased piping located between manholes MH6 and MH7, and two lines of piping from future Cells 4A and 4B to manhole MH7. Select low permeability soil (soil barrier layer) was placed around the northern 10 feet of the pipes and extended 2 feet in all directions. The installed pipes were capped for the future connections to occur during the construction of Cell 4A. Therefore, the only connections that need to occur are the connections that will occur at the liner penetration and within the limits of waste for the Cell 4A and 4B leachate collection piping if no changes are made to the design. The installed infrastructure is shown on Sheet 6 in **Attachment 3**.

Revising the design of the of the leachate collection system for Cell 4 would require several changes in operation and construction for future buildout of the landfill. As noted above, construction of a portion of the Cell 4A and 4B system was required during Cell 3A construction due to the location of piping with the Cell 3A perimeter berm. This includes piping and the manhole that the piping is connected to. Changes to the design to incorporate a sump and pump system would require removal of this piping within the perimeter berm of Cell 3A and changes to the installed manhole to allow a forcemain to be connected to the existing gravity drain transfer system. Electrical infrastructure required for a pump system is not currently available at the landfill. This would require an electrical conductor to be routed up to the landfill to service one cell of the landfill and would require the addition of a pump and electrical controls and communication between electrically actuated valves near the leachate collection tank and the pump in Cell 4. The electricity would need to be routed to avoid existing landfills and infrastructure on the property, and would result in significant construction cost and complexity.

In addition, the gravity system provides simpler operation for DPC. There is generally reduced operational and maintenance requirements for a gravity drain system. Due to the lack of pumps, there are no pumps to fail that would need to be replaced and/or repaired. Floats and valves do not need to be maintained to allow for proper pump operation. If a pumped system is added to Cell 4, this would result in differing operation and maintenance requirements across the landfill, adding complexity to the current simple system.

The current design's performance meets the requirements of the site. If leachate volume drastically increases, DPC has protocols in place to allow for direct leachate removal from the landfill via temporary pump systems that can directly load leachate into tanker trucks. Though a pump system may be able to move more liquid in a shorter time, DPC does not necessarily have the infrastructure in place to manage that on a consistent basis. At the Phase IV landfill,

the limiting factors for the leachate collection and transfer system are the size of the transfer pipes, the storage capacity of the tank and the hauling limitations of the transfer tankers. For these reasons, there is not a significant advantage to having a permanent pumped system installed to service Cell 4.

As part of the general inspection and monitoring associated with the Landfill, DPC will continue to monitor for potential leaks from the proposed liner penetration within Cell 4. During routine landfill operations, inspections of the manholes, televising of pipes, and inspection of the exterior slopes and vegetation will provide indicators in the unlikely event of potential leakage from the landfill. In addition, groundwater monitoring will continue at the wells located across the site, and if statistically significant increases are observed, an investigation into the cause will be conducted.

During construction, thorough quality control testing will be completed on the pipe penetration location similar to the testing that has been completed in the other constructed cells. This includes electrical resistivity testing of the liner and completing spark testing along welds of the pipe boot. Observation and testing on the subbase of the piping will be completed to confirm that the pipe is being placed on a stable and unyielding subgrade to minimize settlement and damage to the piping due to movement.

Based on the information presented, a gravity drained system as currently designed and partially installed for Cell 4 is expected to operate in a similar manner as the systems currently in-place at the landfill. No significant complications or releases due to the gravity drain system and its corresponding liner penetration have been noted at the site. The system is designed and installed with safety measures in place to minimize the potential of leakage through the liner system. Therefore, DPC requests that the WDNR re-approve the use of the existing gravity drain system and the penetration through the liner for the remaining cell (Cell 4) of the Phase IV Landfill.

2. Section NR 514.07(10), Wis. Adm. Code: Provide additional information for the operational plans required for the CCR landfill.

a. Section NR 514.07(10)(b)(3), Wis. Adm. Code: Provide an estimated schedule for construction of the storm water control structures. This can be an estimate based on an assumed CCR filling rate.

<u>Response</u>: An estimated schedule for the remaining run-on and runoff control structures is provided in Appendix D of the Run-on and Run-off Control System Plan (**Attachment 4**). This schedule is based on an estimated filling rate of approximately 49,000 cubic yards per year. It should be noted that construction may be conducted differently than the schedule presented as filling rates will fluctuate on a yearly basis. Construction and closure of cells will be dependent on the projected disposal requirements at the time and when final waste grades are obtained.

No other changes to the plan were made.

b. Section NR 514.01(10)(c)(6), Wis. Adm. Code: Provide an estimated schedule of final cover construction activities including the year and number of acres of each construction event. This can be an estimate based on an assumed CCR filling rate.

<u>Response</u>: An estimated schedule containing the estimated acres to be closed in each event and the year that the event will begin is provided as Table 1 in the attached Closure Plan (**Attached 5**). Table 2 shows compliance with the schedule requirement in s. NR 506.083(3)(a), which is associated with the timeline following initiation of closure (e.g. date of final receipt of CCR waste and any non-CCR waste stream or final removal of CCR from the CCR landfill for the purpose of beneficial use of CCR). This breaks out the steps of the final closure activity for the site to show that it can be accomplished within 6 months as required by s. NR 506.083(3)(a).

The estimated schedule is based on an annual filling rate of approximately 49,000 cubic yards per year. It should be noted that actual closures may be conducted differently than the schedule presented as filling rates will fluctuate on a yearly basis and closure will be dependent on when final waste grades are obtained.

3. Section NR 520.07(1), Wis. Adm. Code: Provide an updated long-term care cost estimate table that includes the estimated cost for video inspection of the leachate collection system every five years.

<u>Response</u>: **Attachment 6** provides an updated long-term care cost estimate table, which includes leachate line televising.

4. Provide a chronological listing of all previous department issued plan of operation and modification approvals, including expedited plan modifications, along with a listing of their approval conditions, indicating the status (active, completed or superseded) of each condition. This will assist the department with potentially rescinding or superseding outdated conditions of past approvals.

<u>Response</u>: DPC and TRC conducted a virtual meeting with Tony Peterson and Matthew Bachman of the WDNR on May 2, 2024. During this meeting, each of the comments of the April 15 Incompleteness letter were discussed. During this discussion, WDNR noted that this request was not required but would generally be appreciated.

DPC and TRC provided WDNR, for their convenience, copies of previous approval letters for the Plan of Operation and modifications that were approved in the January 2023 Modification to the Plan of Operation. It is the opinion of DPC that these should be sufficient in WDNR's determination of the active statuses of previous site approval conditions. No other documentation will be provided, as this request is not required for this submittal.

DPC is requesting that the WDNR review and provide an approval for the Phase IV Landfill. Please feel free to contact Leif Tolokken at (608) 386-2675 or me at (608) 622-9382 with questions regarding this document.

Sincerely,

TRC

WW. Martin

Todd Martin Principal Project Manager

cc: See attached Distribution List

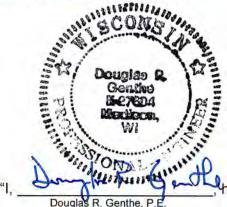
List of Enclosures

- Attachment 1: Addendum Certification Statement
- Attachment 2: WDNR Communication
- Attachment 3: Supporting Documentation for Item 1
- Attachment 4: Updated Run-on and Run-off Control System Plan
- Attachment 5: Updated Closure Plan
- Attachment 6: Long-term Care Costs

Distribution List

Recipient	Hard Copy	Electronic Copy ⁽¹⁾
Anthony Peterson Wisconsin Department of Natural Resources 141 NW Barstow Street #180 Waukesha, WI 53188	1	Yes
Matthew Bachman Wisconsin Department of Natural Resources 1300 W Clairemont Ave Eau Claire, WI 54701	1	Yes
Leif Tolokken Dairyland Power Cooperative 3200 East Avenue South La Crosse, WI 54601		Yes
Don Loock Dairyland Power Cooperative S2180 State Hwy 35 Alma, WI 54610		Yes
BreAnne Kahnk TRC 999 Fourier Drive, Suite 101 Madison, WI 53717		Yes

Footnotes:


⁽¹⁾ Electronic copies to be sent via an e-mail link.

Attachment 1

Addendum Certification Statement

Certification Statement

hereby certify that I am a licensed professional engineer in the

State of Wisconsin in accordance with the requirements of ch. A-E 4, Wis. Adm. Code; that this document has been prepared in accordance with the Rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 500 to 538, Wis. Adm. Code."

, hereby certify that I am a licensed professional geologist

in the State of Wisconsin in accordance with the requirements of Chapter GHSS 2, Wisconsin Administrative Code; that the preparation of this document has not involved any unprofessional conduct as detailed in Chapter GHSS 5, Wisconsin Administrative Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in Chapters NR 500 to NR 538, Wisconsin Administrative Code.

Attachment 2

WDNR Communication

State of Wisconsin DEPARTMENT OF NATURAL RESOURCES 1300 W. Clairemont Ave. Eau Claire, WI 54701-6127

Tony Evers, Governor

Telephone 608-266-2621 Toll Free 1-888-936-7463 TTY Access via relay - 711

FID #606043900 Buffalo County SW/Correspondence

April 15, 2024

Mr. Leif Tolokken Dairyland Power Cooperative JPM Station 500 Old State Highway 35 Alma, WI 54610

Subject: Incompleteness Determination for the Plan of Operation Approval Modification for Initial Permitting of Coal Combustion Residuals (CCR) Landfill for the Dairyland Power Cooperative Alma Off-Site Disposal Facility, Phase IV Landfill (License #4126)

Dear Mr. Tolokken:

The Department of Natural Resources (department) has reviewed for completeness the plan of operation modification for initial permitting of a CCR Landfill ("the plan"), dated January 30, 2023, along with the addendum to the plan dated January 17, 2024, both submitted on behalf of Dairyland Power Cooperative (DPC), by TRC Companies for the Dairyland Power Cooperative Alma Off-Site Disposal Facility, Phase IV Landfill.

The department has determined the plan is not complete since the minimum requirements of chs. NR 500 to 520, Wis. Adm. Code, have not been met in accordance with s. NR 514.045, Wis. Adm. Code. The department understands the complexity of the new CCR rules and its implementation and will be available to discuss the following items while you work to prepare the addenda to your initial submittal.

The following information must be provided in order for the department to issue a determination that the plan is complete:

- 1. Section NR 504.06(5)(j), Wis. Adm. Code: Provide a revised leachate removal system for Cell 4 which includes a sump and side slope riser design.
- 2. Section NR 514.07(10), Wis. Adm. Code: Provide additional information for the operational plans required for the CCR landfill.
 - a. Section NR 514. 07(10)(b)3, Wis. Adm. Code: Provide an estimated schedule for construction of the storm water control structures. This can be an estimate based on an assumed CCR filling rate.
 - b. Section NR 514. 07(10)(c)6, Wis. Adm. Code: Provide an estimated schedule of final cover construction activities including the year and number of acres of each construction event. This can be an estimate based on an assumed CCR filling rate.
- 3. Sections NR 520.07(1), Wis. Adm. Code: Provide an updated long-term care cost estimate table that includes the estimated cost for video inspection of the leachate collection system every five years.

Dairyland Power Co-Op. Alma Off-Site Phase IV Landfill - Plan of Operation Approval Modification Incompleteness Letter for Initial Permitting of CCR Landfill April 15, 2024

4. Please provide a chronological listing of all previous department issued plan of operation and modification approvals, including expedited plan modifications, along with a listing of their approval conditions, indicating the status (active, completed or superseded) of each condition. This will assist the department with potentially rescinding or superseding outdated conditions of past approvals.

This incompleteness determination is not a denial of the plan, but merely indicates that additional information is needed for the department to determine the plan is complete. Submittal of this information does not ensure approval, nor does it preclude the department from requiring additional information if continued review indicates it is needed.

If you have any questions regarding this letter, please contact Tony Peterson at (715) 491-8546 or <u>anthony.peterson@wisconsin.gov</u>, or Matthew Bachman at (608) 512-3233 or <u>matthew.bachman@wisconsin.gov</u>.

Sincerely,

John Morris, Professional Soil Scientist, Regional Supervisor Northern and West Central Regions Waste and Materials Management Program

 cc: Brian Kalvelage – Dairyland Power Cooperative (brian.kalvelage@dairylandpower.com) BreAnne Kahnk – TRC Companies (bkahnk@trccompanies.com) Todd Martin – TRC Companies (twmartin@trccompanies.com) Tony Peterson – DNR/WA (anthony.peterson@wisconsin.gov) Matthew Bachman – DNR/WA (matthew.bachman@wisconsin.gov) Joseph Lourigan – DNR/WA (joseph.lourigan@wisconsin.gov) Malena Grimm – DNR/WA (malena.grimm@wisconsin.gov)

State of Wisconsin DEPARTMENT OF NATURAL RESOURCES 141 NW Barstow St. Room 180 Waukesha, WI 53188

Tony Evers, Governor

Telephone 608-266-2621 Toll Free 1-888-936-7463 TTY Access via relay - 711

FID: 606043900 Buffalo County SW/Correspondence

May 9, 2024

Mr. Leif Tolokken Dairyland Power Cooperative JPM Station 500 Old State Highway 35 Alma, WI 54610

> Subject: Follow-Up Letter from Department's Meeting with Dairyland Power Cooperative (Co-Op) on May 2, 2024, Regarding the Plan of Operation Approval Modification for Initial Permitting of Coal Combustion Residuals (CCR) Landfill for the Dairyland Power Co-Op Alma Off-Site Disposal Facility, Phase IV Landfill (License #4126)

Dear Mr. Tolokken:

The Department of Natural Resources (department) met with Dairyland Power Co-Op and TRC Companies to discuss the department's second incompleteness determination letter dated April 15, 2024 (incompleteness letter) for the plan of operation approval modification (plan modification) for initial permitting for a CCR landfill for the Dairyland Power Cooperative Alma Off-Site Disposal Facility, Phase IV Landfill (landfill).

During the meeting Dairyland Power Co-Op expressed interest in continuing the discussion on item number 1 of the incompleteness letter, which requested that the leachate collection system of Cell 4 of the landfill be revised to include a sump and sideslope riser system to avoid penetrations through the landfill liner system as required by s. NR 504.06(5)(j), Wis. Adm. Code.

The department may grant an exemption to the requirements of chs. NR 500 to 538, Wis. Adm. Code, in special cases where the proposal will not cause environmental pollution as defined under s. 299.01 (4), Wis. Stats. In considering a proposal for an exemption under s. NR 500.08 (4), Wis. Adm. Code, the department shall take into account such factors as the population of the area being served, the amount of waste being generated, the geologic and hydrogeologic conditions at the facility, the design of the facility, the operational history of the facility, the physical and chemical characteristics of the waste, and any other information that may be appropriate.

If Dairyland Power wishes to request an exemption, please include the relevant information to show how the proposed landfill is a special case, how the exemption will not cause environmental pollution and the supporting factors that the department should consider in reviewing the request that shows why the exemption is warranted.

Suggested information that may be relevant to an exemption request includes the following:

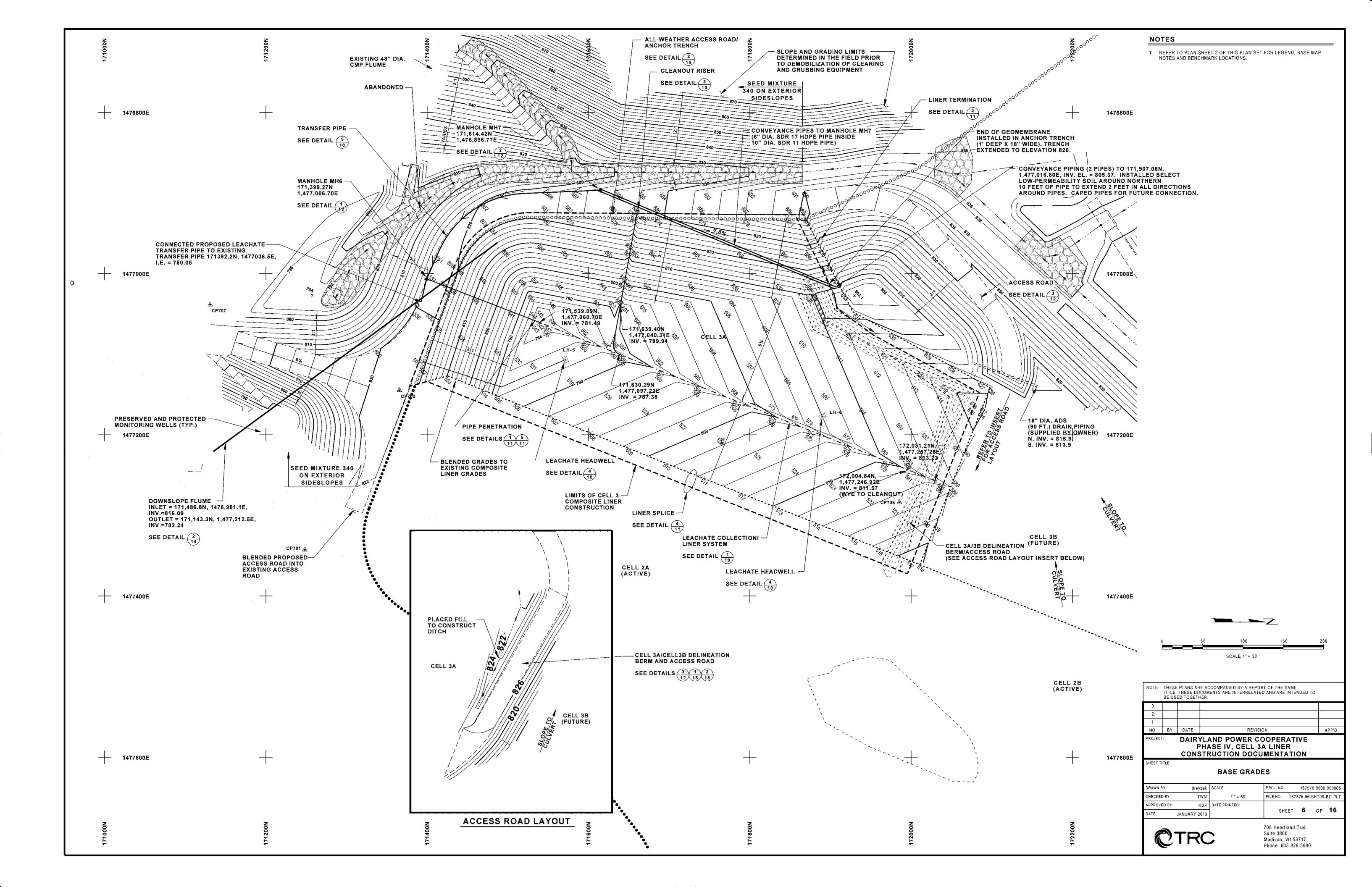
- An evaluation of the performance of the current gravity drain leachate collection and removal system operating within Cells 1 through 3 of the landfill.
- An explanation of the existing leachate collection and removal system infrastructure already constructed for Cell 4.
- An explanation of why the gravity drain leachate collection and removal system would be preferential to a sump and sideslope riser leachate collection and removal system for Cell 4 of the landfill with regards to operations, maintenance, and performance.

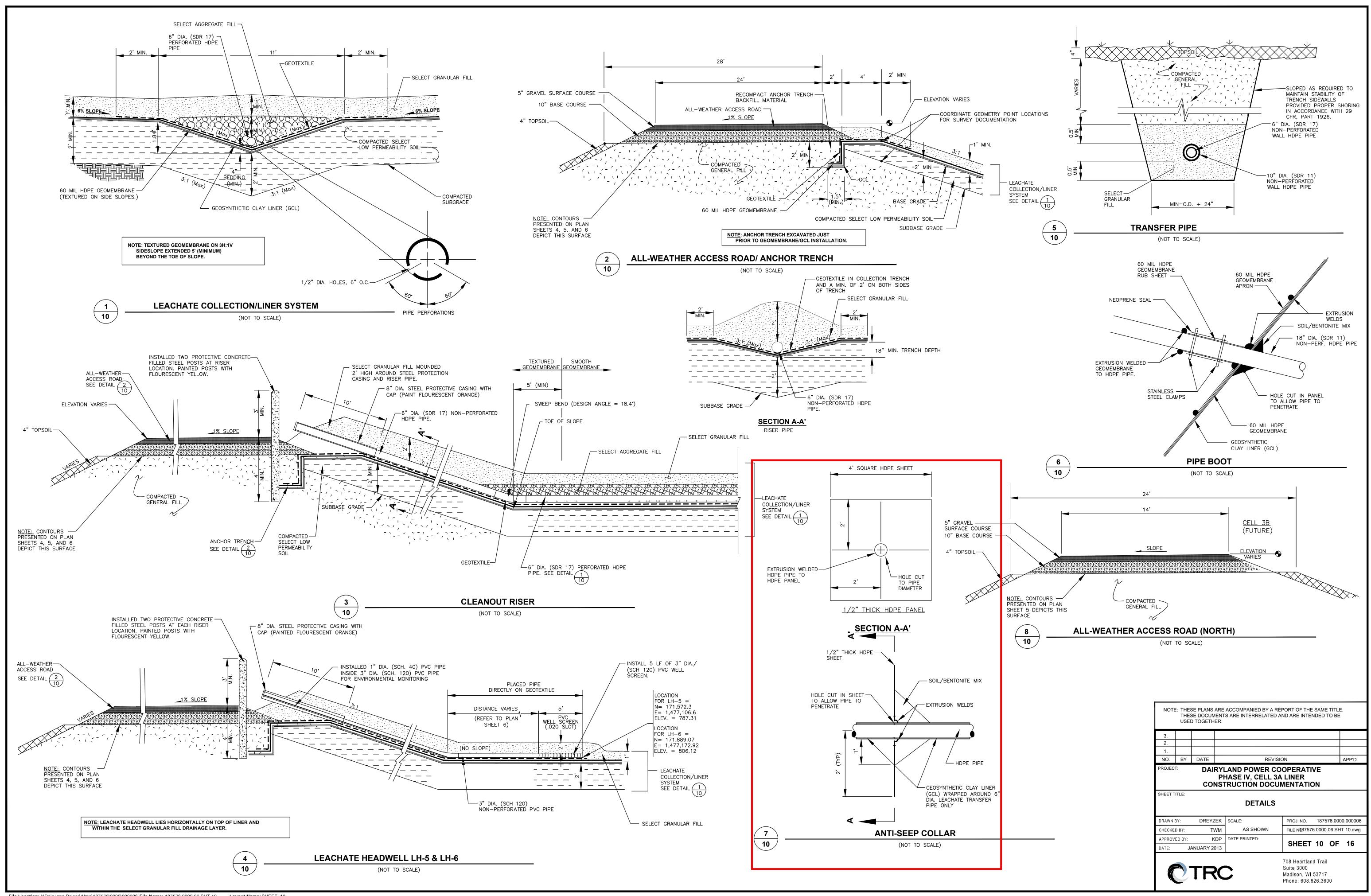
Dairyland Power Co-Op. Alma Off-Site Phase IV Landfill - Plan of Operation Approval Modification Follow-Up Letter from May 2, 2024, Virtual Meeting May 9, 2024

• An explanation of how potential leaks through the penetrations of landfill liner would be identified.

Please note that the department does not guarantee that if an exemption to s. NR 504.06(5)(j), Wis. Adm. Code, is requested as part of the plan modification that it would be approved. The department would need to review the exemption request in its entirety before making a decision.

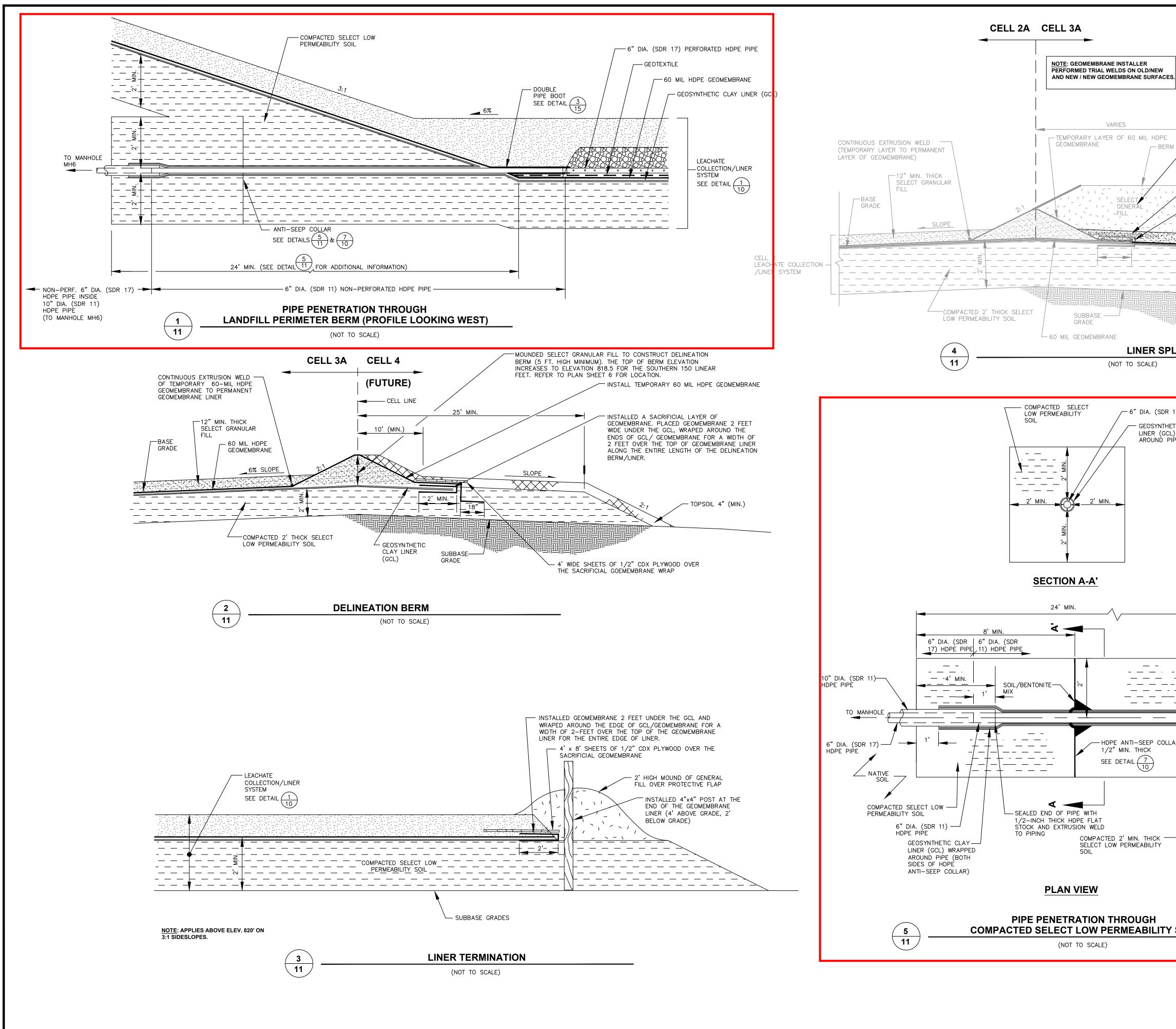
If you have any questions regarding this letter, please contact Tony Peterson at (715) 491-8546 or <u>anthony.peterson@wisconsin.gov</u>, or Matthew Bachman at (608) 512-3233 or <u>matthew.bachman@wisconsin.gov</u>.

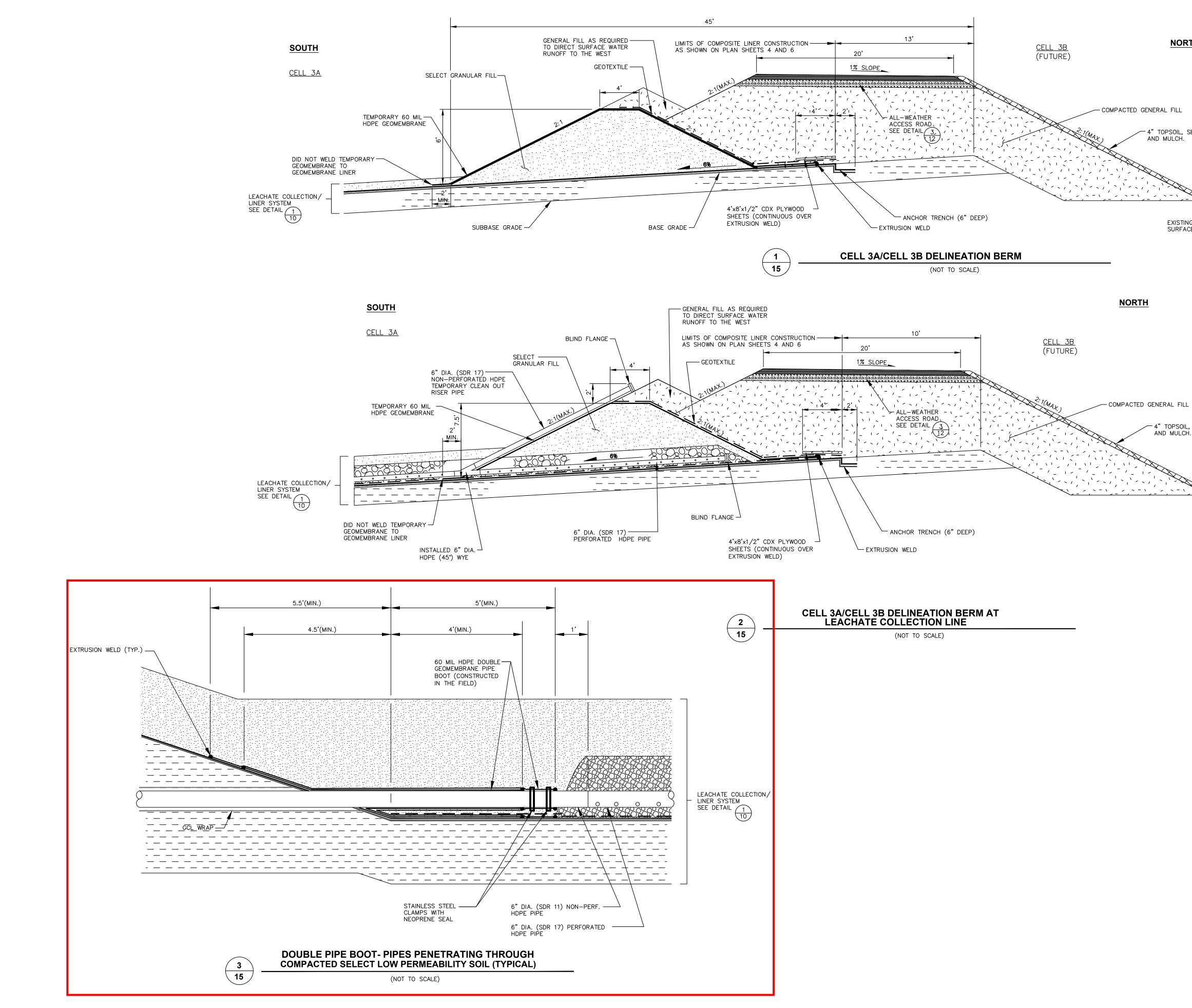

Sincerely,


Tony Peterson

Waste Management Engineer Southeast Region

 cc: Brian Kalvelage – Dairyland Power Cooperative (brian.kalvelage@dairylandpower.com) BreAnne Kahnk – TRC Companies (bkahnk@trccompanies.com) Todd Martin – TRC Companies (twmartin@trccompanies.com) Tony Peterson – DNR/WA (anthony.peterson@wisconsin.gov) Matthew Bachman – DNR/WA (matthew.bachman@wisconsin.gov) Joseph Lourigan – DNR/WA (joseph.lourigan@wisconsin.gov) Tess Brester – DNR/WA (tess.brester@wisconsin.gov) John Morris – DNR/WA (john.morris@wisconsin.gov) Attachment 3


Supporting Documentation for Item 1


 File Location:
 J:\Dairyland Power\Alma\187576\0000\000006
 File Name:
 187576.0000.06.SHT 10
 Layout Name:
 SHEET 10

 Plot Information:
 NONE NOLDEN, RANDY ---- ANSI A (8.50 X 11.00 INCHES) January 17, 2013 0.3869 K:\AUTOCAD_CONFIG\PLOTTERS\PLOT STYLES\RMT COLOR.CTB

File Location:J:\Dairyland Power\Alma\187576\0000\000006 File Name: 187576.0000.06.SHT 11 Layout Name: SHEET 11
Plot Information: NONE NOLDEN, RANDY ---- ANSI A (8.50 X 11.00 INCHES) January 17, 2013 0.3869 K:\AUTOCAD_CONFIG\PLOTTERS\PLOT STYLES\RMT COLOR.CTB

NOTE: THE AMOUNT OF SOIL REMOVED FROM T SPLICE VARIED ALONG THE LENGTH OF THE SP		
CAREFULLY EXCAVATED AN SOIL AS NECESSARY TO E EXISTING GEOMEMBRANE LI EXISTING PRIMARY GEOMEN CONNECTION TO NEW GEOM TEMPORARY DELINEATION I REMOVED PRIOR TO ASH F	XPOSE END OF NER. CLEANED IBRANE LINER FOR IEMBRANE LINER. THE BERM WILL BE	
REMOVED EXISTING 4'X8' SI PLYWOOD AND SALVAGED F DELINEATION BERM OR DISF	OR NEW	
OFF-SITE. OVERLAPED PROPOSED GCI EXISTING GCL AND WELD N GEOMEMBRANE TO EXISTING	IEW 60 MIL HDPE	
	SLOPE	
		- LEACHATE COLLECTION /LINER SYSTEM SEE DETAIL 1
		SEE DETAIL 1 10
	EXCAVATED 4' WIDE X 6" DEEP STEP EXISTING LOW PERMEABILITY SOIL FOR CONNECTION TO EXISTING LINER	is into R
11) HDPE PIPE		
TIC CLAY) WRAPPED PE		
- Z: - 6" DIA. (SDR 11) HDPE - S: - - - N: - - - N: - - - N: - 10" DIA. DOUBLE WALL PIPE TO THE CONNECTION -		
WITH THE PERFORATED COLLECTION PIPE INSIDE CELL 3A SEE DETAIL 1 11		
	NOTE: THESE PLANS ARE ACCOMPANIED BY A THESE DOCUMENTS ARE INTERRELAT	
<u>NOTE:</u> ALL PIPES BEDDED IN SELECT LOW PERMEABILITY SOIL ARE SDR 11	USED TOGETHER.	
HDPE.	PROJECT: DAIRYLAND POWER	
SOII	PHASE IV, CELL CONSTRUCTION DO SHEET TITLE: DETAIL	
SOIL	DRAWN BY: DREYZEK SCALE: CHECKED BY: TWM AS SHOWN	PROJ. NO. 187576.0000.000006 FILE Nt/87576.0000.06.SHT 11.dwg
	APPROVED BY: KDP DATE PRINTED: DATE: JANUARY 2013	SHEET 11 OF 16
	CTRC	708 Heartland Trail Suite 3000 Madison, WI 53717 Phone: 608.826.3600

File Location: J:\Dairyland Power\Alma\187576\0000\000006 File Name: 187576.0000.06.SHT 15 Plot Information: NONE NOLDEN, RANDY ---- ANSI A (8.50 X 11.00 INCHES) January 17, 2013 0.3869 K:\AUTOCAD_CONFIG\PLOTTERS\PLOT STYLES\RMT COLOR.CTB

NORTH

~4" TOPSOIL, SEED, FERTILIZE, AND MULCH.

EXISTING GROUND -SURFACE

4" TOPSOIL, SEED, FERTILIZE, AND MULCH.

EXISTING TOPOGRAPHY

NOTE	THE		ENT	ACCOMPANIED BY A RE S ARE INTERRELATED A	• • • • • • • • • • • • • • • • • • • •		
3.							
2.							
1.							
NO.	BY	DATE		REVISIO	N		APP'D.
PROJEC	Г:		Pŀ	AND POWER CO ASE IV, CELL 3A RUCTION DOCUI	LINER		
SHEET T	ITLE:			DETAILS			
DRAWN E	BY:	DREYZI	ΕK	SCALE:	PROJ. NO. 18	87576.00	00.000006
CHECKE	D BY:	τw	VM	AS SHOWN	FILE N087576.00	000.06.SH	IT 15.dwg
APPROV	ED BY:	KI	DP	DATE PRINTED:			16
DATE:	J٨	ANUARY 20)13		SHEET 1	5 UF	10
).	TR)	708 Heartland T Suite 3000 Madison, WI 537 Phone: 608.826.	717	

Attachment 4

Updated Run-on and Run-off Control System Plan

Run-On and Run-Off Control System Plan

Alma Offsite Disposal Facility Phase IV Landfill Alma, Wisconsin

October 2016 Revised October 2021 Revised January 2024 Revised July 2024

Prepared For:

Dairyland Power Cooperative 3200 East Avenue South La Crosse, Wisconsin 54601

Prepared By:

TRC 999 Fourier Drive, Suite 101 Madison, Wisconsin 53717

reanne Kahnk 1-

BreAnne Kahnk, P.E. Senior Project Engineer

W. Mar

Todd Martin Principal Project Manager

TABLE OF CONTENTS

REVIS	ION HIS	STORY		ii
1.0	INTRO	DUCTI	ON	1
	1.1	Purpose	e and Scope	1
2.0			G DESIGN CONCEPTS FOR CONTROLLING RUN-ON F	2
	2.1	Genera	l	2
	2.2	Run-On	n Control System	
		2.2.1	General	2
		2.2.2	Control of Surrounding Run-On	3
		2.2.3	Diversion Berms	3
		2.2.4	Downslope Flumes	3
		2.2.5	Ditching	4
		2.2.6	Sedimentation Basins	4
		2.2.7	Culverts	4
		2.2.8	Temporary Surface Water Controls	4
	2.3	Run-Of	f Control System	5
		2.3.1	General	5
		2.3.2	Leachate Collection System	5
		2.3.3	Leachate Removal and Transfer System	5
		2.3.4	Leachate Storage Capacity From a 25-Year 24-Hour Storm Event	6
		2.3.5	Conclusions	6
3.0	CONS	TRUCT	ION OF RUN-ON AND RUN-OFF CONTROL SYSTEM	7
	3.1	Run-on	Control Systems	7
	3.2	Run-off	Control Systems	7
4.0	AMEN		OF THE PLAN AND NOTIFICATION	
5.0	ENGIN	IEER'S	CERTIFICATION	9

APPENDICES

Appendix A: Surface Water Run-On Control System Calculations Appendix B: Surface Water Run-Off Control System Calculations Appendix C: Relevant October 2000 POO Plan Sheets Appendix D: Estimated Control System Construction Schedule

REVISION HISTORY

Revision Number	Revision Date	Section Revised	Summary of Revisions
1	10/6/2021	1.2, 2.2, 2.3, 3.0, App. B	5-year periodic revision, revised text and Appendix B
2	10/11/2023	Inserted Section 3	Requirements to meet WDNR standards
3	7/24/2024	App. D	Estimated Construction Schedule

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised July 2024

1.0 Introduction

1.1 **Purpose and Scope**

This Run-On and Run-Off Control System Plan (Plan) was prepared by TRC Environmental Corporation (TRC) on behalf of Dairyland Power Cooperative (DPC) for the Alma Offsite Disposal Facility, Phase IV Landfill (Landfill) where coal combustion residuals (CCR) are disposed. The approximately 32.1 acre Landfill is located in Sections 18 and 19, T21N, R12W, Town of Belvidere, Buffalo County, Wisconsin.

This Plan meets the run-on and run-off control system requirements of the United States Environmental Protection Agency's (USEPA) CCR Rule (Title 40 Code of Federal Regulations (CFR) parts 257 Subpart D – "Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments"). This text and its accompanying appendices and plan sheets present the plans and specifications of the run-off and run-on control systems of the Landfill. The plan sheets and the text, with its appendices, complement each other and should be reviewed and used as one document.

2.0 Engineering Design Concepts for Controlling Run-On and Run-Off

2.1 General

The Landfill design has been developed to provide environmentally sound CCR disposal. The storm water run-on and run-off control systems for the Landfill have been designed and meet the requirements of 40 CFR 257.81.

The supporting calculations for the run-on and run-off design are referenced throughout the text and are included in the appendices. Details and drawings illustrating design layout and specifications are referenced as applicable and presented on the plan sheets and figures. The majority of the calculations provided in the appendices were prepared during the initial permitting of the Phase IV Disposal Area and included in the October 2000 Plan of Operation (POO) in accordance with Wisconsin Administrative Code, Chapters 500 through 520, and conversations with the Wisconsin Department of Natural Resources (WDNR). Plan sheets included in Appendix C are the relevant plan sheets from the October 2000 POO drawing plan set. For the purposes of this Plan, the terms surface water and storm water have been used interchangeably and reflect precipitation routed over land or temporarily stored to manage run-on and run-off. No streams, wetlands, or bodies of water are located in areas that would impact run-on and run-off at the Landfill.

2.2 Run-On Control System

2.2.1 General

The run-on control system for the Landfill consists of perimeter berms, diversion berms, downslope flumes, ditching, sedimentation basins, and culverts, designed and constructed to control surface water during both the operational and post-closure periods of the Landfill. The design of the surface water controls have been performed for the operational periods when the combination of surface conditions and contributing acreage would result in the greatest run-off volume, and for the post-closure period. Given the location of the site, the surface water management system was designed utilizing the 100-year, 24-hour storm event at the time of the design, which exceeds the current 25-year, 24-hour storm event required by 40 CFR 257.81(a)(1). Calculations for the surface water run-on control designs are included in Appendix A.

The surface water control system design has been performed to meet the following requirements:

- Run-off curve numbers (RCNs) used in the analysis provide a conservative analysis of the potential land uses of the upland areas. Upland areas within the watershed primarily include wooded areas and agricultural lands. The wooded areas are located on the steeper-sloped areas of the valley and are unlikely to be affected by future land uses. High RCNs for the agricultural lands were selected to represent a conservative fallow condition with exposed bare soil. The RCNs selected for these areas were 86.
- Surface water run-on controls have been designed to divert off-site surface water away from the active fill areas. On-site surface water is routed to sedimentation basins, except surface water in contact with active fill areas, which is treated as leachate.

2.2.2 Control of Surrounding Run-On

Surface water from areas west, north, and east of the Landfill currently drain to existing drainage channels that have formed in the valleys near the Landfill. These drainage channels converge at the location of the Landfill, are conveyed around the Landfill by perimeter diversion ditches, and continue to the south in a single drainage ditch. The main drainage ditch then routes the water to the south for approximately 1.5 miles before discharging into the Mississippi River (see Plan Sheet 5 in Appendix C).

Diversion ditches are designed to route off-site surface water around the Landfill in a controlled manner. These ditches are constructed in phases as the Landfill is developed.

During previous construction events, the perimeter drainage ditch along the eastern, western, and northern sides of the Landfill were constructed to route storm water from the east, west, and north around the Landfill. Cells 1, 2, and 3 of the Landfill have been constructed (see Plan Sheet 9 in Appendix C). A temporary drainage ditch/diversion berm was constructed on the northwestern side of the Landfill to route surface water from areas northwest of the Landfill around the Landfill. During Cell 4, Module B development, the remaining surface water controls will be completed (see Plan Sheets 11 and 12 in Appendix C).

Temporary and permanent ditching and diversion berms were designed and constructed to manage the peak flows associated with the 100-year, 24-hour storm event.

2.2.3 Diversion Berms

Diversion berms are designed along the final cover system to collect and transfer surface water to the receiving downslope flume or sedimentation basin (see Detail 2 on Plan Sheet 19 in Appendix C). These diversion berms concentrate and control flow, and discharge the non-contact surface water (water that has not come into contact with the CCR) from the Landfill away from the final cover. The swales created by the diversion berms are designed at 2 percent typical slopes along the flow lines. The locations of the surface water diversion berms are shown on Plan Sheet 12 in Appendix C.

Drainage areas for the Landfill are defined by the proposed surface water diversion berms at the site. Run-off computations were performed for the site with the proposed diversion berms inplace and are contained in Appendix A. Figure K-2 in Appendix A shows the post-closure drainage areas for the Landfill.

2.2.4 Downslope Flumes

Downslope flumes are included in the design to collect and transfer surface water from the diversion berms on the final cover to the sedimentation basins. Plan Sheet 12 shows the location of the downslope flumes. The downslope flumes have been designed as enclosed pipe flumes to limit erosion and to control the flow as it crosses roads. Downslope flume calculations are included in the culvert design subsection of Appendix A.

2.2.5 Ditching

Surface water ditching has been designed to minimize velocities and depths of flow. Velocities for the grass-lined ditching have been limited to 4 feet per second (fps). In areas where velocities exceed 4 fps, permanent erosion matting, or grouted riprap are used to limit erosion and reduce velocities. Ditch sizing calculations are contained in Appendix A. Designed ditch locations are shown on Figure K-3 in Appendix A. The ditching to route surface water around the Landfill and away from the active areas of the Landfill are designed at a minimum 2-foot depth as shown on Detail 8 on Plan Sheet 23 in Appendix A. Ditch sizing calculations for operational and post-closure conditions show that a minimum freeboard of 0.4 feet occurs as the worst case condition in the ditches for the 100-year 24-hour storm event. Therefore, the calculations indicate that run-on to the active areas of the Landfill should not occur for the 25-year 24-hour storm event as required by 40 CFR 257.81(a)(1).

2.2.6 Sedimentation Basins

Two permanent sedimentation basins are designed to capture and treat non-contact run-off from the Landfill final cover system. The locations of the permanent sedimentation basins are shown on Plan Sheet 5 in Appendix C. The basins have been designed with a minimum surface area that exceeds the surface area required to settle 0.015 mm particles. The sedimentation basins are designed to accommodate the surface water run-off from a 100-year, 24-hour storm event. The emergency spillways are designed to control the run-off from a storm greater than the 100-year, 24-hour storm event.

2.2.7 Culverts

Several culverts are designed to transport non-contact run-off from the Landfill final cover and surrounding areas. The locations of the permanent culverts are shown on Plan Sheet 12 in Appendix C. The culverts have been designed to allow the peak run-off associated with a 100-year, 24-hour storm to pass through it without creating surface water breaching (i.e., berm overflow and run-on into active areas of the Landfill) or excessive backwater levels. Culvert sizing was performed using design charts developed by the U.S. Department of Transportation Federal Highway Administration. Culvert sizing calculations are provided in Appendix A.

2.2.8 Temporary Surface Water Controls

In addition to the permanent surface water management features discussed above, temporary surface water controls are also implemented during operation of the Landfill to control surface water from entering the active disposal area and to limit erosion of the final cover. These temporary control features include diversion berms, downslope discharge structure, and culverts. Temporary diversion berms will be constructed as needed along the transition from an active area to an area that has reached final grade, or that has intermediate cover, in order to control surface water from entering the active area. Temporary downslope discharge structures will be used to route non-contact run-off from diversion berms (either temporary or permanent) to the perimeter ditches.

2.3 Run-Off Control System

2.3.1 General

The leachate collection and handling system in conjunction with cell delineation berms (see detail 5 on Plan Sheet 17 in Appendix C) and perimeter berms comprise the control system for preventing contact surface water run-off from the active portions of the Landfill. Contact surface water is managed as leachate. The leachate collection system for the Landfill has been designed to provide effective drainage, collection, and removal of leachate from the Landfill.

2.3.2 Leachate Collection System

The primary components of the leachate collection system consist of a drainage layer, leachate collection and transfer piping, cleanouts, manholes, a storage tank, and a load-out facility. The leachate collection system layout is shown on Plan Sheet 5 in Appendix C. The drainage layer is placed over the geomembrane on the base and sidewalls. The drainage layer promotes the efficient transmission of leachate to the leachate collection trenches and pipes. The drainage layer is a minimum of 12 inches thick and has a minimum hydraulic conductivity of 1.0×10^{-2} centimeters per second (cm/s).

The leachate collection piping is placed in vee-shaped trenches and consists of 6-inch–diameter perforated high density polyethylene (HDPE) pipe. Pipe bedding material is placed around the perforated pipe and mounded as shown on Plan Sheet 17 in Appendix C.

Leachate collection pipes in each cell are placed parallel to each other in valleys over the herringbone design across the base. These lines drain at a 4 to 6 percent slope to the leachate removal and transfer system.

Temporary cell delineation berms are used along the cell boundaries to control surface water runoff from exiting the active areas of the Landfill. Refer to Detail 5 on Plan Sheet 17 for further details on the temporary cell delineation berm design.

2.3.3 Leachate Removal and Transfer System

The perforated leachate collection piping will transition to 6-inch–diameter nonperforated leachate transfer piping within the Landfill just prior to where the transfer piping penetrates the liner system at the southern toe-of-slope of each cell. The horizontal pipe penetration has been designed to prevent leachate from leaving the Landfill liner system through the liner penetration.

Outside of the limits of CCR, concrete manholes provide a location for transfer piping to manifold into a single perimeter transfer pipe around the southern end of the Landfill, and to provide a location for cleanout access piping.

The combined transfer piping then extends to the leachate storage tank located near the ash processing facility. Leachate collected in the tank is pumped into tanker trucks and transported to a nearby wastewater treatment plan for treatment which complies with 40 CFR 257.81(b). Plan Sheet 5 illustrates the location of the transfer piping, manholes, and the storage tank.

2.3.4 Leachate Storage Capacity From a 25-Year 24-Hour Storm Event

The proposed phasing plans and existing conditions were reviewed to determine the worst-case scenario for leachate generation. This worst-case scenario was used to show that run-off from the active area of the Landfill would not occur from a 25-year 24-hour storm event. Calculations contained in Appendix B show that there is approximately 14,700 cubic feet of leachate storage capacity remaining in the leachate collection system after a 25-year 24-hour storm event. Therefore, sufficient infrastructure is provided to prevent run-off from the active area of the Landfill as required by 40 CFR 257.81(a)(2).

2.3.5 Conclusions

This Plan has demonstrated that the Landfill has a run-on control system and a run-off control system sufficient to prevent flow onto or off of the active portion during a 24-hour 25-year storm event. The Landfill is in compliance with the requirements of 40 CFR 257.81.

3.0 Construction of Run-on and Run-off Control System

3.1 Run-on Control Systems

As noted in Section 2.2, the run-on control system consists of perimeter berms, diversion berms, downslope flumes, ditching, sedimentation basins, and culverts. Run-on controls have been designed to divert off-site surface water away from the active fill areas. On-site water is routed to sedimentation basins, except surface water in contact with active fill areas which is treated as leachate.

As summarized in Section 2.2.2, the run-on features are constructed incrementally during both the liner construction and final cover construction events. The previously constructed features were constructed per the site specifications with construction oversight directed by a professional engineer licensed in the State of Wisconsin. Documentation reports for construction events at the Landfill were prepared, submitted to the WDNR, and approved by the WDNR.

Temporary systems are used at the limits of the construction event to assist in the run-on control system until the remainder of the components are completed. The remainder of the run-on control system components will be completed during development of Cell 4B and following its closure. Specific schedules of exactly when features will be developed is not practicable, as the development and closure of the Landfill is dependent on filling activities, which are highly variable. Future construction will meet the previously approved design and specifications as noted in the October 2000 Plan of Operation, and construction oversight will be directed by a professional engineer licensed in the State of Wisconsin.

An estimated schedule for these systems, based on an assumed CCR filling rate is included as Appendix D.

3.2 Run-off Control Systems

As noted in Section 2.3, the run-off control system consists of the leachate collection system in conjunction with cell delineation berms and perimeter berms. The previously constructed features for the active area were constructed during the liner installation of the associated module/cell. The remaining portions of the run-off control system will be constructed during the construction events for Cells 4A and 4B. The general placement of the leachate collection system is summarized in Section 2.3.2 and is detailed in the approved October 2000 Plan of Operation.

Previous and future construction have been/will be completed in accordance with the site specifications and design, as shown in Appendix C. Construction oversight has/will be directed by a professional engineer licensed in the State of Wisconsin. Documentation reports for previous construction events have been prepared, submitted to the WDNR, and previously approved by the WDNR. Following construction of future landfill cells/modules, reports documenting construction will be prepared and submitted to the WDNR as required by ch. NR 516.

An estimated schedule for these systems, based on an assumed CCR filling rate is included as Appendix D.

4.0 Amendment of the Plan and Notification

This Plan was completed in compliance with the requirements set forth in 40 CFR 257.81. This document has been placed in the operating record, posted to the publicly accessible website, and government notifications have been provided.

A Run-On and Run-Off Control System Plan must be prepared every 5 years from the completion date of this Plan.

The Plan must be amended whenever the periodic review period is reached or if changes in site conditions, either intentionally or unintentionally, occur that will sustainably impact the current written plan in effect.

5.0 Engineer's Certification

Pursuant to 40 CFR 257.81 and by means of this certification I attest that:

- (i) I am familiar with the requirements of the federal CCR rule (40 CFR 257);
- (ii) this Run-On and Run-Off Control System Plan has been prepared in accordance with good engineering practice; and
- (iii) this Run-On and Run-Off Control System Plan meets the requirements of 40 CFR 257.81(c).

For the purpose of this document, "certify" and "certification" shall be interpreted and construed to be a "statement of professional opinion." The certification is understood and intended to be an expression of my professional opinion as a Wisconsin licensed professional engineer, based upon knowledge, information, and belief. The statement(s) of professional opinion are not and shall not be interpreted or construed to be a guarantee or a warranty of the analysis herein.

Signature of Registered Professional Engineer

Registration No. E-46825

State: Wisconsin

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised July 2024

\madison-vfp\Records\-\WPMSN\PJT2\563618\0000\R5636180000-002_Alt 4_Control Plan.docx

Appendix A: Surface Water Run-On Control System Calculations

- Note: For clarification purposes, these run-on calculations estimate "run-off" quantities from areas in and surrounding the Landfill that develop non-contact surface water that is managed to prevent run-on to the active Landfill areas.
- Surface Water Run-off Calculations
 - Purpose/Methodology/Assumptions/Results/References
 - Post-closure Run-off Calculations
 - Operational Run-off Calculations
 - Reference Information
- Diversion Berm, Perimeter Ditch, and Spillway Design Calculations
 - Purpose/Methodology/Assumptions/Results/References
 - Calculations Post-closure Landfill Conditions
 - Calculations Operational Landfill Conditions
 - Reference Information
- Culvert/Downslope Flume Design Calculations
 - Purpose/Methodology/Assumptions/Results/References
 - Calculations Post-closure Landfill Conditions
 - Calculations Temporary Culverts, Operational Conditions
- Vegetation Information

Surface Water Run-off Calculations

Purpose/Methodology/Assumptions/Results/References

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised July 2024

COMPUTATION SHEET

744 Heartland Trail (53717-8923) I	P. O. Box 8	8923 (53708	3-8923)	Madison, WI	(608) 831-44	44 FAX	(608) 831-3334	VOICE: (608) 831-1989
PROJECT/PROPOSAL NAME		PREPARED		C	CHECKED		PROJECT/PROPOSAL NO.	
Dairyland Power Cooperativ	ve	By: BJK	Dat 5/9			ate: /97		3081.40

SURFACE WATER RUNOFF CALCULATIONS

Purpose

The purpose of the surface water runoff calculations was to estimate the amount of surface water runoff and the peak discharge for the 25-year, 24-hour and 100-year, 24-hour storms at the proposed Dairyland Power Landfill. Calculations were performed for the pre- and post-development conditions. Calculations were also performed for operational conditions for the 25-year, 24-hour storm. Once determined, the surface water runoff quantities were compared to determine the effect of the proposed landfill on the existing drainage patterns. The runoff calculations were also used to size diversion ditches, sedimentation basins, culverts, and downslope flumes.

Methodologies

Surface water runoff calculations consist of delineating drainage areas (watersheds), as shown on the attached figures, estimating runoff characteristics, and calculating the peak and total runoff rate and volume for each drainage area. The methods for computing surface water runoff were based on the methodologies presented in the Technical Release No. 55 - "Urban Hydrology for Small Watersheds" by the United States Soil Conservation Service.

The calculations were performed using the QUICK TR-55 computer program developed by Haestad Methods (Haestad 1989). The program incorporates rainfall quantities, storm distributions, surface runoff characteristics, drainage areas, times of concentration, and travel times to generate a hydrograph from which the volume of surface water runoff and the peak discharge are obtained.

It is noted that the storm water control structures have been designed using a 100-year, 24-hour storm event and a TR-55 Type II storm distribution to determine peak flow rates. Rainfall distributions for the Type II storm event include "nested" higher intensity storm events within those needed for longer durations at the same probability. The resulting peak flows using this design method meet or exceed the peak flows obtained using a 25-year, time of concentration storm event (required by NR 504.09).

COMPUTATION SHEET

PROJECT/PROPOSAL NAME	PREPARED		CHECKED		PROJECT/PROPOSAL NO.	
Dairyland Power Cooperative	By: BJK	Date: 5/97	By: BLP	Date: 6/97	3081.40	

Assumptions

The following assumptions were made in developing the hydrographs (Note: The figures and values referenced in these assumptions have been included in the references portion of this appendix):

- A 2-year, 24-hour storm event in the vicinity of the landfill is 2.8 inches based on rainfall maps prepared by the U.S. Weather Bureau.
- A 25-year, 24-hour storm event in the vicinity of the landfill equates to 4.9 inches based on rainfall maps prepared by the U.S. Weather Bureau.
- A 100-year, 24-hour storm event in the vicinity of the landfill equates to 6.1 inches based on rainfall maps prepared by the U.S. Weather Bureau.
- A Type II rainfall distribution was used, based on SCS storm distribution maps provided in the TR-55 manual.
- Cover types for the pre-development conditions, from which runoff curve numbers were determined, were based on USGS topographic maps and an aerial photograph.
- For the post-development landfill conditions, a runoff curve number of 74 was assumed, based on values provided in the TR-55 manual.
- Based on the USDA-SCS General Soil Map for Buffalo County, Wisconsin, the primary soil formations present include the Dubuque silt loam and the Fayette silt loam. These soils are a Type B soil, based on tables provided in the TR-55 manual.
- Runoff curve numbers for the non-landfill areas ranged from 55 to 86, based on values
 provided in the TR-55 manual. Refer to the attached calculations for the breakdown and
 description of each of the curve numbers used for the various drainage areas.

Results

The table below summarizes the results of the surface water runoff analyses and provides a comparison of the pre- and post-development conditions:

	TOTAL RUNOFF (acre-ft)			PEAK	PEAK DISCHARGE (cfs)		
STORM	PRE-	POST-	Δ	PRE-	POST-	Δ	
25-year	153	148	(5)	1,170	1,028	(142)	
100-year	232	225	(7)	1,895	1,622	(273)	

Based on the results of the surface water runoff calculations, the proposed landfill is not anticipated to have an adverse impact on the existing surface water at the site. Total runoff volumes to the existing drainageways are not anticipated to change in the pre- and postdevelopment conditions. Peak runoff volumes to the existing drainageways for post-

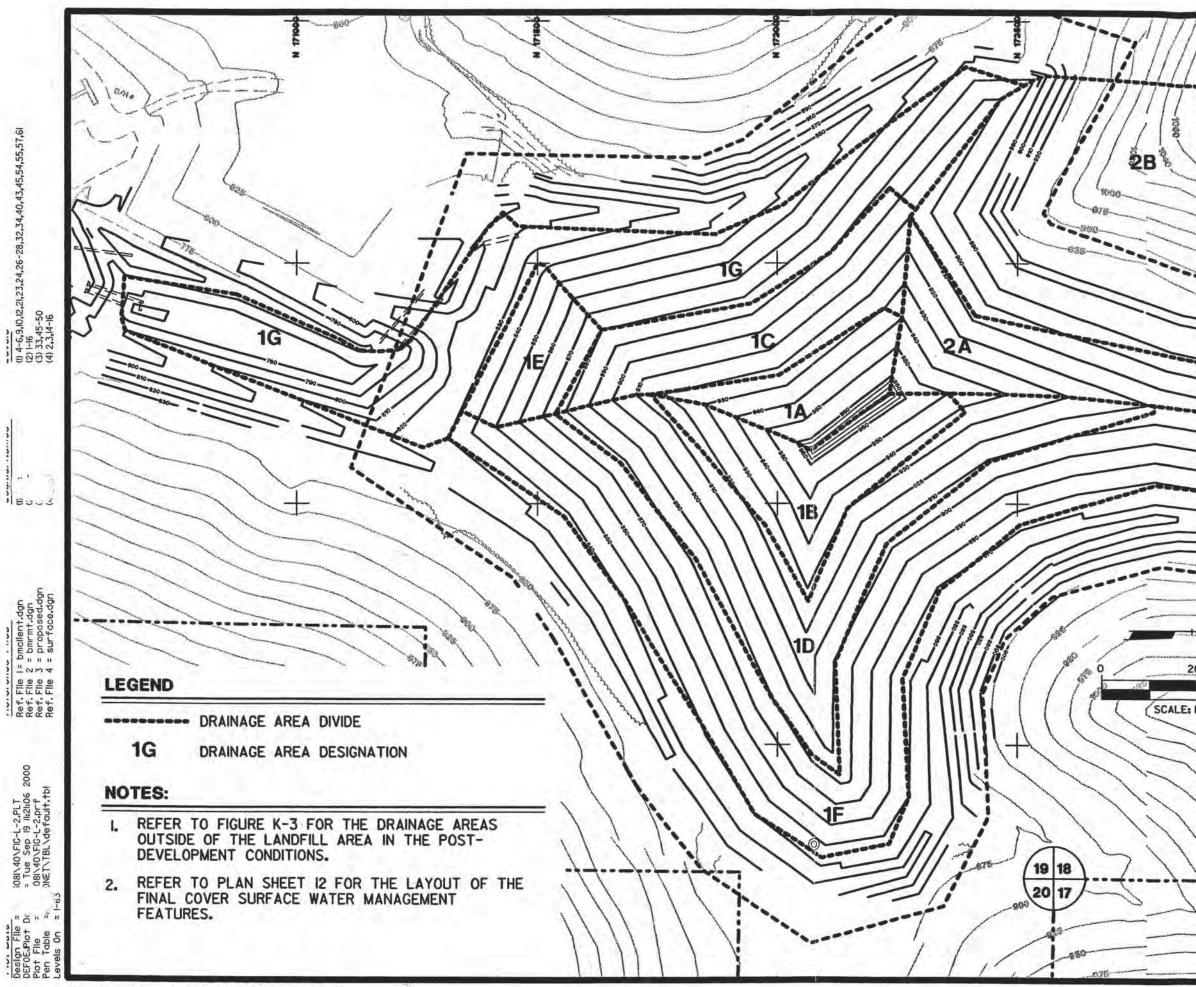
COMPUTATION SHEET

744 Heartland Trail (53717-8923) P.	O. Box 8923 (53708	3-8923)	Madison, WI	(608) 831-4444		VOICE: (608) 831-1989
PROJECT/PROPOSAL NAME	PREPARE	PREPARED		ECKED	PROJECT/PH	ROPOSAL NO.
Dairyland Power Cooperativ	e BJK	Date: 5/97	-7.	P 0/97	7	3081.40

CITTI

development conditions are slightly lower than the pre-development conditions. This is primarily due to the use of sedimentation basins to dissipate peak flows from the landfill to the surrounding areas. The reduced peak flows will result in reduced sediment transport from the site.

The results of these surface water runoff calculations have also been used in the attached diversion berm, perimeter ditch, spillway, and sedimentation basin calculations. These structures have been designed to handle the peak runoff from the 100-year, 24-hour storm event.


References

- US Department of Agriculture, Soil Conservation Service. Urban Hydrology for Small Watersheds. Technical Release No. 55. 2nd Edition. June 1986.
- US Department of Agriculture, Soil Conservation Service. 1986. Engineering Field Manual for Conservation Practices. November 1986.
- Haestad Methods. Pond Pack, QUICK TR-55. Hydrology for Small Watersheds. December 1989.

Post-closure Run-off Calculations

\\madison-vfp\Records\-\WPMSN\PJT2\563618\0000\R5636180000-002_Att 4_Control Plan.docx

E 1477000 E 1477500 200 SCALE: 1=200-1000 1080 E 1478000 POST-DEVELOPMENT SURFACE WATER MANAGEMENT FEATURES -LANDFILL AREAS DAIRYLAND POWER COOPERATIVE JCD Dwn. By: Approved By: KIM Date: SEPT. 2000 Proj." 3081.40 Flle ": FIG-L-2.PLT FIGURE K-2

Quick TR-55 Ver.5.46 S/N: Executed: 09:52:46 04-09-1997

Dairyland Power Coop. Feasibility Report Landfill Runoff BJK 3/97

RUNOFF CURVE NUMBER SUMMARY

Subarea	Area	CN
Description	(acres)	(weighted)

14	1.40	74
18	2.20	74
10	2.90	74
1D	5.30	74
1E	1.20	74
1F	9.50	74
1G	7.40	84

÷

Quick TR-55 Ver.5.46 S/N: Executed: 09:52:46 04-09-1997

6/13/97

Dairyland Power Coop. Feasibility Report Landfill Runoff BJK 3/97

RUNOFF CURVE NUMBER DATA

Composite Area: 1A

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	1.40	74	
COMPOSITE AREA>	1.40	74.0	(74)

Composite Area: 1B

	AREA	CN	
SURFACE DESCRIPTION	(acres)		
Landfill Cover	2.20	74	
COMPOSITE AREA>	2.20	74.0	(74)

Composite Area: 1C

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	2.90	74 -	
COMPOSITE AREA>	2.90	74.0	(74)

Quick TR-55 Ver.5.46 S/N: Executed: 09:52:46 04-09-1997

Composite Area: 1D

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	5.30	74	
COMPOSITE AREA>	5.30	74.0	(74)

Composite Area: 1E

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	1.20	74	/
COMPOSITE AREA>	1.20	74.0	(74)

Composite Area: 1F

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	9.50	74	1
COMPOSITE AREA>	9.50	74.0	(74)

Composite Area: 1G

	AREA	CN
SURFACE DESCRIPTION	(acres)	
Landfill Cover	4.40	74 -
Sedimentation Basin	3.00	98 -

COMPOSITE AREA ---> 7.40 83.7 (84)

Quick TR-55 Ver.5.46 S/N: Executed: 09:53:01 04-09-1997

> Dairyland Power Coop. Feasibility Report Landfill Runoff BJK 3/97

RUNOFF CURVE NUMBER SUMMARY

Subarea	Area	CN
Description	(acres)	(weighted)
2A	2.70	74
2B	21.50	69

Quick TR-55 Ver.5.46 S/N: Executed: 09:53:01 04-09-1997

1

Dairyland Power Coop. Feasibility Report Landfill Runoff BJK 3/97

RUNOFF CURVE NUMBER DATA

Composite Area: 2A

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	2.70	74	
COMPOSITE AREA>	2.70	74.0	(74)
111111111111111111111111111111111111111			

Composite Area: 28

Landfill Cover 2.70 7	74
Graded/Grassed Area 2.00 6	51 -
Woods/Brush 15.80 6	57 -
Sedimentation Basin 1.00 9	98 -
COMPOSITE AREA> 21.50 6	58.8 (69)

SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

> Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

Subarea descr.	Tc or Tt	Time (hrs)

14	Tc	0.18
18	Tc	0.23
10	Tc	0.23
10	Tc	0.35
1E	Tc	0.18
1F	Tc	0.45
1G	Tc	0.22

Quick TR-55 Ver.5.46 S/N: Executed: 09:48:41 04-09-1997 B:COVER1.TCT

1

)

)

6/13/97

Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

TC COMPUTATIONS FOR: 1A

SHEET FLOW (Applicable to Tc only)					
Segment ID	-	1			
Surface description	Den	e Grass			
Manning's roughness coeff., n		0.2400	1		
Flow length, L (total < or = 300)		150.0			
Two-yr 24-hr rainfall, P2	in				
Land slope, s					
Cand stope, s	ft/ft	0.2500			
.007 * (n*L)	1.11				202
T =	hrs	0.13			0.13
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft	420.0			
Watercourse slope, s	ft/ft	0.0200	1		
0.5					
Avg.V = Csf * (s)	ft/s	2.2818			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282			- 2		
T = L / (3600*V)	hrs	0.05		•	0.05
CHANNEL FLOW					
Segment ID		1.0.00			
Cross Sectional Flow Area, a	sq.ft	0.00			
Wetted perimeter, Pw	ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness-coeff., n		0.0000			
2/3 1/2					
1.49 * r * s					
V =	ft/s	0.0000			
n	1.42				
Flow Length, L					
the congress to	ft	0			
T = L / (3600*V)	hrs	0.00			0.00
		TOTAL T	IME (hrs	0	0.18

Feasibility Report Landfill Final Cover BJK 3/97 TC COMPUTATIONS FOR: 18 SHEET FLOW (Applicable to Tc only) Segment ID 1 Surface description Dense Grass Manning's roughness coeff., n 0.2400 125.0 / Flow length, L (total < or = 300) ft Two-yr 24-hr rainfall, P2 2.800 in 0.2500 -Land slope, s ft/ft 0.8 .007 * (n*L) T = ---hrs 0.11 8 0.11 0.5 0.4 P2 * s SHALLOW CONCENTRATED FLOW Segment ID 2 Surface (paved or unpaved)? Unpaved Flow Length, L 960.0 / ft Watercourse slope, s ft/ft 0.0200 / 0.5 Avg.V = Csf * (s) 2.2818 ft/s where: Unpaved Csf = 16.1345 Paved Csf = 20.3282 T = L / (3600*V)0.12 hrs 0.12 CHANNEL FLOW Segment ID Cross Sectional Flow Area, a 0.00 sq.ft Wetted perimeter, Pw ft 0.00 Hydraulic radius, r = a/Pw ft 0.000 Channel slope, s ft/ft 0.0000 Manning's roughness coeff., n 0.0000 2/3 1/2 1.49 * Π. * 5 V = -----0.0000 ft/s n Flow Length, L ft 0 T = L / (3600*V) hrs 0.00 0.00

TOTAL TIME (hrs) 0.23

Quick TR-55 Ver.5.46 S/N: a:COVER1.TCT Executed: 09:48:41 04-09-1997

Dairyland Power Coop.

Quick TR-55 Ver.5.46 S/N: Executed: 09:48:41 04-09-1997 a:COVER1.TCT

)

1026

Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

1.1

Te COMPUTATIONS FOR: 1C

SHEET FLOW (Applicable to Tc only)			
Segment ID		1	
Surface description	Den	e Grass	
Manning's roughness coeff., n		0.2400	
Flow length, L (total < or = 300)) ft	165.0 /	
Two-yr 24-hr rainfall, P2	in	2.800	
Land slope, s	ft/ft	0.2500 -	
0.8			
.007 * (n*L)			
T =	hrs	0.14	= 0.14
0.5 0.4			
P2 * s			
SHALLOW CONCENTRATED FLOW			
Segment ID		2	
Surface (paved or unpaved)?		Unpaved	
Flow length, L	ft	720.0 /	
Watercourse slope, s	ft/ft	0.0200 /	
		0.0200 /	
0.5			
Avg.V = Csf * (s)	ft/s	2.2818	
where: Unpaved Csf = 16.1345			
Paved Csf = 20.3282			
T = L / (3600*V)	hrs	0.09	= 0.09
CHANNEL FLOW			
Segment ID			
Cross Sectional Flow Area, a	sq.ft	0.00	
Wetted perimeter, Pw	ft	0.00	
Hydraulic radius, r = a/Pw	ft	0.000	
Channel slope, s	ft/ft	0.0000	
Manning's roughness coeff., n		0.0000	
2/3 1/2		-	
1.49 * r * s			
V =	ft/s	0.0000	
n			
FINE DECEMBER 1	100		
Flow length, L	ft	0	
T = L / (3600*V)	hrs	0.00	= 0.00
	0.00	TOTAL TIME (hrs) 0.23

Quick TR-55 Ver.5.46 S/N: Executed: 08:55:25 06-18-1997 a:COVER1.TCT

> Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

TC COMPUTATIONS FOR: 1D

SHEET FLOW (Applicable to Tc only) Segment ID Surface description Dense Grass Manning's roughness coeff., n 0.2400 160.0 / Flow length, L (total < or = 300) ft Two-yr 24-hr rainfall, P2 in 2.800 Land slope, s ft/ft 0.2500 / 0.8 .007 * (n*L) T = 0.13 hrs = 0.13 0.4 0.5 P2 * s SHALLOW CONCENTRATED FLOW Segment ID 2 Surface (paved or unpaved)? Unpeved Flow Length, L 1770.0 ft Watercourse slope, s 0.0200 / ft/ft 0.5 Avg.V = Csf * (s) 2.2818 ft/s where: Unpaved Csf = 16.1345 Paved Csf = 20.3282 T = L / (3600*V) 0.22 hrs 0.22 CHANNEL FLOW Segment ID Cross Sectional Flow Area, a sq.ft 0.00 Wetted perimeter, Pw 0.00 ft Hydraulic radius, r = a/Pw 0.000 ft Channel slope, s 0.0000 ft/ft Manning's roughness coeff., n 0.0000 2/3 1/2 1.49 * r . . 0.0000 ft/s n Flow length, L ft 0 T = L / (3600*V) 0.00 hrs 0.00 TOTAL TIME (hrs) 0.35

B2G 6/13/97 Quick TR-55 Ver.5.46 S/N: Executed: 08:55:25 06-18-1997 a:COVER1.TCT

Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

10000 - 113/97

- K

TC COMPUTATIONS FOR: 1E

SHEET FLOW (Applicable to Tc only)					
Segment ID					
Surface description	Den	se Grass			
Manning's roughness coeff., n		0.2400			
Flow length, L (total < or = 300) ft		1.12		
Two-yr 24-hr rainfall, P2	in	C			
Land slope, s	ft/ft		1		
0.8					
.007 * (n*L)					
T =	hrs	0.14			0.14
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpeved			
Flow length, L	ft	250.0			
Watercourse slope, s	ft/ft	0.0200			
0.5					
Avg.V = Csf * (s)	ft/s	2.2818			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.03			0.03
CHANNEL FLOW			· 4.		
Segment ID					
Cross Sectional Flow Area, a		0.00			
Wetted perimeter, Pw	sq.ft	0.00			
Hydraulic radius, r = e/Pw	ft				
Channel slope, s	ft				
Manning's roughness coeff., n	ft/ft	0.0000			
Haranny's roughness coerr., n		0.0000			
2/3 1/2					
1.49 * r * e					
V a	44.14	0.0000			
94 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ft/s	0.0000			
Flow Length, L	ft	0			

4

Quick TR-55 Ver.5.46 S/N: Executed: 09:48:41 04-09-1997 a:COVER1.TCT

> Dairyland Power Coop, Feasibility Report Landfill Final Cover BJK 3/97

6/13/97

1.14

TC COMPUTATIONS FOR: 1F

SHEET FLOW (Applicable to Tc only)						
Segment ID		1				
Surface description	Dens	e Grass				
Manning's roughness coeff., n		0.2400				
Flow length, L (total < or = 300)	ft	150.0	-			
Two-yr 24-hr rainfall, P2	in	2.800				
Land slope, s	ft/ft	0.2500	1			
0.8						
.007 * (n*L)						
T =	hrs	0.13			0.13	
0.5 0.4						
P2 * s						
SHALLOW CONCENTRATED FLOW						
Segment ID		2				
Surface (paved or unpaved)?		Unpaved				
Flow length, L	ft	2650.0	1			
Watercourse slope, s	ft/ft	0.0200	1			
		010200				
0.5						
Avg.V = Csf * (s)	ft/s	2.2818				
where: Unpaved Csf = 16.1345						
Paved Csf = 20.3282						
T = L / (3600*V)	hrs	0.32		14	0.32	
				1	0.32	
CHANNEL FLOW						
Segment ID						
		0.00				
Wetted perimeter, Pw	sq.ft ft	0.00				
Hydraulic radius, r = a/Pw	1.1	0.00				
Channel slope, s	ft ft/ft	0.000				
Manning's roughness coeff., n	Tt/Tt	0.0000				
Horanny a roughness coerra, n		0.0000				
2/3 1/2						
1.49 * r * s ·						
V =	ft/s	0.0000				
n		100 March 10				

Flow length, L ft 0 T = L / (3600*V) hrs 0.00 = 0.00

TOTAL TIME (hrs) 0.45

Quick TR-55 Ver.5.46 S/N: Executed: 09:48:41 04-09-1997 a:COVER1.TCT

Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

TE COMPUTATIONS FOR: 16

SHEET FLOW (Applicable to Tc only)					
Segment ID		1			
Surface description	Dens	e Grass			
Manning's roughness coeff., n		0.2400			
Flow length, L (total < or = 300)	ft	170.0	-		
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.2500	1		
0.8					
.007 * (n*L)					
T =	hrs	0.14			0.1
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2	3		
Surface (paved or unpaved)?		Unpaved	Unpaved		
Flow length, L	ft	780.0	370.0	-	
Watercourse slope, s	ft/ft	0.0600	0.0800		
0.5					
Avg.V = Csf * (s)	64.1-	3.9521	4.5635		
where: Unpaved Csf = 16.1345	ft/s	3.9321	4.2035		
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.05	+ 0.02	-	0.08
CHANNEL FLOW					
Segment ID					
Cross Sectional Flow Area, a	sq.ft	0.00			
Wetted perimeter, Pw	ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness coeff., n		0.0000			
2/3 1/2					
1.49 * r * s					
V =	ft/s	0.0000			
n					
Flow length, L	ft	0			
riow tength, L					

1828 6/13/97 Quick TR-55 Ver.5.46 S/N: Executed: 08:57:44 06-18-1997 s:COVER2.TCT

> SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

> > Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

Subarea descr.	Tc or Tt	Time (hrs)
24	Tc	0.28
28	Tc	0.18

1.1

Quick TR-55 Ver.5.46 S/N: Executed: 08:57:44 06-18-1997 a:COVER2.TCT

> Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

> > .

6/13/97

TC COMPUTATIONS FOR: 2A

SHEET FLOW (Applicable to Tc only)					
Segment ID		1			
Surface description	Dens	se Grass			
Manning's roughness coeff., n		0.2400			
Flow length, L (total < or = 300)	ft	200.0			
Two-yr 24-hr rainfall, P2	in				
Land slope, s	ft/ft	0.2500	1		
0.8					
.007 * (n*L)	1.45				
T =	hrs	0.16			0.16
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow Length, L	ft	0.000	1		
Watercourse slope, s	ft/ft	1000000	1		
0.5					
Avg.V = Csf * (s)	ft/s	2.2818			
where: Unpaved Caf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.11		÷	0.11
CHANNEL FLOW					
Segment ID					
Cross Sectional Flow Area, a	sq.ft	0.00			
Wetted perimeter, Pw	ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness coeff., n		0.0000			
2/3 1/2					
1.49 * 5 * 8					
V =	ft/s	0.0000			
n	1.7.8	0.0000			
Flow length, L	ft	0			
T = L / (3600*V)	hrs	0.00			0.00
211 FCG 11 F00 11 F0 11 F0 11 F0 11 F0 11 F0 10 F0			INE (hrs)	2557	0.28
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Quick TR-55 Ver.5.46 S/N: Executed: 08:57:44 06-18-1997 a:COVER2.TCT Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97 Te COMPUTATIONS FOR: 28 SHEET FLOW (Applicable to Tc only) Segment ID 1 Surface description Brush Manning's roughness coeff., n 0.1300 Flow length, L (total < or = 300) ft 300.0 Two-yr 24-hr rainfall, P2 2.800 in Land slope, s ft/ft 0.2000 0.8 .007 * (n*L)

T = ______ hrs 0.15 = 0.15 0.5 0.4 p2 * s

Segment ID		2	3
Surface (paved or unpaved)?		Unpaved	Unpaved
Flow length, L	ft	560.0	300.0
Watercourse slope, s	ft/ft	0.4400	0.0800
0.5			
Avg.V = Csf * (s)	ft/s	\$10.7024	4.5635
where: Unpaved Csf = 16.1345			
. Paved Csf = 20.3282			

hrs

0.01

0.02

= 0.03

0.00

		EI OUI
LIAN	INEL	FLOW

T = L / (3600*V)

Segment ID			
Cross Sectional Flow Area, a	sq.ft	0.00	
Wetted perimeter, Pw	ft	0.00	
Hydraulic radius, r = a/Pw	ft	0.000	
Channel slope, s	ft/ft	0.0000	
Manning's roughness coeff., n		0.0000	
2/3 1/2 1.49 * r * s			
v =	ft/s	0.0000	
Flow length, L	ft	o	
T = L / (3600*V)	hrs	0.00	-

TOTAL TIME (hrs) 0.18

Page 1 Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:33 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER1 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER125.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	Rund Rund			/p /used
1A	1.40	74.0	0.20	0.00	4.90	2.2	28 1	1.14	.14
1B	2.20	74.0	0.20	0.00	4.90	2.2	28 1	.14	.14
10	2.90	74.0	0.20	0.00	4.90	2.2	28 1	.14	.14
1D	5.30	74.0	0.40	0.00	4.90	2.2	28 1	.14	.14
1E	1.20	74.0	0.20	0.00	4.90	2.2	28 1	. 14	.14
1F	9.50	74.0	0.50	0.00	4.90	2.2	28 1	.14	.14
1G	7.40	84.0	0.20	0.00	4.90	3.1	18 1	.08	.10

* Travel time from subarea outfall to composite watershed outfall point.

I -- Subarea where user specified interpolation between Ia/p tables.

Total area = 29.90 acres or 0.04672 sq.mi Peak discharge = 67 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

Т	otal Runoff =
22.5 a	c (2.25") + 7.4Ac (3.18m)
	12

6.2 ac - FT

	Input	Values	Rounded	Values	la/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	I Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
A	0.18	0.00	0.20	0.00	Yes	
B	0.23	0.00	0.20	0.00	Yes	
C	0.23	0.00	0.20	0.00	Yes	
D	0.35	0.00	0.40	0.00	Yes	
E	0.18	0.00	0.20	0.00	Yes	**
F	0.45	0.00	0.50	0.00	Yes	
G	0.22	0.00	0.20	0.00	No	Computed Ia/p < .

* Travel time from subarea outfall to composite watershed outfall point.

Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:33 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER1 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER125.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at	
	Composite Outfall	Composite Outfall	
Subarea	(cfs)	(hrs)	
***********	**********		
1A	4	12.2	
1B	6	12.2	
10	8	12.2	
1D	11	12.3	
1E	3	12.1	
1F	17	12.4	
1G	29	12.2	

Composite Watershed	67	12.2	

Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:33 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER1 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER125.HYD

Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Subarea Description	11.0 hr	11.3 hr	11.6 hr	11.9 hr	12.0 hr	12.1 hr	12.2 hr	12.3 hr	12.4 hr
1A	0	0	0	1	2	3	4	2	1
1B	0	0	0	1	3	5	6	4	2
10	0	0	0	2	4	7	8	5	3
1D	0	0	1	1	2	5	8	11	11
1E	0	0	0	1	2	3	3	2	1
1F	0	1	1	2	3	5	9	15	17
1G	1	1	2	8	15	27	29	18	9

Subarea	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13.8
Description	hr	hr	hr	hr	hr	hr	hr	hr	hr
1A	1.	1	1	0	0	0	0	0	0
1B	1	1	1	1	1	1	0	0	0
10	2	1	1	1	1	1	1	1	0
1D	8	6	4	3	2	2	1	1	1
1E	1	1	0	0	0	0	0	0	0
1F	17	13	10	8	5	3	3	2	2
1G	6	5	4	3	3	2	2	2	2
******	••••••								
Total (cfs)	36	28	21	16	12	9	7	6	5

Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:33 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER1 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER125.HYD

Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Composite Hydrograph Summary (cfs)

Subarea Description	14.0 hr	14.3 hr	14.6 hr	15.0 hr	15.5 hr	16.0 hr	16.5 hr	17.0 hr	17.5 hr
1A	0	0	0	0	0	0	0	0	0
1B	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
1D	1	1	1	1	1	1	0	0	0
1E	0	0	0	0	0	0	0	0	0
1F	2	1	1	1	1	1	1	1	1
1G	1	1	1	1	1	1	1	1	1
Total (cfs)	4	3	3	3	3	3	2	2	2

Subarea Description	18.0 hr	19.0 hr	20.0 hr	22.0 hr	26.0 hr	
1A	0	0	0	0	0	
1B	0	0	0	0	0	
10	0	0	0	0	0	
1D	0	0	0	0	0	
1E	0	0	0	0	0	
1F	1	1	1	0	0	
1G	1	1	0	0	0	
Total (cfs)	2	2	1	0	0	

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 07-30-1998 11:54:55 Watershed file: --> A:COVER1 .MOP Hydrograph file: --> A:COVER100.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

1 BLB 5/20/98

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)		Runoff (in)	la input	/p /used
1A	1.40	74.0	0.20	0.00	6.10	1	3.27	1.12	.12
1B	2.20	74.0	0.20	0.00	6.10	i.	3.27	1.12	.12
10	2.90	74.0	0.20	0.00	6.10	i.	3.27	1.12	.12
10	5.30	74.0	0.40	0.00	6.10	i.	3.27	1.12	.12
1E	1.20	74.0	0.20	0.00	6.10	i.	3.27	1.12	.12
1F	9.50	74.0	0.50	0.00	6.10	È.	3.27	1.12	.12
16	7.40	84.0	0.20	0.00	6.10	i	4.29	1.06	.10

* Travel time from subarea outfall to composite watershed outfall point.

I -- Subarea where user specified interpolation between Ia/p tables.

Total area = 29.90 acres or 0.04672 sq.mi Peak discharge = 98 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

22.5 ac	(3.27") 1	7. 4 ac (4. 29"
-	12	
	= 3.8 ac-F	τ

Total Runoff

	Input	Values	Rounded	Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	I Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
Α	0.18	0.00	0.20	0.00	Yes	
в	0.23	0.00	0.20	0.00	Yes	
C	0.23	0.00	0.20	0.00	Yes	
D	0.35	0.00	0.40	0.00	Yes	
E	0.18	0.00	0.20	0.00	Yes	
F	0.45	0.00	0.50	0.00	Yes	
G	0.22	0.00	0.20	0.00	No	Computed la/p < .

* Travel time from subarea outfall to composite watershed outfall point.

Quick TR-55 Version: 5.46 S/N:

Page 2 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 07-30-1998 11:54:55 Watershed file: --> A:COVER1 .MOP Hydrograph file: --> A:COVER100.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at Composite Outfall	Time to Peak at Composite Outfall
Subarea	(cfs)	(hrs)

1A	6	12.2
1B	9	12.2
1C	12	12.2
10	16	12.3
1E	5	12.2
1F	25	12.4
1G	40	12.2
*********	*******	
Composite Watershed	98	12.2

Page 3 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 07-30-1998 11:54:55 Watershed file: --> A:COVER1 .MOP Hydrograph file: --> A:COVER100.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Composite Hydrograph Summary (cfs)

Subarea	11.0	11.3	11.6	11.9	12.0	12.1	12.2	12.3	12.4
Description	hr								
1A	0	0	0	1	3	5	6	3	2
18	0	0	0	2	4	8	9	5	3
10	0	0	1	3	6	11	12	7	4
1D	0	1	11	2	4	7	12	16	15
1E	0	0	0	1	2	4	5	3	2
IF	1	1	1	2	4	8	14	22	25
16	1	2	2	10	20	37	40	24	12
Total (cfs)	2		5	21	43	80	98	80	63

Subarea Description	12.5 hr	12.6 hr	12.7 hr	12.8 hr	13.0 hr	13.2 hr	13.4 hr	13.6 hr	13.8 hr
1A	1	1	1	1	1	0	0	0	0
18	2	1	1	1	1	1	1	1	1
1C	3	2	2	1	1	1	1	1	1
1D	12	8	6	4	3	2	2	2	1
1E	1	1	1.1	1	0	0	0	0	0
1F	24	19	14	11	7	5	4	3	3
16	8	6	5	4	3	3	3	2	2
Total (cfs)	51	38	30	23	16	12	11	9	

Page 4 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 07-30-1998 11:54:55 Watershed file: --> A:COVER1 .MOP Hydrograph file: --> A:COVER100.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Composite Hydrograph Summary (cfs)

Subarea Description	14.0 hr	14.3 hr	14.6 hr	15.0 hr	15.5 hr	16.0 hr	16.5 hr	17.0 hr	17.5 hr
1A	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0
10	1	1	1	0	0	0	0	0	0
1D	1	1	1	1	1	1	1	1	1
1E	0	0	0	0	0	0	0	0	0
1F	2	2	2	2	1	1	1	1	1
16	2	2	2	1	1	1	1	1	1
Total (cfs)	6	6	6	4	3		2	7	7

Subarea Description	18.0 hr	19.0 hr	20.0 hr	22.0 hr	26.0 hr	
1A	0	0	0	0	0	
18	0	0	0	0	0	
10	0	0	0	0	0	
1D	1	0	0	0	0	
1E	0	0	0	0	0	
1F	1	1	1	1	0	
1G	1	1	1	1	0	
Total (cfs)	3	2	2	2	0	

-

Page 1 Return Frequency: 25 years

.....

--

14

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:16 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER25.HYD

Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	ł	Runoff (in)	Ia input	/p /used
2A	2.70	74.0	0.30	0.00	4.90	ï	2.28	1.14	.14
2B	21.50	69.0	0.20	0.00	4.90	î.	1.89	1.18	.18

* Travel time from subarea outfall to composite watershed outfall point. I -- Subarea where user specified interpolation between Ia/p tables.

> Total area = 24.20 acres or 0.03781 sq.mi Peak discharge = 54 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

>	>>> Compu	ter Modif	ications	of Inpu	t Parameters <<	***
	Input	Values	Rounded	Values		••••••
Subarea	Tc	* Tt	Tc	* Tt	Ia/p Interpolated	la/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages

0.20 0.00

0.00

Yes

Yes

0.30

* Travel time from subarea outfall to composite watershed outfall point.

2A

2B

0.28

0.18

0.00

0.00

Page 2 Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:16 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER225.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at Composite Outfall	Time to Peak at Composite Outfall
Subarea	(cfs)	(hrs)
2A	6	12.2
2B	48	12.2
Composite Watershed	54	12.2

Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:16 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER225.HYD

Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Subarea Description	11.0	11.3	11.6	11.9	12.0	12.1	12.2	12.3	12.4
Description	hr								
2A	0	0	0	1	2	4	6	6	4
2B	1	1	2	9	20	42	48	31	17

Subarea Description	12.5 hr	12.6 hr	12.7 hr	12.8 hr	13.0 hr	13.2 hr	13.4 hr	13.6 hr	13.8 hr
2A	3	2	1	1	1	1	1	1	0
28	11	9	7	6	5	4	4	4	3

Subarea Description	14.0 hr	14.3 hr	14.6 hr	15.0 hr	15.5 hr	16.0 hr	16.5 hr	17.0 hr	17.5 hr
2A	0	0	0	0	0	0	0	0	0
2B	3	3	2	2	2	2	2	2	1

Total (cfs)	3	3	2	2	2	2	2	2	1

Subarea	18.0	19.0	20.0	22.0	26.0
Description	hr	hr	hr	hr	hr
2A	0	0	0	0	0
28	- 1	1	1	1	0

Page 1 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 15:19:47 Watershed file: --> A:\COVER2 .MOP Hydrograph file: --> A:\COVER200.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	1	Runoff (in)	la input	/p /used
2A	2.70	74.0	0.30	0.00	6.10	1	3.27	1.12	.12
2B	21.50	69.0	0.20	0.00	6.10	î.	2.79	1.15	.15

* Travel time from subarea outfall to composite watershed outfall point. I -- Subarea where user specified interpolation between Ia/p tables.

> Total area = 24.20 acres or 0.03781 sq.mi Peak discharge = 82 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

>>>> Computer Modifications of Input Parameters <<<<<

	Input	Values	Rounded	Values	la/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
			********		**************	
2A	0.28	0.00	0.30	0.00	Yes	
2B	0.18	0.00	0.20	0.00	Yes	

* Travel time from subarea outfall to composite watershed outfall point.

Page 2 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

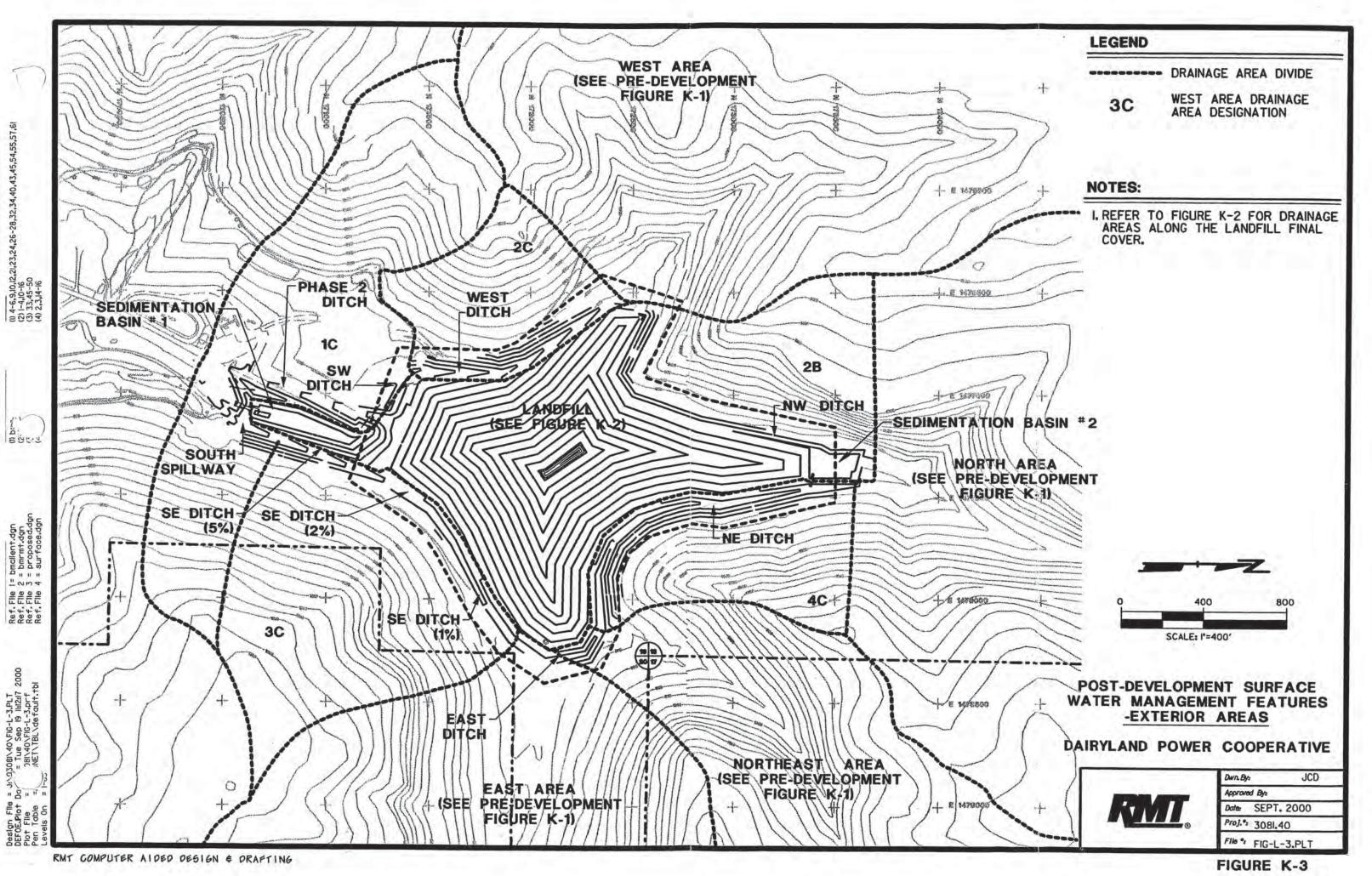
Executed: 10-01-1998 15:19:47 Watershed file: --> A:\COVER2 .MOP Hydrograph file: --> A:\COVER200.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at Composite Outfall	Time to Peak at Composite Outfall
Subarea	(cfs)	(hrs)

2A	9	12.2
2B	73	12.2
************		**********
Composite Watershed	82	12.2


Page 3 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 15:19:47 Watershed file: --> A:\COVER2 .MOP Hydrograph file: --> A:\COVER200.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Subarea	11.0	11.3	11.6	11.9	12.0	12.1	12.2	12.3	12
Description	hr	hr	hr	hr	hr	hr	hr	hr	h
ZA	0	0	1	1	3	6	9	9	
2B	2	2	3	16	33	65	73	45	2
Total (cfs)	2	2	4	17	36	71	82	54	3
Subarea	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13
Description	hr	hr	hr	hr	hr	hr	hr	hr	h
2A	4	3	2	2	1	1	1	1	
28	16	13	10	9	7	6	6	5	1
Total (cfs)	20	16	12	11	8	7	7	6	
Subarea	14.0	14.3	14.6	15.0	15.5	16.0	16.5	17.0	17.
Description	hr	hr	hr	hr	hr	hr	hr	hr	h
2A	1	1	0	0	0	0	0	0	
2B	4	4	3	3	3	3	2	2	1
Total (cfs)	5	5	3	3	3	3	2	2	-
			and a						
Subarea	18.0	19.0	20.0	22.0	26 0				
and the second sec	18.0 hr	19.0 hr	20.0	22.0	26.0			3) -	
Subarea Description	18.0 hr	19.0 hr	20.0 hr	22.0 hr	26.0 hr				
and the second sec									

Quick TR-55 Ver.5.46 S/N: Executed: 11:43:33 07-30-1998

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 rev 7/98

RUNOFF CURVE NUMBER SUMMARY

Subarea	Area	CN
Description	(acres)	(weighted)
10	42.00	67
20	15.00	56
30	33.00	58
40	16.00	57
East	520.00	67
Northeast	80.00	63
North	236.00	63
West	100.00	71

Quick TR-55 Ver.5.46 S/N: Executed: 11:43:33 07-30-1998

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 rev 7/98

RUNOFF CURVE NUMBER DATA

Composite Area: 1C

SURFACE DESCRIPTION	AREA (acres)	CN	
Woods (35%)	15.00	55	
Existing Landfill (50%)	21.00	74	
Graded Areas (10%)	4.00	61	
Fallow - Bare Soil (5%)	2.00	86	

COMPOSITE AREA ---> 42.00 66.5 (67)

Composite Area: 2C

	AREA	CN	
SURFACE DESCRIPTION	(acres)		
Woods (85%)	12.80	55	
Graded Areas (15%)	2.20	61	

COMPOSITE AREA ---> 15.00 55.9 (56)

Composite Area: 3C

SURFACE DESCRIPTION	AREA (acres)	CN	
Woods (80%)	27.00	55	
Graded Areas (10%)	3.00	61	
Fallow - Bare Soil (10%)	3.00	86	
COMPOSITE AREA>	33.00	58.4	(58)

1940 Martin Martin Martin Martin Martin Martin

Quick TR-55 Ver.5.46 S/N: Executed: 11:43:33 07-30-1998

Composite Area: 4C

SURFACE DESCRIPTION	AREA (acres)	CN	
	********	****	
Woods (75%)	12.00	55	
Graded Areas (25%)	4.00	61	
COMPOSITE AREA>	16.00	56.5	(57)

Composite Area: East

	AREA	CN	
SURFACE DESCRIPTION	(acres)		

Woods (60%)	312.00	55	
Fallow - Bare Soil (40%)	208.00	86	

COMPOSITE AREA ---> 520.00 67.4 (67)

Composite Area: Northeast

SURFACE DESCRIPTION	AREA (acres)	CN				

Woods (75%)	60.00	55				
Fallow - Bare Soil (25%)	20.00	86				
COMPOSITE AREA>	80.00	62.8	(6	3	2

Composite Area: North

	A COMPANY OF THE		
	AREA	CN	
SURFACE DESCRIPTION	(acres)		
************************************	********		
Woods (75%)	177.00	55	
Fallow - Bare Soil (25%)	59.00	86	

COMPOSITE AREA ---> 236.00 62.8 (63)

Quick TR-55 Ver.5.46 S/N: Executed: 11:43:33 07-30-1998

> VB28 8/20/98

Composite Area: West

	AREA	CN	
SURFACE DESCRIPTION	(acres)		
Woods (50%)	50.00	55	
Fallow - Bare Soil (50%)	50.00	86	
COMPOSITE AREA>	100.00	70.5	(71)

> SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Subarea descr.	Tc or Tt	Time (hrs)
10	Tc	0.35
20	Tc	0.32
30	Tc	0.41
40	Tc	0.38
East	Tc	0.68
Northeast	Tc	0.37
North	Tc	0.53
West	Tc	0.52

. .

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

TC COMPUTATIONS FOR: 1C

SHEET FLOW (Applicable to Tc only)				
Segment ID	4	1		
Surface description	Woo			
Manning's roughness coeff., n	MOO	0.4000		
Flow length, L (total < or = 300)				
			1	
Two-yr 24-hr rainfall, P2	in	2.800	/	
Land slope, s	ft/ft	0.2700		
0.8				
.007 * (n*L)	1.1.1	1.1		14.4
T =	hrs	0.33		0.3
0.5 0.4 P2 * s				
SHALLOW CONCENTRATED FLOW		1.1		
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow length, L	ft	650.0		
Watercourse slope, s	ft/ft	0.5000	1	
0.5				
Avg.V = Csf * (s)	ft/s	\$11.408	8	
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.02		0.0
CHANNEL FLOW				
Segment ID		3		
Cross Sectional Flow Area, a	sq.ft	42.00		
Wetted perimeter, Pw	ft	28.00		
Hydraulic radius, r = a/Pw	ft	1.500		
Channel slope, s	ft/ft	0.1500		
Manning's roughness coeff., n		0.0450		
2/3 1/2				
1.49 * r * s				
V =	ft/s	\$16.804	0	
n				
Flow Length, L	ft	500	/	
T = L / (3600*V)	hrs	0.01		0.0

6/17/97

-

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Te COMPUTATIONS FOR: 20

SHEET FLOW (Applicable to Tc only)	4			
Segment ID		1		
Surface description	Wood	ds		
Manning's roughness coeff., n		0.4000		
Flow length, L (total < or = 300)	ft	300.0		
Two-yr 24-hr rainfall, P2	in	2.800		
Land slope, s	ft/ft			
0.8		0.4200		
.007 * (n*L)				
	hrs	0.27		
0.5 0.4	0.2	0.21	•	0.27
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpeved		
Flow length, L	ft	370.0 -		
Watercourse slope, s	ft/ft	0.4200 /		
0.5				
Avg.V = Csf * (s)	ft/s	\$10.4564		
where: Unpaved Csf = 16.1345				
Paved Caf = 20.3282				
T = L / (3600*V)	hrs	0.01	•	0.01
CHANNEL FLOW		and the second se		
Segment ID		3		
Cross Sectional Flow Area, a	sq.ft	17.00		
Wetted perimeter, Pw	ft	17.00		
Hydraulic radius, r = a/Pw	ft	1.000		
Channel slope, s	ft/ft	0.0600 -		
Manning's roughness coeff., n		0.0450		
2/3 1/2				
1.49 * r * s				
V =	ft/s	8.1105		
n				
Flow length, L	ft	1050 -		
T = L / (3600*V)	hrs	0.04		0.04
		TOTAL TIME (hrs)		0.32

6/17/97

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

TE COMPUTATIONS FOR: 3C

SHEET FLOW (Applicable to Tc only)	τ.			
Segment ID		1		
Surface description	RON	Crops		
Manning's roughness coeff., n		0.1700		
Flow length, L (total < or = 300)	ft	300.0		
Two-yr 24-hr rainfall, P2	in			
Land slope, s	ft/ft			
0.8				
.007 * (n*L)				
T =	hrs	0.32		0.32
0.5 0.4				0.05
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow length, L	ft			
Watercourse slope, s	ft/ft	0.3600 /		
0.5		- Auto -		
Avg.V = Csf * (s)	ft/s	9.6807		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.03	1.2	0.03
CHANNEL FLOW				
Segment ID				
	12 M	3		
Cross Sectional Flow Area, a	sq.ft	150.00 -		
Wetted perimeter, Pw	ft	45.00 -		
Hydraulic radius, r = a/Pw	ft	3.333		
	ft/ft	0.0150		
Manning's roughness coeff., n		0.0600 -		
2/3 1/2				
2/3 1/2 1.49 * r * s				
V =	4.7			
	ft/s	6.7868		
0				
Flow length, L	ft	1450 -		
T = L / (3600*V)	hrs	0.06		0.06

		TOTAL TIME (1/8)	0.41

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

> > .

TC COMPUTATIONS FOR: 4C

SHEET FLOW (Applicable to Tc only)	-00				
Segment 10		1			
Surface description	Noo	ds			
Manning's roughness coeff., n		0.4000			
Flow length, L (total < or = 300) ft	300.0 /			
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.3700 -			
0.8					
.007 * (n*L)					
T =	hrs	0.29			0.29
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft	390.0 -			
Watercourse slope, s	ft/ft	0.5000 -			
0.5					
Avg.V = Csf * (s)	ft/s	\$11.4088			
where: Unpaved Csf = 16.1345	62.3	C. C	-		
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.01		•	0.01
CHANNEL FLOW					
Segment ID		3			
Cross Sectional Flow Area, a	sq.ft	28.00			
Wetted perimeter, Pw	ft	20.00 /			
Hydraulic radius, r = a/Pw	ft	1.400			
Channel slope, s	ft/ft	0.0200			
Manning's roughness coeff., n		0.0500			
2/3 1/2					
1.49 * 5 * 5					
V =	ft/s	5.2741			
n					
Flow length, L	ft	1670 -			
T = L / (3600*V)	hrs	0.09	1		0.09
		TOTAL TIME			0.38

VB10 6/17/97

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

6/17/97

To COMPUTATIONS FOR: East

SHEET FLOW (Applicable to Tc only)					
Segment ID		1			
Surface description	Row	Crops			
Manning's roughness coeff., n		0.1700			
Flow Length, L (total < or = 300)	ft	300.0	•		
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.0500	-		
0.8					
.007 * (n*L)					
T =	hrs	0.32		1.1.1	0.32
0.5 0.4					
PZ * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow Length, L	ft	2000.0	1		
Watercourse slope, s	ft/ft	0.0700	-		
0.5					
Avg.V = Csf * (s)	ft/s	4.2688			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.13		- 0	0.13
CHANNEL FLOW					
Segment ID		3	4		
Cross Sectional Flow Area, a	sq.ft	27.00	27.	.00	
Wetted perimeter, Pw	ft	16.40			
Hydraulic radius, r = a/Pw	ft	1.646		46	
Channel slope, s	ft/ft	0.0700		- 00	
Manning's roughness coeff., n		0.0700	0.07	700	
2/3 1/2					
1 /0 0 0 0					
1.49 * r * s					

1.49 * r * s		
V =	ft/s 7.8521 5.9356	
n		
Flow length, L	ft 2500 / 3000 /	
T = L / (3600*V)	hrs 0.09 + 0.14 = 0.23	

TOTAL TIME (hrs) 0.68

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Tc COMPUTATIONS FOR: Northeast

SHEET FLOW (Applicable to Tc only)					
Segment ID		1			
Surface description	Row	Crops			
Manning's roughness coeff., n		0.1700			
Flow Length, L (total < or = 300)	ft	300.0	1		
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.0800	1		
0.8					
.007 * (n*L)					
T =	hrs	0.27		14	0.27
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft				
Watercourse slope, s	ft/ft	0.0700	-		
0.5					
Avg.V = Csf * (s)	ft/s	4.2688			
where: Unpaved Csf = 16.1345	100.0				
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.04		•	0.04
CHANNEL FLOW					
Segment ID		3			
Cross Sectional Flow Area, a	sq.ft				
Wetted perimeter, Pw	ft				
Hydraulic radius, r = a/Pw	ft	1.646	0-		
Channel slope, s	ft/ft				
Nanning's roughness coeff., n		0.0700			
2/3 1/2					
1.49 * r * s					
V =	ft/s	\$11.104	5		
n					
Flow length, L	ft	2400			
T = L / (3600*V)	hrs	0.06		÷	0.06
		TOTAL T	IME (hrs)		0.37

1828 6/17/97

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

1888

Te COMPUTATIONS FOR: North

SHEET FLOW (Applicable to Tc only)	1.1				
Segment ID		1			
Surface description	al < or = 300) ft 300.0 ~				
Manning's roughness coeff., n		0.1700			
Flow length, L (total < or = 300)	ft	300.0 -			
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.0500			
0.8					
.007 * (n*L)					
T =	hrs	0.32		= 0.32	
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow Length, L	ft	1000.0 /			
Watercourse slope, s	ft/ft	0.0600 /			
0.5					
Avg.V = Csf * (s)	ft/s	3.9521			
where: Unpaved Csf = 16.1345	11/2	3.9321			
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.07	1.1	= 0.07	
CHANNEL FLOW					
Segment 1D		3			
Cross Sectional Flow Area, a	sq.ft	27.00			
Wetted perimeter, Pw	ft	16.40			
Hydraulic radius, r = a/Pw	ft	1.646			
Channel slope, s	ft/ft	0.0830 /			
Manning's roughness coeff., n		0.0700			
2/3 1/2					
1.49 * * * *					
V =	ft/s	8.5502			
n	14.0	CISSOE			
etail (0.5				
Flow length, L	ft	4200			
T = L / (3600*V)	hrs	0.14		0.14	
		TOTAL THE			:
		TOTAL TIME	(nrs)	0.53	

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

To COMPUTATIONS FOR: West

= 0.32
= 0.09
= 0.10

Quick TR-55 Ver.5.46 S/N: Executed: 11:30:57 D6-18-1997 a:POSTDVTT.TCT

> SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Subarea descr.	Tc or Tt	Time (hrs)
10	Tt	0.00
20	Tt	0.05
30	Tt	0.01
40	Tt	0.09
East	Tt	0.07
Northeast	Tt	0.09
North	Tt	0.18
West	Tt	0.08

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

> > 1.1

BfB *

Tt COMPUTATIONS FOR: 2C

SHEET FLOW (Applicable to Tc only)				
Segment ID				
Surface description				
Manning's roughness coeff., n		0.0000		
Flow length, L (total < or = 300)	ft	0.0		
Two-yr 24-hr rainfall, P2	in	0.000		
Land slope, s	ft/ft	0.0000		
0.8				
.007 * (n*L)				
T =	hrs	0.00		0.00
0.5 0.4				11.14
P2 * s				
HALLOW CONCENTRATED FLOW				
Segment ID				
Surface (paved or unpaved)?				
Flow Length, L	ft	0.0		
Watercourse slope, s	ft/ft	0.0000		
0.5				
Avg.V = Csf * (s)	ft/s	0.0000		
where: Unpaved Caf = 16.1345	0.942			
Paved Csf = 20.3282		× .		
T = L / (3600*V)	hrs	0.00	•	0.00
HANNEL FLOW				
Segment ID		3 I I I I I I I I I I I I I I I I I I I		
Cross Sectional Flow Area, a		17.00		
Wetted perimeter, Pw	sq.ft	17.00		
Hydraulic radius, r = a/Pw	ft	17.00		
Channel slope, s	NA 6.74			
Manning's roughness coeff., n	ft/ft			
Manning's roughness coerr., n		0.0450		
2/3 1/2				
1.49 * r * s				
V =	ft/s	7.4039		
n				
Class Januarity 1				
Flow length, L	71	1200 -		
T = L / (3600*V)	hrs	0.05		0.05
		TOTAL TIME (hrs)		0.05

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

TE COMPUTATIONS FOR: 3C

SHEET FLOW (Applicable to Tc only) Segment ID Surface description 0.0000 Hanning's roughness coeff., n Flow length, L (total < or = 300) ft 0.0 Two-yr 24-hr mainfall, P2 in 0.000 0.0000 Land slope, s ft/ft 0.8 .007 * (n*L) T = ----hrs 0.00 0.5 0.4 P2 * 5 SHALLOW CONCENTRATED FLOW Segment ID Surface (paved or unpaved)? Flow Length, L 0.0 ft Watercourse slope, s ft/ft 0.0000 0.5 Avg.V = Csf * (s) 0.0000 ft/s where: Unpaved Csf = 16.1345 Paved Csf = 20.3282

T = L / (3600*V) hrs

CHANNEL FLOW

Segment ID		1	
Cross Sectional Flow Area, a	sq.ft	42.00 -	
Wetted perimeter, Pw	ft	28.00 -	
Hydraulic radius, r = a/Pw	ft	1.500	
Channel slope, s	ft/ft	0.1500 /	
Manning's roughness coeff., n		0.0450	
2/3 1/2			
1/0 * * * *			

V =	ft/s	%16.8040		
n Flow length, L	ft	550 -	3	
T = L / (3600*V)	hrs	0.01		

TOTAL TIME (hrs) 0.01

0.00

6/17/97

0.00

0.00

0.01

=

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

TE COMPUTATIONS FOR: 4C

T = L / (3600*V)	hrs	80.0	+ 0.01	=	0.09
Flow length, L	ft	1950/	550 /		
n			000000		
V =	ft/s	6.7868	\$16.8040		
1.49 * r * s					
2/3 1/2					
		510000	3.0430		
Manning's roughness coeff., n		0.0600	0.0450		
Channel slope, s	ft/ft	0.0150/	0.1500 /		
Hydraulic radius, r = a/Pw	ft	3.333	1.500		
Wetted perimeter, Pw	sq.rt	150.00	42.00 28.00		
		1	2		
Segment ID					
MANNEL TO MA					
T = L / (3600*V)	hrs	0.00		•	0.00
Paved Csf = 20.3282					
where: Unpaved Csf = 16.1345					
Avg.V = Csf * (s)	ft/s	0.0000			
0.5					
Watercourse slope, s	ft/ft	0.0000			
Flow length, L	ft				
Surface (paved or unpaved)?	140				
Segment ID					
SHALLOW CONCENTRATED FLOW					
P2 * s					
0.5 0.4		0.11			
T =	hrs	0.00		i.	0.00
.007 * (n*L)					
0.8		0.0000			
Land slope, s	ft/ft	0.000			
Flow length, L (total < or = 300) Two-yr 24-hr rainfall, P2	ft	0.0			
Manning's roughness coeff., n		0.0000			
Advance of the second					
Surface description					

- ÷.

6/17/97

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

1 alinen

Tt COMPUTATIONS FOR: East

SHEET FLOW (Applicable to Tc only)	*				
Segment ID					
Surface description		5.43S			
Manning's roughness coeff., n		0.0000			
Flow length, L (total < or = 300)		1 I. J. 1977			
Two-yr 24-hr rainfall, P2	in	23587			
Land slope, s	ft/ft	0.0000			
0.8					
.007 * (n*L)					1.00
T =	hrs	0.00			0.00
0.5 0.4					
P2 * s					
HALLOW CONCENTRATED FLOW					
Segment ID					
Surface (paved or unpaved)?					
Flow length, L	ft	0.0			
Watercourse slope, s	ft/ft	0.0000			
0.5					
Avg.V = Csf * (s)	ft/s	0.0000			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.00		•	0.00
HANNEL FLOW					
Segment ID		1	2		
Cross Sectional Flow Area, a	sq.ft	150.00	42.00		
Wetted perimeter, Pw	ft	45.00	28.00		
Hydraulic radius, r = a/Pw	ft	3.333	1.500		
Channel slope, s	ft/ft	0.0150	0.1500		
Manning's roughness coeff., n		0.0600	0.0450		
2/3 1/2					
1.49 * r * s					
V =	ft/s	6.7868	\$16.8040	έπ.	
n					
Flow length, L	ft	1600 /	550	•	
T = L / (3600"V)	hrs	0.07	0.01		0.07
		TOTAL TIP			0.07

Quick TR-55 Ver.5.46 S/N: Executed: 11:30:57 06-18-1997 a:POSTDVTT.TCT

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Tt COMPUTATIONS FOR: Northeast

and the second se					
SHEET FLOW (Applicable to Tc only)	1				
Segment ID					
Surface description					
Manning's roughness coeff., n		0.0000			
Flow length, L (total < or = 300)) ft	0.0			
Two-yr 24-hr rainfall, P2	in	0.000			
Land slope, s	ft/ft	0.0000			
0.8					
.007 * (n*L)					
T =	hrs	0.00			0.0
0.5 0.4					
PZ * s					
SHALLOW CONCENTRATED FLOW					
Segment ID					
Surface (paved or unpaved)?					
Flow length, L	ft	0.0			
Watercourse slope, s	ft/ft	0.0000			
0.5					
Avg.V = Csf * (s)	ft/s	0.0000			
where: Unpaved Csf = 16.1345	11/5	0.0000			
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.00			0.00
CHANNEL FLOW					
Segment ID		1	2		
Cross Sectional Flow Area, a	sq.ft	150.00	42.00		
Wetted perimeter, Pw	ft	45.00	28.00		
Hydraulic radius, r = a/Pw	ft	3.333	1.500		
Channel slope, s	ft/ft	0.0150-	0.1500 -	1	
Manning's roughness coeff., n		0.0600	0.0450		
2/3 1/2					
1.49 * r * s					
V =	ft/s	6.7868	\$16.8040	0	
n					
Flow length, L	ft	1870 /	550		
T = L / (3600*V)	hrs	0.08 +	0.01	-	0.09
		TOTAL TIN	E (hrs)		0.09

6/17/91

•

Quick TR-55 Ver.5.46 S/N: Executed: 11:30:57 06-18-1997 a:POSTDVTT.TCT

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Tt COMPUTATIONS FOR: North

SHEET FLOW (Applicable to Tc only)					
Segment ID					
Surface description					
Manning's roughness coeff., n		0.0000			
Flow length, L (total < or = 300)	ft	0.0			
Two-yr 24-hr rainfall, P2	in	0.000			
Land slope, s	ft/ft	0.0000			
0.8					
.007 * (n*L)					
T =	hrs	0.00			0.00
0.5 0.4					12.00
P2 * s					
HALLOW CONCENTRATED FLOW					
Segment ID					
Surface (paved or unpaved)?	3	and a			
Flow length, L	ft	0.0			
Watercourse slope, s	ft/ft	0.0000			
0.5					
Avg.V = Csf * (s)	ft/s	0.0000			
where: Unpaved Csf = 16.1345		Prove a			
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.00		•	0.00
HANNEL FLOW					
Segment ID		1	2		
	sq.ft	28.00	150.00		
Wetted perimeter, Pw	ft	20.00	45.00		
Hydraulic radius, r = a/Pw	ft	1.400	3.333		
	ft/ft	0.0200-	0.0150	1	
Manning's roughness coeff., n		0.0500	0.0600		
2/3 1/2					
1.49 * r * s					
V =	ft/s	5.2741	6.7868		
	1.7.	3.6/41	0.7000		
	ft	1670 -	2250	1	
Flow length, L	1.07				
Flow length, L T = L / (3600*V)	hrs	0.09 +	0.09		0.18
				=	0.18
		0.09 +		•	0.18

BBBINAN

1.0

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Tt COMPUTATIONS FOR: West

SHEET FLOW (Applicable to Tc only)					
Segment ID					
Surface description					
Manning's roughness coeff., n		0.0000			
Flow length, L (total < or = 300)	ft	0.0			
Two-yr 24-hr rainfall, P2	in				
Land slope, s	ft/ft	1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -			
0.8					
.007 * (n*L)					
T =	hrs	0.00			0.00
0.5 0.4				1.5	0.00
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID					
Surface (paved or unpaved)?					
Flow Length, L	ft	0.0			
Watercourse slope, s	ft/ft	0.0000			
0.5 Avg.V = Csf * (s)	ft/s	0.0000			
where: Unpaved Csf = 16.1345	11/1	0.0000			
Paved Csf = 20.3282			1		
Paven Car - 20.3202					
T = L / (3600*V)	hrs	0.00		•	0.00
CHANNEL FLOW					
Segment ID	1.10	1	2		
Cross Sectional Flow Area, a	sq.ft		17.00		
Wetted perimeter, Pw	ft	17.00	17.00		
Hydraulic radius, r = a/Pw	ft	······································	1.000	5	
Channel slope, s	ft/ft	0.0600	0.0500	1	
Manning's roughness coeff., n		0.0450	0.0450		
2/3 1/2					
1.49 * r * *					
V =	ft/s	8.1105	7.4039		
		0.1105	7.4039		
Flow length, L	ft	1050 -	1200	/	
T = L / (3600*V)	hrs	0.04 +	0.05	4	0.08
		TOTAL TIN		10000	
		Torne 110	- (11.6)		0.00

1 328 6/17/97

Page 1 Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:58:17 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV25.HYD

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	Runoff (in)	Ia input	/p /used
10	42.00	67.0	0.40	0.00	4.90	1.73	1.2	.20
20	15.00	56.0	0.30	0.10	4.90	0.99	1.32	.32
30	33.00	58.0	0.40	0.00	4.90	1.11	1.3	.30
4C	16.00	57.0	0.40	0,10	4.90	1.05	1.31	.31
East	520.00	67.0	0.75	0.00	4.90	1.73	1.2	.20
Northeast	80.00	63.0	0.40	0.10	4.90	1.45	1.24	.24
North	236.00	63.0	0.50	0.20	4.90	1.45	1.24	.24
West	100.00	71.0	0.50	0.10	4.90 İ	2.04	1.17	.17

* Travel time from subarea outfall to composite watershed outfall point.

1 -- Subarea where user specified interpolation between Ia/p tables.

Total area = 1042.00 acres or 1.6281 sq.mi Peak discharge = 1027 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

>>>> Computer Modifications of Input Parameters <<<<<

	Input	Values	Rounder	d Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages

10	0.35	0.00	0.40	0.00	Yes	
20	0.32	0.05	0.30	0.10	Yes	
3C	0.41	0.01	0.40	0.00	Yes	1441
4C	0.38	0.09	0.40	0.10	Yes	1000
last	0.68	0.07	0.75	0.00	Yes	
lortheast	0.37	0.09	0.40	0.10	Yes	(4.4)
lorth	0.53	0.18	0.50	0.20	Yes	
lest	0.52	0.08	0.50	0.10	Yes	

Travel time from subarea outfall to composite watershed outfall point.

Total Runoff

= 141.9 ac-ft

Page 2 Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:58:17 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV25.HYD

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at Composite Outfall	Time to Peak at Composite Outfall
Subarea	(cfs)	(hrs)
10	61	12.3
20	11	12.4
3C	28	12.4
4C	12	12.5
East	533	12.7
Northeast	84	12.5
North	219	12.6
West	145	12.5

Composite Watershed	1027	12.6

Page 3

Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type 11. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:58:17 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV25.HYD

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

Composite Hydrograph Summary (cfs)

Subarea	11.0	11.3	11.6	11.9	12.0	12.1	12.2	12.3	12.4
Description	hr	hr	hr	hr	hr	hr	hr	hr	hr
10	1	1	2	5	9	22	43	61	61
20	0	0	0	0	0	1	4	9	11
30	0	0	0	0	1	6	17	27	28
4C	0	0	0	0	0	0	2	6	10
East	9	13	17	25	33	52	102	197	329
Northeast	1	1	2	4	7	14	31	57	80
North	2	3	4	6	8	13	28	66	126
West	3	5	6	11	17	30	56	95	128
•••••	******								
Total (cfs)	16	23	31	51	75	138	283	518	773

Subarea	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13.8
Description	hr	hr	hr	hr	hr	hr	hr	hr	hr
			******	•••••					
10	48	34	26	20	13	10	8	7	7
20	10	8	6	5	3	2	2	2	2
30	24	18	13	11	7	6	5	4	4
4C	12	11	9	7	4	3	3	2	2
East	454	527	533	490	350	248	183	143	117
Northeast	84	74	58	45	28	20	16	14	12
North	187	219	217	191	130	86	62	49	41
West	145	136	115	92	58	39	29	24	20
Total (cfs)	964	1027	977	861	593	414	308	245	205

Page 4 Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:58:17 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV25.HYD

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

Subarea	14.0	14.3	14.6	15.0	15.5	16.0	16.5	17.0	17.5
Description	hr								
1C	6	5	5	4	4	4	3	3	3
20	1	1	1	1	1	1	1	1	1
3C	3	3	3	3	2	2	2	2	2
4C	2	2	1	1	1	1	1	1	1
East	98	81	69	59	53	47	42	38	36
Northeast	11	9	8	8	7	6	6	5	5
North	35	30	26	23	21	19	17	16	14
West	18	15	13	12	11	10	9	8	7
Total (cfs)	174	146	126	111	100	90	81	74	69

Subarea	18.0	19.0	20.0	22.0	26.0
Description	hr	hr	hr	hr	hr
10	3	2	2	2	0
20	1	1	1	0	0
3C	2	1	1	1	0
4C	1	1	1	1	0
ast	34	30	27	22	0
Northeast	5	4	4	3	0
North	14	12	10	9	0
West	7	6	5	5	0

Total (cfs)	67	57	51	43	0

Page 1 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 11:25:28 Watershed file: --> A:\POSTDV2 .MOP Hydrograph file: --> A:\POSTDV00.HYD

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip, (in)	1	Runoff (in)	11.000	/p /used
10	42.00	67.0	0.40	0.00	6.10	1	2.61	1.16	.16
20	15.00	56.0	0.30	0.10	6.10	i.	1.66	1.26	.26
30	33.00	58.0	0.40	0.00	6.10	Î.	1.82	1.24	.24
40	16.00	57.0	0.40	0.10	6.10	î.	1.74	1.25	.25
East	520.00	67.0	0.75	0.00	6.10	i	2.61	1.16	.16
Northeast	80.00	63.0	0.40	0.10	6.10	i.	2.25	1.19	.19
North	236.00	63.0	0.50	0.20	6.10	ì.	2.25	1.19	. 19
West	100.00	71.0	0.50	0.10	6.10	i.	2.98	1.13	.13

* Travel time from subarea outfall to composite watershed outfall point.

I -- Subarea where user specified interpolation between Ia/p tables.

Total area = 1042.00 acres or 1.6281 sq.mi Peak discharge = 1618 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

>>>> Computer	Modifications	of	Input	Parameters	*****
---------------	---------------	----	-------	------------	-------

Subarea Description	Input Tc (hr)	Values * Tt (hr)	Rounded Tc (hr)	Values * Tt (hr)	la/p Interpolated (Yes/No)	la/p Messages
10	0.35	0.00	0.40	0.00	Yes	
20	0.32	0.05	0.30	0.10	Yes	
3C	0.41	0.01	0.40	0.00	Yes	**
40	0.38	0.09	0.40	0.10	Yes	44.1
East	0.68	0.07	0.75	0.00	Yes	
ortheast	0.37	0.09	0.40	0.10	Yes	
lorth	0.53	0.18	0.50	0.20	Yes	
lest	0.52	0.08	0.50	0.10	Yes	

* Travel time from subarea outfall to composite watershed outfall point.

Total Runoff

= 215.7 ac-ft

Page 2 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 11:25:28 Watershed file: --> A:\POSTDV2 .MOP Hydrograph file: --> A:\POSTDV00.HYD

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
***********	*********	
10	96	12.3
20	20	12.4
30	49	12.4
40	20	12.5
East	837	12.6
Northeast	136	12.4
North	360	12.6
West	223	12.5
Composite Watershed	1618	12.6

Page 3 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 11:25:28 Watershed file: --> A:\POSTDV2 .MOP Hydrograph file: --> A:\POSTDV00.KYD

Dairyland Power Coop, Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

Composite Hydrograph Summary (cfs)

	Subarea Description	11.0 hr	11.3 hr	11.6 hr	11.9 hr	12.0 hr	12.1 hr	12.2 hr	12.3 hr	12.4 hr	
	10	2	3	4	9	18	38	71	96	94	
	20	0	0	0	1	2	4	10	18	20	
	3C	1	1	1	2	6	15	33	48	49	
	40	0	0	0	1	1	3	7	13	19	
	East	19	27	36	53	69	105	190	343	547	
	Northeast	3	4	5	10	18	36	70	109	136	
Y	North	6	9	11	17	22	33	63	127	224	
ŀ	West	6	9	12	20	32	56	102	165	209	
	Total (cfs)	37	53	69	113	168	290	546	919	1298	

Subarea Description	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13.8
Description	hr								
c	73	51	38	29	19	14	12	10	0
C	18	13	10	7	5	4	3	3	3
C	39	28	21	17	11	9	7	6	6
C	20	18	14	11	7	5	4	3	3
ast	733	837	830	756	531	370	270	208	168
ortheast	132	110	85	65	40	28	23	19	17
orth	315	360	350	303	200	130	92	71	59
est	223	201	163	128	79	53	40	32	27
otal (cfs)	1553	1618	1511	1316	892	613	451	352	292

Page 4 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 11:25:28 Watershed file: --> A:\POSTDV2 .MOP Hydrograph file: --> A:\POSTDV00.HYD

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

Composite Hydrograph Summary (cfs)

Subarea	14.0	14.3	14.6	15.0	15.5	16.0	16.5	17.0	17.5
Description	hr								
10	8	7	7	6	5	5	4	4	4
20	2	2	2	2	1	1	1	1	1
3C	5	5	4	4	3	3	3	3	2
40	3	2	2	2	2	2	1	1	1
East	141	115	97	83	74	66	59	53	49
Northeast	15	13	12	11	10	9	8	7	7
North	51	44	38	33	30	27	24	22	20
West	24	21	18	16	14	13	12	11	10
Total (cfs)	249	209	180	157	139	126	112	102	94

Subarea	18.0	19.0	20.0	22.0	26.0	
Description	hr	hr	hr	hr	hr	
10	4	3	3	2	0	
2C	1	1	1	1	0	
3C	2	2	2	2	0	
÷C	1	1	1	1	0	
ast	47	42	37	30	0	
lortheast	6	6	5	4	0	
lorth	19	17	15	13	0	
/est	10	8	7	6	0	

otal (cfs)	90	80	71	59	0	

Data directory: p:\data\projects\3081\40\sw*.HYD

File Summary for Composite Hydrograph

Time	POSTDV25	BSN1OUT1	BSN2OUT1	TPTPST25	
(hrs)	(cfs)	(cfs)	(cfs)	(Total)	
*******	*******		*******		
11.00	16.0	0.0	0.0	16.0	
11.10	18.0	0.2	0.2	18.4	
11.20	21.0	0.2	0.2	21.4	
11.30	23.0	0.3	0.2	23.5	
11.40	26.0	0.3	0.2	26.5	
11.50	28.0	0.3	0.2	28.5	
11.60	31.0	0.4	0.2	31.6	
11.70	38.0	0.4	0.3	38.7	
11.80	44.0	0.4	0.3	44.7	
11.90	51.0	0.5	0.3	51.8	
12.00	75.0	0.5	0.4	75.9	
12.10	138.0	0.6	0.4	139.0	
12.20	283.0	0.6	0.5	284.1	
12.30	518.0	0.7	0.5	519.2	
12.40	773.0	0.7	0.5	774.2	
12.50	964.0	0.7	0.6	965.3	245
12.60	1027.0	0.7	0.6	1028.3 🗻	Peak
12.70	977.0	0.7	0.6	978.3	
12.80	861.0	0.7	0.6	862.3	
12.90	727.0	0.7	0.6	728.3	
13.00	593.0	0.8	0.6	594.3	
13.10	503.0	0.8	0.6	504.4	
13.20	414.0	0.8	0.6	415.4	
13.30	361.0	0.8	0.6	362.4	
13.40	308.0	0.8	0.6	309.4	
13.50	277.0	0.8	0.6	278.4	
13.60	245.0	0.8	0.6	246.4	
13.70	225.0	0.8	0.6	226.4	
13.80	205.0	0.8	0.6	206.4	
13.90	190.0	0.8	0.6	191.4	
14.00	174.0	0.8	0.6	175.4	
14.10	165.0	0.8	0.6	166.4	
14.20	155.0	0.8	0.6	156.4	
14.30	146.0	0.9	0.6	147.5	
14.40	139.0	1.2	0.6	140.8	
14.50	133.0	1.5	0.6	135.1	
14.60	126.0	1.8	0.6	128.4	
14.70	122.0	2.0	0.6	124.6	
14.80	118.0	2.2	0.6	120.8	
14.90	115.0	2.3	0.6	117.9	

Combined Post - Development

Hydrograph 25 yr storm

Basin 1 + Basin Z +

Surrounding watershed .

Data directory: p:\data\projects\3081\40\sw*.HYD

Time	POSTDV25	BSN10UT1	BSN2OUT1	TPTPST25
(hrs)	(cfs)	(cfs)	(cfs)	(Total)
*******				*******
15.00	111.0	2.4	0.6	114.0
15.10	109.0	2.5	0.6	112.1
15.20	107.0	2.6	0.6	110.2
15.30	104.0	2.7	0.6	107.3
15.40	102.0	2.7	0.6	105.3
15.50	100.0	2.8	0.6	103.4
15.60	98.0	2.8	0.6	101.4
15.70	96.0	2.8	0.6	99.4
15.80	94.0	2.9	0.6	97.5
15.90	92.0	2.9	0.6	95.5
16.00	90.0	2.9	0.6	93.5
16.10	88.0	2.9	0.6	91.5
16.20	86.0	2.9	0.6	89.5
16.30	85.0	2.9	0.6	88.5
16.40	83.0	2.7	0.6	86.3
16.50	81.0	2.6	0.6	84.2
16.60	80.0	2.5	0.6	83.1
16.70	78.0	2.4	0.6	81.0
16.80	77.0	2.3	0.6	79.9
16.90	75.0	2.3	0.6	77.9
17.00	74.0	2.2	0.6	76.8
17.10	73.0	2.2	0.6	75.8
17.20	72.0	2.2	0.6	74.8
17.30	71.0	2.1	0.6	73.7
17.40	70.0	2.1	0.6	72.7
17.50	69.0	2.1	0.6	71.7
17.60	69.0	2.1	0.6	71.7
17.70	68.0	2.1	0.6	70.7
17.80	68.0	2.0	0.6	70.7
17.90	67.0	2.0	0.6	69.6
18.00	67.0	2.0	0.6	69.6
18.10	66.0	2.0	0.6	68.6
18.20	65.0	2.0	0.6	67.6
18.30	64.0	2.0	0.6	66.6
18,40	63.0	2.0	0.6	65.6
18.50	62.0	2.0	0.6	64.6
18,60	61.0	2.0	0.6	63.6
18,70	60.0	2.0	0.6	62.6
18.80	59.0	2.0	0.7	61.7
18.90	58.0	2.0	0.7	60.8
19.00	57.0	2.0	0.8	59.8

-

Executed 09-18-2000 13:11:11

Data directory: p:\data\projects\3081\40\sw*.HYD

Time			BSN10UT1	BSN2OUT1	TPTPST25
(hrs	:)	(cfs)	(cfs)	(cfs)	(Total)
			*******	*******	
19.		56.0	2.0	0.8	58.8
19.		56.0	2.0	0.9	58.9
19.		55.0	2.0	0.9	57.9
19.		55.0	2.0	0.9	57.9
19.		54.0	2.0	0.9	56.9
19.	60	53,0	1.9	0.9	55.9
19.	70	53.0	1.8	0.9	55.7
19.	80	52,0	1.6	1.0	54.6
19.	90	52.0	1.5	1.0	54.5
20.	00	51.0	1.4	1.0	53.4
20.	10	51.0	1.4	1.0	53.3
20.	20	50.0	1.3	1.0	52.3
20.	30	50.0	1.2	1.0	52.2
20.	40	49.0	1.2	1.0	51.2
20.	50	49.0	1.2	1.0	51.2
20.	60	49.0	1.1	1.0	51.1
20.	70	48.0	1.1	1.0	50.1
20.	80	48.0	1.1	1.0	50.1
20.	90	47.0	1.1	1.0	49.1
21.	00	47.0	1.0	1.0	49.0
21.	10	47.0	0.8	1.0	48.8
21.	20	46.0	0.8	1.0	47.8
21.3	30	46.0	0.8	1.0	47.8
21.4	40	45.0	0.8	1.0	46.8
21.5	50	45.0	0.8	1.0	46.8
21.0	50	45.0	0.8	1.0	46.8
21.7	70	44.0	0.8	1.0	45.8
21.8	80	44.0	0.8	1.0	45.8
21.9	90	43.0	0.8	1.0	44.8
22.0	00	43.0	0.8	1.0	44.8
22.	10	42.0	0.8	1.0	43.8
22.2	20	41.0	0.8	1.0	42.8
22.3	30	40.0	0.8	1.0	41.8
22.4	40	39.0	0.8	1.0	40.8
22.5	50	38.0	0.8	1.0	39.8
22.6	50	37.0	0.8	1.0	38.8
22.7	70	35.0	0.8	1.0	36.8
22.8		34.0	0.8	1.0	35.8
22.5	20	33.0	0.8	1.0	34.8
23.0		32.0	0.8	1.0	33.8
23.1		31.0	0.8	1.0	32.8

Data directory: p:\data\projects\3081\40\sw*.HYD

Time	POSTDV25	BSN10UT1	BSN2OUT1	TPTPST25	
(hrs)	(cfs)	(cfs)	(cfs)	(Total)	
23.20	30.0	0.8	1.0	31.8	
23.30	29.0	0.8	1.0	30.8	
23.40	28.0	0.8	1.0	29.8	
23.50	27.0	0.8	1.0	28.8	
23.60	26.0	0.8	1.0	27.8	
23.70	25.0	0.8	1.0	26.8	
23.80	24.0	0.8	1.0	25.8	
23.90	23.0	0.8	1.0	24.8	
24.00	22.0	0.8	0.9	23.7	
24.10	20.0	0.8	0.7	21.5	
24.20	19.0	0.8	0.6	20.4	
24.30	18.0	0.8	0.6	19.4	
24.40	17.0	0.8	0.6	18.4	
24.50	16.0	0.8	0.6	17.4	
24.60	15.0	0.8	0.6	16.4	
24.70	14.0	0.8	0.6	15.4	
24.80	13.0	0.8	0.6	14.4	
24.90	12.0	0.8	0.6	13.4	
25.00	11.0	0.8	0.6	12.4	
25.10	10.0	0.8	0.6	11.4	
25.20	9.0	0.8	0.6	10.4	
25.30	8.0	0.8	0.6	9.4	
25.40	6.0	0.8	0.6	7.4	
25.50	5.0	0.8	0.6	6.4	

Data directory: p:\data\projects\3081\40\sw*.HYD

File Summary for Composite Hydrograph

Time	POSTDV00	BSN10UT2	BSN2OUT2	TOTPSTOO
(hrs)	(cfs)	(cfs)	(cfs)	(Total)
*******	*******			
11.00	37.0	0.0	0.0	37.0
11.10	42.0	0.2	0.2	42.4
11.20	48.0	0.3	0.2	48.5
11.30	53.0	0.3	0.2	53.5
11.40	58.0	0.4	0.3	58.6
11.50	64.0	0.4	0.3	64.7
11.60	69.0	0.4	0.3	69.7
11.70	84.0	0.4	0.3	84.7
11.80	98.0	0.5	0.3	98.8
11.90	113.0	0.5	0.4	113.9
12.00	168.0	0.6	0.4	169.0
12.10	290.0	0.6	0.5	291.1
12.20	546.0	0.7	0.5	547.2
12.30	919.0	0.7	0.6	920.3
12.40	1298.0	0.7	0.6	1299.3
12.50	1553.0	0.8	0.6	1554.4
12.60	1618.0	2.8	1.2	1622.0 - Peak
12.70	1511.0	8.2	3.7	1522.9
12.80	1316.0	12.2	5.2	1333.4
12.90	1104.0	14.8	6.1	1124.9
13.00	892.0	15.7	6.6	914.3
13.10	752.0	15.5	6.9	774.4
13.20	613.0	14.8	7.0	634.8
13.30	532.0	14.0	7.0	553.0
13.40	451.0	13.3	7.0	471.3
13.50	402.0	12.5	7.0	421.5
13.60	352.0	11.7	6.9	370.6
13.70	322.0	10.8	6.7	339.5
13.80	292.0	10.0	6.6	308.6
13.90	270.0	9.6	6.5	286.0
14.00	249.0	9.1	6.3	264.3
14.10	236.0	8.5	6.0	250.6
14.20	222.0	8.1	5.8	235.9
14.30	209.0	7.7	5.7	222.4
14.40	199.0	7.4	5.4	211.9
14.50	190.0	7.2	5.2	202.3
14.60	180.0	7.0	4.8	191.8
14.70	174.0	6.8	4.5	185.3
14.80	168.0	6.6	4.2	178.8
14.90	163.0	6.2	4.0	173.2

Combined Post - Development

Hydrograph - 100 yr storm

Basin 1 + Basin 2 + Surrounding Watershed.

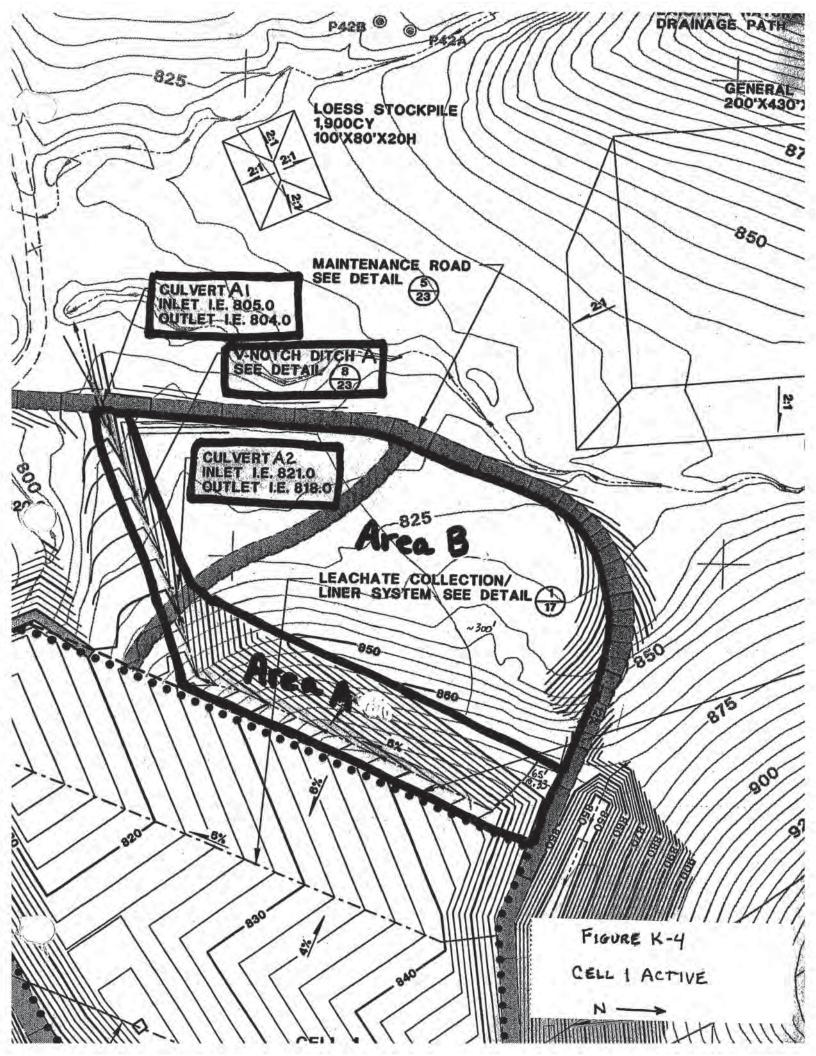
Data directory: p:\data\projects\3081\40\sw*.HYD

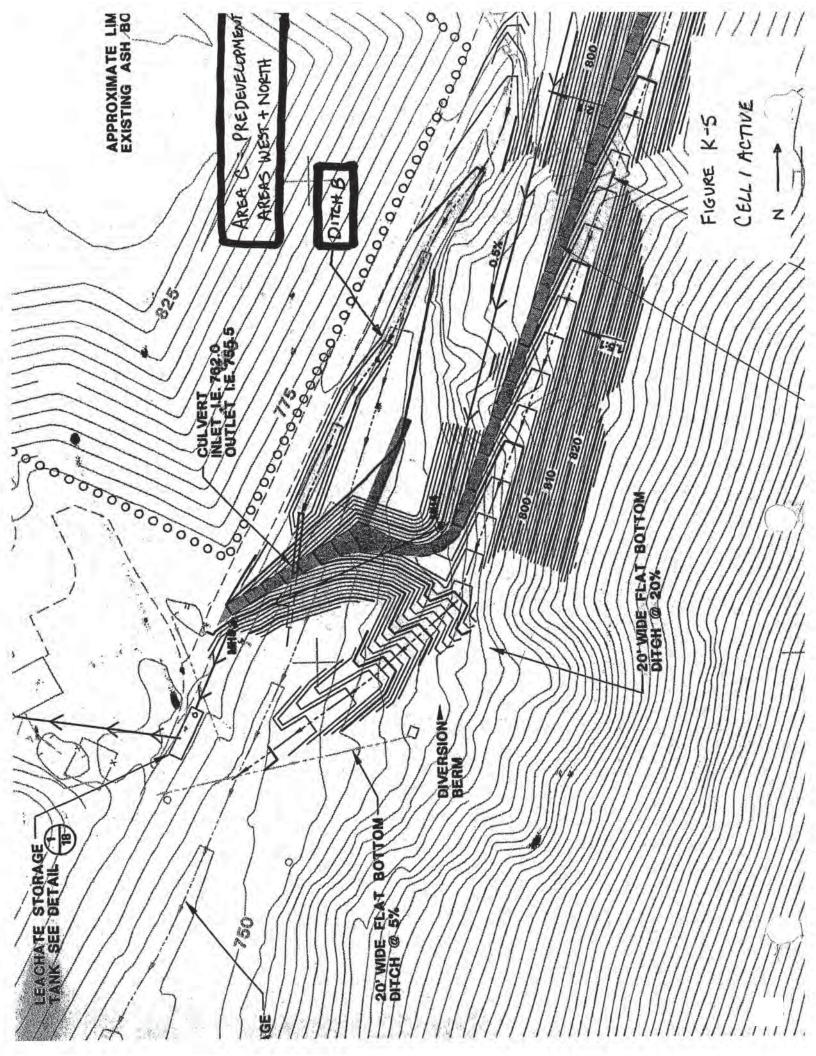
Time	POSTDV00	BSN10UT2		TOTPSTOO
(hrs)	(cfs)	(cfs)	(cfs)	(Total)
15.00	157.0	5.8	3.8	166.6
15.10	153.0	5.5	3.6	162.1
15.20	150.0	5.3	3.5	158.8
15.30	146.0	5.0	3.4	154.4
15.40	143.0	4.6	3.3	150.9
15.50	139.0	4.3	3.3	146.6
15.60	136.0	4.1	3.2	143.3
15,70	134.0	3.9	3.2	141.1
15.80	131.0	3.8	3.1	137.9
15.90	129.0	3.6	3.1	135.7
16.00	126.0	3.5	3.1	132.6
16.10	123.0	3.4	3.1	129.5
16.20	120.0	3.4	3.1	126.4
16.30	118.0	3.3	3.0	124.2
16.40	115.0	3.2	2.8	121.0
16.50	112.0	3.2	2.6	117.8
16.60	110.0	3.2	2.5	115.7
16.70	108.0	3.1	2.4	113.5
16.80	106.0	3.1	2.3	111.4
16.90	104.0	3.1	2.3	109.3
17.00	102.0	3.1	2.2	107.3
17.10	100.0	3.1	2.2	105.2
17.20	99.0	3.0	2.1	104.2
17.30	97.0	3.0	2.1	102.2
17.40	96.0	3.0	2.1	101.1
17.50	94.0	3.0	2.1	99.1
17.60	93.0	3.0	2.1	98.1
17.70	92.0	3.0	2.0	97.1
17.80	92.0	3.0	2.0	97.1
17.90	91.0	3.0	2.0	96.0
18.00	90.0	3.0	2.0	95.0
18.10	89.0	3.0	2.0	94.0
18.20	88.0	3.0	2.0	93.0
18.30	87.0	3.0	2.0	92.0
18.40	86.0	3.0	2.0	91.0
18.50	85.0	2.9	2.0	89.9
18.60		2.8	2.0	88.8
18.70	83.0	2.6	2.0	87.6
18.80	82.0	2.5	2.0	86.5
18.90	81.0	2.4	2.0	85.4
19.00	80.0	2.4	2.0	84.4

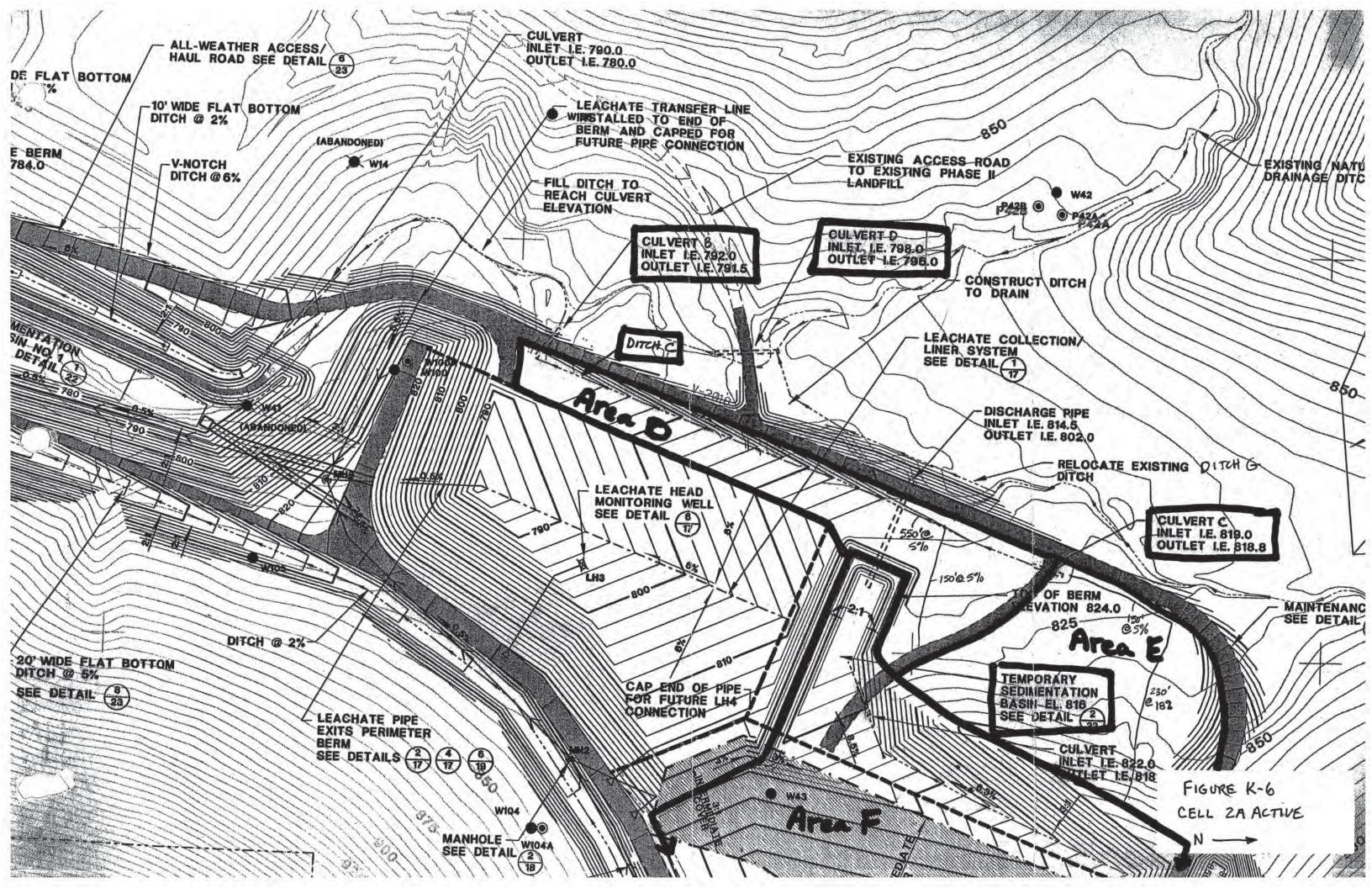
Data directory: p:\data\projects\3081\40\sw*.HYD

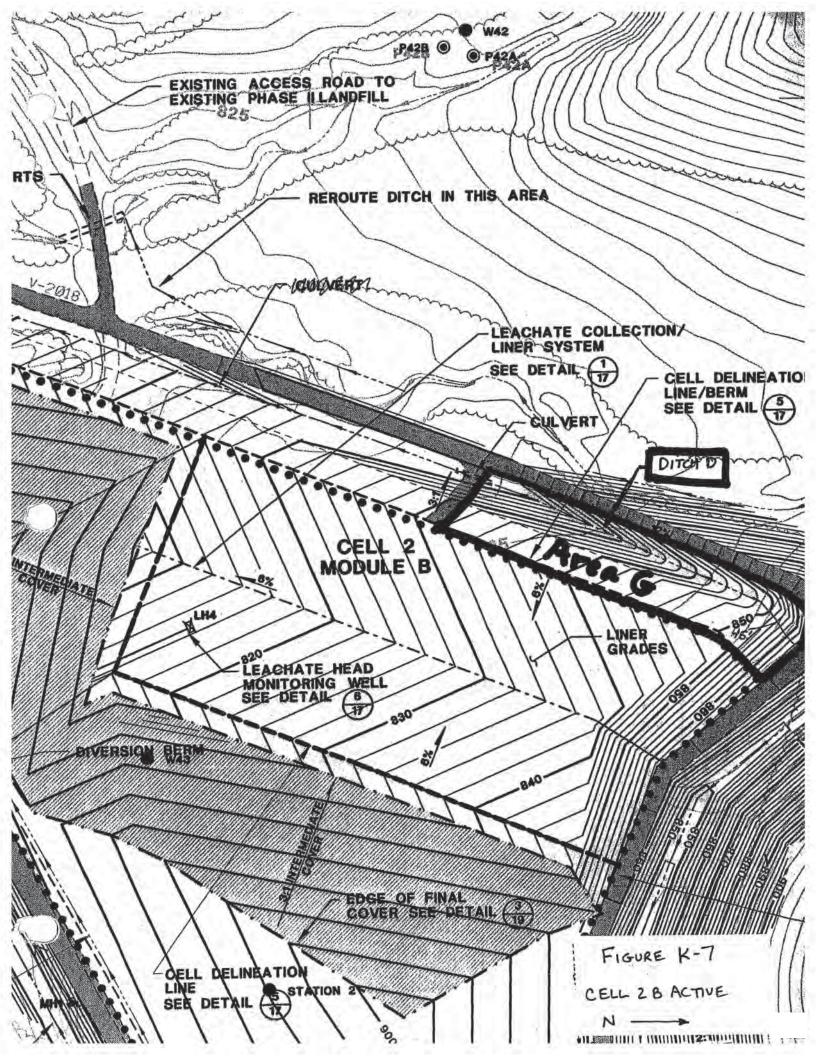
Time	POSTDVOO	BSN10UT2	BSN2OUT2	TOTPSTOO
(hrs)	(cfs)	(cfs)	(cfs)	(Total)

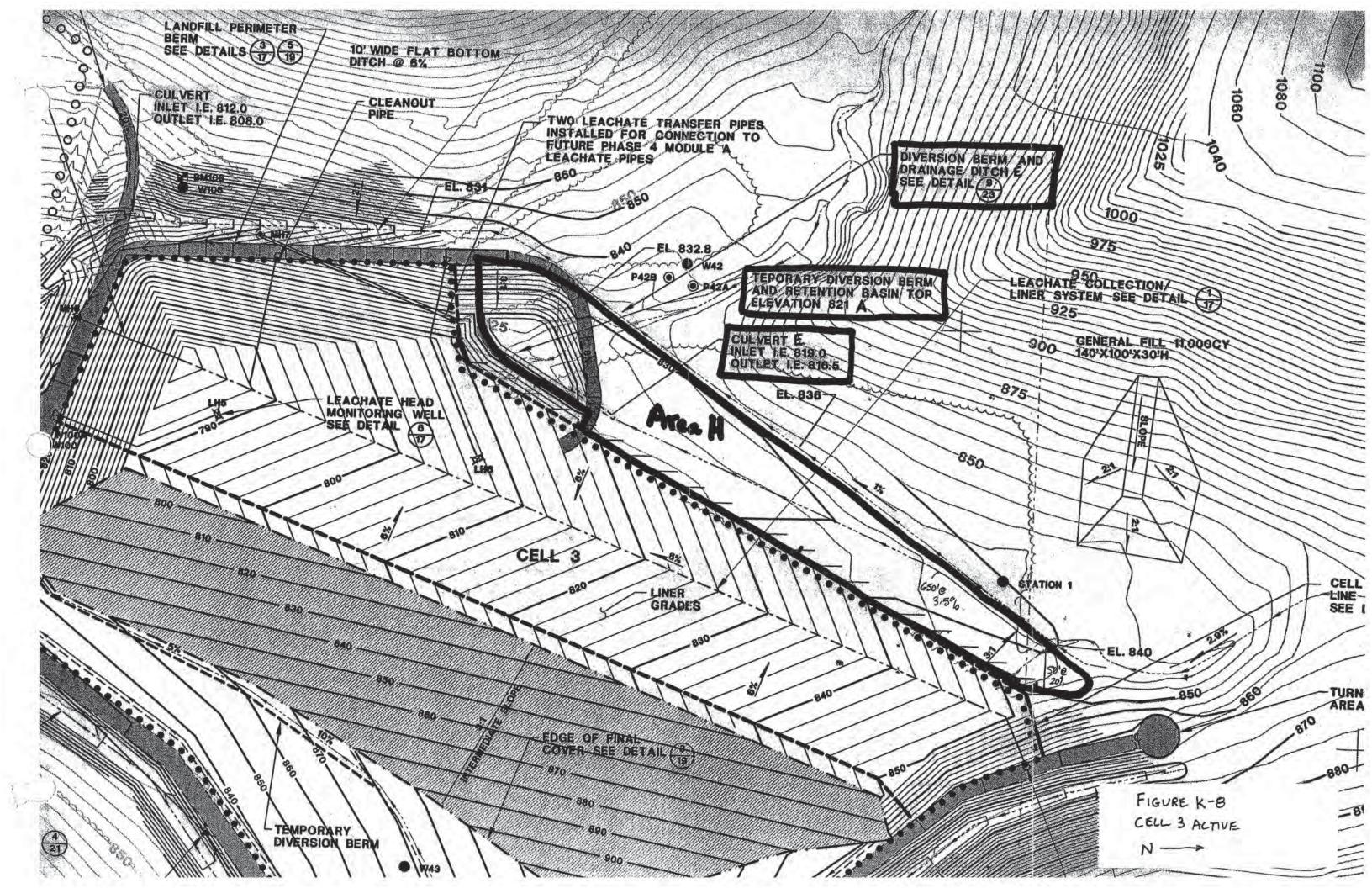
19.10	79.0	2.3	2.0	83.3
19.20	78.0	2.2	2.0	82.2
19.30	77.0	2.2	2.0	81.2
19.40	76.0	2.2	2.0	80.2
19.50	76.0	2.1	2.0	80.1
19.60	75.0	2.1	1.9	79.0
19.70	74.0	2.1	1.7	77.8
19.80	73.0	2.1	1.6	76.7
19.90	72.0	2.1	1.5	75.5
20.00	71.0	2.0	1.4	74.4
20.10	70.0	2.0	1.3	73.3
20.20	70.0	2.0	1.3	73.3
20,30	69.0	2.0	1.2	72.2
20.40	69.0	2.0	1.2	72.2
20.50	68,0	2.0	1.1	71.1
20.60	67.0	2.0	1.1	70.1
20.70	67.0	2.0	1.1	70.1
20.80	66.0	2.0	1.1	69.1
20.90	66.0	2.0	1.0	69.1
21.00	65.0	2.0	1.0	68.1
21.10	64.0	2.0	1.0	67.0
21.20	64.0	2,0	1.0	67.0
21.30	63.0	2,0	1.0	66.0
21.40	63.0	2.0	1.0	66.0
21.50	62.0	2.0	1.0	65.0
21.60		2.0	1.0	64.0
21.70	61.0	2.0	1.0	64.0
21.80		2.0	1.0	63.0
21.90	60.0	2.0	1.0	63.0
22.00	59.0	2.0	1.0	62.0
22.10		2.0	1.0	61.0
22.20	56.0	2.0	1.0	59.0
22.30	55.0	2.0	1.0	58.0
22.40	52.0	2.0	1.0	56.0
22.50	52.0	2.0	1.0	55.0
22.60	50.0	2.0	1.0	53.0
22.70	49.0	2.0	1.0	52.0
22.80	47.0	2.0	1.0	50.0
22.90	46.0	2.0	1.0	49.0
23.00	44.0	2.0	1.0	47.0
23.10	43.0	1.9	1.0	45.9

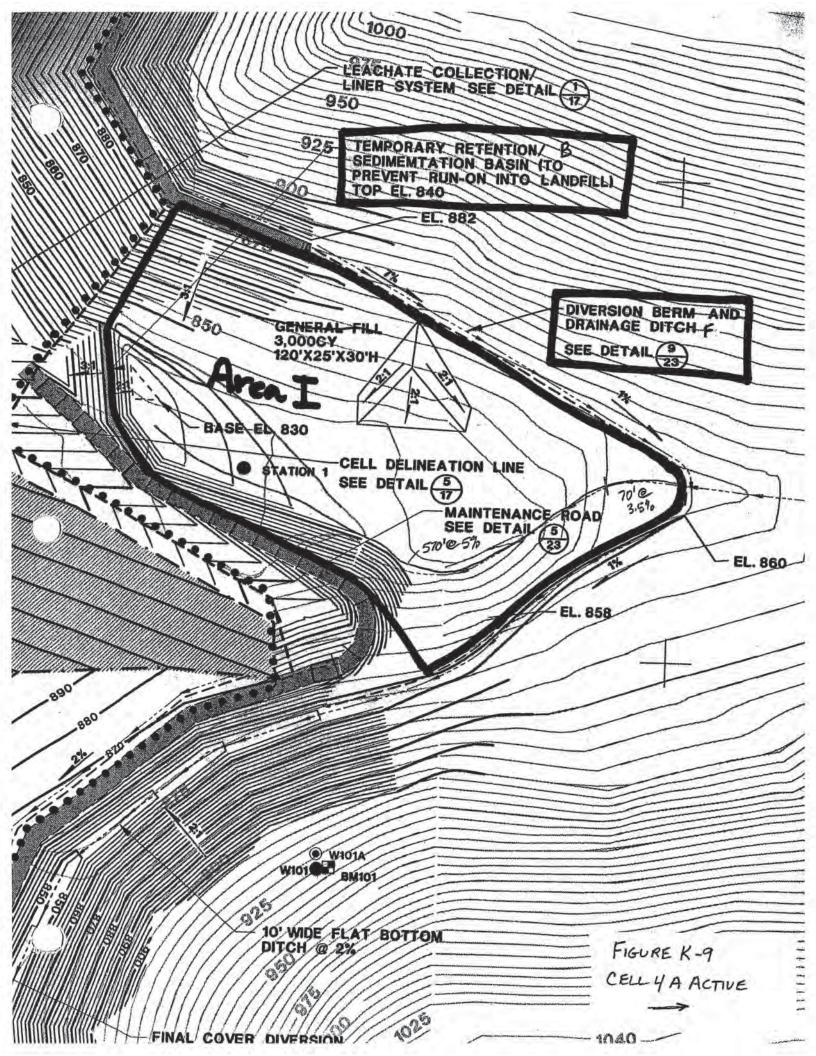

Data directory: p:\data\projects\3081\40\sw*.HYD


			Station Street	Sec. 20.	
Time	POSTDV00	BSN10UT2	BSN2OUT2	TOTPST00	
(hrs)	(cfs)	(cfs)	(cfs)	(Total)	
	*******	*******		******	
23.20	41.0	1.8	1.0	43.8	
23.30	40.0	1.6	1.0	42.6	
23.40	38.0	1.5	1.0	40.5	
23.50	37.0	1.4	1.0	39.4	
23.60	35,0	1.4	1.0	37.3	
23.70	34.0	1.3	1.0	36.3	
23.80	32.0	1.2	1.0	34.2	
23.90	31.0	1.2	1.0	33.2	
24.00	30.0	1.2	0.9	32.1	
24.10	28.0	1.1	0.7	29.9	
24.20	27.0	1.1	0.6	28.7	
24.30	25.0	1.1	0.6	26.7	
24.40	24.0	1.1	0,6	25.7	
24.50	22.0	1.1	0.6	23.7	
24.60	21.0	1.0	0.6	22.6	
24.70	19.0	1.0	0.6	20.6	
24.80	18.0	1.0	0.6	19.6	
24.90	16.0	1.0	0.6	17.6	
25.00	15.0	0.9	0.6	16.5	
25.10	13.0	0.8	0.6	14.4	
25.20	12.0	0.8	0.6	13.4	
25.30	10.0	0.8	0.6	11.4	
25.40	9.0	0.8	0.6	10.4	
25.50	7.0	0.8	0.6	8.4	




Operational Run-off Calculations


\\madison-vfp\Records\-\WPMSN\PJT2\563618\0000\R5636180000-002_Att 4_Control Plan.docx



> SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

> > Dairyland Power Coop. Plan of Operation Operational Conditions

Subarea descr.	Tc or Tt	Time (hrs)

Area A	Tc	0.08
Area B	Tc	0.21
Area D	Tc	0.06 - Round to 0.10
Area E	Tc	0.15
Area F	Tc	0.24
Area G	Tc	0.05 - Rourd to 0.10
Area H	Tc	0.10
Area I	Tc	0.15

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area A

SHEET FLOW (Applicable to Tc only)				-
Segment ID		1		
Surface description	gras	55		
Manning's roughness coeff., n		0.1500		
Flow length, L (total < or = 300)	ft	65.0		
Two-yr 24-hr rainfall, P2	in	2.800		
Land slope, s	ft/ft	0.3330		
0.8				
.007 * (n*L)				
T =	hrs	0.04	-	0.04
0.5 0.4				
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow Length, L	ft	625.0		
Watercourse slope, s	ft/ft	0.0600		
0.5		7 0504		
Avg.V = Csf * (s)	ft/s	3.9521		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.04	-	0.04
CHANNEL FLOW				
Segment ID				
Cross Sectional Flow Area, a	sq.ft	0.00		
Wetted perimeter, Pw	sy.rt ft			
Hydraulic radius, r = a/Pw	ft			
Channel slope, s	ft/ft	0.0000		
Manning's roughness coeff., n	11/11			
Maining's roughness coerr., n		0.0000		
2/3 1/2				
1.49 * r * s				
V =	ft/s	0.0000		
n				
Flow length, L	ft	0		
T = L / (3600*V)	hrs	0.00	-	0.00
				5100
mannannannannann				umm
		TOTAL TIME (hr	s)	0.08

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area B

SHEET FLOW (Applicable to Tc only) Segment ID			
		1	
Surface description	gras		
Manning's roughness coeff., n		0.1500	
Flow length, L (total < or = 300)		300.0	
Two-yr 24-hr rainfall, P2	in	2.800	
Land slope, s	ft/ft	0.1700	
0.8			
.007 * (n*L) T =			
0.5 0.4	hrs	0.18	= 0.18
P2 * s			
HALLOW CONCENTRATED FLOW			
Segment ID		2	
Surface (paved or unpaved)?		Unpaved	
Flow length, L	ft	220.0	
Watercourse slope, s	ft/ft	0.0200	
0.5			
Avg.V = Csf * (s)	ft/s	2.2818	
where: Unpaved Csf = 16.1345			
Paved Csf = 20.3282			
T = L / (3600*V)	hrs	0.03	= 0.03
HANNEL FLOW			
Segment ID			
Cross Sectional Flow Area, a	sq.ft	0.00	
Wetted perimeter, Pw	ft	0.00	
Hydraulic radius, r = a/Pw	ft	0.000	
Channel slope, s	ft/ft	0.0000	
Manning's roughness coeff., n		0.0000	
2/3 1/2			
1.49 * r * s			
V =	ft/s	0.0000	
n			
Flow length, L	ft	0	
T = L / (3600*V)	hrs	0.00	= 0.00

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area D

HEET FLOW (Applicable to Tc only) Segment ID					
		1			
Surface description	soil				
Manning's roughness coeff., n Flow length, L (total < or = 300)		0.0110			
		150.0			
Two-yr 24-hr rainfall, P2	in				
Land slope, s	ft/ft	0.0500			
0.8					
.007 * (n*L)					
1 =	hrs	0.02		=	0.02
0.5 0.4					
P2 * s					
HALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft	550.0			
Watercourse slope, s	ft/ft	0.0500			
0.5					
Avg.V = Csf * (s)	ft/s	3.6078			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.04		-	0.04
none com					
HANNEL FLOW					
Segment ID					
Cross Sectional Flow Area, a	sq.ft	0.00			
Wetted perimeter, Pw	ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness coeff., n		0.0000			
2/3 1/2					
1.49 * r * s					
V =	ft/s	0.0000			
n					
Flow Length, L	ft	0			
		5. Sec.			35.1
T = L / (3600*V)	hrs	0.00		=	0.00
inanananananananan		mmm		(11)	mm
		TOTAL TI	ME (hrs)		0.06

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area E

Contrast, period of the provide the local states of the					\sim
SHEET FLOW (Applicable to Tc only)		100			
Segment ID	. Saint	1			
Surface description Manning's roughness coeff., n	gras				
Flow length, L (total < or = 300)		0.1500			
Two-yr 24-hr rainfall, P2) ft in	230.0			
Land slope, s	ft/ft	2.800			
0.8	10/10	0.1000			
.007 * (n*L)					
T =	hrs	0.14		= 0.14	
0.5 0.4	111.5	0.14		- 0.14	
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft	150.0			
Watercourse slope, s	ft/ft				
	1.0/10.	0.0500			
0.5					
Avg.V = Csf * (s)	ft/s	3.6078			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.01	n l'i q	= 0.01	
CHANNEL FLOOR					
CHANNEL FLOW Segment ID					
Cross Sectional Flow Area, a		0.00			
Wetted perimeter, Pw	sq.ft ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness coeff., n	11/11	0.0000			
hanning a roughicaa coerrey n		0.0000			
2/3 1/2					
1.49 * r * s					
V =	ft/s	0.0000			
n					
Flow length, L	ft	0			

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area F

SHEET FLOW (Applicable to Tc only)				
Segment ID		Q		
Surface description	gras			
Manning's roughness coeff., n		0.1500		
Flow length, L (total $< \text{ or } = 300$)	ft	185.0		
Two-yr 24-hr rainfall, P2	în	2.800		
Land slope, s	ft/ft	0.2500		
0.8				
.007 * (n*L)				
T =	hrs	0.10	=	0.10
0.5 0.4				
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow Length, L	ft	1370.0		
Watercourse slope, s	ft/ft	0.0300		
0.5				
Avg.V = Csf * (s)	ft/s	2.7946		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.14	1.4	0.14
CHANNEL FLOW				
Segment ID				
Cross Sectional Flow Area, a	sq.ft	0.00		
Wetted perimeter, Pw	ft	0.00		
Hydraulic radius, r = a/Pw	ft	0.000		
Channel slope, s	ft/ft	0.0000		
Manning's roughness coeff., n		0,0000		
2/3 1/2				
1.49 * r * s				
V =	ft/s	0.0000		
n				
Flow length, L	ft	0		
T = L / (3600*V)	hrs	0.00		0.00
			(ME (hrs)	0.24

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area G

SHEET FLOW (Applicable to Tc only)				
Segment ID		1		
Surface description	gras	ss		
Manning's roughness coeff., n		0.1500		
Flow length, L (total < or = 300)	ft	45.0		
Two-yr 24-hr rainfall, P2	in	2.800		
Land slope, s	ft/ft	0.3300		
0.8				
.007 * (n*L)				
T =	hrs	0.03	1	0.03
0.5 0.4				
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow length, L	ft	320.0		
Watercourse slope, s	ft/ft	0.1200		
0.5				
Avg.V = Csf * (s)	ft/s	5.5892		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.02	4.174	0.02
HANNEL FLOW				
Segment ID	5 - E .	6.52		
Cross Sectional Flow Area, a	sq.ft	0.00		
Wetted perimeter, Pw	ft	0.00		
Hydraulic radius, r = a/Pw	ft	0.000		
Channel slope, s	ft/ft			
Manning's roughness coeff., n		0.0000		
2/3 1/2				
1.49 * r * s	1205	3.24.11		
V =	ft/s	0.0000		
n				
Flow length, L	ft	0		
T = L / (3600*V)	hrs	0.00		0.00

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area H

SHEET FLOW (Applicable to Tc only) Segment ID				
Surface description				
Manning's roughness coeff., n	gras	0.1500		
Flow length, L (total < or = 300)	ft			
Two-yr 24-hr rainfall, P2	in	2.800		
Land slope, s	ft/ft	0.2000		
0.8	14/14	0.2000		
.007 * (n*L)				
T =	hrs	0.04		0.04
0.5 0.4	in a	0.04	-	0.04
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow length, L	ft	650.0		
Watercourse slope, s	ft/ft	0.0350		
0.5				
Avg.V = Csf * (s)	ft/s	3.0185		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.06		0.06
CHANNEL FLOW				
Segment ID				
Cross Sectional Flow Area, a	sq.ft	0.00		
Wetted perimeter, Pw	sq.it ft	0.00		
Hydraulic radius, r = a/Pw	ft			
Channel slope, s	ft/ft			
Manning's roughness coeff., n	10/10	0.0000		
naming a rodginica coerry in		0.0000		
2/3 1/2				
1.49 * r * s				
V =	ft/s	0.0000		
n		0.00		
Flow length, L	ft	0		
T = L / (3600*V)	hrs	0.00	-	0.00

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area I

SHEET FLOW (Applicable to Tc only)			
Segment ID		1	
Surface description	gras		
Manning's roughness coeff., n		0.1500	
Flow length, L (total < or = 300)	ft	70.0	
Two-yr 24-hr rainfall, P2	în	2.800	
Land slope, s	ft/ft	0.0350	
0.8			
.007 * (n*L)			
T =	hrs	0.10	= 0.10
0.5 0.4			
P2 * s			
SHALLOW CONCENTRATED FLOW			
Segment ID		2	
Surface (paved or unpaved)?		Unpaved	
Flow length, L	ft	570.0	
Watercourse slope, s	ft/ft	0.0500	
0.5			
Avg.V = Csf * (s)	ft/s	3.6078	
where: Unpaved Csf = 16.1345			
Paved Csf = 20.3282			
T = L / (3600*V)	hrs	0.04	= 0.04
annual and an			
CHANNEL FLOW			
Segment ID			
Cross Sectional Flow Area, a	sq.ft	0.00	
Wetted perimeter, Pw	ft	0.00	
Hydraulic radius, r = a/Pw	ft	0.000	
Channel slope, s	ft/ft	0.0000	
Manning's roughness coeff., n		0.0000	
2/3 1/2			
1.49 * r * s			
V =	ft/s	0.0000	
n			
Flow length, L	ft	ō	
T = L / (3600*V)	hrs	0.00	= 0.00

Page 1

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:42 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL1 .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL1 .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 1

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	1	Runoff (in)	Ia input	/p /used
Area A	1.10	69.0	0.10	0.00	6.10	Ĩ	2.79	.15	.10
Area B	2.70	69.0	0.20	0.00	6.10	Ť	2.79	.15	.10

* Travel time from subarea outfall to composite watershed outfall point. Total area = 3.80 acres or 0.00594 sq.mi

Peak discharge = 14 cfs

>>>> Computer Modifications of Input Parameters <<<<<

	Input	Values	Rounded	Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
Area A	0.10	0.00	**	**	No	
Area B	0.21	0.00	0.20	0.00	No	

* Travel time from subarea outfall to composite watershed outfall point.

** Tc & Tt are available in the hydrograph tables.

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:42 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL1 .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL1 .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 1

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
	*************	*********
Area A	5	12.1
Area B	9	12.1

Composite Watershed	14	12.1

Page 1

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:49 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL2A .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL2A .HYD

Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2A

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	1	Runoff (in)		/p /usec
Area D	1.30	69.0	0.10	0.00	6.10	T	2.79	.15	.10
Area E	1.60	69.0	0.20	0.00	6.10	Ť.	2.79	.15	.10

* Travel time from subarea outfall to composite watershed outfall point.

Total area = 2.90 acres or 0.00453 sq.mi Peak discharge = 11 cfs

>>>> Computer Modifications of Input Parameters <<<<<

	Input	Values	Rounded	Values	la/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	la/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
Area D	0.10	0.00	**	**	No	
Area E	0.15	0.00	0.20	0.00	No	

* Travel time from subarea outfall to composite watershed outfall point.

** Tc & Tt are available in the hydrograph tables.

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:49 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL2A .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL2A .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2A

	Peak Discharge at	Time to Peak at	
	Composite Outfall	Composite Outfall	
Subarea	(cfs)	(hrs)	

Area D	6	12.1	
Area E	6	12.2	

Composite Watershed	11	12.1	

TR-55 TABULAR HYDROGRAPH METHOD Type I1 Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:57 Watershed file: --> p:\data\projects\3081\40\sw\op\TEMPBAS .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\TEMPBAS .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2A Temporary Basin

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN			Precip. (in)				

Area F	7.60	69.0	0.20	0.00	6.10	1	2.79	.15	.10

Total area = 7.60 acres or 0.01187 sq.mi Peak discharge = 27 cfs

	Input	Values	Rounded	Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
rea F	0.24	0.00	0.20	0.00	No	

1.1

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:57 Watershed file: --> p:\data\projects\3081\40\sw\op\TEMPBAS .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\TEMPBAS .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2A Temporary Basin

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
Area F	27	12.2
Composite Watershed	27	12.2

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:12:03 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL2B .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL2B .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2B

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)		Ia/p input/used
Area G	0.60	69.0	0.10	0.00	6.10	2.79	.15 .10

* Travel time from subarea outrall to composite watersned outrall point. Total area = 0.60 acres or 0.00094 sq.mi Peak discharge = 3 cfs

>>>> Computer Modifications of Input Parameters <<<<< Input Values Rounded Values Ia/p Tc * Tt Tc * Tt Interpolated Subarea Ia/p Description (hr) (hr) (hr) (hr) (Yes/No) Messages Area G 0.10 0.00 ** ** No * Travel time from subarea outfall to composite watershed outfall point.

** Tc & Tt are available in the hydrograph tables.

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:12:03 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL2B .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL2B .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2B

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
Area G	3	12.1
Composite Watershed	3	12.1

Page 1

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:12:08 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL3 .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL3 .HYD

Dairyland Power Coop. Plan of Operation Operational Conditions Cell 3

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)		Runoff (in)	Ia/p input/used
Area H	1.70	69.0	0.10	0.00	6.10	1	2.79	.15 .10

Total area = 1.70 acres or 0.00266 sq.mi Peak discharge = 7 cfs

>>>> Computer Modifications of Input Parameters <<<<< Input Values Rounded Values Ia/p Subarea Tc * Tt Tc * Tt Interpolated la/p (hr) (hr) Description (hr) (hr) (Yes/No) Messages Area H 0.10 0.00 ** ** No --

* Travel time from subarea outfall to composite watershed outfall point.

** Tc & Tt are available in the hydrograph tables.

~

Page 2

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:12:08 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL3 .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL3 .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 3

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
***********	********	
Area H	7	12.1
**********	***********	
Composite Watershed	7	12.1

Page 1

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:21:09 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL4A .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL4A .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 4A

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)		Precip. (in)			
Area I	3.60	69.0	0.20	0.00	6.10	L	2.79	.15 .

Total area = 3.60 acres or 0.00562 sq.mi Peak discharge = 13 cfs

	Input	Values	Rounded	Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
Area I	0.15	0.00	0.20	0.00	No	

Page 2

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:21:09 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL4A .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL4A .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 4A

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)

Area I	13	12.2

Composite Watershed	13	12.2

Reference Information

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised July 2024

Cover description		Curve numbers for hydrologic soil group-				
Cover type and hydrologic condition	Average percent impervious area ²	ł	A	B	с	D
Fully developed urban areas (vegetation established)						
Open space (lawns, parks, golf courses, cemeteries, etc.) ² :						
Poor condition (grass cover < 50%)						it.
Fair condition (grass cover 50% to 75%)			68 49	79	86	39
Good condition (grass cover > 75%)			49	(69)	79	24
Impervious areas:			39	61	74	30
Paved parking lots, roofs, driveways, etc.				· · · ·	-	
(excluding right-of-way)			00			
Streets and roads:			98	98	98	98
Paved: curbs and storm sewers (excluding right-of-way)						
Paved: open ditches (including right-of-way)			98	98	98	98
Gravel (including right-of-way)			83	-69	92	93
Dirt (including right-of-way)			76	85	89	91
Western desert urban areas:			72	S2	87	89
Natural desert landscaping (pervious areas only)			~			
Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand			ន	Π	85	88
or gravel mulch and basin borders)			96	0.0	1.22	200
Urban districts:			m	96	96	96
Commercial and business	85		89	043		
Industrial	72		81	92 88	94	95
desidential districts by average lot size:			01	00	91	93
1/S acre or less (town houses)	65		77	85	90	
1/4 acre	38		61	75	83	92
1/3 acre	30		57	72	81	87
1/2 acre	25		54	70	80	146
1 acre	20		51	68	79	85
2 acres	12		46	65	10	.94
						82
Developing urban areas						
lewly graded areas (pervious areas only,						
no vegetation) ³		- D	77	(and		1.24
dle lands (CN's are determined using cover types similar to those in table 2-2c).				(86)	91	94

Table 2-2a .- Runoff curve numbers for urban areas!

Average runoff condition, and I₂ = 0.25.

"The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a UN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 23 or 24. 3CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.

Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervisus area CN. The pervisus area CN's are assumed equivalent to desert shrub in poor hydrologic condition. Composite CN's to use for the design of temporary measures during grading and construction should be compated using figure 2-3 or 24.

based on the degree of development (impervious area percentage) and the CN's for the newly graded pervisus areas.

Cover description			Curve numbers for hydrologic soil group-				
Cover type	Treatment ²	Hydrologic condition ³	A	B	с	D	
Fallow	Bare soil		π	(86)	91	94	
	Crop residue cover (CR)	Poor Good	76 74	85 83	90 88	93 90	
Row crops	Straight row (SR)	Poor Good	72 67	81 (78) 80	88 85	91 89	
	SR + CR	Poor Good	71 64	80 75	87 82	90 85	
-	Contoured (C)	Poor Good	70 65	75 = TT	84 82	88 86	
	C + CR	Poor Good	69 64	78 74	83 81	87	
	Contoured & terraced (C&T)	Poor Good	66 62	74 71	80	85 82	
	C&T + CR	Poor Good	65 61	73 70	78 79 77	81 81 80	
mall grain	SR	Poor Good	65 63	76	84	88	
	SR + CR	Poor Good	64 60	75 75 72	83 83	87 86	
	С	Poor Good	63 61	74 73	80 82	84 85	
-	C + CR	Poor Good	62 60	73 72	81 81	84 84	
	C&T	Poor Good	61 59	72 70	80 79	83	
	C&T + CR	Poor Good	60 58	71 69	78 · 78 77	81 81 80	
ose-seeded or broadcast	SR	Poor Good	66	77	85	89	
egumes or rotation	c	Poor Good	58 64 55	72 75	81 83	85 85	
meadow [.]	C&T	Poor Good	63 51	69 73 67	78 80 76	83 83 80	

Table 2-2b .- Runoff curve numbers for cultivated agricultural lands'

¹Average runoff condition, and $l_{\mu} = 0.2S$.

²Crop residue cover applies only if residue is on at least 5% of the surface throughout the year. ²Hydrologic condition is based on combination of factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes in rotations, (d) percent of residue cover on the land surface (good ≥ 20%), and (e) degree of surface roughness. Poso: Factors impair infiltration and tend to increase runoff.

Gund: Factors encourage average and better than average infiltration and tend to decrease runoff.

Cover description		Curve numbers for hydrologic soil group-				
Cover type	Hydrologic condition	A	В	с	D	
Pasture grassland) or range-continuous forage for grazing. ²	Poor Fair Good	68 49 39	କ୍ତିଛ ଟ୍ଟ	86 79 74	89 84 80	
Meadow-continuous grass, protected from grazing and generally mowed for hay.	-	30	58	71	78	
Brush—brush-weed-grass mixture with brush the major element. ³	Poor Fair Good	48 35 430	65 56 48	77 70 65	83 77 73	
Woods—grass combination (orchard or tree farm). ^{\$}	Poor Fair Good	57 43 32	73 65 58	82 76 72	86 82 79	
Woods.*	Poor Fair Good	45 36 430	66 G	77 73 70	83 79- 77	
Farmsteads—buildings, lanes, driveways, and surrounding lots.		59	74	82	86	

Table 2-2c .- Runoff curve numbers for other agricultural lands'

¹Average runoff condition, and I₂ = 0.2S.

2 Poor:

Fair:

<50% ground cover or heavily grazed with no mulch. 50 to 75% ground cover and not heavily grazed. >75% ground cover and lightly or only occasionally grazed. Good:

Pour: <50% ground cover. 50 to 75% ground cover. Fair:

Goud: >75% ground cover.

"Actual curve number is less than 30; use CN = 30 for runoff computations.

*CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

*Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.

Woods are grazed but not burned, and some forest litter covers the soil. Fair:

Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

Sheet flow

Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. With sheet flow, the friction value (Manning's n) is an effective roughness coefficient that includes the effect of raindrop impact; drag over the plane surface; obstacles such as litter, crop ridges, and rocks; and erosion and transportation of sediment. These n values are for very shallow flow depths of about 0.1 foot or so. Table 3-1 gives Manning's n values for sheet flow for various surface conditions.

For sheet flow of less than 300 feet, use Manning's kinematic solution (Overton and Meadows 1976) to compute Tt:

$$T_t = \frac{0.007 \text{ (nL)}^{0.8}}{(P_2)^{0.5} \text{ s}^{0.4}}$$
 [Eq. 3-3]

Table 3-1 .- Roughness coefficients (Manning's n) for sheet flow

Surface description	n ¹	
Smooth surfaces (concrete, asphalt, gravel, or		
bare soil)	0.011	
Fallow (no residue)	0.05 -	
Cultivated soils:		
Residue cover ≤ 20%	0.06	
Residue cover >20%	0.17 -	
Grass:		
Short grass prairie	0.15 -	
Dense grasses ²	0.24	
Bermudagrass	0.41	
Range (natural)	0.13	
Woods:3		
Light underbrush	0.40	
Dense underbrush	0.80	

"The n values are a composite of information compiled by Engman (1986).

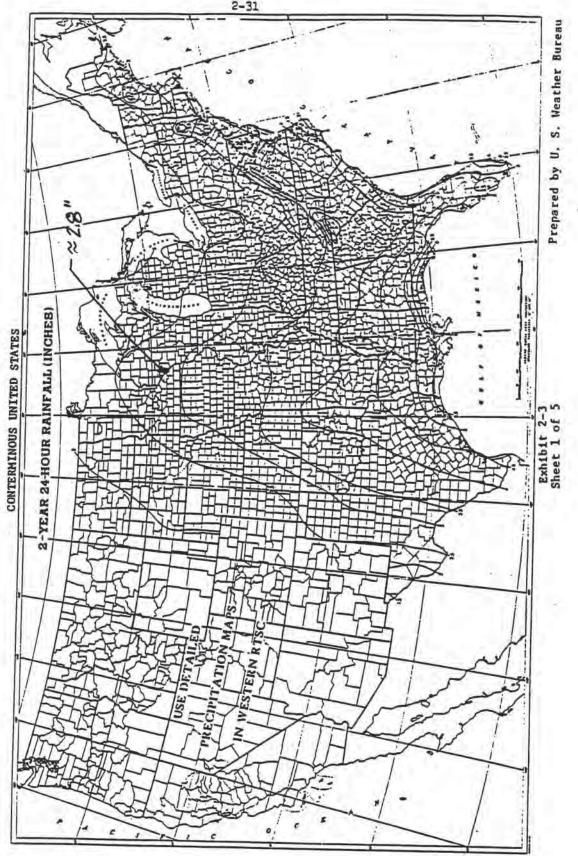
Includes species such as weeping lovegrass, bluegrass, buffalo

grass, blue grama grass, and native grass mixtures. When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

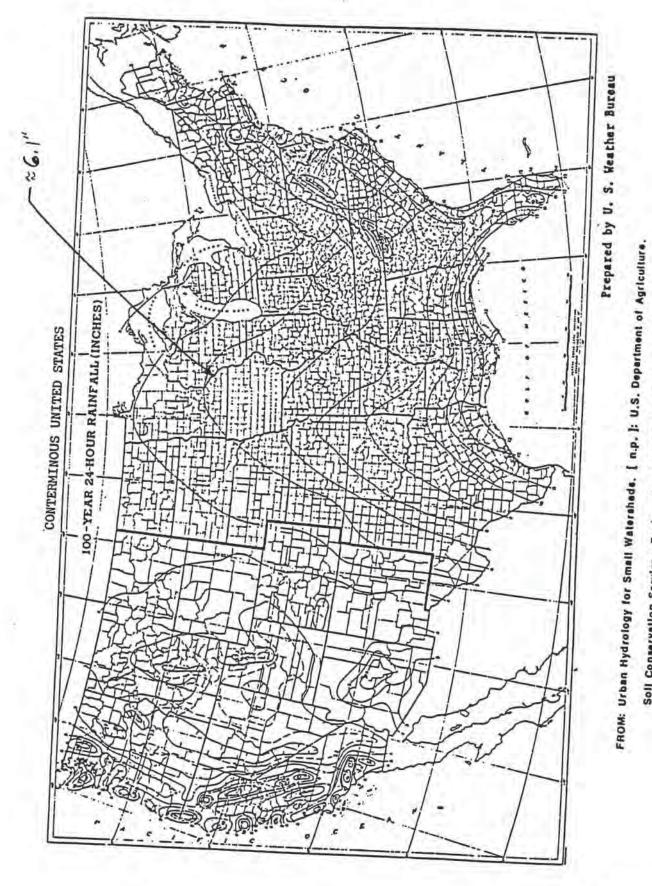
where

- T₁ = travel time (hr).
- n = Manning's roughness coefficient (table 3-1).
- L = flow length (ft),
- P2 = 2-year, 24-hour rainfall (in), and
- s = slope of hydraulic grade line (land slope, A/A).

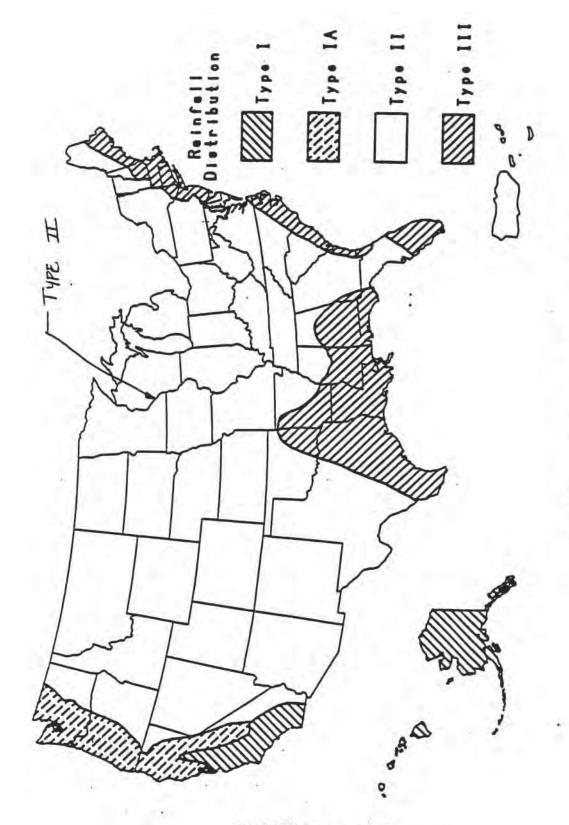
This simplified form of the Manning's kinematic solution is based on the following: (1) shallow steady uniform flow, (2) constant intensity of rainfall excess (that part of a rain available for runoff), (3) rainfall duration of 24 hours, and (4) minor effect of infiltration on travel time. Rainfall depth can be obtained from appendix B.


Shallow concentrated flow

After a maximum of 300 feet, sheet flow usually becomes shallow concentrated flow. The average velocity for this flow can be determined from figure 3-1, in which average velocity is a function of watercourse slope and type of channel. For slopes less than 0.005 ft/ft, use equations given in appendix F for figure 3-1. Tillage can affect the direction of shallow concentrated flow. Flow may not always be directly down the watershed slope if tillage runs across the slope.


After determining average velocity in figure 3-1, use equation 3-1 to estimate travel time for the shallow concentrated flow segment.

Open channels


Open channels are assumed to begin where surveyed cross section information has been obtained, where channels are visible on aerial photographs, or where blue lines (indicating streams) appear on United States Geological Survey (USGS) quadrangle sheets. Manning's equation or water surface profile information can be used to estimate average flow velocity. Average flow velocity is usually determined for bank-full elevation.

2-31

Soll Conservation Service Engineering Division, (Technical Release No. 55), 1975, as revised 1981.

(210-VI-TR-55, Second Ed., June 1986)

Diversion Berm, Perimeter Ditch, and Spillway Design Calculations

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised July 2024

Purpose/Methodology/Assumptions/Results/References

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised July 2024

COMPUTATION SHEET

744 Heartland Trail (53717-8923) P.	O. Box 8923 (5370	8-8923)	Madison, WI	(608) 831-4444	FAX: (608) 831-3334	VOICE: (608) 831-1989
PROJECT/PROPOSAL NAME	PREPARED		CH	ECKED	PROJECT/PROPOSAL NO.	
Dairyland Power Cooperativ	e BJK	Date 9/0	S. 1. 57	Date:		3081.40

DIVERSION BERM, PERIMETER DITCH, AND SPILLWAY DESIGN CALCULATIONS

Purpose

To size the diversion berms, perimeter ditches and spillway at the proposed Dairyland Power Cooperative Landfill to adequately handle the surface water runoff from a 100-year, 24-hour storm.

Methodologies

Ditches, diversion berms and spillways were designed to channel the surface water runoff from the landfill drainage areas to the sedimentation basins, receiving ditches, or spillways. The direction of surface water runoff from the drainage areas surrounding the proposed landfill is towards the proposed landfill. Perimeter drainage ditches were therefore incorporated into the design to route the surface water runoff from outside the proposed landfill limits along the perimeter of the landfill area to the existing main channel at the south end of the landfill. These ditches are labeled as the NW, NE, West, SE, and SW ditches. The perimeter ditches sized in this subsection of the appendix, then, include ditches to collect runoff from the landfill drainage areas as well as ditches to collect surface water run-on from the drainage areas surrounding the landfill.

The adequacy of the diversion berms and ditches in handling the surface water runoff and runon and in limiting the amount of erosion is based on the depth of flow and velocity, respectively, in the ditch. An in-house RMT spreadsheet incorporating Manning's equation was used to assist in the design of the diversion berms and ditches. This program allows the user to input the ditch geometry, the peak flow (as determined by the surface water runoff calculation), and the vegetative retardance factor (Chow, 1959). The program then begins an iterative process which adjusts the flow depth and Manning's coefficient until the trial velocity and the resultant velocity are within 0.002 feet per second (fps) of each other. The end result is the peak flow depth and peak velocity for the geometry and peak flow entered. Design software provided by Synthetic Industries was also used to select erosion control matting for ditches and grouted riprap for spillways.

Permanent ditches, diversion berms, and spillways will be constructed as early in the site development as practicable. Where temporary ditching is required, these temporary ditches have been designed to the same standards as the permanent ditches. Calculations for the sizing of the temporary ditches are also attached.

RMT.

COMPUTATION SHEET

744 Heartland Trail (53717-8923) P.	. O. Box 8923 (5370	08-8923)	Madison, WI	(608) 831-4444	FAX: (608) 831-3334	VOICE: (608) 831-1989
PROJECT/PROPOSAL NAME	PREPAR	RED	CH	ECKED	PROJECT/PR	OPOSAL NO.
Dairyland Power Cooperativ	re BJK	Date 9/0		Date:		3081.40

It is noted that the storm water control structures have been designed using a 100-year, 24-hour storm event and a TR-55 Type II storm distribution. As noted in the surface water runoff calculations, the peak flows calculated using this method meet or exceed the peak flows calculated using a 25-year, time of concentration storm event (required by NR 504.09).

Assumptions

The following assumptions were used to design the diversion berms and perimeter ditches:

- Diversion berms, perimeter ditches and the spillway were designed to handle the runoff from the 100-year, 24-hour storm event.
- Diversion berm ditches were designed as V-notch ditches with a minimum 0.5 foot of freeboard for the 25-year, 24-hour storm. Diversion berm ditches were designed to convey the 100-year, 24-hour storm without overtopping.
- Perimeter ditches were designed as both V-notch and flat bottom (10-foot and 20-foot-wide) ditches with a minimum 0.5 foot of freeboard for the 25-year, 24-hour storm.
 Perimeter ditches were designed to convey the 100-year, 24-hour storm without overtopping.
- Grass-lined diversion berm and perimeter ditches were designed for a maximum velocity of 4 fps. Ditches with velocities exceeding 4 fps were designed to be lined with erosion mat or riprap, as appropriate.
- The spillway was designed as 20-foot-wide, flat-bottom spillway with a minimum 0.5 foot of freeboard.
- The peak flows in the diversion berms, perimeter ditches and the spillway were obtained from the hydrographs generated in the "Surface Water Runoff Calculations" subsection of this appendix.
- Manning's numbers were selected for both "low" retardance (Type "D") and "moderate" retardance (Type "C") as given by the U.S. Soil and Conservation Service. Type "D" is typical of spring conditions while Type "C" is typical of summer conditions. For ditches lined with erosion matting, default Manning numbers from the Synthetic Industries design software were utilized.

Results

The diversion berms and perimeter ditches were adequately sized to handle the surface water runoff from a 100-year, 24-hour storm event. The diversion berms at a 2 percent slope will be grass-lined. To limit erosion, permanent erosion matting will be placed in the diversion berms at a 6 percent slope, as well as in most of the perimeter ditching. Grouted riprap will be constructed in the spillways. The attached figure highlights the ditch sizing results.

Dairyland Power Cooperative

COMPUTATION SHEET

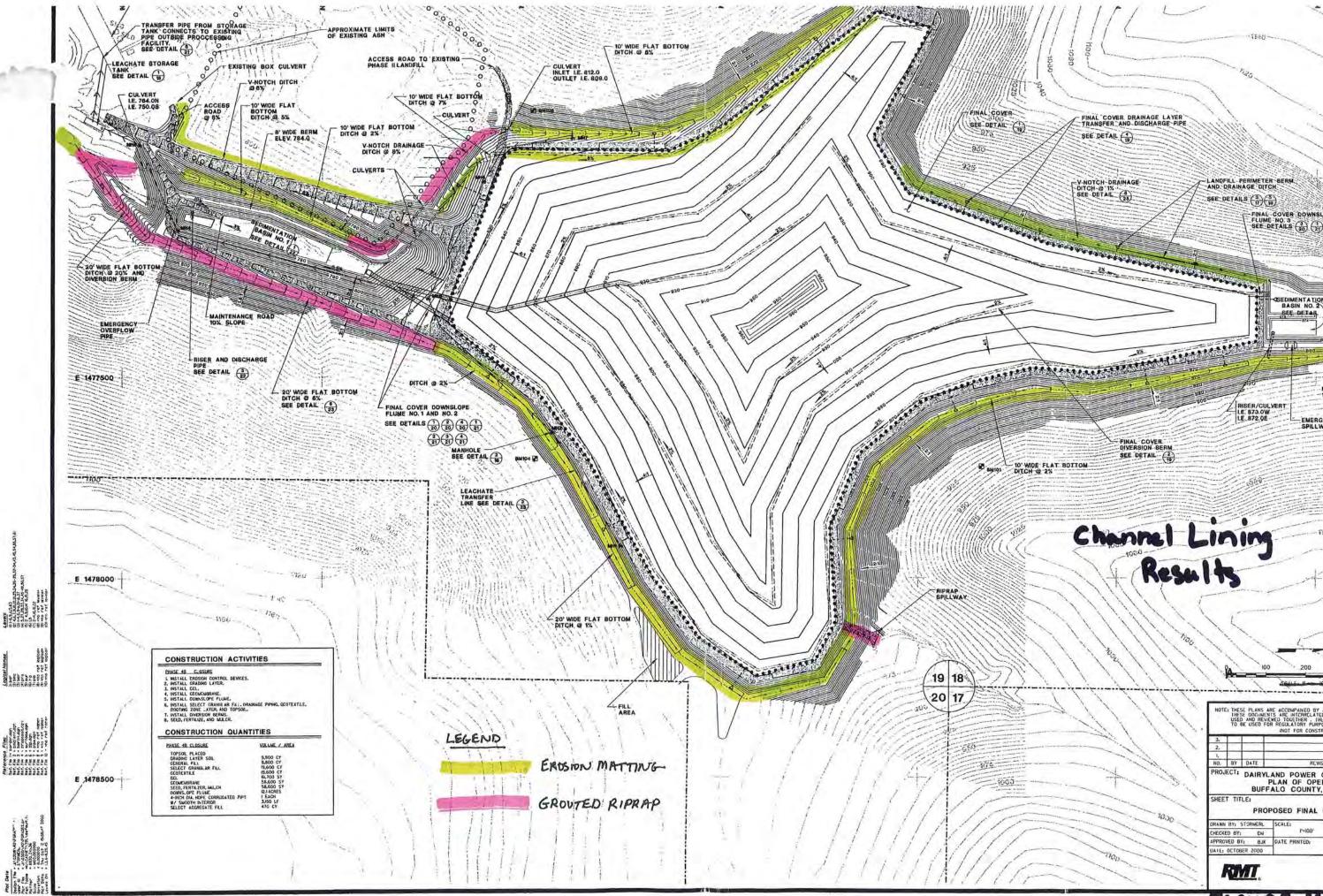
3081.40

			SHEE	T3	OF3
744 Heartland Trail (53717-8923)	P. O. Box 8923 (53708-892	3) Madison, WI	(608) 831-4444	FAX: (608) 831-3334	VOICE: (608) 831-1989
PROJECT/PROPOSAL NAME	PREPARED	CH	IECKED	PROJECT/PR	ROPOSAL NO.
	By:	Date: By	: Date:	and the second second	

References

Chow, V.T. 1959. Open Channel Hydraulics, McGraw Hill, New York.

9/00


BJK

- Wisconsin Department of Transportation. 1994. Facilities Development Manual. February 1994.
- U.S. Department of Agriculture, Soil Conservation Service. 1986. Engineering Field Manual for Conservation Practices. November 1986.

Goldman, S.J., et al. Erosion and Sediment Control Handbook. New York: McGraw-Hill. 1986.

Synthetic Industries. EC-Design 2000. Stormwater Management and Erosion Control Design Software. V.1.2.

Wisconsin DNR, Bureau of Water Resources Management. 1989. Wisconsin Construction Site Best Management Practice Handbook, Publication WR-222-89.

COMPUTER AIDED DESIGN & ORAFTING

FINAL COVER DRAINAGE LAYER TRANSFER AND DISCHARGE PIPE SEE DETALL V-NOTCH-DRAINAGE DITCH-@ 1% SEE DETAIL (1) LANDFILL PERIMETER BERM SEE DETAILS FINAL COVER DOWNSLOPE IFLUME NO. 3 SEE DETAILS $\begin{pmatrix} 3 \\ 20 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ BASIN NO. 2 MAINTENANCE ROAD SPILLWAY -2 NOTE: THESE PLANS ARE ACCOMPANIED BY A REPORT OF THE SAME IHESE ORGANENTS ARE INTERPELATED AND ARE INTERDED TO USED AND REVIEWED TOGETHER. I HESE OCCUMENTS ARE INTER TO BE USED FOR REGULATORY PURPOSES ONLY. NOT FOR CONSTRUCTIO 3. 2. I. NO. BY DATE REVISION PROJECT: DAIRYLAND POWER COOPERATIVE PLAN OF OPERATION BUFFALO COUNTY, WISCONSIN SHEET TITLE: PROPOSED FINAL GRADES RAWN BY: STORMERL SCALE: PROJ. NO. 3081.40 P=100* HECKED BY: CN FILE NO. FGRADES.PLT PROVED BY: BJK DATE PRINTED SHEET 12 OF 23 IE: OCTOBER 2000 744 Reartland Troll Novison WI 53717-1934 RMT P.D. Box 8923 Wedlson, WI 1:3708-892 Place: 608-831-4444 FIGURE K-10

Calculations – Post-closure Landfill Conditions

		Grass Channel Sizing Calculation	5		
Site: Proje Char		Dairyland Power Cooperative 3081.33 Diversion Berm (2%) - worst case fl Area 1F	Date: User: ow	10/1/98 BLP VIOL	
L	Input Para	ameters.			
	A. Side slo	ope, Z1 (hor/vert) =		4.000	ft/ft -
	B. Side slo	ope, Z2 (hor/vert) =		2.000	ft/ft ~
	C. Bottom	width, B =		0.000	ft 🖉
	D. Design	channel slope, S =		0.020	ft/ft <
	E. Channe	l Peak Flow, Q =		25.000	cfs 🗸
	F. Enter	- 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence		1	Conditions
а.	Peak Flow	Calculations.			
	A. Trial flo	ow depth, D = (Bisection method until Va=Vb)		1.570	ft 0.4' freeboard
	B. Channel	l flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)		7.390	sq ft
	C. Wetted	Perimeter, Pw = (D*(Z1^2+1)^.5) + B + (D*(Z2^2+1)'	`.5)	9.981	ft
	D. Hydrau	lic radius, Rh = (Ac/Pw)		0.740	ft
	E. Velocity	and hydraulic radius, VR = (Va * Rh)		2.505	sfps
	F. Channel	flow Manning's coeff, nc = 0		0.051	
	G. Trial vel	locity, Va = (Q/Ac)		3.383	
		nt velocity, Vb = 1.49/nc) * (Rh^.667) * (S^.5)		3.383	fps < 4 Fps

RMT, Inc. Grass Channel Sizing Calculations

Invoke Solution Macro by typing - 'ctrl' D

h:\data\common\template\sc-51\grasscha.xls

RMT, Inc. Grass Channel Sizing Calculations

Site:	Dairyland Power Cooperative	Date:	10/1/98
Project #:	3081.33	User:	BLP
Channel:	Diversion Berm (2%) - worst case f Area 1F	low	10/98 10/98

I. Input Parameters.

П.

A. Side slope, Z1 (hor/vert) =	4.000 ft/ft <
B. Side slope, Z2 (hor/vert) =	2.000 ft/ft
C. Bottom width, B =	0.000 ft
D. Design channel slope, S =	0.020 ft/ft <
E. Channel Peak Flow, Q =	25.000 cfs -
F. Enter - 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence	2 - Spring Conditions
Peak Flow Calculations.	
A. Trial flow depth, D = (Bisection method until Va=Vb)	1.456 ft 0.5' freeboard
B. Channel flow area, Ac = $(.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)$	6.357 sq ft
C. Wetted Perimeter, $Pw = (D^*(Z1^2+1)^{.5}) + B + (D^*(Z2^2+1)^{.5})$	9.257 ft
D. Hydraulic radius, Rh = (Ac/Pw)	0.687 ft
E. Velocity and hydraulic radius, VR = (Va * Rh)	2.701 sfps
F. Channel flow Manning's coeff, nc = 0	0.042
G. Trial velocity, Va = (Q/Ac)	3.933 fps
H. Resultant velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)	3.933 fps 24 fps

Invoke Solution Macro by typing - 'ctrl' D

h:\data\common\template\sc-51\grasscha.xls

		RMT, Inc.			
		Grass Channel Sizing Calculat	ions		
		ones chance share cheam	1015		
Site:		Dairyland Power Corp.	Date:	31-July-98	
Proje	ct #:	3081.33	User:	SRC	
Chan	nel:	Ditch (8%)			
		Area 1G - Flow From Landfill Portion - 15 cfs		VIDIL	
		icadonico a presión de la centra d			-
I.	Input Pa	arameters.			
	A. Side s	slope, Z1 (hor/vert) =		3.000	ft/ft ,
	B. Side s	lope, Z2 (hor/vert) =		2.000	ft/ft
	C. Botto	m width, B =		0.000	ft
	D. Desig	n channel slope, S =		0.080	ft/ft -
	E. Chanr	nel Peak Flow, Q =		15.000	cfs
	F. Enter	- 1 - for Type "C" Veg. Retarden	ce	1	- summer conditions
		- 2 - for Type "D" Veg. Retarden	ce		conditions
I.	Peak Flo	w Calculations.			
	A. Irial	flow depth, D =		1.071	ft 0.9' freeboard
	R Chann	(Bisection method until Va=Vb) el flow area, Ac =			
	D. Charu	(.5*Z1*D^2) + (B*D) + (.5*Z2*D^	2)	2.870	sq ft
	C. Wette	d Perimeter, Pw =	2)	5.784	4
	123 11 276	(D*(Z1^2+1)^.5) + B + (D*(Z2^2	+1)^ 5)	5.704	IC .
	D. Hydra	ulic radius, Rh =		0.496	4
		(Ac/Pw)		0.490	it is a second s
	E. Veloci	ty and hydraulic radius, VR =		2.593	sfps
		(Va * Rh)		2.070	sips
	F. Chann	el flow Manning's coeff, nc =		0.051	
		0		0.002	
	G. Trial v	velocity, Va =		5.226	fps
		(Q/Ac)			· ·
	H. Resul	tant velocity, Vb =		5.226	fps > 4425
		(1.49/nc) * (Rh^.667) * (S^.5)		C.L.L.U	fps > 4fps se permanent
					se permanent
				u	2- F-11

H:\data\common\src\Grassch5.xls

erosion

	RMT, Inc.			
	Grass Channel Sizing Calculatio	ns		
Site: Project #: Channel:	Dairyland Power Corp. 3081.33 Ditch (8%)	Date: User:	31-July-98 SRC	
	Area 1G - Flow From Landfill Por	tion - 15 cfs	verticias	<u>.</u>
In	put Parameters.			
A.	. Side slope, Z1 (hor/vert) =		3.000	ft/ft
B.	Side slope, Z2 (hor/vert) =		2.000	ft/ft
C.	Bottom width, B =		0.000	ft 1
D.	Design channel slope, S =		0.080	ft/ft ~
E.	Channel Peak Flow, Q =		15.000	cfs ,
F.	Enter - 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence		2	conditions
. Pe	ak Flow Calculations.			
A.	Trial flow depth, D = (Bisection method until Va=Vb)		0.992	ft l' freeboard
B. (Channel flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)	ġ.	2.459	sq ft
C.	Wetted Perimeter, Pw = (D*(Z1^2+1)^.5) + B + (D*(Z2^2+1)	.)^.5)	5.353	ft
D.	Hydraulic radius, Rh = (Ac/Pw)		0.459	ft
E. 1	Velocity and hydraulic radius, VR = (Va * Rh)		2.802	sfps
F. 0	Channel flow Manning's coeff, nc = 0		0.041	
G. '	Trial velocity, Va = (Q/Ac)		6.101	fps
H.	Resultant velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)		6.101	fps > 4 fps
			use erosi	fps > 4 fps permanent on matting

H:\data\common\src\Grassch6.xls

NORTH AMERICAN GREEN - ECMDS VER.IV - CHANNEL PROTECTION - ENGLISH USER SPECIFIED CHANNEL LINING ANALYSIS

PROJECT NAME: Dairyland Power COMPUTED BY: BJK FROM STATION/REACH: Area 1G - Fl DRAINAGE AREA: PROJECT NO.: 3081.33 DATE: 10-06-1998 TO STATION/REACH: DESIGN FREQUENCY: 100

 Channel Bottom Side Slope Lt.
 Side Slope Rt.
 Channel Slope

 Width (ft)
 (Horz. to 1)
 (Horz. to 1)
 (ft/ft)

 0.00
 3.0
 2.0
 0.080

.....

Discharge (cfs)	Peak Flow Period (hrs)	Velocity (ft/sec)	Area (ft^2)	Hydraulic Radius (ft)	Normal Depth (ft)	
						014
15.0	2.0	5.34	2.81	0.49	1.06	

.....

Lining Growth Veg. Manning Permissible Calculated Safety Remark Type Habit Den Coefficient Shear (lb/sf) Shear (lb/sf) Factor P300 0.049 8.00 5.29 1.51 STABLE Staple E

Phase 3 (Mature Vegetation)

	RMT, Inc.			
	Grass Channel Sizing Calculation	tions		
Site: Project #: Channel:	Dairyland Power Corp. 3081.33 Ditch (1%)	Date: User:	31-July-98 SRC	
	Area 2B		NONT 10KK	-
I. Input Par	rameters.			
A. Side sl	lope, Z1 (hor/vert) =		3.000	ft/ft
B. Side sl	ope, Z2 (hor/vert) =		2.000	ft/ft -
C. Botton	n width, B =		0.000	ft -
D. Desigr	n channel slope, S =		0.010	ft/ft
E. Chann	el Peak Flow, Q =		73.000	cfs -
F. Enter	- 1 - for Type "C" Veg. Retarder - 2 - for Type "D" Veg. Retarder		1	- Summer conditions
II. Peak Flow	w Calculations.			
A. Trial f	low depth, D = (Bisection method until Va=Vb)		2.593	ft 0,4' freeboard
B. Channe	el flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D	^2)	16.814	sq ft
C. Wetted	l Perimeter, Pw = (D*(Z1^2+1)^.5) + B + (D*(Z2^2	2+1)^.5)	14.000	ft
D. Hydra	ulic radius, Rh = (Ac/Pw)		1.201	ft
E. Velocit	y and hydraulic radius, VR = (Va * Rh)		5.214	sfps
F. Channe	el flow Manning's coeff, nc = 0		0.039	
G. Trial v	elocity, Va = (Q/Ac)		4.342	
	ant velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)		4.341	fps > 4 fps
			use eros	fps > 4 fps permanent ion matting

H:\data\common\src\Grassch7.xls

	RMT, Inc. Grass Channel Sizing Calculati	ons		
Site: Project #: Channel:	Dairyland Power Corp. 3081.33 Ditch (1%) Area 2B	Date: User:	31-July-98 SRC ↓Ю [⊮] ω]άδ	
I. Input Par				-
а. приста	rameters.			
A. Side sl	lope, Z1 (hor/vert) =		3.000	ft/ft _
B. Side sl	ope, Z2 (hor/vert) =		2.000	ft/ft -
C. Botton	n width, B =		0.000	ft <
D. Desigr	n channel slope, S =		0.010	ft/ft ~
E. Channe	el Peak Flow, Q =		73.000	cfs 1
F. Enter	- 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence		2	Spring conditions
II. Peak Flow	v Calculations.			
	low depth, D = (Bisection method until Va=Vb)		2.512	ft 0.5' freebard
	el flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)	15.774	sq ft
C. Wetted	Perimeter, Pw = (D*(Z1^2+1)^.5) + B + (D*(Z2^2+	1)^.5)	13.560	ft
D. Hydrau	ulic radius, Rh = (Ac/Pw)		1.163	ft
E. Velocity	y and hydraulic radius, VR = (Va * Rh)		5.383	sfps
F. Channe	l flow Manning's coeff, nc = 0		0.036	
G. Trial ve	elocity, Va = (Q/Ac)		4.628	fps
	ant velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)			fps > 4 fps
			use erosi	permanent on matting

H:\data\common\src\GRASSCH8.xls

10/6/98

1

NORTH AMERICAN GREEN - ECMDS VER.IV - CHANNEL PROTECTION - ENGLISH USER SPECIFIED CHANNEL LINING ANALYSIS

PROJECT NAME: Dairyland Paower Coop.	PROJECT NO .: 3081.33
COMPUTED BY: BJK	DATE: 10-06-1998
FROM STATION/REACH: Area 28	TO STATION/REACH:
DRAINAGE AREA:	DESIGN FREQUENCY: 100

Channel Bottom	Side Slope Lt.	Side Slope Rt.	Channel Slope	
Width (ft)	(Horz. to 1)	(Horz. to 1)	 A second s second second s second second se	
0.00	3.0	2.0	0.010	

Discharge (cfs)	Peak Flow Period (hrs)	Velocity (ft/sec)	Area (ft^2)	Hydraulic Radius (ft)	Normal Depth (ft)	
73.0	2.0	3.64	20.08	1.31	2.83	oK

Lining Growth Veg. Manning Permissible Calculated Safety Remark Type Habit Den Coefficient Shear (lb/sf) Shear (lb/sf) Factor P300 0.049 8.00 1.77 4.52 STABLE Staple E

Phase 3 (Mature Vegetation)

	rtland	1	_						697	-		10	-	821		-		-	-		_		- 16	101.0	1	080	1	. OF	-	3	5	-
	T/PRC	1.7.4			8923	M		n, wi	53/1			10		-	EM		~ 1		1.1.1.1	1000			- 100		-	-	CT/	PRO	POSA	L NO	5.	-
	AIRY				ow	ER	4	TOP.					-	By.	6	R	3	19/	17	B	to		Ti	19	21:	30	61.	27	1			
	1					1			×					1	Rev	BLF	133	r.	1019	3												
	11	1	T	T	1			1	1	T	T	٦	5		-	+0	9	-	0					1					1	1		
D	TZ	H	0	31	GN	0	A	ru	4	170	a	5	-	De	51	61		IN	Fa	RI	n	m	21	1	12	5 7	R .	24	the	ST	DRI	M
~	T	4	Ŧ	T	T			T			T					11.1							61						1	i	1	
11				1													10	1.5						273							10	
50	UTH		spi	de	NAI	•							e.		2											5					\leq	
1 R			T	T	T						•		15			1		1.54	1		1						1		1	1	1	1
	W	OT	*	= 20	1			PE	AK	F	lon	1-	4	N	R	BI	TI	16	0	en	NI	60	A	RE	15			10				
	54	ORE	=	20	%			3	C +	.4	C	1	EA	FT	+	NO	AT	TE	tst	-+	NO	ET	4 4	B	15 1	N2	00	TR	PW	1-	1	
	Mm	12	AF	TH	= 4	1			1	1		1	1.4					1.1							21							
		-	+	-			-	18	+	N	+	1	14	5	+	6	5	+	19	4	+	10	-	7	46	cf	s	(2	5-	YE	AR)	
1		+	+	+			_	-1	1	- 1-	-	Ļ		_		1	L	_	-	2		-		4	A	av	nd	10	75	0	6-	Co
		-	+	+	-		-	2	5+	18	5 +	8	2	1±	11	0+	- 30	60	+ 2	21	3	Ji	374			_	+7	1.1.1	<u>i)</u>	1	-	
10.4			+	-				+	+	+	+	+		-	-	N	0+	-:	A	re	F	a	5 0	-	-	-	12S	+>=	5 4	ne	1	-
E	DI	TOP	+ (27	() ((9	74	4	+	+	+	+	-	-	-			-	-	- 4	nd	e	17	. 6	H	25	Cle	p-1	YR.	Fa	low	57
		-	+	+	-		+	+	+	-	+	+				-			-			-			- /	-	-	+-	-	-	-	-
	WiD	_	_		-		-	PEA			-	- 1			-	-							-					-	-	-		-
	SLO				5'	-	-	30	1	40		E	1.57	11	N	PR	HE	151	+ 1	NO	27	4 4	64	\$11	/ 2		TE	200	-	12		-

E DITCH KIRD			1.1						1.163			
	5A	me	FL	rus	15	100	E			1111		
WIDTH-ZO'		11	-				1.1	12	1.1			
SLOPE - 190		14						14 11				
MIN DEDTH -6'										181		

E	0	ITC	M	-	+				-	-	-	-						-					2				111		_	+	-
ì	W	07		10	1				P	A	1	10	w	-	co.	~7	RI	BL	77	16		R	m	re	κ.	AR	EA	5		+	-
ľ	Su	PE	==	2%			112	1											5						_	1.1					
-	MIN	1	EF	n+	•	lot.			4	1	c	*	N	RI	#	+	b	151	N	2	00	T		Ł							
1										1	+	19	ч	+	10		2	15	0	FS		(2	5-	VEI	K	5	1			-	5
	+	-	+		-					8	+	36	0+	1	1	-	-	399	CF	-	CI	00	- 71	A	F	mu	ou)		-	+
		1				110									+	-N	-		-		- 1	2.	. 1	ks	(5.	-)		nd	A .	r
1			1								12			1				1.1.1.1	-5			loc		1.1.1							
	Orto	h													1									10		10					
1	in	44	4=	10		1		Pe	uk	F	lo	6	-0	bn	tri	bu	h	19	0	an	has	le	Ar	La	1	1		1.11	1	T	
b .	51	0	1.	2	7.						C	4 1	Jor	the	es	- +	N	5	H	1	B	1.	5 7	10						1	+

510pe = 2% Min Depth = 10't 1

= 18 + 110 + 360 + 21 = 509 cfs (100 4r)

				-	923	Madia	ion, WI S	3708-	8923	(6	08) 8	-		_	X: 18	08)8	and the second second	of Local Division of Local Divisio of Local Division of Local Division of Local Divi		NCE	(60	8) 83			¥ / 5	0000		-	_	_
OJECT	/ PROP	OSAL	NAME	00		0 ,	0.00	2					6J		Deter			HEC:	B	10	Tra	4	-			2Y				
DAI	RYL	AN	0	pa	DE	K C	2000		-	-	-	-	CAR	_	-		14	00	0	10			-							
											_	_	_	_						_	_				-		_			_
1 1		1				-									_	-	1	-	-	4	+	+	1	+	-	_	1	1		
NW	PI	TE	*								3	-			-	+	4	+	-	4	+	+	+	-	+				_	_
TI		T				-		-		-	-	-	_	-	_	-	+	+	+	+	-	-	+	-		-	1	1	+	-
					-1	TH		-	P	EA	-	FO	au	1+	- 4	on	TR	10	vp	4	-	DR	AN	VA	4	A	RE	AS		-
and the owner whether the local division of	DPE		-		-	_		-		-		_	_	-	_	-	+	-	-		+	-	-	-	+	-	-		- ton	_
M	ND	EP	H	-4	H	-	+	-		-	2	B	-	4	в	CF	5	4	25	X	4	-1	4	+	+	+	-	1		-
	- 1 0 1	-				-	++	-	-	-	-	_	-	-	_	-	+	10	-	-	-	-		1	-	+	-	+	+	-
		1	-			-	++	-	-		-	-	-	-	3	1	-	4	201	14	4	ny	ou	4	-	+	+	+	+	-
		-	-	-		-	++	+	-	-	-	-			-	+	+	+	+	+	-	+	+	+	-	-	+	i		-
WE	ST	DI	E.h	4		-		-	-		-	-	-		-	-	+	+	+	+	+	-	+	+	+	1	ī		1	-
++	-	+	-	-		-		0	-		-	-	1	-	-	-	-	-	14	1	-		AA	5	-	ER	ret	-	+	-0
	107			2		-		1	EA	F	-4	a	-	0	N	10	24	-	40	4	-			-	-	-	-	+	+	
	OPE			0	,		++	-	+		20		-	Ale		A	00		1	1	1	-	-	-		+	+	+	+	
11	NO	P	1	6				+	+		-0	- 1		VE	-	//		+	-	1	1	-	1	-		-	1		+	
		+	-	-		-		-	-		10	+	1	1.	-	: 12	,	d	R	1	24	- 1	EA			1	+	+	1	
+		+	-	-			++	-	1		-	-			-	14	+	7	-	1	-	-1		1			1	1	+	
+	+	-	-					-	-	-	12	+	2	23	11	24	11	1	FS	1	HO	04	EA	R	F	the	out	5	1	-
+		+	1	-			11	+	1		i -		17	_	Los		C	-	.5	_	-			-		M			+	Ē
		+	-			-		1			•	1		-			-		5	_	_					FA		1	1	
+ 1	-	+	1				++		1								1		-		-	-0		-	-			1	1	Ū
sw	Dm	te	1				++			-												1					1			
	1	1	1			-	$\uparrow \uparrow$											1											1	
1.00	OTH	-	h'					P	AN	F	L	w	-	ro.	UT	21	NV2	ZN	6	0	RA	IN	10	C	AR	EA	S			
Kin	PE	- 2	20	57.	7	20	11	1	T	1	-																			
	u be						11		1		10	c	4	20	-	4 4	JE	57	-	RE	A	1	1	1.1						
1			T					1		1	1											1.5		161						
	- 13	1		E		12212					46		10	+	111			16	70	FS		12	5-	YEA	k)	1				
											ľ																			
1.1		1						1			94	+	20	+	20	59	1	3	23	cf	(100	-4	EA	e	FAI	10	w)	-	1
10		1	1-			1210	TT		T		Γ		Γ	Γ		F		S	2	12	-		-	-			_	AN	0	
																C	12	.4	the	50	100	- Y	EAI	A.F	m	kor	(ب			
MA IN	1 CH	n	NE	-													4													
11		I	T	i																										L
W	DTH	1~	20	1'1	411	1		Pe	AX	F	10	w	-0	PA	T	10	UT	N	4	DR	AN	VA	E	A	RE	#5				
	DPE													1.1				-				-								
MA	NID	EP	74 -	+	6	1		1	¢,	20	+	30	+	4	¢+	E	457	+	N	E+	N	RT	+ +	w	ES7	+	BA	sm	1 1	
1		1																		-										
11		1				24			18	BT	C	FS	+	8	+	1	2		90	5	EF	5	(2	5	YR	0				
	1 by	T		1						18						21	-	-	164			-		1		F	ne	ow) -	P
-		1						1	1	1	1		L	10	1												1			
11		1					TT		1	1				11	FLO	es.	Q	12.	6 1	RS	16	25.	YEI	AR	Y	AN.	60	212	2.6	H

744 Heartland Trail Madison, WI 53717-1934 Tel. (608) 831-4444 • Fax (608) 831-3334

SHEET 3 OF 3

PROJECT / PROPOSAL NAME / LOCATION:		PROJECT / PROPOSAL NO.
SUBJECT: Dairyland Power Coop		3081.40
PREPARED BY:	DATE: 9 00	FINAL D
CHECKED BY:	DATE:	REVISION D

AREA IG DITCH

PEAK FLOW - CONTRIBUTING DRAINAGE AREA = 15 CFS FLOW FROM LF.

PHASE 2 DITCH

WIOTAL: V-NOTCH SLOPE : 6% MIN DEPTH: 2'

Width - V-NOTCH

SLOPE . 8%

MIN DEPTH = 4'

PEAK FLOW - CONTRIBUTING DRAINAGE ARED

~ 1.5 ACRES DF PHASE Z LOVER DRAINAGE AREA -1C = 42 ACRES $\frac{1.5}{42}$ (96 CFs) = 3.4 CFs

USE 4 CFS

Page 1 of 4

Analysis By:

Jser Information:	Generated by EC-Design:
Bernie Krantz RMT, Inc. 744 Heartland Trail	SYNTHETIC INDUSTRIES
	Geosynthetic Products Division
Madison, WI 53717	4019 Industry Drive • Chattanooga, TN 37416 • USA (423) 899-0444 • (800) FIX-SOIL www.fixsoil.com

General Information:

Project Details:		Project Notes:
Project Name: Description:	DPC Plan of Operation Channel Lining	
State\Country:	WI	
City:	La Crosse	
Units:	English	
Created:	01/19/99 @ 10:43	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Disclaimer:

The information presented herein is for general information only. While every effort has been made to ensure its accuracy, this information should not be used for a specific application without independent professional examination and verification of its suitability, applicability and accuracy.

Channel Analysis Information:

Channel Analysis Name: South Spillway

Name:

Channel Geometry & Hydraulics:

Bed Slope (ft/ft):0.20000Req. Freeboard (ft):0.00Channel Length (ft):270.00Bottom Width (ft):20.00
Channel Depth (ft): 4.00
Soll Filled:
Soil Filled: No
÷.

Analysis Results:

	Note and	和広場は自然のまた	自己の で しゅうり	Velocity		TRA LINGER	Shear S	tress (lbs/	saft)	Flow	and the second second	17. P
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	0K7
	Left:	PYRAMAT	0.0280	24.0	23.3	1.0	20.2	9.4	0.5			
Analysis #1	Bottom	PYRAMAT	0.0280	27.3	23.3	0.9	26.0	9.4	0.4	2.0857	1374.0	No
	Right:	PYRAMAT	0.0280	24.0	23.3	1.0	20.2	9.4	0.5			
	Left:	GABIONS	0.0270	28.6	17.0	0.6	17.3	35.0	2.0	-	-	
Analysis #2	Bottom	GABIONS	0.0270	32.6	17.0	0.5	22.4	35.0	1.6	1.7968	1374.0	No
	Right:	GABIONS	0.0270	28.6	17.0	0.6	17.3	35.0	2.0			
1.1.1	Left:	ROCK RIPRAP	0.0300	26.6	50.0	1.9	18.3	45.0	2.5			
Analysis #3	Bottom	ROCK RIPRAP	0.0300	30.4	50.0	1.6	23.8	45.0	1.9	1.9093	1374.0	Yes
Control Control	Right:	ROCK RIPRAP	0.0300	26.6	50.0	1.9	18.3	45.0	2.5			100
							-					

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n*	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	50.4146	1.7190	0.0351	4.6638	4.6638	29.3276	27.2540	1374.0	3.06
Analysis #2	42.3935	1.5121	0.0270	4.0178	4.0178	28.0356	32.4106	1374.0	3.94
Analysis #3	45.4772	1.5935	0.0300	4.2694	4.2694	28.5387	30.2130	1374.0	3.55

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: SE Ditch (2%)

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 1374.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.02000Req. Freeboard (ft):0.00Channel Length (ft):200.00Bottom Width (ft):20.00Channel Depth (ft):5.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

Tan Sala and		and the second	2 Martine	Velocity	(ft/s)	ar galance an	Shear St	ress (lbs/s	aft)	Flow		The A Street
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	10.0	16.5	1.6	4.2	4.7	1.1	1		
Analysis #1	Bottom	LANDLOK TRM	0.0250	11.3	16.5	1.5	5.3	4.7	0.9	4.2678	1374.0	No
	Right:	LANDLOK TRM 435	0.0250	10.0	16.5	1.6	4.2	4.7	1.1			
	Left:	LANDLOK TRM	0.0250	10.0	16.8	1.7	4.2	6.5	1.6	(
Analysis #2	Bottom	LANDLOK TRM	0.0250	11.3	16.8	1.5	5.3	6.5	1.2	4.2678	1374.0	Yes
	Right:	LANDLOK TRM	0.0250	10.0	16.8	1.7	4.2	6.5	1.6		1221	
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			-
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			1.14

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	121.7841	3.1158	0.0397	9.5431	9.5431	39.0862	11.2823	1374.0	.890
Analysis #2	121.7841	3.1158	0.0397	9.5431	9.5431	39.0862	11.2823	1374.0	.890
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Channel Analysis Information:

Name:

Channel Analysis Name: SE Ditch (5%)

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00	Discharge (cfs): 1374.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.05000Req. Freeboard (ft):0.00Channel Length (ft):750.00Bottom Width (ft):20.00Channel Depth (ft):5.00
Right Slope (xH:1V); 2.00	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soll Filled: No
Outside Bend: Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

The second		的原始主要的影		Velocity			Shear S	tress (Ibs/s		Flow		
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK
1.000-00	Left:	LANDLOK TRM	0.0260	14.3	19.1	1.3	7.8	7.5	1.0	1.0	1.001	
Analysis #1	Bottom	LANDLOK TRM	0.0260	16.2	19.1	1.2	10.0	7.5	0.8	3.2178	1374.0	No
	Right:	LANDLOK TRM	0.0260	14.3	19.1	1.3	7.8	7.5	1.0	1.1		
C	Left:	PYRAMAT	0.0280	14.3	23.3	1.6	7.8	9.4	1.2			-
Analysis #2	Bottom	PYRAMAT	0.0280	16.2	23.3	1.4	10.0	9.4	0.9	3.2184	1374.0	No
	Right:	PYRAMAT	0.0280	14.3	23.3	1.6	7.8	9.4	1.2	1.2		
1	Left:	ROCK RIPRAP	0.0300	17.6	50.0	2.8	6.6	45.0	6.8		1	
Analysis #3	Bottom	ROCK RIPRAP	0.0300	19.9	50.0	2.5	8.5	45.0	5.3	2.7285	1374.0	Yes
101101	Right:	ROCK RIPRAP	0.0300	17.6	50.0	2.8	6.6	45.0	6.8			
		and the second second		Address of the second			1.					

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	85.0635	2.4735	0.0378	7.1952	7.1952	34.3903	16.1526	1374.0	1.47
Analysis #2	85.0856	2.4739	0.0378	7.1967	7.1967	34.3933	16.1484	1374.0	1.47
Analysis #3	69.4578	2.1569	0.0280	6.1010	6.1010	32.2020	19.7818	1374.0	1.96

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: SE Ditch (1%)

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry;
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 1374.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.01000Req. Freeboard (ft):0.00Channel Length (ft):1000.0Bottom Width (ft):20.00Channel Depth (ft):6.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

				Velocity		HAN IN THE	Shear Si	ress (lbs/s	saft)	Flow	S Deventer Vielan	and the second
	Side	Lining Type	Manning's	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	7.7	16.5	2.2	2.6	4.7	1.8			1
Analysis #1	Bottom	LANDLOK TRM	0.0250	8.6	16.5	1.9	3.3	4.7	1.4	5.2542	1374.0	Yes
	Right:	LANDLOK TRM 435	0.0250	7.7	16.5	2.2	2.6	4.7	1.8			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.000	1.000	1
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		1.00	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	160.2976	3.6852	0.0413	11.7488	11.7488	43.4975	8.5716	1374.0	.615
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Channel Analysis Information:

Channel Analysis Name: NE Ditch

Name:

Channel Geometry & Hydraulics:

Bed Slope (ft/ft): 0.02000 Req. Freeboard (ft): 0.00 Channel Length (ft): 1800.0		
Bottom Width (ft): 10.00		
Channel Depth (ft): 5.00 Soil Filled:		
Soil Filled: No		

Analysis Results:

Million State Strategy		N 1997 E. 3	A SHIER WAS	Velocity		3 1 N	Shear St	ress (lbs/	sqft)	Flow		Par Su
之中的。	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	7.1	16.5	2.3	3.1	4.7	1.5	11.00		
Analysis #1	Bottom	LANDLOK TRM	0.0250	7.9	16.5	2.1	3.9	4.7	1.2	3.1235	399.0	Yes
	Right:	LANDLOK TRM 435	0.0250	7.1	16.5	2.3	3.1	4.7	1.5			
	Left:	1.1.1	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	L mm -		1
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		22220	
A	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom	Sec. 1. 1. 1. 1.	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
		1	1 and a second				1.					

		Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
	Analysis #1	50.7483	2.1173	0.0440	6.9844	6.9844	23.9689	7.8623	399.0	.735
Ī	Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
•	Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: East Ditch

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Stopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 509.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.02000Req. Freeboard (ft):0.00Channel Length (ft):350.00Bottom Width (ft):10.00Channel Depth (ft):5.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend:YesBend Radius (ft):200.00Outside Bend:L	Vegetated: Yes Vegetation Class: C	Soll Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

	10 J.		The second section	Velocity			Shear St	ress (lbs/s	sqft)	Flow	2	(Factor
	Side		Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK7
	Left:	LANDLOK TRM	0.0250	7.8	16.5	2.1	3.6	4.7	1.3	-		
Analysis #1	Bottom	LANDLOK TRM	0.0250	8.6	16.5	1.9	4.4	4.7	1.1	3.4942	509.0	No
	Right:	Right: LANDLOK TRM	0.0250	7.8	16.5	2.1	3.6	4.7	1.3			
	Left:	LANDLOK TRM	0.0250	7.8	16.8	2.2	3.6	6.5	1.8			
Analysis #2	Bottom	LANDLOK TRM	0.0250	8.6	16.8	1.9	4.4	6.5	1.5	3.4942	3.4942 509.0	Yes
	Right:	LANDLOK TRM 450	0.0250	7.8	16.8	2.2	3.6	6.5	1.8			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
nalysis #3 Bottom:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No	
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	Pro Paris		

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	59.3615	2.3164	0.0429	7.8133	7.8133	25.6267	8.5746	509.0	.760
Analysis #2	59.3615	2.3164	0.0429	7.8133	7.8133	25.6267	8.5746	509.0	.760
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Channel Analysis Information:

Name: Channel Analysis Name: NW Ditch

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:		
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 73.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.01000Req. Freeboard (ft):0.00Channel Length (ft):1000.0Bottom Width (ft):0.01Channel Depth (ft):4.00		
Channel Bend:	Vegetation:	Soil Filled:		
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No		
Factor of Safety: 1.10		Functional Longevity: 999		

Analysis Results:

	A4 22	and the second	Stand I Town States	Velocity		ABS ES V	Shear St	ress (lbs/s		Flow		
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor		Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	3.4	16.5	4.8	2.1	4.7	2.3	1.		
Analysis #1	Bottom	LANDLOK TRM	0.0250	3.4	16.5	4.8	2.0	4.7	2.3	3.2826	73.0	Yes
		LANDLOK TRM	0.0250	3.4	16.5	4.8	2.1	4.7	2.3	CE VICE	12	
S. Contra	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			1
Analysis #2	Bottom	1	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
1	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
1.122	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	10000000		
			A	A								

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	21.5836	1.4693	0.0564	7.3401	7.3401	14.6902	3.3822	73.0	.331
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: West Ditch

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:		
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 241.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.06000Req. Freeboard (ft):0.00Channel Length (ft):1020.0Bottom Width (ft):10.00Channel Depth (ft):6.00		
Channel Bend:	Vegetation:	Soll Filled:		
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No		
Factor of Safety: 1.10		Functional Longevity: 999		

Analysis Results:

an a	1.00		1 Charles II	Velocity		Statement and	Shear S	tress (lbs/s	aft)	Flow	The second with the	14.34
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK7
	Left:	PYRAMAT	0.0280	8.9	23.3	2.6	5.1	9.4	1.8	1		
Analysis #1	Bottom	PYRAMAT	0.0280	10.1	23.3	2.3	6.6	9.4	1.4	1.7595	241.0	Yes
	ght: PYRAMAT 0.0280	8.9	23.3	2.6	5.1	9.4	1.8	1.00				
	Left:	LANDLOK TRM	0.0260	8.9	19.1	2.1	5.1	7.5	1.5			
Analysis #2	Bottom	LANDLOK TRM	0.0260	10.1	19.1	1.9	6.6	7.5	1.1	1.7684	241.0	No
	Right:	LANDLOK TRM	0.0260	8.9	19.1	2.1	5.1	7.5	1.5			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	Sector.	1.1.1	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	23.7860	1.3312	0.0439	3.9343	3.9343	17.8685	10.1320	241.0	1.24
Analysis #2	23.9376	1.3367	0.0438	3.9541	3.9541	17.9083	10.0679	241.0	1.23
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Channel Analysis Information:

Name:

Channel Analysis Name: SW Ditch (7%)

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:		
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 323.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.07000Req. Freeboard (ft):0.00Channel Length (ft):225.00Bottom Width (ft):10.00Channel Depth (ft):4.00		
Channel Bend:	Vegetation:	Soil Filled:		
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No		
Factor of Safety: 1.10		Functional Longevity: 999		

Analysis Results:

	- Angle	· · · · · · · · · · · · · · · · · · ·	Same Suite Same	Velocity	(ft/s)	1 2013	Shear St	ress (lbs/s		Flow	「「「「「「「「「」」」	tarini ili s	
	Side	Lining Type	ng Type Manning's	ng Type Manning's	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	0К?
	Left:	PYRAMAT	0.0280	10.6	23.3	2.2	6.6	9.4	1.4	1.200	1.001		
Analysis #1	Bottom	PYRAMAT	0.0280	12.0	23.3	1.9	8.4	9.4	1.1	1.9335	323.0	No	
	이 아이는 아이는 아이는 아이는 것을 물었다. 같은 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 하는 것을 수가 있다.	PYRAMAT	0.0280	10.6	23.3	2.2	6.6	9.4	1.4	1000	12.00		
5.77.27	Left:	ROCK RIPRAP	0.0300	13.4	50.0	3.7	5.5	45.0	8.2				
Analysis #2	Bottom	ROCK RIPRAP	0.0300	15.2	50.0	3.3	7.1	45.0	6.4	1.6178	323.0	Yes	
	Right:	ROCK RIPRAP	0.0300	13.4	50.0	3.7	5.5	45.0	8.2				
	Left:		0.0280	0.0	0.0	0.0	0.0	0.0	0.0	1	1		
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No	
Conserved a	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.00			
			and the second				1				1 million 1	1.2	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	26.8125	1.4379	0.0419	4.3235	4.3235	18.6470	12.0466	323.0	1.40
Analysis #2	21.4118	1.2424	0.0300	3.6174	3.6174	17.2348	15.0851	323.0	1.94
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: SW Ditch (2%)

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 323.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.02000Req. Freeboard (ft):0.00Channel Length (ft):300.00Bottom Width (ft):10.00Channel Depth (ft):4.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

	Citiz .		Manning's		Max.	Safety		tress (lbs/: Max.	sqft) Safety	Flow Depth	Discharge	新版
	Side	Lining Type	"""	Actual	Allowed	Factor	Actual	Allowed	Factor	(ft)	(cfs)	OK?
	Left:	PYRAMAT	0.0280	6.5	23.3	3.6	2.8	9.4	3.3	1.011.1	1001	
Analysis #1	Bottom:	PYRAMAT	0.0280	7.3	23.3	3.2	3.5	9.4	2.7	2.8325	323.0	Yes
	Right:	PYRAMAT	0.0280	6.5	23.3	3.6	2.8	9.4	3.3		1.28.24.00.20	
Sec. As an	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1		
Analysis #2			0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.000	1.072	
Cara - S	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3			0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		10000		

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	44.3719	1.9575	0.0451	6.3337	6.3337	22.6675	7.2794	323.0	.709
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: SW Ditch (5%)

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00	Discharge (cfs): 323.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft): 0.05000 Req. Freeboard (ft): 0.00 Channel Length (ft): 240.00 Bottom Width (ft): 10.00
Right Slope (xH:1V): 2.00 Channel Bend:	Vegetation:	Channel Depth (ft): 4.00 Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
the second s	Vegetation Class: C	Functional Longevity: 999

Analysis Results:

Charles Merry	N. IN T	A CALL STREET	The Street Parts	Velocity			Shear S	ress (lbs/s	saft)	Flow	Martin and and	10000
上主范	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	PYRAMAT	0.0280	9.3	23.3	2.5	5.2	9.4	1.8	1.2.4		1.00
Analysis #1	Bottom	PYRAMAT	0.0280	10.5	23.3	2.2	6.7	9.4	1.4	2.1429	323.0	Yes
Right:	PYRAMAT	0.0280	9.3	23.3	2.5	5.2	9.4	1.8	1. C.	10.00		
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		1	
Left: Analysis #2 Bottom	1.1	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No	
	Right:		0.0000	0.0	0.0	0,0	0.0	0.0	0.0	10-245		
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
the second se	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.000	10.0	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	30.6135	1.5632	0.0427	4.7917	4.7917	19.5835	10.5509	323.0	1.17
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 2 of 4

Channel Analysis Information:

Name: Channel Analysis Name: Main Channel

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 1660.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.01300Req. Freeboard (ft):0.00Channel Length (ft):3500.0Bottom Width (ft):20.00Channel Depth (ft):6.00
Channel Bend:	Vegetation:	Soll Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

一些一些	Le Marine	Constant of	Velocity		E sale	Shear S	Shear Stress (lbs/sqft)				Gal and a second
Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	0К7
Left:	LANDLOK TRM	0.0250	9.1	16.5	1.8	3.4	4.7	1.4			
Bottom	LANDLOK TRM	0.0250	10.2	16.5	1.6	4.3	4.7	1.1	5.3260	1660.0	No
Right:	LANDLOK TRM	0.0250	9.1	16.5	1.8	3.4	4.7	1,4			
Left:	LANDLOK TRM	0.0250	9.1	16.8	1.8	3.4	6.5	1.9	-		
	0.0250	10.2	16.8	1.6	4.3	6.5	1.5	5.3260	1660.0	Yes	
Right:	LANDLOK TRM	0.0250	9.1	16.8	1.8	3.4	6.5	1.9	1.00		
Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			-
Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
Right:	1 m m m m m	0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
	Left: Bottom: Right: Left: Bottom: Right: Left: Bottom:	Left: Bottom Right: LANDLOK TRM LANDLOK TRM LANDLOK TRM Bottom Right: LaNDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM	Left: Bottom Right:LANDLOK TRM LANDLOK TRM LANDLOK TRM0.0250 0.0250Left: Bottom Right:LANDLOK TRM LANDLOK TRM LANDLOK TRM 0.02500.0250Left: Bottom Bottom0.0000 0.0000	SideLining TypeManning's "n"ActualLeft: Bottom Right:LANDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM D.02500.02509.1Left: Bottom Right:LANDLOK TRM LANDLOK TRM LANDLOK TRM D.02500.02509.1Left: Bottom Right:LANDLOK TRM LANDLOK TRM D.02500.02509.1Left: Bottom Bottom0.02509.1Left: Bottom0.00000.0	Side Lining Type "n" Actual Allowed Left: LANDLOK TRM 0.0250 9.1 16.5 Bottom LANDLOK TRM 0.0250 10.2 16.5 Right: LANDLOK TRM 0.0250 9.1 16.5 Left: LANDLOK TRM 0.0250 9.1 16.8 Bottom: LANDLOK TRM 0.0250 9.1 16.8 Bottom: LANDLOK TRM 0.0250 9.1 16.8 Bottom: LANDLOK TRM 0.0250 9.1 16.8 Left: LANDLOK TRM 0.0250 9.1 16.8 Bottom: LANDLOK TRM 0.0250 9.1 16.8 Bottom: LANDLOK TRM 0.0250 9.1 16.8 Left: Bottom: 0.0000 0.0 0.0	Side Lining Type Manning's "n" Max. Actual Max. Allowed Safety Factor Left: LANDLOK TRM 0.0250 9.1 16.5 1.8 Bottom LANDLOK TRM 0.0250 9.1 16.5 1.6 Right: LANDLOK TRM 0.0250 9.1 16.5 1.6 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 Left: LANDLOK TRM 0.0250 9.1 16.8 1.6 Bottom LANDLOK TRM 0.0250 9.1 16.8 1.6 Bottom LANDLOK TRM 0.0250 9.1 16.8 1.8 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 Bottom LANDLOK TRM 0.0250 9.1 16.8 1.8 Left: Bottom: 0.00000 0.0 0.0 0.0 Bottom: 0.00000 0.0 0.0 0.0 0.0	Side Lining Type Manning's "n" Actual Max. Allowed Safety Factor Actual Left: LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 Bottom LANDLOK TRM 0.0250 10.2 16.5 1.6 4.3 Right: LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 Left: LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 Bottom: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 Bottom: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 Left: Bottom: 0.0000 0.0 0.0 0.0 0.0 Bottom: Longood 0.0000 0.0 0.0 0.0 0.0	Side Lining Type Manning's "n" Actual Actual Max. Allowed Safety Factor Max. Actual Max. Allowed Left: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 4.7 Bottom Right: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.5 1.6 4.3 4.7 Left: LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 4.7 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 Bottom Right: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 Left: Bottom 0.0000 0.0 0.0 0.0 0.0 0.0 Bottom 0.0000 0.0 0.0 0.0 0.0 <	Side Lining Type Manning's "n" Max. Actual Safety Allowed Max. Factor Max. Actual Safety Actual Factor Left: Bottom Right: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 Left: Bottom Right: LANDLOK TRM 0.0250 9.1 16.8 1.6 4.3 6.5 1.5 Left: Bottom 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 Left: Bottom 0.0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Side Lining Type Manning's "n" Actual Actual Max. Allowed Safety Factor Max. Allowed Safety Factor Depth (ft) Left: Bottom Right: LANDLOK TRM LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 4.7 1.4 5.3260 Left: Bottom Right: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 4.7 1.4 5.3260 Left: Bottom Right: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 5.3260 Left: Bottom Right: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 5.3260 Left: Bottom Right: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 5.3260 Left: Bottom: 0.0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Side Lining Type Manning's "n" Max. Actual Safety Allowed Max. Factor Max. Actual Safety Actual Depth Actual Depth (ft) Discharge (cfs) Left: LANDLOK TRM LANDLOK TRM Right: 0.0250 9.1 16.5 1.8 3.4 4.7 1.4 5.3260 1660.0 Left: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.5 1.6 4.3 4.7 1.4 5.3260 1660.0 Left: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 4.7 1.4 5.3260 1660.0 Left: LANDLOK TRM Bottom 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 5.3260 1660.0 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 5.3260 1660.0 Left: Bottom: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 5.3260 1660.0 <tr< td=""></tr<>

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	163.2521	3.7256	0.0400	11.9093	11.9093	43.8185	10.1683	1660.0	.723
Analysis #2	163.2521	3.7256	0.0400	11.9093	11.9093	43.8185	10.1683	1660.0	.723
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Channel Analysis Information:

Name:

Channel Analysis Name: Area 1G Ditch

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 15.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.08000Req. Freeboard (ft):0.00Channel Length (ft):140.00Bottom Width (ft):0.10Channel Depth (ft):4.00
Channel Bend:	Vegetation:	Soll Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

ato transfer	a) - 0	14. 日本市 在日本市在	1 A. C. S. S. S.	Velocity			Shear St	tress (lbs/		Flow	a liter and the second	Star 1
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	4.7	16.5	3.5	6.3	4.7	0.8	1.00	1.1	1.1
Analysis #1	Bottom:	LANDLOK TRM	0.0250	4.6	16.5	3.5	6.2	4.7	0.8	1.2450	15.0	No
	Right:	LANDLOK TRM	0.0250	4.7	16.5	3.5	6.3	4.7	0.8	11.22	21.1	
1986	Left:	LANDLOK TRM	0.0250	4.7	16.8	3.6	6.3	6.5	1.0			
Analysis #2	Bottom	LANDLOK TRM	0.0250	4.6	16.8	3.6	6.2	6.5	1.1	1.2450	15.0	No
1000	Right:	LANDLOK TRM	0.0250	4.7	16.8	3.6	6.3	6.5	1.0			
	Left:	PYRAMAT	0.0280	4.7	23.3	5.0	6.3	9.4	1.5			
Analysis #3	Bottom	PYRAMAT	0.0280	4.7	23.3	5.0	6.2	9.4	1.5	1.2502	15.0	Yes
	Right:	PYRAMAT	0.0280	4.7	23.3	5.0	6.3	9.4	1.5	1.1		
		the second se	De Circus	1			and the second second			the second second	- 1	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	3.2247	0.5689	0.0624	2.7840	2.7840	5.6680	4.6516	15.0	.737
Analysis #2	3.2247	0.5689	0.0624	2.7840	2.7840	5.6680	4.6516	15.0	.737
Analysis #3	3.2511	0.5713	0.0622	2.7956	2.7956	5.6912	4.6138	15.0	.741

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: Phase 2 Ditch

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:	
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 4.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 4.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.06000Req. Freeboard (ft):0.00Channel Length (ft):560.00Bottom Width (ft):0.01Channel Depth (ft):2.00	
Channel Bend:	Vegetation:	Soil Filled:	
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No	
Factor of Safety: 1.10		Functional Longevity: 999	

Analysis Results:

化 建丁基化合金		COULD BE AVERAGE AND	ALCONTRACTOR OF	Velocity (ft/s)		Shear Stress (Ibs/sqft)			Flow	1		
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	ОК?
	Left:	LANDLOK TRM	0.0250	2.3	16.5	7.1	4.0	4.7	1.2	1.57.2	1	12.23
Analysis #1	Bottom	LANDLOK TRM	0.0250	2.0	16.5	8.1	3.1	4.7	1.5	0.8207	4.0	Yes
Right:	LANDLOK TRM	0.0250	2.1	16.5	8.0	3.1	4.7	1.5				
0.0000	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1		1
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
Right:	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
1.000.000	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
Rig	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		1000	1007

建港板	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	2.0287	0.3880	0.0955	3.3837	1.8351	5.2288	1.9717	4.0	.415
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Suggested Vegetation for: La Crosse,WI

Species	Scentific Name	Retardance Class	Seed Rate (Ibs/ac)	Height at Maturity (in)	Recommended Planting Dates
Alsike Clover	Trifolium hybridum	A - E	15	and all the sound of the state of the sound	4/1 - 5/31 or8/16 - 10/15
Reed Canarygrass	Phalaris arundinacea	A-E	20		4/1 - 5/31 or 8/16 - 10/15
Colonial Bentgrass	Agrostis tenius	A - E	50		4/1 - 5/31 or 8/16 - 10/15
Creeping Bentgrass	Agrostis palustris	A-E	50		4/1 - 5/31 or 8/16 - 10/15
Poa Trivialis	Poa trivialis	A - E	50		4/1 - 5/31 or 8/16 - 10/15
Creeping Foxtrail	Alopecurus arundinaceus	A - E	50		4/1 - 5/31 or 8/16 - 10/15
Meadow Foxtail	Alopecurus pratensis	A-E	50		4/1 - 5/31 or 8/16 - 10/15
Perennial Ryegrass	Lolium perenne	A - E	240		4/1 - 5/31 or 8/16 - 10/15
RedTop	Agrostis alba	A - E	80		4/1 - 5/31 or 8/16 - 10/15
Meadow Fescue	Festuca elatior	A - E	160		4/1 - 5/31 or 8/16 - 10/15
Cold Season Grass Species	eS Scentific Name	Retardance Class	Seed Rate (Ibs/ac)	Height at Maturity (in)	Recommended Planting Dates
Crested Wheatgrass	Agropyron desertorum	A		2 - 3	
Green Needlegrass	Stipa viridula	Α		3 - 4	
Russian WildRye	Psathyrostachys gunceus	А		3 - 4	
Smooth Bromegrass	Bromus inermis	А		3 - 4	
Tall Fescue	Festuca arundinacea	A		3 - 4	
Tall Wheatgrass	Elytriga pontica	A		4 - 5	
Western Wheatgrass	Agropyron smithii	A		2 - 3	
Warm Season Gras	Ses			·····································	
Species	Scentific Name	Retardance Class	Seed Rate (Ibs/ac)	Height at Maturity (in)	Recommended Planting Dates
Bermuda Grass	Cynodon dactylon	С		3/4 - 2	
Big Bluestem	Andropogon gerardii	В		4 - 6	
Blue grama	Boutelova gracillis	В		1-2	
Buffalo grass	Buchloe dactyloides	D		1/3 - 1	
Green Sprangletop	Leptochloa dubia	А		3 - 4	
Indian grass	Sorghastrum nutans	A		5 - 6	
Kleingrass	Panicum coloratum	А		3 - 4	
Little bluestem	Schizachyrium scoparium	А		3 - 4	
Plains bristlegrass	Setaria macrostachya	В		1-2	
Sand bluestem	Andropogon hallii	A		5 - 6	
Sideoats grama	Bouteloua curtipendula	А		2 - 3	
Switch grass	Panicum Virgatum	A		4 - 5	
Vine mesquitegrass	Panicum Obtusum	В		1 - 2	
Weeping lovegrass	Eragrostis Curvula	A		3-4	

Calculations – Operational Landfill Conditions

Final October 2016 Revised July 2024

\\madison-vfp\Records\-\WPMSN\PJT2\563618\0000\R5636180000-002_Att 4_Control Plan.docx

744 Heartland Trail Madison, WI 53717-1934 Tel. (608) 831-4444 • Fax (608) 831-3334

SHEET___OF__

PROJECT / PROPOSAL NAME / LOCATION: DPC - PC	PROJECT / PROPOSAL NO.		
SUBJECT: OPERATIONAL DITCH SIZING		3078.40	
PREPARED BY: BJ-	DATE: 10/00	FINAL 😿	
CHECKED BY:	DATE:	REVISION D	

OPERATIONAL DITCHES

4.

(SEE FIGURES K-4 to K-9, OPERATIONAL RUNOFF CALCULATIONS)

DITCH	LOCATION	100 - YR FLOW	SLOPE	SHAPE
V-NOTCH DITCH A	CELL I ALTIVE	5 CPS	6%	V-NOTEH
DITCH B	CELL I ACTIVE	561 CFS'	2%	10' FLAT
DITCH C	CELL ZA ACTIVE	6 cfs	6.3%	V-NOTCH
DITCH D	CELL 2B ACTIVE	3 CFS	12%	V-NOTCH
DITCH E	CELL 3 ALTIVE	561 583 CB' V	1%	10' FLAT
DITCH F	CELL YA ACTIVE	373 433 CF5 2	10%	10' FLAT
Ditch G	CELL ZA ACTIVE	360 CF54		

NOTES 1. FLOWS FROM PREDEVELOPMENT AREAS NORTH + WEST (See p. 96) @ 12.6 hrs 2. FLOWS FROM PREDEVELOPMENT AREAS NORTH + 28 @ 12.6 Hrzs (see p.66/98)

3 PERMANANT DITCHES SIZED UNDER POST-DEVELOPMENT CALCULATIONS.

FLOW FROM PREDEVELOPMIENT ANA AREA NORTH (See p.95)

SW DITCH

CELL 2A ACTIVE

561CFS

590 10' FLAT

a (
	10100 1100		

FORM 383A

		Grass Channel Sizing Calculations				
Site:		Dairyland Power Cooperative	Date:	10/00		
Proje		3081.40	User:	BJK		
Chan	nel:	Ditch A				

	Input Par	rameters.				
	A. Side sl	lope, Z1 (hor/vert) =			3.000	ft/ft
	B. Side slo	ope, Z2 (hor/vert) =			16.000	ft/ft
	C. Botton	n width, B =			0.000	ft
	D. Desigr	n channel slope, S =			0.060	ft/ft
	E. Channe	el Peak Flow, Q =			5.000	cfs
	F. Enter	- 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence			2	
I.	Peak Flow	w Calculations.				
	A. Trial f	flow depth, D =			0.533	ft
		(Bisection method until Va=Vb)				
	B. Channe	el flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)			2.703	sq ft
	C. Wetter	d Perimeter, $Pw =$ (D*(Z1^2+1)^.5) + B + (D*(Z2^2+1)^2)	⁵ .5)		10.239	ft
	D. Hydra	ulic radius, Rh = (Ac/Pw)			0.264	ft
	E. Velocit	ty and hydraulic radius, VR = (Va * Rh)			0.488	sfps
	F. Channe	el flow Manning's coeff, nc = 0			0.081	
	G. Trial v	relocity, Va = (Q/Ac)			1.850	fps
	H. Result	(2, -3) tant velocity, Vb = $(1.49/nc) * (Rh^{.667}) * (S^{.5})$			1.850	fps Vok

RMT, Inc. rass Channel Sizing Calculations

h:\data\common\template\sc-51\grasscha.xls

2

Invoke Solution Macro by typing - 'ctrl' D

EC-Design 2000 Channel Analysis Report

Channel Analysis Information:

Name: Channel Analysis Name: Ditch B

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 3.00 Right Slope (xH:1V): 3.00	Discharge (cfs): 583.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.02000Req. Freeboard (ft):0.00Channel Length (ft):530.00Bottom Width (ft):10.00Channel Depth (ft):4.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: No Vegetation Class:	Soil Filled: Yes
Factor of Safety: 1.00		Functional Longevity: 48

Analysis Results:

	Side	Lining Type	Manning's "n"	Velocity Actual	(ft/s) Max. Allowed	Safety Factor	Shear St Actual	Max. Allowed	Safety Factor	Flow Depth (ft)	Discharge (cfs)	OK?
A Second	Left:	LANDLOK TRM	0.0250	13.4	16.5	1.2	2.5	6.2	2.5	1.54	11 C J	
Analysis #1	Bottom	LANDLOK TRM	0.0250	14.5	16.5	1.1	2.9	6.2	2.1	2.3594	583.0	Yes
	Right:	LANDLOK TRM	0.0250	13.4	16.5	1.2	2.5	6.2	2.5		1.2	
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.0	11-1	10.00
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.001		
10.0	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			-
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			

Channel Calculation Results:

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	40.2945	1.6168	0.0200	7.4611	7.4611	24.9222	14.4685	583.0	1.58
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

RMT, Inc. Grass Channel Sizing Calculations

Site: Project	t #:	Dairyland Power Cooperative 3081.40	Date: User:	10/00 BJK			
Chann		Ditch C	coor.	Djit			
I.	Input Para	meters.					
	A. Side slo	pe, Z1 (hor/vert) =			3.000	ft/ft	
	B. Side sloj	pe, Z2 (hor/vert) =		10	5.000	ft/ft	
	C. Bottom	width, B =		10	0.000	ft	
	D. Design	channel slope, S =		L d	0.063	ft/ft	
	E. Channel	l Peak Flow, Q =		Εġ	5.000	cfs	
	F. Enter	- 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence			2		
II.	Peak Flow	Calculations.					
	A. Trial flo	ow depth, D =).550	ft	
	B. Channel	(Bisection method until Va=Vb) flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)			2.870	sq ft	
	C. Wetted	Perimeter, $Pw = (D^*(Z1^2+1)^{5}) + B + (D^*(Z2^2+1)^{5})$.5)	10).549	ft	
	D. Hydrau	lic radius, Rh = (Ac/Pw)		20).272	ft	
	E. Velocity	and hydraulic radius, VR = (Va * Rh)		l.).569	sfps	
	F. Channel	flow Manning's coeff, nc = 0		(0.075		
	G. Trial vel	locity, Va = (Q/Ac)		3	2.091	fps	
	H. Resulta	nt velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)			2.091	fps	rok
		1					

Invoke Solution Macro by typing - 'ctrl' D

h:\data\common\template\sc-51\grasscha.xls

RMT, Inc.-Grass Channel Sizing Calculations

Site:		Dairyland Power Cooperative	Date:	10/00		
Projec	ct #:	3081.40	User:	BJK		
Chan	nel:	Ditch D				

I.	Input Para	meters.				
	A. Side slo	pe, Z1 (hor/vert) =			3.000	ft/ft
	B. Side sloj	be, Z2 (hor/vert) =			3.000	ft/ft
	C. Bottom	width, B =			0.000	ft
	D. Design	channel slope, S =			0.120	ft/ft
	E. Channel	Peak Flow, Q =			3.000	cfs
	F. Enter	- 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence			2	
11.	Peak Flow	Calculations.				
	A. Trial flo	ow depth, D = (Bisection method until Va=Vb)			0.547	ft
	B. Channel	flow area, Ac = $(.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)$			0.897	sq ft
	C. Wetted	Perimeter, $Pw = (D^*(Z1^2+1)^{5}) + B + (D^*(Z2^2+1)^{5})$	^.5)		3.459	ft
	D. Hydrau	lic radius, Rh = (Ac/Pw)			0.259	ft
	E. Velocity	and hydraulic radius, VR = (Va * Rh)			0.867	sfps
	F. Channel	flow Manning's coeff, nc = 0			0.063	

(Q/Ac) H. Resultant velocity, Vb = 3.344 fps √ 0½ (1.49/nc) * (Rh^.667) * (S^.5)

3.344 fps

Invoke Solution Macro by typing - 'ctrl' D

G. Trial velocity, Va =

h:\data\common\template\sc-51\grasscha.xls

EC-Design 2000 Channel Analysis Report

Page 2 of 4

Channel Analysis Information:

A State of the second second

Name:

Channel Analysis Name: Ditch E

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes:	Discharge (cfs): 583.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft): 0.01000 Req. Freeboard (ft): 0.00 Channel Length (ft): 1000.0
Left Slope (xH:1V): 3.00 Right Slope (xH:1V): 10.00		Bottom Width (ft): 10.00 Channel Depth (ft): 3.00
Channel Bend:	Vegetation:	Soll Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: No Vegetation Class:	Soil Filled: Yes
Factor of Safety: 1.00		Functional Longevity: 60

Analysis Results:

公书 经公共运行			Velocity (ft/s)			Shear St	tress (lbs/s		Flow	· N. Stimmer	to State	
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	0К?
	Left:	LANDLOK TRM	0.0250	8.9	16.5	1.9	1.3	6.2	4.9			
Analysis #1	Bottom:	LANDLOK TRM	0.0250	9.6	16.5	1.7	1.5	6.2	4.2	2.3865	583.0	Yes
	Right:	LANDLOK TRM	0.0250	9.3	16.5	1.8	1.4	6.2	4.5		1.00	1
A SY OF	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.00		
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			Ĕ1
	Left:	1	0.0000	0.0	0.0	0.0	0.0	0.0	0.0			1
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
1	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			

Channel Calculation Results:

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	60.8850	1.4660	0.0200	7.5468	23.9840	41.5308	9.5754	583.0	1.06
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

EC-Design 2000 Channel Analysis Report

Channel Analysis Information:

Name:

Channel Analysis Name: Ditch F

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 3.00 Right Slope (xH:1V): 5.00	Discharge (cfs): 433.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.01000Req. Freeboard (ft):0.00Channel Length (ft):750.00Bottom Width (ft):10.00Channel Depth (ft):3.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: No Vegetation Class:	Soil Filled: Yes
Factor of Safety: 1.00		Functional Longevity: 0

Analysis Results:

	Side	Lining Type	Manning's "n"	Velocity Actual	(ft/s) Max. Allowed	Safety Factor	Shear St Actual	tress (lbs/s Max. Allowed	Safety Factor	Flow Depth (ft)	Discharge (cfs)	OK?
1.2	Left:	LANDLOK TRM	0.0250	9.1	16.5	1.8	1.2	6.2	5.1	20.0		122
Analysis #1	Bottom	LANDLOK TRM	0.0250	9.9	16.5	1.7	1.4	6.2	4.4	2.2978	433.0	Yes
	Right:	LANDLOK TRM	0.0250	9.5	16.5	1.7	1.3	6.2	4.7			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		1.2.2.1	1
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
1.	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.1.1		
The Tal	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1		1.5
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.000	1.1.1	

Channel Calculation Results:

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	44.0967	1.5215	0.0200	7.2662	11.7164	28.9826	9.8193	433.0	1.10
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

EC-DESIGN(R) 2000 Channel Analysis Report

Project Information										
)roject Name: DP Description: Cel	C. 2A operational Calcs			Last U Units: Neares		8/25/2003 English	10:58:10 A			
Notes: Calculated For Brokwater For Protect 570 510	m culvert 1 will									
Channel Design						-				
Channel Name: SW Ditch	- Operational 100 yr		Units	English	i	Desi	gn life:	1,200 month		
Design Criteria	Vegetation and So	il	Channel	Geometr	y	Flo	ow/Velocity			
Flow Rate (Q)				oe (ft/ft) eeboard (Length (00 Flo	Discharge (cf/s)561.000Flow Duration (hrs)1.000Avg. Velocity (ft/s)5.490			
Channel Side SlopesVeft (H:1 V)2.000Right (H:1 V)2.000	Channel Bend Bend Radius (ft) Outside Bend	No 0.000	1	Width (ft Depth (f		Req	uired Fact afety	or 1.00		
Results										
1 · · · · · · · · · · · · · · · · · · ·		v	elocity (ft/	s)	Shear S	tress (lbs	/sqft)	Avg. Flow		
			the second se	0.0.1.		Max	Safety	Depth (ft)		
Lining Materials		Computed	Max Allowed	Safety Factor	Computed		Factor	5.070		
Lining Materials Left PYRAMAT		Computed 5.100	IL CONSCIENT AND AND A		Computed 2.720		I Contraction of the second	5.070		
			Allowed	Factor		Allowed	Factor	5.070		
Left PYRAMAT		5.100	Allowed 23.340	Factor 4.580	2.720	Allowed 9.400	Factor 3.460	5.070		
Left PYRAMAT Bottom PYRAMAT Right PYRAMAT		5.100 5.510	Allowed 23.340 23.340	Factor 4.580 4.240	2.720 3.170	Allowed 9.400 9.400	Factor 3.460 2.970	5.070		
Left PYRAMAT Bottom PYRAMAT Right PYRAMAT	5.070	5.100 5.510	Allowed 23.340 23.340 23.340	Factor 4.580 4.240 4.580	2.720 3.170	Allowed 9.400 9.400 9.400	Factor 3.460 2.970	5.070		
Left PYRAMAT Bottom PYRAMAT Right PYRAMAT Calculation Results:	5.070 102.230	5.100 5.510	Allowed 23.340 23.340 23.340 Left Bott	Factor 4.580 4.240 4.580 Wetted I om Wett	2.720 3.170 2.720 Perimeter (f	Allowed 9.400 9.400 9.400 ft) ft) er (ft)	Factor 3.460 2.970 3.460 11.350 9.990	5.070		
Left PYRAMAT Bottom PYRAMAT Right PYRAMAT Calculation Results: Flow Depth (ft)		5.100 5.510	Allowed 23.340 23.340 23.340 Left Bott Rigl	Factor 4.580 4.240 4.580 Wetted I om Wetted	2.720 3.170 2.720 Perimeter (f	Allowed 9.400 9.400 9.400 ft) ft) ft) ft) (ft)	Factor 3.460 2.970 3.460 11.350	5.070		
Left PYRAMAT Bottom PYRAMAT Right PYRAMAT Calculation Results: Flow Depth (ft)	102.230	5.100 5.510	Allowed 23.340 23.340 23.340 Left Bott Rigl Tot:	Factor 4.580 4.240 4.580 Wetted I om Wetted	2.720 3.170 2.720 Perimeter (f ed Perimeter Perimeter Perimeter	Allowed 9.400 9.400 9.400 ft) ft) ft) ft) (ft)	Factor 3.460 2.970 3.460 11.350 9.990 11.350	5.070		

EC-DESIGN(R) 2000 Channel Analysis Report

George	Information								
roject	Name: DPC	And Address		-	Last U	pdate:	8/25/2003	10:53:12 A	
Descrip	tion: Cell 2A	operational Calcs			Units:		English		
Nieders					Neares	st City:			
Notes:	FUR 5% SLUPE SECTION 25-Y	e RSTURM							
Channe	l Design								
Channel	Name: SW Ditch - (Operational 25 yr		Units	: Englisl	1	Desi	ign life:	48 month
Design	Criteria	Vegetation and So	li	Channel	Geometr	у	Flo	ow/Velocity	
Flow Ra	ite (Q)	Vegetated Vegetation Class Soil Filled	Yes B No	1.112	oe (ft/ft) eeboard (Length (00 Flo	scharge (cf ow Duration /g. Velocity	n (hrs) 1.000
Channe	l Side Slopes	Channel Bend	No		Width (ft				
eft (H: kight (F		Bend Radius (ft) Outside Bend	0.000		Depth (i		Req	uired Fact afety	or 1.00
Results									
			V	elocity (ft	(s)	Shear S	tress (lbs	/sqft)	Avg. Flow
Lining N	Materials		Computed	Max Allowed	Safety Factor	Computed	Max Allowed	Safety Factor	Depth (ft) 2.610
Left	PYRAMAT		8.030	23.340	2.910	6.450	9.400	1.460	
Bottom	PYRAMAT		9.020	23.340	2.590	8.140	9.400	1.150	
and the second second	PYRAMAT		8.030	23.340	2.910	6.450	9.400	1.460	
Right									
	tion Results:								
Calcula	tion Results: ow Depth (ft)	2.610		Left	Wetted	Perimeter (1	ft)	5.830	22
Calcula Fl		2.610 39.690		Bott	om Wett	ed Perimete	er (ft)	10.000	
Calcula Fl	ow Depth (ft)			Bott Rigi	om Wett ht Wetted	ed Perimete Perimeter	er (ft) (ft)	10.000 5.830	
Calcula Fi Fi	ow Depth (ft) ow Area (ft)	39.690		Bott Rigl Tot:	om Wett ht Wetted hl Wetted	ed Perimeter Perimeter Perimeter	er (ft) (ft)	10.000 5.830 21.660	
Calcula Fi Fi Hy	ow Depth (ft)			Bott Rigl Tot: Avg	om Wett ht Wetted	ed Perimeter Perimeter Perimeter (ft/s)	er (ft) (ft) (ft)	10.000 5.830	

EC-DESIGN(R) 2000 Channel Analysis Report

	Information								
)roject N Descripti Notes:		A operational Calcs			Last U Units: Neares		8/25/2003 English	11:00:48 A	
Channel	Design								
Channel N	ame: Phase III Se	outh Slope Ditch		Units	English	1	Desi	gn life:	24 month
Design C	riteria	Vegetation and So	oil	Channel	Geometr	y	Flo	w/Velocity	
Flow Rate	e (Q)	Vegetated Vegetation Class Soil Filled	No Yes		oe (ft/ft) eeboard (Length (00 Flo	scharge (cf ow Duration g. Velocity	n (hrs) 1.000
The second second	Side Slopes	Channel Bend	No 0.000	Bottom	Width (ft		Reg	uired Fact	1.00
Left (H:1 Right (H		Bend Radius (ft) Outside Bend	0.000	Channel	Depth (1	ft) 1.50	00 of S	afety	or 1.00
) Right (H			0.000	Channel	Depth (1	it) 1.50	00 of S		or 1.00
) Right (H				elocity (ft/	/s)		tress (lbs	afety /sqft)	Avg. Flow
) Right (H	:1 V) 3.000			elocity (ft/ Max	/s) Safety		tress (lbs	afety /sqft) Safety	
Right (H	Interials	Outside Bend		elocity (ft/ Max	/s) Safety	Shear S	tress (lbs	afety /sqft) Safety	Avg. Flow Depth (ft)
Right (H Results Lining M Left Bottom	Interials	Outside Bend	Computed 6.080 6.730	elocity (ft/ Max Allowed 16.490 16.490	Safety Factor 2.710 2.450	Shear S Computed 1.050 1.280	tress (lbs Max Allowed 6.250 6.250	/sqft) Safety Factor 5.950 4.880	Avg. Flow Depth (ft)
Right (H Results Lining M Left	Interials	Outside Bend	Computed 6.080	elocity (ft, Max Allowed 16.490	's) Safety Factor 2.710	Shear S Computed 1.050	tress (lbs Max Allowed 6.250	/sqft) Safety Factor 5.950	Avg. Flow Depth (ft)
Results Lining M Left Bottom Right	Interials	Outside Bend	Computed 6.080 6.730	elocity (ft/ Max Allowed 16.490 16.490	Safety Factor 2.710 2.450	Shear S Computed 1.050 1.280	tress (lbs Max Allowed 6.250 6.250	/sqft) Safety Factor 5.950 4.880	Avg. Flow Depth (ft)
Right (H Results Lining M Left Bottom Right Calculat	Interials LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4	Outside Bend	Computed 6.080 6.730	elocity (ft, Max Allowed 16.490 16.490 16.490	(s) Safety Factor 2.710 2.450 2.600	Shear S Computed 1.050 1.280	tress (lbs Max Allowed 6.250 6.250 6.250	/sqft) Safety Factor 5.950 4.880	Avg. Flow Depth (ft)
Results Lining M Left Bottom Right Calculat Flo	Interials LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4	Outside Bend	Computed 6.080 6.730	elocity (ft, Max Allowed 16.490 16.490 16.490 Left Bott	(s) Safety Factor 2.710 2.450 2.600 Wetted I tom Wett	Shear S Computed 1.050 1.280 1.140 Perimeter (ed Perimeter	tress (lbs Max Allowed 6.250 6.250 6.250 ft) er (ft)	afety /sqft) Safety Factor 5.950 4.880 5.480 0.770 1.000	Avg. Flow Depth (ft)
Results Lining M Left Bottom Right Calculat Flo	Interials LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4	Outside Bend 50 50 50 0.340	Computed 6.080 6.730	elocity (ft, Max Allowed 16.490 16.490 16.490 Left Bott Rigi	(s) Safety Factor 2.710 2.450 2.600 Wetted I tom Wetted	Shear S Computed 1.050 1.280 1.140 Perimeter (tress (lbs Max Allowed 6.250 6.250 6.250 ft) er (ft) (ft)	afety /sqft) Safety Factor 5.950 4.880 5.480 0.770	Avg. Flow Depth (ft)
Right (H Results Lining M Left Bottom Right Calculat Flo	Interials LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4 LANDLOK TRM 4	Outside Bend 50 50 50 0.340 0.640	Computed 6.080 6.730	elocity (ft/ Max Allowed 16.490 16.490 16.490 16.490 Left Bott Rigi Tot:	(s) Safety Factor 2.710 2.450 2.600 Wetted I tom Wetted	Shear S Computed 1.050 1.280 1.140 Perimeter (Perimeter Perimeter	tress (lbs Max Allowed 6.250 6.250 6.250 ft) er (ft) (ft)	afety /sqft) Safety Factor 5.950 4.880 5.480 0.770 1.000 1.080	Avg. Flow Depth (ft)

EC-DESIGN(R) 2000 Cha	nnel Analysis Report
-----------------------	----------------------

	Information								
)roject) Descript Notes:		2A operational Calcs			Last U Units: Neares	2010/07/2010	8/25/2003 English	11:00:48 A	
Channel	l Design								100
Channel N	Name: Ditch G			Units	: English	1	Desi	ign life:	48 month
Design (Criteria	Vegetation and So	oil	Channel	Geometr	y.	Flo	w/Velocity	
Flow Rat	te (Q)	Vegetated Vegetation Class Soil Filled	No No	1.00	oe (ft/ft) eeboard (Length (00 Flo	scharge (cf ow Duration /g. Velocity	n (hrs) 1.000
	Side Slopes	Channel Bend	No	Bottom	Width (ft) 10.0			
Left (H: Right (H		Bend Radius (ft) Outside Bend	0.000	Channel	l Depth (1	ît) 4.00		uired Fact afety	or 1.00
) Right (H			0.000	Channel	l Depth (1	ît) 4.00			or 1.00
) Right (H				Channel				afety /sqft)	Avg. Flow
, Right (H	I:1 V) 3.000			elocity (ft/ Max	/s) Safety	Shear S	of S tress (lbs Max	afety /sqft) Safety	Avg. Flow Depth (ft)
Right (H	I:1 V) 3.000	Outside Bend		elocity (ft/ Max	/s) Safety		of S tress (lbs Max	afety /sqft) Safety	Avg. Flow Depth (ft)
Results	I:1 V) 3.000	Outside Bend	Computed	elocity (ft/ Max Allowed	/s) Safety Factor	Shear S	of S tress (lbs Max Allowed	afety /sqft) Safety Factor	Avg. Flow Depth (ft)
Results Lining N Left	I:1 V) 3.000 Materials LANDLOK TRM	Outside Bend 450 450	V Computed 10.170	elocity (ft/ Max Allowed 16.490	's) Safety Factor 1.620	Shear S Computed 1.610	of S tress (lbs Max Allowed 6.250	/sqft) Safety Factor 3.880	Avg. Flow
Results Lining N Left Bottom Right	I:1 V) 3.000 Materials LANDLOK TRM LANDLOK TRM	Outside Bend 450 450	Computed 10.170 11.090	elocity (ft/ Max Allowed 16.490 16.490	Safety Factor 1.620 1.490	Shear S Computed 1.610 1.910	of S tress (lbs Max Allowed 6.250 6.250	/sqft) Safety Factor 3.880 3.270	Avg. Flow Depth (ft)
Results Lining N Left Bottom Right Calculat	I:1 V) 3.000 Materials LANDLOK TRM LANDLOK TRM LANDLOK TRM	Outside Bend 450 450	Computed 10.170 11.090	elocity (ft/ Max Allowed 16.490 16.490 16.490	/s) Safety Factor 1.620 1.490 1.620	Shear S Computed 1.610 1.910	of S tress (lbs Max Allowed 6.250 6.250 6.250	/sqft) Safety Factor 3.880 3.270	Avg. Flow Depth (ft)
Results Lining N Left Bottom Right Calculat	Aaterials LANDLOK TRM LANDLOK TRM LANDLOK TRM	Outside Bend 450 450 450	Computed 10.170 11.090	elocity (ft/ Max Allowed 16.490 16.490 16.490	(s) Safety Factor 1.620 1.490 1.620	Shear S Computed 1.610 1.910 1.610	of S tress (lbs Max Allowed 6.250 6.250 6.250	/sqft) Safety Factor 3.880 3.270 3.880	Avg. Flow Depth (ft)
Results Lining N Left Bottom Right Calculat Flo	Aaterials LANDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM	Outside Bend 450 450 450 2.040	Computed 10.170 11.090	elocity (ft/ Max Allowed 16.490 16.490 16.490 Left Bott Rigl	/s) Safety Factor 1.620 1.490 1.620 Wetted I tom Wetted	Shear S Computed 1.610 1.910 1.610 Perimeter (ed Perimeter	of S tress (lbs Max Allowed 6.250 6.250 6.250 ft) er (ft) (ft)	/sqft) Safety Factor 3.880 3.270 3.880 6.460 9.990 6.460	Avg. Flow Depth (ft)
Results Lining N Left Bottom Right Calculat Flo	Aaterials LANDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM	Outside Bend 450 450 450 2.040	Computed 10.170 11.090	elocity (ft/ Max Allowed 16.490 16.490 16.490 Left Bott Rigl	/s) Safety Factor 1.620 1.490 1.620 Wetted I tom Wetted	Shear S Computed 1.610 1.910 1.610 Perimeter (ted Perimeter	of S tress (lbs Max Allowed 6.250 6.250 6.250 ft) er (ft) (ft)	afety /sqft) Safety Factor 3.880 3.270 3.880 6.460 9.990	Avg. Flow Depth (ft)
Results Lining M Left Bottom Right Calculat Flo	Aaterials LANDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM	Outside Bend 450 450 450 2.040 32.920	Computed 10.170 11.090	elocity (ft/ Max Allowed 16.490 16.490 16.490 16.490 Left Bott Rigl Tota	/s) Safety Factor 1.620 1.490 1.620 Wetted I tom Wetted	Shear S Computed 1.610 1.910 1.610 Perimeter (Perimeter Perimeter	o0 of S tress (lbs Max Allowed 6.250 6.250 6.250 ft) er (ft) (ft) (ft)	/sqft) Safety Factor 3.880 3.270 3.880 6.460 9.990 6.460	Avg. Flow Depth (ft)

Reference Information

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised July 2024 roughness) varies with VR. The term VR is the product of velocity and the hydraulic radius. This relationship will be referred to as the "n-VR relationship", which is the recommended basis for vegetated channel design.

The five general retardance curves, designated as A, B, C, D, and E in Exhibit 7-1, have been developed for various cover conditions. The vegetal conditions under which the various retardance values apply are shown in Exhibit 7-2. These cover classifications are based on tests in experimental channels when the covers were green and generally uniform.

Most of the vegetation used in waterways does not exceed 18 inches in height and may be much shorter at times during the year. Therefore, it is recommended that when designing the channel for safe velocity, a retardance not greater than "D" be used. After designing the channel for safe velocity, it must be checked for capacity to accommodate the peak flow under conditions where vegetation gives the highest retardance. The retardance used in this instance is the curve corresponding to the expected vegetal cover and, in most cases, it will be retardance "C", though curve "B"

All pertinent design data and computations should be recorded.

DESIGN DATA

The following information is required for designing a waterway:

- Watershed area in acres, together with the soil characteristics, cover and topography. This information is used to estimate runoff by the procedures set forth in Chapter 2 of this manual.
- Grade of the proposed waterway in percent slope (this is the fall in feet per 100 feet of length).
- 3. Vegetal cover adapted to site conditions.
- 4. Erodibility of the soil in the waterway.
- 5. Expected height at which vegetative cover will be maintained.
- 6. The permissible velocity for the conditions encountered.
- Allowance for space that will be occupied by the vegetative lining.
- Allowance for freeboard, if required by State Standards and Specifications.

NON-EROSIVE VELOCITY OF FLOW

In designing grassed waterways, care must be taken to insure that the design velocity is well within the limits of permissible velocities given in Exhibit 7-3. These values apply to average, uniform stands of each type of cover.

Source: U.S. Department of Agriculture, Soil Conservation Service. <u>Engineering Field Manual</u>. November 1986.

	Slope	Permissible	velocity 1/
Cover	range 2/ (percent)	Erosion re- sistant soils (ft.per sec.)	Easily eroded soils (ft.per sec.)
Bermudagrass .	0-5 5-10 over 10	8 7 6	6 5 4
Bahia Buffalograss Kentucky bluegrass Smooth brome Blue grama Tall fescue	0-5 5-10 over 10	7 . 6 . 5	5 4 3
Grass mixtures Reed canarygrass	<u>2/</u> 0-5 5-10	L <u>5</u> 4	4
Lespedeza sericea Weeping lovegrass Yellow bluestem Redtop Alfalfa Red fescue	<u>3</u> / 0-5	3.5	2.5
Common lespedeza <u>4</u> / Sudangrass <u>4</u> /	<u>5</u> / 0-5	3.5	2.5

- 1/ Use velocities exceeding 5 feet per second only where good covers and proper maintenance can be obtained.
- <u>2</u>/ Do not use on slopes steeper than 10 percent except for vegetated side slopes in combination with a stone, concrete, or highly resistant vegetative center section.
- 3/ Do not use on slopes steeper than 5 percent except for vegetated side slopes in combination with a stone, concrete, or highly resistant vegetative center section.
- 4/ Annuals--use on mild slopes or as temporary protection until permanent covers are established.
- 5/ Use on slopes steeper than 5 percent is not recommended.

Exhibit 7-3. Permissible velocities for channels lined with vegetation

7-14

Culvert/Downslope Flume Design Calculations

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised July 2024

Purpose/Methodology/Assumptions/Results/References

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised July 2024

PROJECT/PROPOSAL NAME	PREPAR	PREPARED		0	PROJECT/PROPOSAL NO.
Dairyland Power Cooperative	By: BJK	Date: 9/00	By: RAA	Date: 10/00	3081.40

CULVERT DESIGN CALCULATIONS

Purpose

To determine the appropriate culvert and downslope flume sizes for the anticipated peak flows resulting from the 100-year, 24-hour storm at the proposed Dairyland Power Cooperative Landfill.

Methodologies

Culvert design involves the process of selecting an appropriate culvert size capable of allowing the estimated peak storm water runoff to pass through it without creating surface water breaching (i.e., berm overflow) or excessive backwater levels. Culvert sizing was performed using design charts developed by the U.S. Department of Transportation Federal Highway Administration.

Downslope flumes will convey flow from the final cover diversion berms to the sedimentation basin. Downslope flumes were also sized using design charts developed by the U.S. Department of Transportation Federal Highway Administration. The energy dissipater for the downslope flume was sized using design guidance from the US Department of the Interior, Bureau of Reclamation.

Assumptions

The following assumptions were used in the culvert and downslope flume sizing analysis:

- Culvert and downslope flume layout and allowable headwater levels are shown on the accompanying plan set.
- Tailwater depths were assumed based on anticipated flows within the ditching. For culverts discharging into sedimentation basins, the tailwater elevation in the basin from the routing calculations.
- 3. Culverts are assumed to be corrugated metal culvert pipes or concrete box culverts.
- 4. Culverts were designed to maintain a minimum 1 to 2 feet of freeboard, depending on the location.

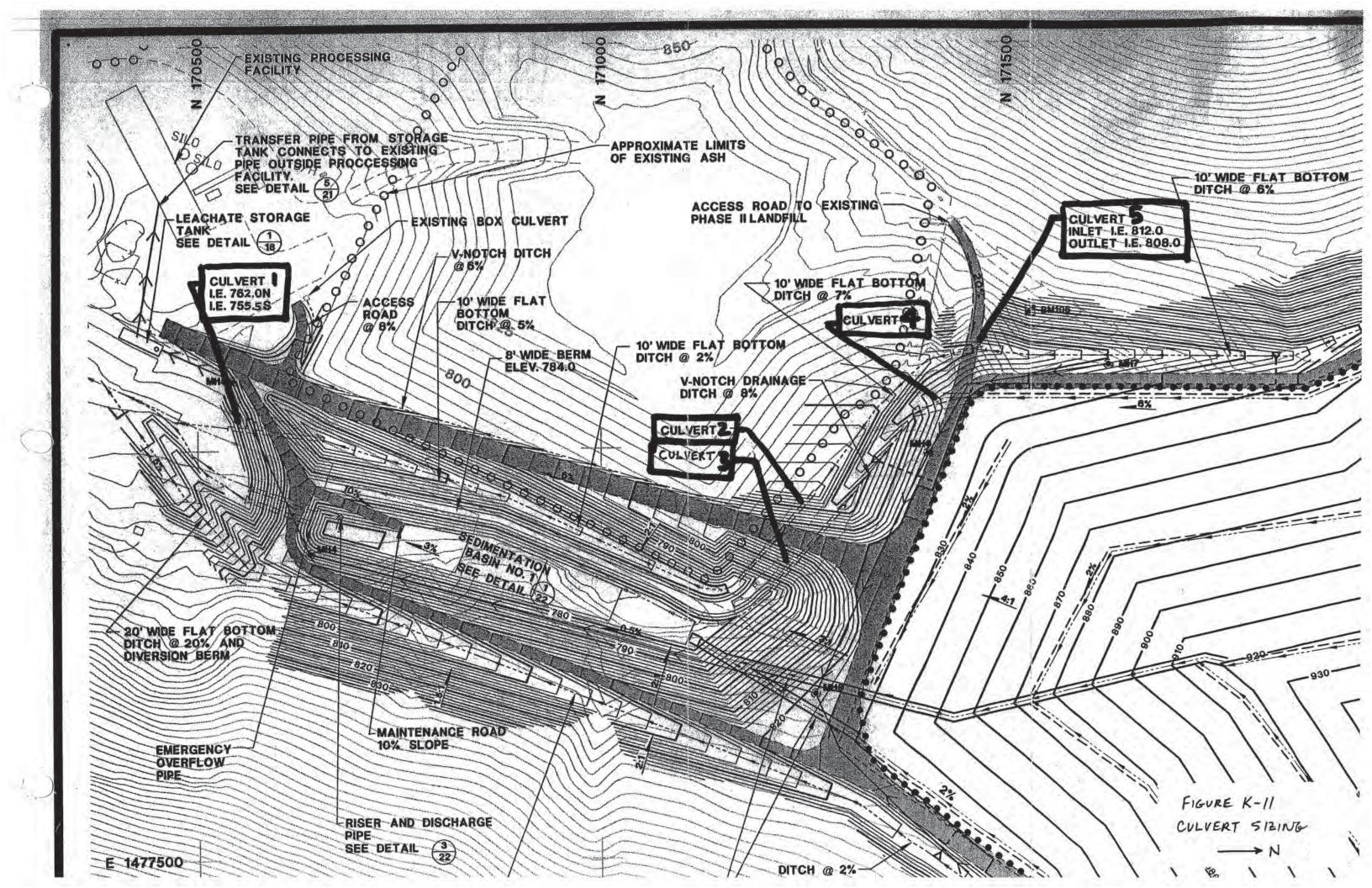
COMPUTATION SHEET

744 Heartland Trail (53717-8923) P	. O. Box 8923 (5370	08-8923)	Madison, WI	(608) 831-444	4 FAX	2 X: (608) 831-3334	VOICE: (608) 831-1989		
PROJECT/PROPOSAL NAME	PREPAR	ED	CH	ECKED		PROJECT/PR	OPOSAL NO.		
Dairyland Power Cooperativ	re BJK	Date 9/0					3081.40		

Results

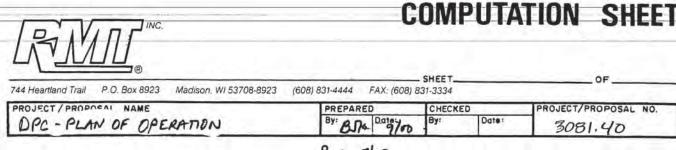
The table below summarizes the results of the culvert pipe sizing analyses:

CULVERT	SLOPE (%)	LENGTH (ft)	100-YR. FLOW (cfs)	SIZE
Culvert #1	7.0	96	323	4'x 7' Box
Culvert #2	7.7	126	323	4'x 7' Box
Culvert #3	11.2	125	15	30" CMP
Culvert #4	9.3	75	15	30" CMP
Culvert #5	5	85	323	4' x 7' Box

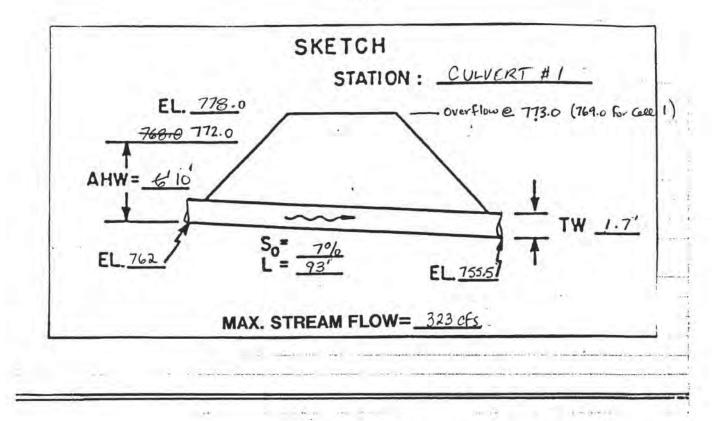

Note:

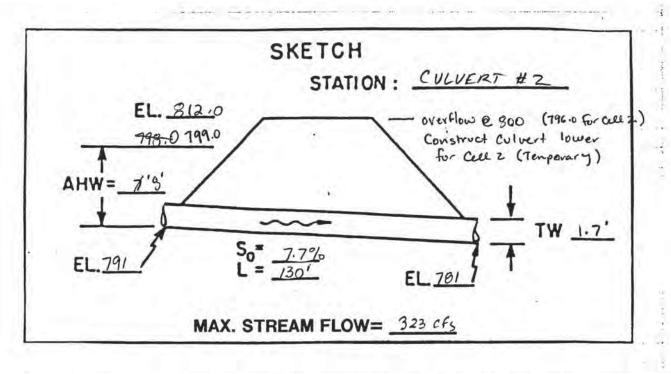
Culvert lengths to be adjusted based on available culvert section lengths.

Downslope pipe and energy dissipater sizing are shown on the engineering details included in the Plan Set.

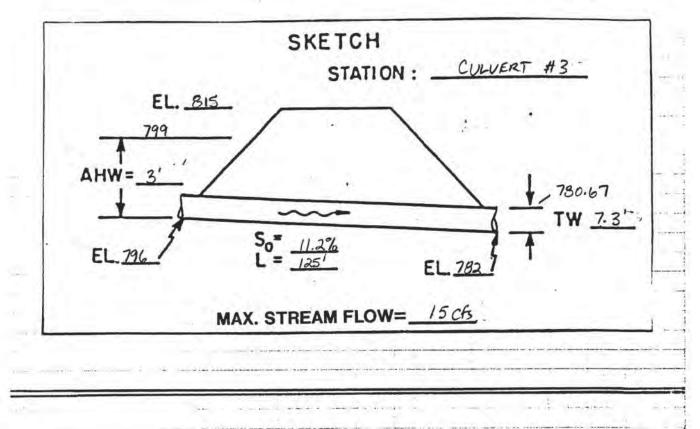

References

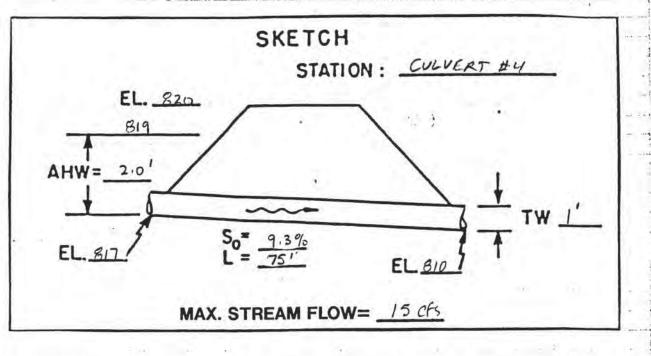
- U.S. Department of Transportation. Hydraulics charts for the selection of highway culverts. Hydraulic engineering circular no. 5. December 1965.
- U.S. Department of the Interior, Bureau of Reclamation. Hydraulic Design of Stilling Basins and Energy Dissipaters. Engineering Nomograph No. 25. May 1984.

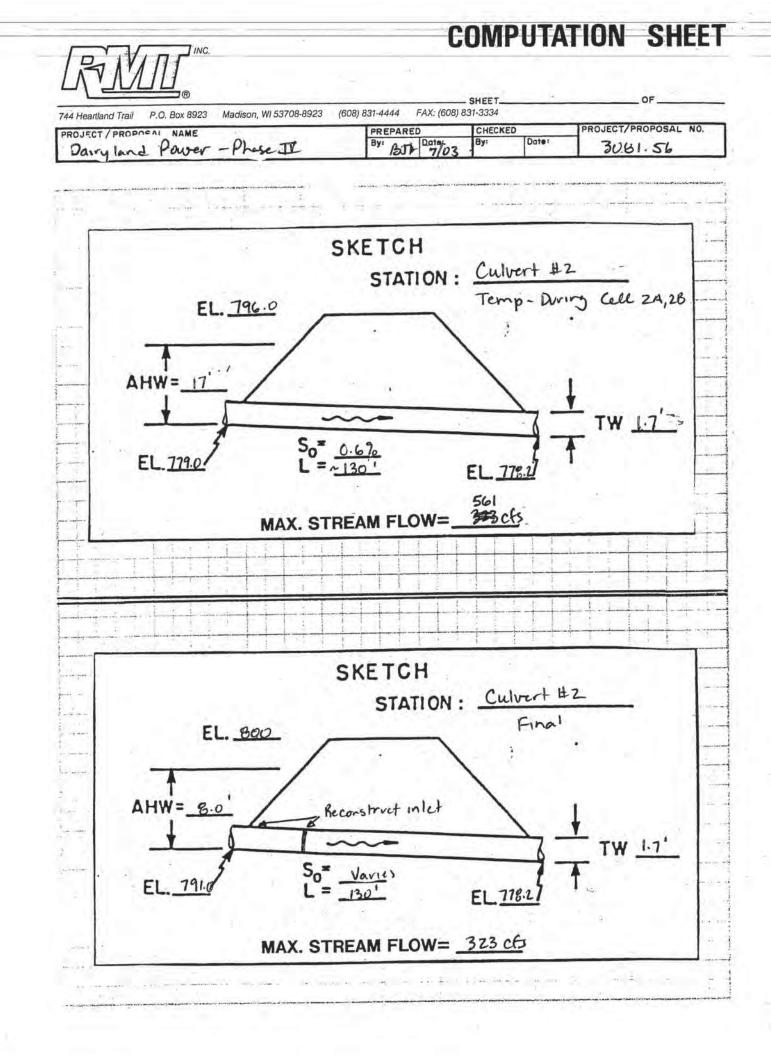




Calculations – Post-closure Landfill Conditions



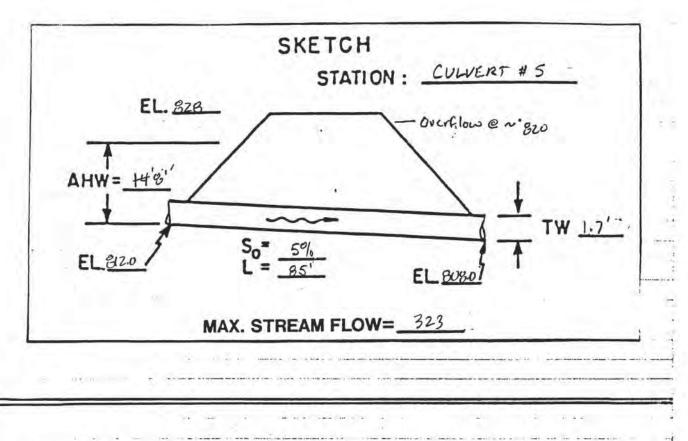


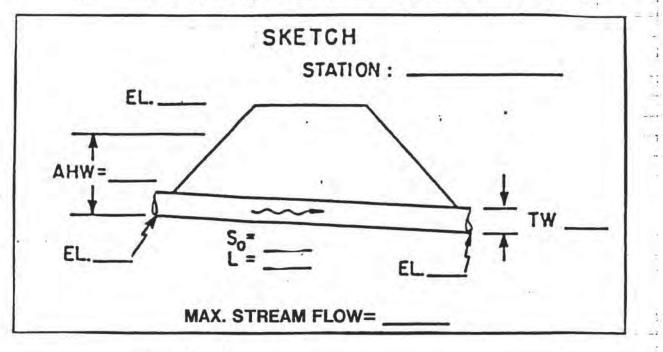


BIN				C	UMI	PUIA	IIUN SHEE
744 Heartland Trail	P.O. Box 8923	Madison, WI 53708-8923 (6	08) 831-4444	FAX: (608) 8	SHEET	-	OF
PROJECT / PROP		OPERATION	By:		CHECKE By:	Date:	PROJECT/PROPOSAL NO.

Culvert Calculator Report Culvert 2 - Operational

Solve For: Headwater Elevation


Culvert Summary					
Allowable HW Elevation	796.00 ft	Ê I I I	Headwater Depth/ Height	3.86	
Computed Headwater Elevation	794.45 ft		Discharge	561.00	cfs
Inlet Control HW Elev	792.30 ft		Tailwater Elevation	779.90	ft
Outlet Control HW Elev	794.45 ft	<u> </u>	Control Type	Outlet Control	£
Grades					
Upstream Invert	779.00 ft		Downstream Invert	778.20	ft
Length	130.00 ft		Constructed Slope	0.006154	ft/ft
Hydraulic Profile					-
Profile	Pressure		Depth, Downstream	4.00	ft
Slope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	4.00	ft
Velocity Downstream	20.04 ft/	/s	Critical Slope	0.022277	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 4 ft		Rise	4.00	ft
Number Sections	1	-			
Outlet Control Properties					-
Outlet Control HW Elev	794.45 ft	t -	Upstream Velocity Head	6.24	ft
Ke	0.50	<u>.</u>	Entrance Loss	3.12	ft
Inlet Control Properties	- 2 %				
Inlet Control HW Elev	792.30 ft	1	Flow Control	Submerged	
Inlet Type 18 to 33.7 ° wingwall fl	are, d=0.0830		Area Full	28.0	ft²
к	0.48600		HDS 5 Chart	9	
M	0.66700		HDS 5 Scale	2	
С	0.02490		Equation Form	2	
Y	0.83000				


Culvert Calculator Report Culvert 2 - Final

Solve For: Headwater Elevation

Culvert Summary				
Allowable HW Elevation	799.00 ft	Headwater Depth/ Height	1.78	1.5
Computed Headwater Elevation	798.10 ft	Discharge	323.00	cfs
Inlet Control HW Elev	797.44 ft	Tailwater Elevation	779.90	ft
Outlet Control HW Elev	798.10 ft	Control Type	Entrance Control	1
Grades			_	
Upstream Invert	791.00 ft	Downstream Invert	778.20	ft
Length	130.00 ft	Constructed Slope	0.098462	ft/ft
Hydraulic Profile				-
Profile	S2	Depth, Downstream	1.60	ft
Slope Type	Steep	Normal Depth	1.32	ft
Flow Regime	Supercritical	Critical Depth	4.00	ft
Velocity Downstream	28.87 ft/s	Critical Slope	0.007385	ft/ft
Section				
Section Shape	Box	Mannings Coefficient	0.013	
Section Material	Concrete	Span	7.00	ft
Section Size	7 x 4 ft	Rise	4.00	ft
Number Sections	1			-
Outlet Control Properties	2 1 mar			
Outlet Control HW Elev	798.10 ft	Upstream Velocity Head	2.07	ft
Ke	0.50	Entrance Loss	1.03	ft
Inlet Control Properties				
Inlet Control HW Elev	797.44 ft	Flow Control	Submerged	1.25
Inlet Type 18 to 33.7 ° wingwall	flare, d=0.0830	Area Full	28.0	ft ²
к	0.48600	HDS 5 Chart	9	
M	0.66700	HDS 5 Scale	2	
С	0.02490	Equation Form	2	
Y	0.83000			

CUMPUTATION SHEET INC. SHEET OF 744 Heartland Trail P.O. Box 8923 Madison, WI 53708-8923 (608) 831-4444 FAX: (608) 831-3334 PROJECT / PROPOSAL NAME CHECKED PREPARED PROJECT/PROPOSAL NO. By Bro gin 3091.40 Date By: OPC POO

Internet there are a matternet

DESIGNER: DAK	DATE: 9/2000 TCH	STATION : SEE SKETCHES	Two and the second seco	Et 1	Y=	_	COMMENTS	^	Not Rec.	Recommended		Recommended		Not Rec.	Recommended	1
DE	SKETCH	STAT	a a c	L= STREAM VELOCITY =	SIREAM VELOCITY=	-LSA	NTR(_	6.5 1.3 50		1 200		4.1	. 2.1	RESPECTIVE
		EL.	AHW=	MEAN	1.7	L HW=H+ha-LSA	F			1.1 4.0 6.		01 0' 1 10	_	1.3 7.3 6	7.3' 7.3' 6	= 96' and 126' RESPECTIVELY
	-		HH I	4	-	CONTROL	dc dc+D	-	IN DI DI DI	2 4		4.0' 4.0'	-		5/1 2	#1+2 :
	AATION		1		HEADWATER	OUTLET	Ke H		30.	0		0.0	_	0.7	5 0.8 1.3	14
	INFORMATION		TW ₁ = TW ₂ =	025 050 08 0100	HE/	CONT.	HW K	e-	5.65 0.4	1.00	241	1.0 0.1	2.3' AG	1	5.0 1.1	OF CULVERTS
÷.	ANNEL			$Q_1 = DESIGN DISCHARGE, SAY Q Q_2 = CHECK DISCHARGE, SAY Q$	1	-1		1.2	12 CFT	56-1	3		1.15		-	PATIONS:
	ID CH		SEE Skerthes	DISCHAR		SIZE	_	20.	×-7	-	7'×	-	24"	20.	00	
	C AN		ES	DESIGN	_	0		AK Su	323	1 0.		19	15	4	1	ACTUAL CA
	HYDROLOGIC AND CHANNEL		0 ₂ = 56	$\begin{pmatrix} 0 \\ 0_2 \\ 0_2 \\ 0_2 \\ 0_2 \\ 0_2 \\ 0_2 \\ 0_2 \\ 0_2 \\ 0_2 \\ 0_2 \\ 0_2 \\ 0_2 \\ 0_2 \\ 0_2 \\ 0_1 \\ 0_1 \\ 0_1 \\ 0_2 \\ 0_1 \\ 0_1 \\ 0_1 \\ 0_2 \\ 0_1 \\ 0_1 \\ 0_2 \\ 0_2 \\ 0_1 \\ 0_1 \\ 0_2 \\ 0_2 \\ 0_1 \\ 0_1 \\ 0_2 \\ 0_1 \\ 0_2 \\ 0_1 \\ 0_2 \\ 0_2 \\ 0_1 \\ 0_1 \\ 0_2 \\ 0_1 \\ 0_2 \\ 0_1 \\ 0_2 \\ 0_1 \\ 0_2 \\ 0_2 \\ 0_1 \\ 0_1 \\ 0_2 \\ 0_2 \\ 0_1 \\ 0_1 \\ 0_2 \\ 0_1 \\ 0_1 \\ 0_1 \\ 0_2 \\ 0_2 \\ 0_1 \\ 0_1 \\ 0_2 \\ 0_1 \\ 0_1 \\ 0_1 \\ 0_1 \\ 0_1 \\ 0_1 \\ 0_1 \\ 0_1 \\ 0_2 \\ 0_1 $	CULVERT	UE SCRIPTION		CMP #1	CULVERT #1 BOX CULVERT		CULVERT # 2	PUN CULVERI	CUEVERT # 3 CMP	CULVERT # 3	SUMMARY A DO	

Figure 7

•

. .

10010			*										DE	SIGNE	DESIGNER: BJA	×
-Uolo Al	HYDROLOGIC AND CHANNEL	ANN		INFORMATION	RM	ATIO	z					SI	SKETCH STATIC	DATE: 0		SEE SKETTHES
01 = <u>SEE SK</u> ETCHES	e TCM	S	WI	n 'i		T		AH	AHW=		11	L B	1 13	$\left\{ \right\}$		
$Q_1 = DESIGN DISCHARGE, SAY Q_{25}$ $Q_2 = CHECK DISCHARGE, SAY Q_{50} OR Q_{100}$	DISCHAP	RGE , S	AY O.	2 I S	0010	1~		ц	·]	MEAN	STRE	So= L= EAM VE	MEAN STREAM VELOCITY=			¥ {
CULVERT DESCRIPTION Q	SIZE	IN	INLET CONT.	INO	HEADWATER	DWATE	- 12	COMPUTATION	151	TION	SIKEAM	AM VE		1		
IENTRANCE TYPE)			30	MH	×e	Ξ	0	d+D	1 F	Poq	W PO LSO HI	HW	ONTROL W H	VELOCI	COST	COMMENTS
12	30	11.0		,61	0.5	1.0	1.3	6.1	1.0	6.1	1	1	,6.1			Recommended
CULVERT # 5 323 BOX CULVERT 46/FI	×,2 1	- Ze		200		30	0.4	4.0	1.1	4.0		30	4			0
+	_		-										2.0	1		Kecommended
+	-		+											1		
-			-										10	1		
			-				1							+		

Figure 7

TABLE 1 - ENTRANCE LOSS COEFFICIENTS

Outlet Control, Full or Partly Full

Entrance head loss $H_e = k_e \frac{v^2}{2g}$

Type of Structure and Design of Entrance

Coefficient ke

1.4

Pipe, Concrete

1

. 1

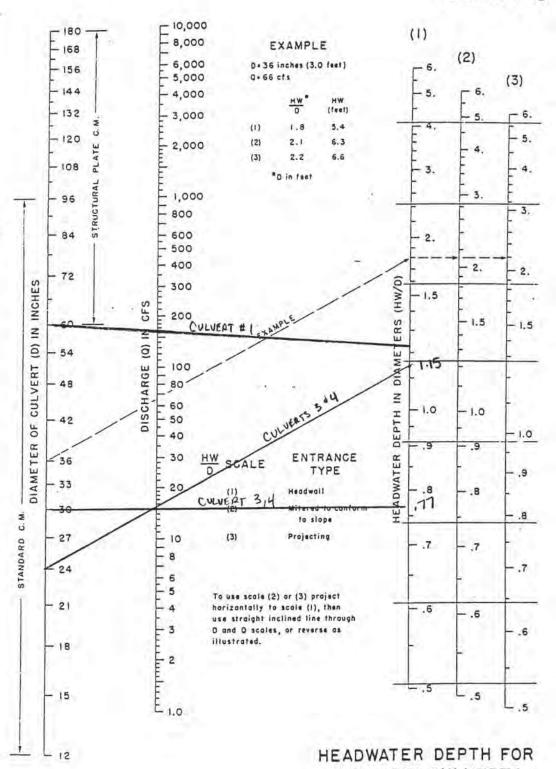
Se 1.

Projecting from fill, socket end (grow	ove	e-e	end	1)		6	÷	0.2
Projecting from fill, sq. cut end .				4		÷		0.5
Headwall or headwall and wingwalls								
Socket end of pipe (groove-end)		• '			÷			0.2
Square-edge				÷		÷,		0.5
Rounded (radius = 1/12D)					÷			0.2
Mitered to conform to fill slope								0.7
*End-Section conforming to fill slope				÷				0.5
Beveled edges, 33.7° or 45° bevels .				i.		à.		0.2
Side-or slope-tapered inlet								0.2

Pipe, or Pipe-Arch, Corrugated Metal

Projecting from fill (no headwall)	0.9	1
Headwall or headwall and wingwalls square-edge	0:5	1
Mitered to conform to fill slope, paved or unpaved		
· slope	0.7	
*End-Section conforming to fill slope	0.5 - CULVERTS 3,4	
Beveled edges, 33.7° or 45° bevels	0.2	
Side-or slope-tapered inlet	0.2	

Box, Reinforced Concrete

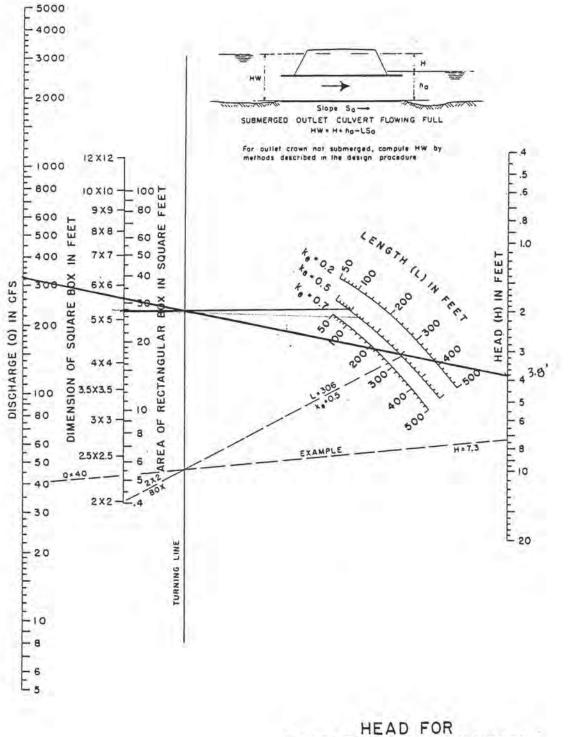

Headwall parallel to embankment (no wingwalls)	
Square-edged on 3 edges	0.5
Rounded on 3 edges to radius of 1/12 barrel	
dimension, or beveled edges on 3 sides	0.2
Wingwalls at 30° to 75° to barrel	
Square-edged at crown	0.4 - CULVERTS 1,2
Crown edge rounded to radius of 1/12 barrel	
dimension, or beveled top edge	0.2
Wingwall at 10° to 25° to barrel	
Square-edged at crown	0.5
Wingwalls parallel (extension of sides)	
Square-edged at crown	0.7
Side-or slope-tapered inlet	0.2

*Note:

"End Section conforming to fill slope," made of either metal or concrete, are the sections commonly available from manufacturers. From limited hydraulic tests they are equivalent in operation to a headwall in both inlet and outlet control. Some end sections, incorporating a closed taper in their design have a superior hydraulic performance." These latter sections can be designed using the information given for the beveled inlet, p. 5-13.

-12 F 600 (1) (3) (2) - 11 F 8 500 L10 8 EXAMPLE 5'x 2' 80x Q = 75 cfs Q/B = 15 cfs/ft. 10 F 400 7 8 6 adata a handa e 7 HW D 6 9 300 Inlet feet 5 6 1.75 3.5 5 (1) 5 8 (2) 1,90 3.8 4 200 (3) 2.05 4.1 4 3 7 E 3 3 CFS PER FOOT 100 6 (D/MH) 80 2 2. 60 HEADWATER DEPTH IN TERMS OF HEIGHT 5 1.5 1.5 RATIO OF DISCHARGE TO WIDTH (Q/B) IN HEIGHT OF BOX (D) IN FEET 40 1.5 30 have have 20 - 1.0 1.0 - 1.0 .9 Angle of 3 Wingwall Flare .9 .9 * 10 .8 8 8 .8 6 WINGWALL FLARE .7 .7 HW SCALE -.6 4 2 30" to 75" (1) 3 .6 ,6 90" and 15" (2) - .5 (3) O* (extensions E 2 of sides) - .5 .5 To use scale (2) or (3) project horizontally to scale (1), then - .4 use straight inclined line through D and Q scales, or reverse as Ę) illustrated. - ,8 .4 .4 E .6 L .35 .35 - .30 1 .5 HEADWATER DEPTH FOR BOX CULVERTS WITH INLET CONTROL

CHART I



2. i o

C. M. PIPE CULVERTS WITH INLET CONTROL

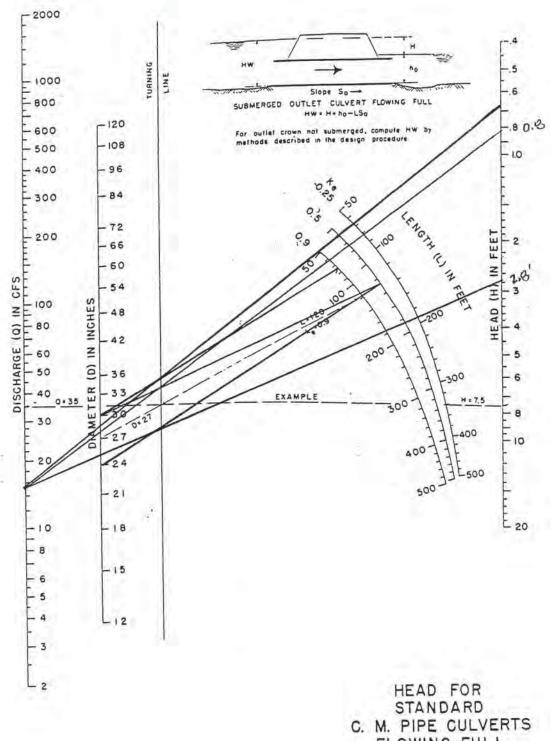

CHART 5

CHART 8 '

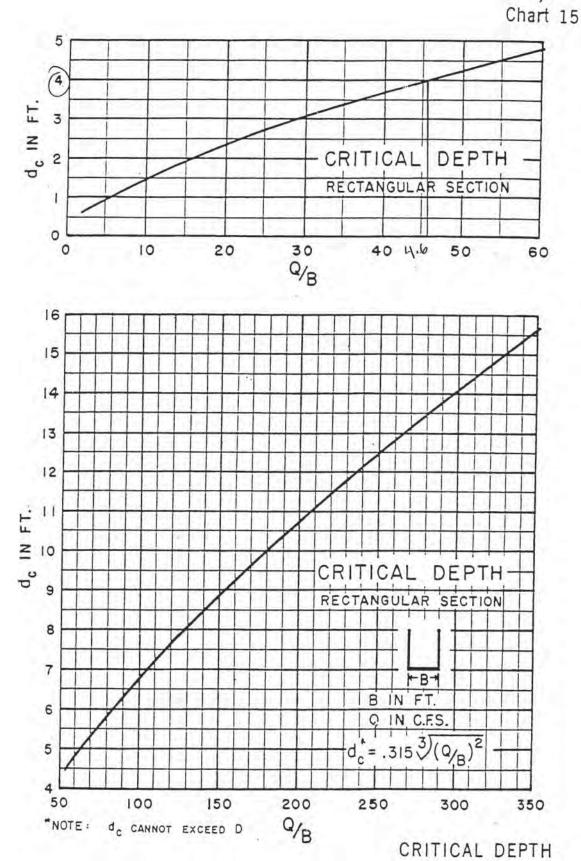
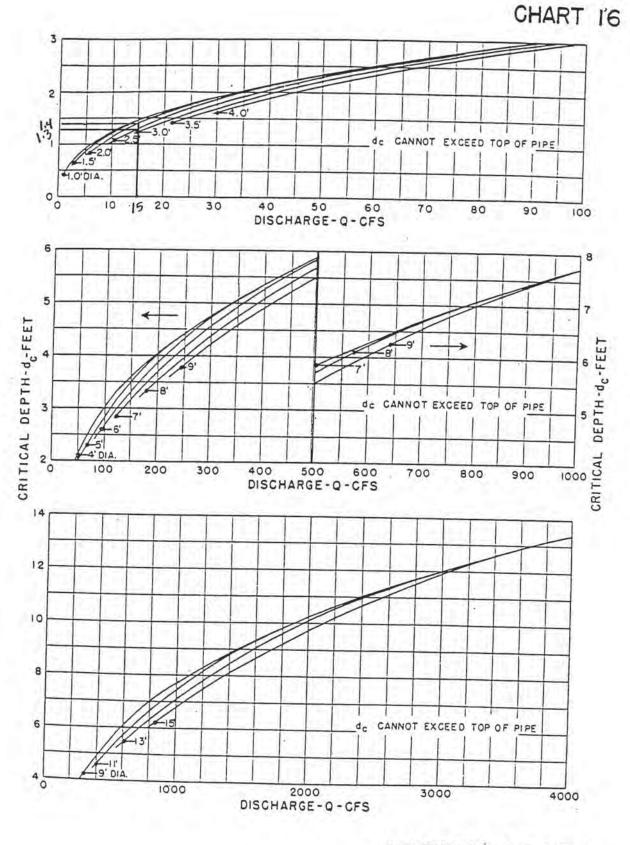

CONCRETE BOX CULVERTS FLOWING FULL n = 0.012

CHART H


÷

FLOWING FULL n=0.024

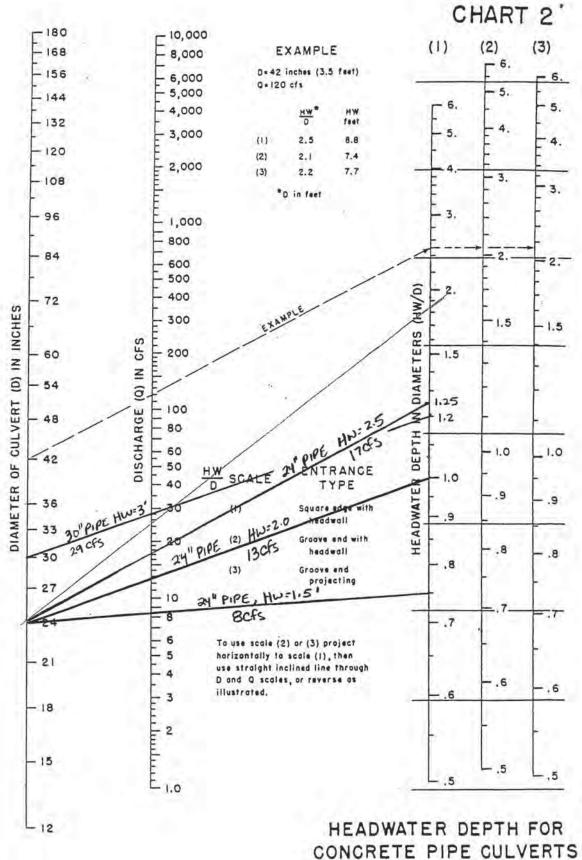
RECTANGULAR SECTION

2

CRITICAL DEPTH CIRCULAR PIPE

744 Heartland Trail Madison, WI 53717-1934 Tel. (608) 831-4444 • Fax (608) 831-3334		SHEETOF
	AND POWER - POO	PROJECT / PROPOSAL NO.
TEORIE JI LING	01	3081.40
PREPARED BY: B.J.K	DATE: 9/00	FINAL D
CHECKED BY:	DATE:	REVISION 🗆

DOWNSLOPE FLUME SIZING


1. SIZE INLET PIPES

NOTE: PEAK FLOWS OBTAINED FROM RUNOFF CALCULATIONS PEAK FLOWS ADDED TO OBTAIN TOTALS (CONSERVATIVE)

ESTABLISH INLET PIPE SIZES AND BERM HEIGHTS USING INLEF CONTROL NOMOGRAPHS!

FLOW RANGE	INL FT PIPE SIZE	Hwy	REQ'O BERM HEIGHT
0-B cfs	24"	1.5'	2.5'
9-13 cfs	24"	2.0'	2.5'
14-17 CFS	24"	2.5	3.0'
18-29 CFS	30"	3.0'	3.5'

WITH INLET CONTROL

744 Heartland Trail Madison, WI 53717-1934 • Tel. (608) 831-4444 • Fax (608) 831-3334		SHEETOF
PROJECT / PROPOSAL NAME / LOCATION: DAIRY SUBJECT: FLUME SIZING	LAND POWER - POO	PROJECT/PROPOSAL NO. 3081 40
PREPARED BY: BJK	DATE: 9100	FINAL D
CHECKED BY:	DATE:	REVISION O

CHECK STRAIGHT PIPE FLUME SIZING

WORST-CASE FLOW - FLUME #1

SLOPE = 20% (AT RIDGE) PIPE DIA = 1.5' MAX FLOW = 48 CFS

FULL PIPE FLOW :

 $\begin{aligned} \mathcal{Q} &= \frac{1.49}{7L} R^{2/3} 5^{1/2} A \\ \mathcal{R} &= 0.010 \text{ for HOPE PIPE} \\ R &= D/4 = 1.5/4 = 0.375 \\ 5 &= 0.20 \text{ FHFH} \\ A &= \pi D^2/4 = \pi (1.5)^2/4 = 1.77 \text{ FH}^2 \\ \end{aligned}$ $\begin{aligned} \mathcal{Q} \text{ FULL} &= \frac{1.49}{0.01} (0.375)^{2/3} (0.20)^{1/2} (1.77) \end{aligned}$

= 61 cfs > 48 cfs 0K V

A WATER RESOURCES TECHNICAL PUBLICATION

Engineering Monograph No. 25

Hydraulic Design of Stilling Basins and Energy Dissipators

By A. J. PETERKA

Denver, Colorado

United States Department of the Interior

BUREAU OF RECLAMATION

NOV 22 1999

STILLING BASIN FOR PIPE OR OPEN CHANNEL OUTLETS

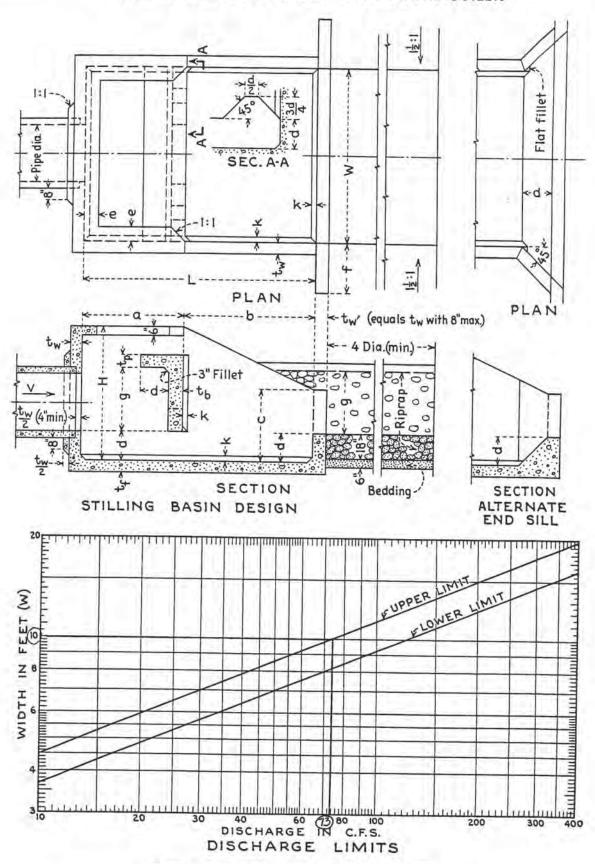


FIGURE 42.-Impact-type energy dissipator (Basin VI).

83

86

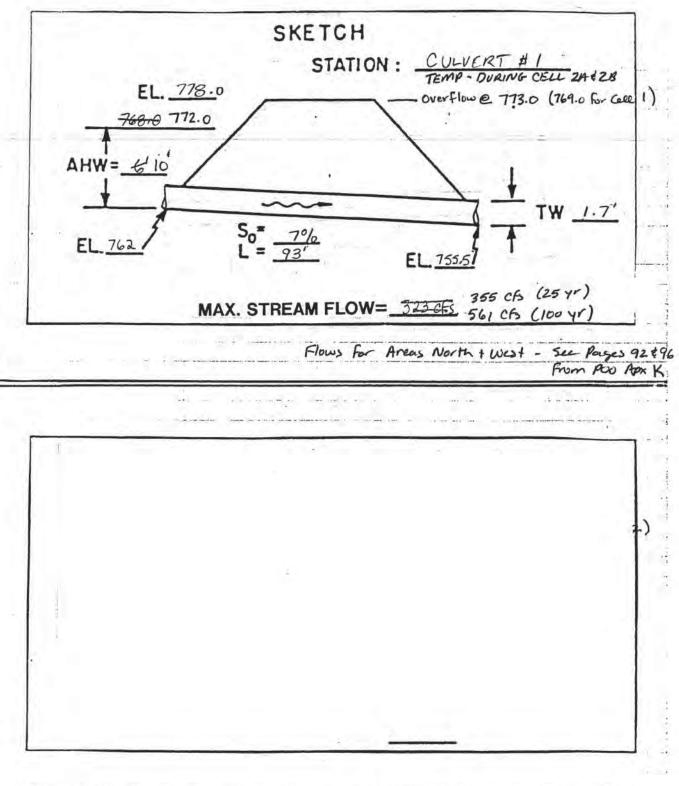
÷.

HYDRAULIC DESIGN OF STILLING BASINS AND ENERGY DISSIPATORS

	1		dis-													-	Callon		
	Dia In.	Area (sq ft)	cliarge Q	M	п	Г	đ	q	o	p	ø	1	8	3	t,	th	t,	ж	Suggest
1	(1)	(2)	(3)	(4)	(2)	(9)	(2)	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	t (61)
	18	1.77	2 21	5-6	4-3	7-4	3-3	4-1	2-4	0-11	0-6	1-6	2-1	4	616	4	4	6	
	24	3.14	38	6-9	5-3	0-6	3-11	5-1	2-10	1-2	0-6	5-0	9-6	2	612	2 4	2 4	0 0	
	30	4.91	69	8-0	6-3	10-8	4-7	1-9	3-4	1	0-8	2-6	3-0-2	9 4	615			0 0	1
73ch3	₩ 36	7.07	85	9-3	7-3	12-4	5-3	1-2	3-10	1-7	0-8	3-0	3-6		211	- 0	- 0	0 0	
	42	9.62	115	10-6	8-0	14-0	0-9	8-0	4-5-	1-9	0-10	3-0	3-11	- 0	010		0 0	0 4	
	48	12.57	151	11-9	0-6	15-8	6-9	8-11	4-11	2-0	01-0	5-0	110	0 0	012		0 0	* -	
	54	15.90	101	13-0	6-6	17-4	7-4	10-0	2-2	2-2	1-0	3-0	11-1	01	1012		0 0	* *	
	60	19.63	236	14-3	10-9	19-0	8-0	11-0	5-11	2-5	9	3-0	5-4	11	1114		0 0	+ 4	
	72	28. 27	339	16-6	12-3	22-0	9-3	12-9	6-11	2-9	1-3	3-0	6-2	12	12%	12	0 00	9	14.0

TABLE 11.-Stilling basin dimensions (Basin VI). Impact-type energy dissipator.

1 Suggested pipe will run full when velocity is 12 feet per second or half full when velocity is 24 feet per second. Size may be modified for other velocities by Q=AV, but relation between Q and basin dimensions shown must be maintained.

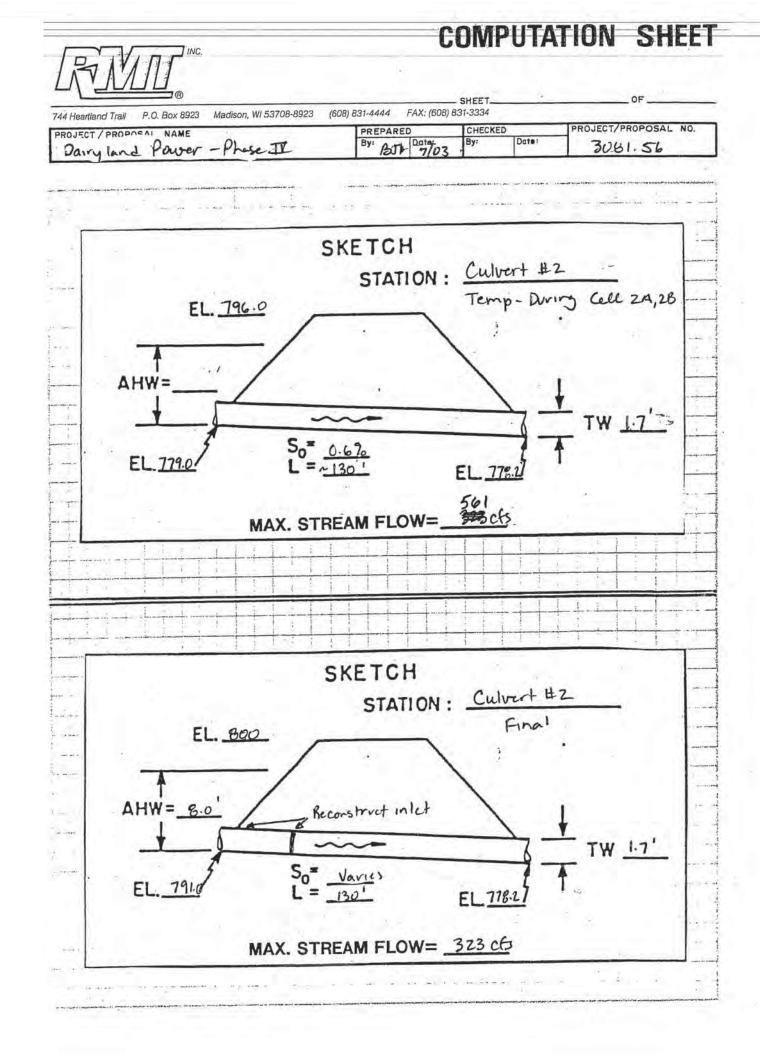

³ For discharges less than 21 second-feet, obtain basin width from curve of Fig. 42. Other dimensions proportional to W; $H = \frac{3W}{4}$, $L = \frac{4W}{3}$, $d = \frac{W}{6}$, etc.

¹ Determination of riprap size explained in Sec. 10.

Calculations – Temporary Culverts, Operational Conditions

COMPUTATION SHEET JINC. SHEET OF 744 Heartland Trail P.O. Box 8923 Madison, WI 53708-8923 (608) 831-4444 FAX: (608) 831-3334 PROJECT / PROPOSAL NAME CHECKED PREPARED PROJECT/PROPOSAL NO. By: BJA Dotayo Date: DPC - PLAN OF OPERATION By: 3081.40 REV 7/03

Culvert Calculator Report Culvert 1 - Operational (25-Year)


Solve For: Headwater Elevation

Culvert Summary Allowable HW Elevation	773.00 ft	Harden Brandbard	101	-
Computed Headwater Elevation	769.75 ft	Headwater Depth/ Height	1.94 355.00	
Inlet Control HW Elev	769.18 ft	Discharge Tailwater Elevation	757.20	1.01.0
Outlet Control HW Elev	769.75 ft	Control Type	Entrance Control	
Grades				-
Upstream Invert	762.00 ft	Downstream Invert	755.50	ft
Length	93.00 ft	Constructed Slope	0.069892	ft/ft
Hydraulic Profile			_	
Profile	S2	Depth, Downstream	2.10	ft
Slope Type	Steep	Normal Depth	1.58	ft
Flow Regime	Supercritical	Critical Depth	4.00	ft
Velocity Downstream	24.17 ft/s	Critical Slope	0.008921	ft/ft
Section				
Section Shape	Box	Mannings Coefficient	0.013	
Section Material	Concrete	Span	7.00	ft
Section Size	7 x 4 ft	Rise	4.00	ft
Number Sections	1			
1				
Dutlet Control Properties				
Outlet Control HW Elev	769.75 ft	Upstream Velocity Head	2.50	ft
Ke	0.50	Entrance Loss	1.25	ft
nlet Control Properties				
inlet Control HW Elev	769.18 ft	Flow Control	Submerged	1
Inlet Type 18 to 33.7 ° wingwall	flare, d=0.0830	Area Full	28.0	ft²
<	0.48600	HDS 5 Chart	9	
M	0.66700	HDS 5 Scale	2	
C	0.02490	Equation Form	2	
Y	0.83000			

Culvert Calculator Report Culvert 1 - Operational (100-Year)

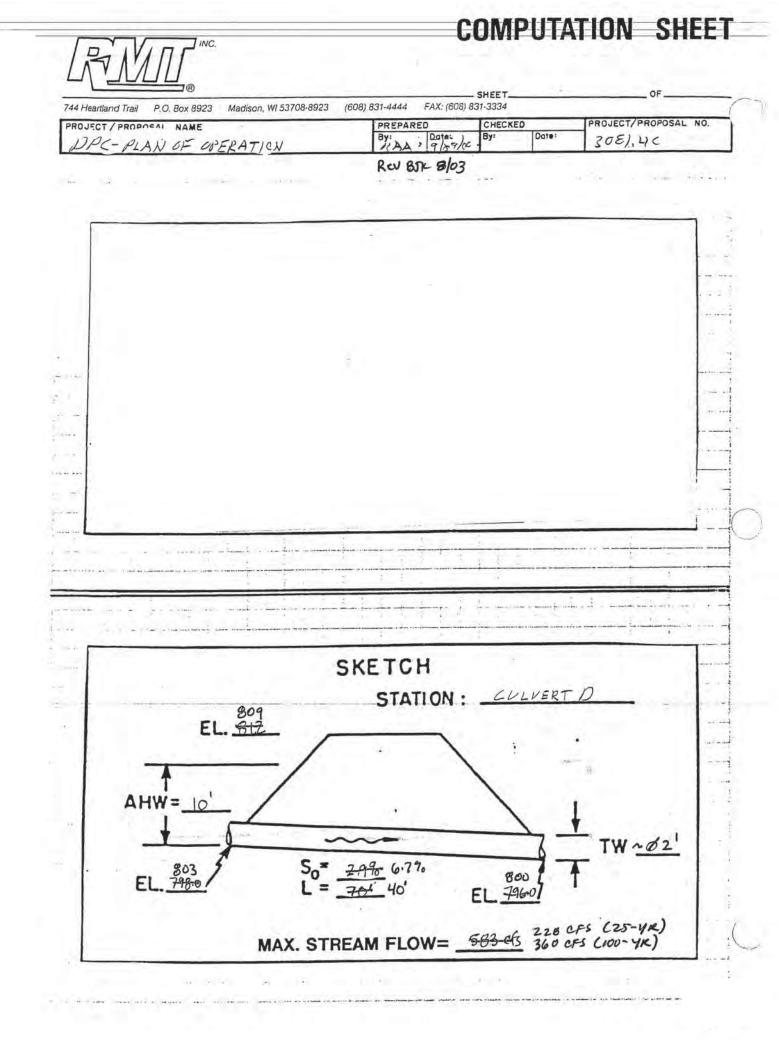
Joive For: Headwater Elevation

Culvert Summary					_
Allowable HW Elevation	773.00		Headwater Depth/ Height	3.34	
Computed Headwater Elevation	775.36		Discharge	561.00	
Inlet Control HW Elev	775.18		Tailwater Elevation	757.20	ft
Outlet Control HW Elev	775.36	ft	Control Type	Entrance Control	-
Grades					
Upstream Invert	762.00	ft	Downstream Invert	755.50	ft
Length	93.00	ft	Constructed Slope	0.069892	ft/ft
Hydraulic Profile					-
Profile	S2		Depth, Downstream	2.93	ft
Slope Type	Steep		Normal Depth	2.18	fť
Flow Regime	Supercritical		Critical Depth	4.00	ft
Velocity Downstream	27.37	ft/s	Critical Slope	0.022277	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.013	in.
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 4 ft		Rise	4.00	ft
Number Sections	1				
)					
Sutlet Control Properties					
Outlet Control HW Elev	775.36	ft	Upstream Velocity Head	6.24	
Ke	0.50		Entrance Loss	3.12	ft
Inlet Control Properties					
nlet Control HW Elev	775.18	ft	Flow Control	Submerged	
nlet Type 18 to 33.7 ° wingwall	flare, d=0.0830		Area Full	28.0	ft2
к	0.48600		HDS 5 Chart	9	
M	0.66700		HDS 5 Scale	2	
C	0.02490		Equation Form	2	
Y	0.83000				

Culvert Calculator Report Culvert 2 - Operational

Suive For: Headwater Elevation

Culvert Summary				
Allowable HW Elevation	796.00 ft	Headwater Depth/ Height	3.86	
Computed Headwater Elevation	794.45 ft	Discharge	561.00	cfs
Inlet Control HW Elev	792.30 ft	Tailwater Elevation	779.90	ft
Outlet Control HW Elev	794.45 ft	Control Type	Outlet Control	<u> </u>
Grades				
Upstream Invert	779.00 ft	Downstream Invert	778.20	ft
Length	130.00 ft	Constructed Slope	0.006154	ft/ft
Hydraulic Profile	-			
Profile	Pressure	Depth, Downstream	4.00	ft
Slope Type	N/A	Normal Depth	N/A	ft
Flow Regime	N/A	Critical Depth	4.00	ft
Velocity Downstream	20.04 ft/s	Critical Slope	0.022277	ft/ft
Section				
Section Shape	Box	Mannings Coefficient	0.013	
Section Material	Concrete	Span	7.00	ft
Section Size	7 x 4 ft	Rise	4.00	ft
Number Sections	1			
outlet Control Properties				
Outlet Control HW Elev	794.45 ft	Upstream Velocity Head	6.24	ft
Ke	0.50	Entrance Loss	3.12	ft
nlet Control Properties				
Inlet Control HW Elev	792.30 ft	Flow Control	Submerged	1.00
Inlet Type 18 to 33.7 ° wingwall fla	are, d=0.0830	Area Full	28.0	ft ²
к	0.48600	HDS 5 Chart	9	
M	0.66700	HDS 5 Scale	2	
C	0.02490	Equation Form	2	
Y	0.83000			


.

Culvert Calculator Report Culvert 2 - Final

Solve For: Headwater Elevation

Culvert Summary					
Allowable HW Elevation	799.00	ft	Headwater Depth/ Height	1.78	
Computed Headwater Elevation	798.10	ft	Discharge	323.00	cfs
Inlet Control HW Elev	797.44	ft	Tailwater Elevation	779.90	ft
Outlet Control HW Elev	798.10	ft	Control Type	Entrance Control	
Grades					
Upstream Invert	791.00	ft	Downstream Invert	778.20	ft
Length	130.00	ft	Constructed Slope	0.098462	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.60	ft
Slope Type	Steep		Normal Depth	1.32	ft
Flow Regime	Supercritical		Critical Depth	4.00	ft
Velocity Downstream	28.87	ft/s	Critical Slope	0.007385	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 4 ft		Rise	4.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	798.10	ft	Upstream Velocity Head	2.07	ft
Ke	0.50	-	Entrance Loss	1.03	ft
Inlet Control Properties					
Inlet Control HW Elev	797.44	ft	Flow Control	Submerged	
Inlet Type 18 to 33.7 ° wingwall	flare, d=0.0830		Area Full	28.0	ft ²
к	0.48600		HDS 5 Chart	9	
M	0.66700		HDS 5 Scale	2	
С	0.02490		Equation Form	2	
Y	0.83000				

Page 1 of 1

Culvert Calculator Report Culvert D - 25 Year

olve For: Headwater Elevation

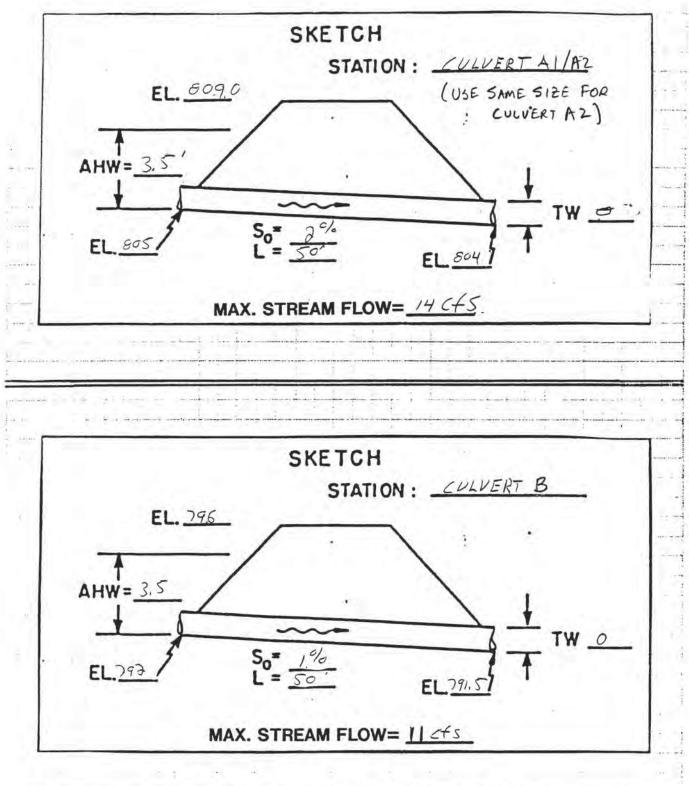
Culvert Summary		-			
Allowable HW Elevation	809.00	ft	Headwater Depth/ Height	1.40	
Computed Headwater Elevation	808.61	ft	Discharge	228.00	cfs
Inlet Control HW Elev	807.84	ft	Tailwater Elevation	802.00	ft
Outlet Control HW Elev	808.61	ft	Control Type	Entrance Control	
Grades					
Upstream Invert	803.00	ft	Downstream Invert	800.00	ft
Length	45.00	ft	Constructed Slope	0.066667	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.74	ft
Slope Type	Steep		Normal Depth	1.19	ft
Flow Regime	Supercritical		Critical Depth	3.21	ft
Velocity Downstream	18.70	ft/s	Critical Slope	0.003975	ft/ft
Section					-
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 4 ft.		Rise	4.00	ft
Number Sections	1				
	200				
Outlet Control Properties					
Outlet Control HW Elev	808.61	ft	Upstream Velocity Head	1.60	ft
Ke	0.50		Entrance Loss	0.80	ft
nlet Control Properties					_
inlet Control HW Elev	807.84	ft	Flow Control	Submerged	
nlet Type 18 to 33.7 ° wingwall t	flare, d=0.0830		Area Full	28.0	ft2
K.	0.48600		HDS 5 Chart	9	
M	0.66700		HDS 5 Scale	2	
C	0.02490		Equation Form	2	
Y	0.83000				

Culvert Calculator Report Culvert D - 100 Year

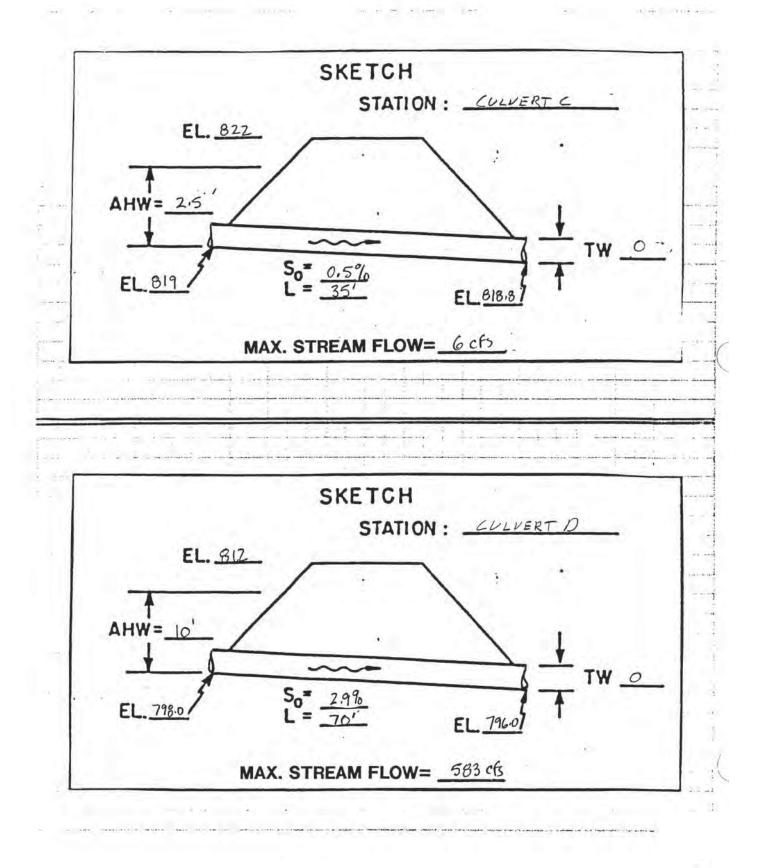
olve For: Headwater Elevation

Culvert Summary					
Allowable HW Elevation	809.00	10	Headwater Depth/ Height	1.96	
Computed Headwater Elevation	810.85	ft	Discharge	360.00	cfs
Inlet Control HW Elev	810.30	ft	Tailwater Elevation	802.00	ft
Outlet Control HW Elev	810.85	ft	Control Type	Entrance Control	<u>.</u>
Grades					
Upstream Invert	803.00	ft	Downstream Invert	800.00	ft
Length	45.00	ft	Constructed Slope	0.066667	ft/ft
Hydraulic Profile				1.000	
Profile	S2		Depth, Downstream	2.52	ft
Slope Type	Steep		Normal Depth	1.63	ft
Flow Regime	Supercritical		Critical Depth	4.00	ft
Velocity Downstream	20.38	ft/s	Critical Slope	0.009174	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.013	0
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 4 ft		Rise	4.00	ft
Number Sections	1	-			
)		_			_
Jutlet Control Properties					
Outlet Control HW Elev	810.85	ft	Upstream Velocity Head	2.57	
Ke	0.50	_	Entrance Loss	1.28	ft
nlet Control Properties					
Inlet Control HW Elev	810.30	ft	Flow Control	Submerged	1.7
nlet Type 18 to 33.7 ° wingwall	flare, d=0.0830		Area Full	28.0	ft ²
K	0.48600		HDS 5 Chart	9	
M	0.66700		HDS 5 Scale	2	
C	0.02490		Equation Form	2	
Y	0.83000				

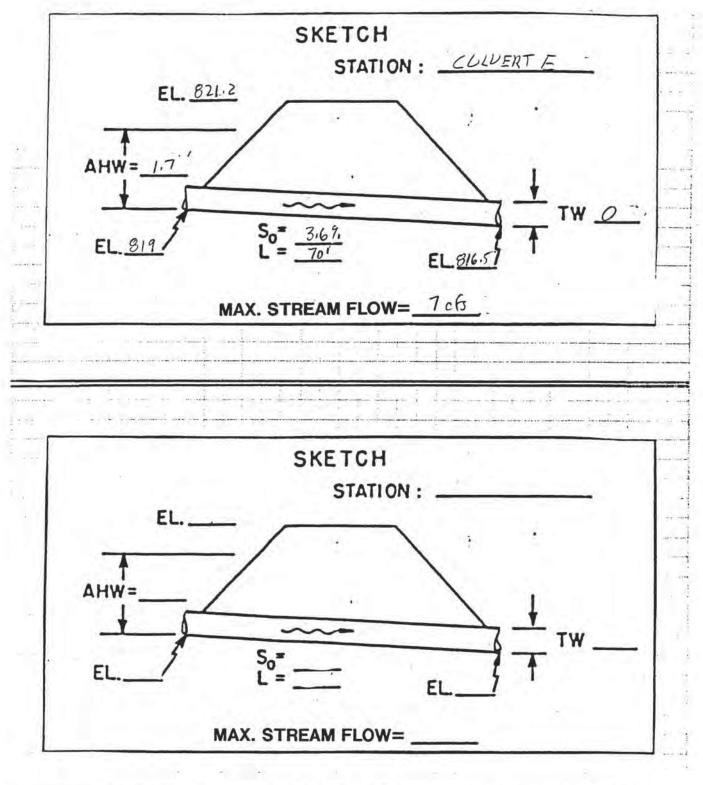
Culvert Calculator Report Flume MH


Solve For: Headwater Elevation

(


Culvert Summary		1	≥ 827.5, adjacent pipe in	rlet	
Allowable HW Elevation	8.00		Headwater Depth/ Height	1.98	
Computed Headwater Elev	ation 825.18	ft	Discharge	73.00	cfs
Inlet Control HW Elev	825.18	ft	Tailwater Elevation	780.67	ft
Outlet Control HW Elev	824.72	ft	Control Type	Inlet Control	
Grades				-	
Upstream Invert	819.25	ft	Downstream Invert	779.00	ft
Length	185.00	ft	Constructed Slope	0.217568	ft/ft
Hydraulic Profile		-	2		
Profile	S2		Depth, Downstream	0.91	ft
Slope Type	Steep		Normal Depth	0.86	ft
Flow Regime	Supercritical		Critical Depth	2.70	ft
Velocity Downstream	40.57	ft/s	Critical Slope	0.006248	ft/ft
Section			A		
Section Shape	Circular	_	Mannings Coefficient	0.010	
Section Material	PVC		Span	3.00	ft
Section Size	36 inch		Rise	3.00	ft
Number Sections	- 1				
1					
Outlet Control Properties					
Outlet Control HW Elev	824.72	ft	Upstream Velocity Head	1.85	ft
Ke	0.50	_	Entrance Loss	0.92	ft
Inlet Control Properties					
Inlet Control HW Elev	825.18	ft	Flow Control	Submerged	14
Inlet Type So	quare edge w/headwall		Area Full	7.1	ft²
к	0.00980		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale		
C	0.03980		Equation Form	1	
Y	0.67000				

I WIRKER JUPPLY LARRY WOOD 262 -255- 3030 lid and 500 5/27/03 5 GEVEN 7 VF BARREL PLATE I" 2200 - 2,500 (inch. \$500 for lid) ER TO PLAN SHEET 6) 3.75' 400 SERIES POINT SEE PLAN SHEETS 5 & 6 SE 500 SERIES POINT V 825.19 1% SLOPE 824.0 SEE PLAN SHEETS 5 & 6 ELEVATION VARIES MIN. 82275 320,7 N MIN. (GCL) LEACHATE GEOTEXTILE CUSHION COLLECTION/ 319.25 60 MIL HDPE GEOMEMBRANE -SYSTEM 2' MIN SEE DETAIL (COMPACTED SELECT LOW PERMEABILITY SOIL


FIN				U	UMPUI	ATION SHEET
744 Heartland Trail	P.O. Box 8923	Madison, WI 53708-8923	(608) 831-44	44 FAX: (608)	- SHEET	OF
PROJECT / PROP		PERATION	PRE By:	A , Dote:	CHECKED	PROJECT/PROPOSAL NO. 308/,40

LANDI "NC.		UNPUTA	ATION SHEET
744 Heartland Trail P.O. Box 8923 Madison, WI 53708-8923 (60	08) 831-4444 FAX: (608) 8	SHEET	OF
DPC-PLAN OF OBERATION	PREPARED By: Date:	CHECKED By: Date:	PROJECT/PROPOSAL NO.

RAN					JIVIT	UIF	ATION	SHEEI
744 Heartland Trail	P.O. Box 8923	Madison, WI 53708-8923	(608) 831-4444	FAX: (608) 83	HEET			_ OF
PROJECT / PROP	and the second se	OPERATION	PREPAR By: AA		CHECKED By:	Dates	PROJECT/P 3081,1	PROPOSAL NO.

DESIGNER: JAA	ETCH	- T		COMMENTS		OK	o,X		RECOMMENDED		OK
ESIGNE	CH CH		1 3	TLET 1	AE1 00					1	-
	SKETCH		STREAM VELOCITY =								
	0	5 19	So" L"	AM V	MH		ss.e		1-1		<u>e</u>
		INI		STREAM + ho -LSo	LSo		-		0.1		2.0
			MEAN	SFISH	04		SH-1	-	<u>و</u>	1	Ξ
		- MHY	3	151 1	-				0		5
		A	ω.	COMPIC	2.1		Shil	1	2	D'I	
	N			L CO	141		1.4	1.2	1	0.0	
	ATIC	1	1-	HEADWATER OUTLET	-		1.6	0.8		1.0	-
	ORN	1	0100	HEAD	6.0		6.0	6.0		6.0	
	INF	TW ₁ = 1 1W ₂ = 1	025 050 OR	INLET CONT	9.3	1	2	2.0		1,3	
1	ANNEL INFORMATION		E , SAY	INLET	1.15	(P	1.0		.65	TIONS:
100		ICHES	SCHARG	SIZE	1,he	11-	. R/	24"		24"	
5	O ANE	SEE SKETCHES	ESIGN DI	ø	H	1	Z			0	OMME
PROJECT: 201 C	HYDROLOGIC AND CH	01 = <u>564</u> 02 =	$\left(\begin{array}{c} Q_1 = \text{ DESIGN DISCHARGE , SAY } Q_{25} \\ Q_2 = \text{ CHECK DISCHARGE , SAY } Q_{50} \text{ OR } Q_{100} \end{array}\right)$	CULVERT DESCRIPTION ENTRANCE TYPE)	CULVERT A CIND-PROTECTIN		Concrete	CULVERT B	CMB	CULVERT C	SUMMARY & RECOMMENDAT

<u>,</u> 1

Figure 7

÷

4

DESIGNER: J3AA	DATE: 9/39/00 TCH STATION: SEE SKETCHES				COMMENTS	ok					
L.	9/9-	1	EL		COST	1			-	-	
ESIGNI	DATE: TCH TATION		, , ,	"	ELOCIT.	^			1		-
ā	DATI SKE TCH STATIC	5	LIDCII	VELOCITY=	M H M	1.4			1		
	S	$\langle B $	MEAN STREAM VELOCITY =	AM VE	HW			is			
			STRE	STREAM	$\frac{HW=H+h_0-LS_0}{W}$	215		and			
5.9	E.	116	EAN	ATION	+ H = 04	トニ		1,2			
		MHA .		5	F	0		16413			
		AH -	ц	COMPUTATION	H dc dc+D	1:1		cue			-
	z	£.		- 12	que la	0.8					-
	INFORMATION	1	1~	HEADWATER	H	0.4		PERMARNI	1	1	-
	ORM		0100	HEAD	×	6.0		PER		T	
	INF	TW, =	25 50 OR	INLET CONT	MH	1.4		U 15			1
<u>,</u>	NEL	11	SAY Q	TET	No	1.0	1	Few	+	+	
100	HAN	S	ARGE	14			-	SAME	+	+	ATION
1	ND C	TCH	DISCH	3/12		24"	1		-		VEND
CPC -	IC A	XX	DESIGN	0		7		583			COMN
PROJECT: LIPC	HYDROLOGIC AND CHANNEL	01 = <u>SEE SKE</u> TCHES	(Q1 = DESIGN DISCHARGE , SAY Q25 (Q2 = CHECK DISCHARGE , SAY Q50 OR 0100	CULVERT DESCRIPTION	LULVERTE	Chip-pile JECTINK		CULVERT D 7'XY'BOX			SUMMARY & RECOMMENDATIONS

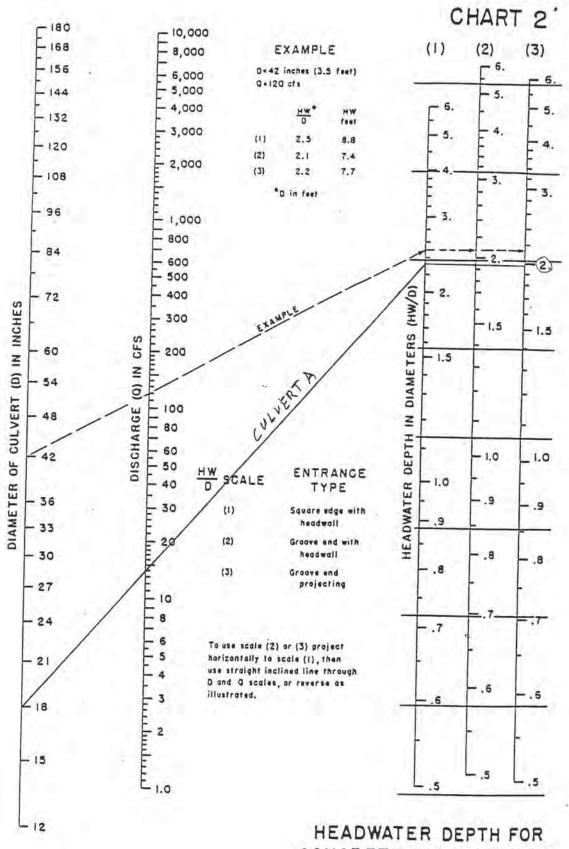
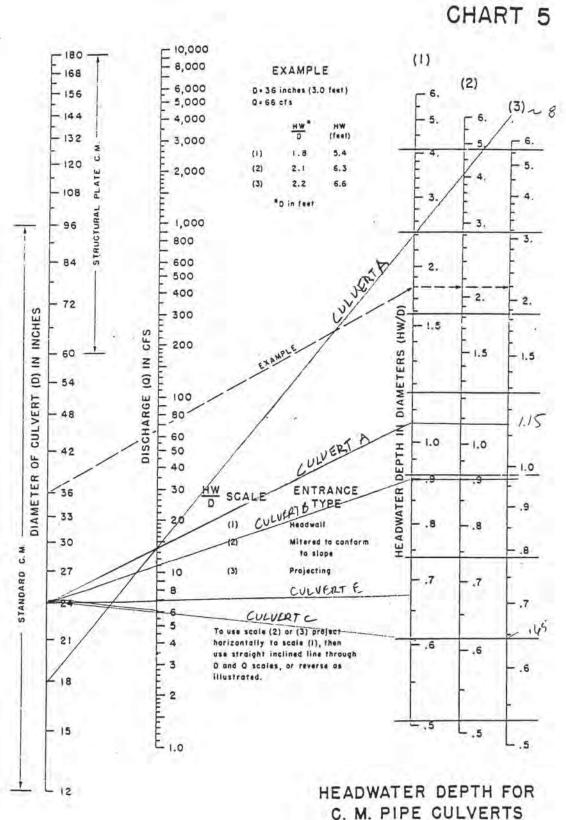

8

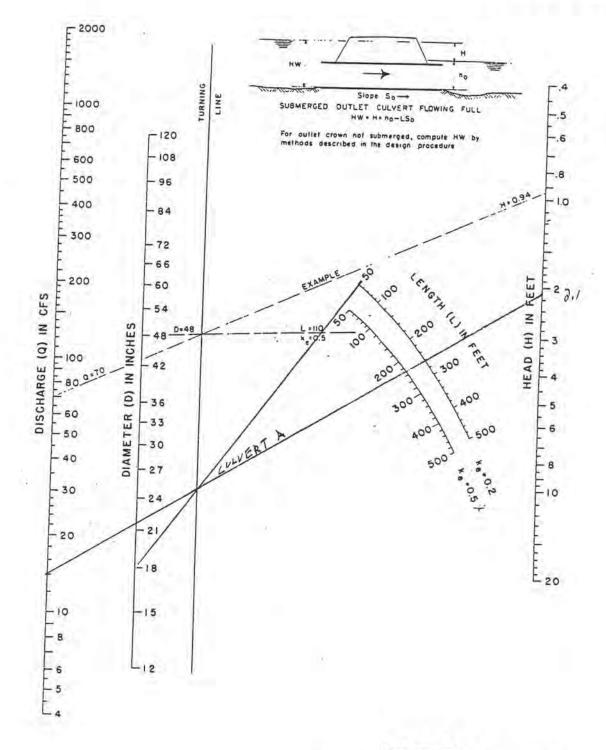
Figure 7

ŝ


.

-

0.770


CONCRETE PIPE CULVERTS WITH INLET CONTROL

.

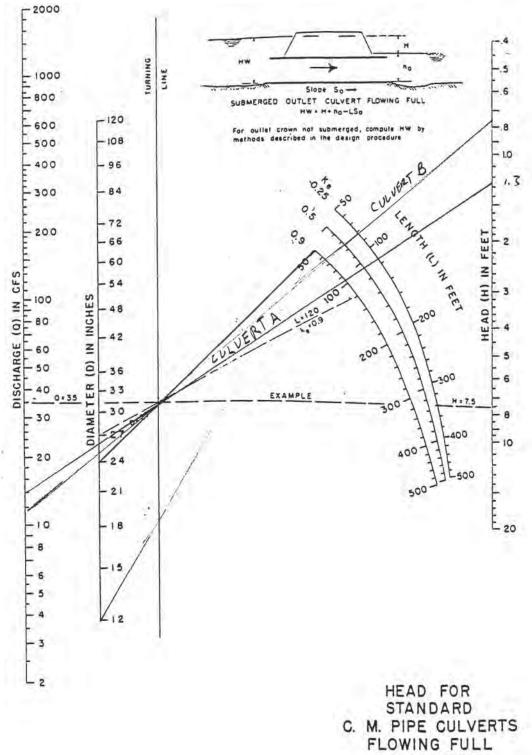

WITH INLET CONTROL

CHART 9

HEAD FOR CONCRETE PIPE CULVERTS FLOWING FULL n=0.012

CHART H

n=0.024

4.0 1.4 3.0 de CANNOT EXCEED TOP OF PIPE 0.0 O'DIA. CULVERTA" C/E 10 DISCHARGE-Q-CFS CULVERT B + CRITICAL DEPTH-d_FEET CRITICAL DEPTH-dc-FEET de CANNOT EXCEED TOP OF PIPE +7 6' 5' 4'DIA DISCHARGE -Q - CFS T de CANNOT EXCEED TOP OF PIPE 43' 9' DIA 10.00 DISCHARGE - Q - CFS

CRITICAL DEPTH CIRCULAR PIPE

CHART I'6

TABLE 1 - ENTRANCE LOSS COEFFICIENTS

Outlet Control, Full or Partly Full

Entrance head loss $H_e = k_e \frac{v^2}{2g}$

Type of Structure and Design of Entrance

Coefficient ke

٩.

Pipe, Concrete

4 . 10

New York

. th

24

8

1. A. A.

1.

Projecting from fill, socket end (groove-end)				0.2
Projecting from fill, sq. cut end	4		÷ .	0.51
Headwall or headwall and vingwalls Socket end of pipe (groove-end)	1			0.2
Square-edge			1997 - M	0.5
Rounded (radius = 1/12D)	÷	•	• •	0.2
Mitered to conform to fill slope *End-Section conforming to fill slope				0.7
Beveled edges, 33.7° or 45° bevels				0.5
Side-or slope-tapered inlet				0.2
	1.20	1	2	

Pipe, or Pipe-Arch, Corrugated Metal

Projecting from fill (no headwall)	0.9
Headwall or headwall and wingwalls square-edge	0:5
Mitered to conform to fill slope, paved or unpaved	
• slope	0.7
*End-Section conforming to fill slope	0.5
Beveled edges, 33.7° or 45° bevels	0.2
Side-or slope-tapered inlet	0.2

Box, Reinforced Concrete

Headwall parallel to embankment (no wingwalls)	
Square-edged on 3 edges	0.5
dimension, or beveled edges on 3 sides	0.2
Wingvalls at 30° to 75° to barrel	
Square-edged at crown	0.4
Crown edge rounded to radius of 1/12 barrel	
dimension, or beveled top edge	0.2
Wingwall at 10° to 25° to barrel	
Square-edged at crown	0.5
Wingwalls parallel (extension of sides)	0.9
Square-edged at crown	07
Side of class to and the	0.7
Side-or slope-tapered inlet	0.2

*Note: "End Section conforming to fill slope," made of either metal or concrete, are the sections commonly available from manufacturers. From limited hydraulic tests they are equivalent in operation to a headwall in both inlet and outlet control. Some end sections, incorporating a closed taper in their design have a superior hydraulic performance." These latter sections can be designed using the information given for the beveled inlet, p. 5-13.

Vegetation Information

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised July 2024

***** NORTH AMERICAN GREEN - ECHDS VER.IV - SLOPE PROTECTION - ENGLISH USER SPECIFIED - PERMANENT PROTECTION RESULTS ***** PROJECT NAME: Dairyland Power Coop. PROJECT NO .: 3081.33 COMPUTED BY: BJK DATE: 10-06-1998 SLOPE DESCRIPTION: 2:1 Slopes Slope Gradient: 2.00:1 Slope Length: 50 feet Soil Type: Clay Loam (K= 0.21) -Annual R Factor: 125.0 Slope Reach Material Type Density LS C feet 0 - 30 Est. Veg. 75-95% 4.10 .020 Mix 30 -50 P300 75-95% 7.35 .002 Mix Slope Reach Material Type Density ASLbare ASLmat SLT Sf Recommend feet inch inch inch For Slope's 0'-30' Use Mix No. 20 Vegetation 0 -30 Est. Ved. Mix 75-95% 0.641 0.013 0.03 2.3 STABLE 30 -50 P300 75-95% Mix 1.149 0.002 0.03 13.1 STABLE For slopes > 30', use permanant 0 . 50 Composite 0.844 0.009 evosion matting on bottom Vegetation Density=Percentage of soil coverage provided by vegetation Portion of slope (below 30') C=Cover material performance factor (Fraction of soil loss of unprotected) And No. 20 Vesetation on ASLbare=Average Soil Loss potential of unprotected soil (uniform inches) upper portion ASLmat=Average Soil Loss potential w/material (uniform inches) SLT=Soil Loss Tolerance for slope segment (uniform inches) Sf=Safety Factor - See Attached For Composite=Average soil loss from total slope length (uniform inches) Vegetation Types

630

Species Common Name	Species Botanical Name	Acceptable Varieties
Kentucky Bluegrass		
Red Fescue	Festuca rubra	Creeping
Hard Fescue		Improved
Tall Fescue		Improved turf type
Salt Grass	Puccinella distans	Fult's
Redtop	Agrostis alba	
Timothy	Phleum pratense	
Little Bluestem*	Andropogon scoparius	
Sideoats Grama*	Bouteloua curtipendula	a
Canada Wild Rye*	Elymus canadensis	
Perennial Ryegrass	Lolium perenne	
Perennial Ryegrass	Lolium perenne	Improved Fine
	Lolium multiflorum	
Alsike Clover	Trifolium hybridum	
Red Clover	Trifolium pratense	
White Clover	Trifolium repens	
Birdsfoot Trefoil	Lotus corniculatus	Empire
Japanese Millet	Echinochola crusgalli	
	var. frumentacea	
Annual Oats	Avena sativa	
Alfalfa	Medicago sativa	
Bromegrass	Bromus inermis	
Orchardgrass	Dactylis glomerata	
Ladino Clover	Trifolium repens var. latum	Ladino
Agricultural Rye	Secale cereale	
*Pure Live Seed		

			Ditches	Slopes						1
1.000	Purity Germi-		Mixture Proportions, Percen							
Species	Min. %	nation min.%	No. 10	No 20	. No	Ne Ne	. N	lo. No 50 60		No 70
Kentucky Bluegrass	85	80	40	6	10	3	-		+	1
Red Fescue	97	85	25	1	30	- 100	-		+	
Hard Fescue	97	85	1	24	25			-	+	
Tall Fescue	98	85		40	-		+			10
Salt Grass	98	85		-	10		+		+	23
Redtop	92	85	5	-	100	1	+	-	╋	
Timothy	98	90		-	-		+-	12		
Little Bluestern	-	PLS*			-	-	+	12	+	
Sideoats Grama		PLS*				-	+	-	1	5
Canada Wild Rye		PLS*			-	-	-	12	5	[]
Perennial Ryegrass	97	90	20	30	-	+	+	12	3	
Improved Fine Perennial Ryegrass	96	85			15	25	t	1		
Annual Ryegrass	97	90				2.5	-	35	-	
Alsike Clover	97	90				1	-	4	-	
Red Clover	98	90			-	1	-	4	-	
White Clover	95	90	10	-		-	-	-	-	
Birdsfoot Trefoil	95	80		-	10		100		-	
Japenese Millet	97	85		-			100	8	-	
Annual Oats*	98	90	-	-			-	25	-	

* Substitute winter wheat for annual oats in fall plantings started after September 1.

630.2.1.5.1.1.2 Mixture to be Used. The selection of the seed mixture or mixtures for use on the project shall meet with the approval of the engineer, and unless otherwise provided in the contract, shall be in accordance with the following: Seed Mixture No. 10 is intended for use on projects where average loam, heavy

clay or moist soils predominate.

→ Seed Mixture No. 20 is intended for use on projects where light, dry, well-drained, sandy or gravelly soils predominate and shall be used for all high cut and fill slopes (generally exceeding 1.8 to 2.4 m), except where No. 70 is used.

STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION

STANDARD SPECIFICATIONS

FOR

HIGHWAY AND STRUCTURE CONSTRUCTION

RMT LIBRARY 86-00019.22 FFD 0 3 100 ***** VEGETATION SELECTION ***** ***** North American Green *****

Region Number: 1

Predominant Soil Type: Clay - Clay Loam

Moisture Regime Conditions: Normal Moisture

Planned Maintenance: Medium - High Maintenance

		Growth	Seed	Rate	
	Longevity	Habit	lb/ac	kg/ha	
Grasses					
Tall Fescue (Festuca arundinacea)	P	В	200	224	(NO. 20)
Chewings Fescue (Festuca rubra, commutata)	. P	в	120	134	(No . 10)
Kentucky Bluegrass (Poa pratensis)	P	S	80	90	(NO 10, No. 20)
Perennial Ryegrass (Lolium perenne)	P	В	160	179	(NO. 10, NO 20)
Annual Ryegrass (Lolium multiflorum)	A	в	160	179	0.00,00,00,00,
Orchardgrass (Dactylis glomerata)	Р	В	40	45	
Timothy (Phleum pratense)	P	в	80	90	
Creeping Red Fescue (Festuca rubra)	Р	S	120	134	
Legumes					
Alsike Clover (Trifolium hybridum)	P		15	17	
White Dutch Clover (Trifolium repens)	P		5	6	
White Sweet Clover (Melilotus alba)	Ρ		15	17	
	ي يو				

Appendix B: Surface Water Run-Off Control System Calculations

- Leachate Storage Capacity for the 25-Year 24-Hour Storm Event
- References

Leachate Storage Capacity for the 25-Year 24-Hour Storm Event

708 Heartland Trail, Suite 3000, Madison, WI 53717 • www.TRCsolutions.com

PROJECT / LOCATION: DPC: Alma Offsite Disposal Facility, Phase IV Landf	PROJECT / PROPOSAL NO.				
SUBJECT: Active Area Leachate Disposal Capacity			421717.0000		
PREPARED BY: B. Kahnk	DATE: 4/27/2021	FINAL	Х		
CHECKED BY: J. Hotstream	DATE: 4/29/2021	REVISION	Х		

<u>Purpose</u>: Determine the leachate storage capacity from a 25 year, 24-hour storm event during the critical leachate generation scenario.

Assumptions:

1. Critical leachate generation scenario occurs during the current condition with approximately 12.7 acres are operational (Portions of Cell 2 and the entirety of Cell 3) and approximately 7.6 acres have final cover. (See Figure 1 for this scenario).

2. The 25 year, 24-hour storm event is 5.40 inches (refer to attached sheet).

3. No portion of the leachate drainage layer within the open area is saturated.

4. The leachate drainage sand has a porosity of 30 percent. The bottom ash has a porosity of 25 percent.

5. The minimum thickness of the drainage layer is 1.0 foot.

6. A minimum of 1 foot of bottom ash was installed above the drainage layer in Cell 2A over an area of approximately 2.3 acres.

7.A minimum of 4 feet of bottom ash was installed above the drainage layer during the Cell 3A construction. Using a maximum elevation of 820 feet, this bottom ash covers an area of approximately 2.75 acres.

Method:

1. Determine the volume of rain collected in the open areas during the critical condition from a 25 year, 24-hour storm event.

2. Calculate the available storage volume for leachate in the drainage layer. Due to the slope of the landfill perimeter berm, the capacity of the drainage layer is based on the area of the drainage layer at or below an elevation of 820 feet. Elevation 820 represents the lowest top of berm base grade elevation documented during construction of Cell 3A (refer to attached base grades sheet).

3. The available storage volume within the pipe trenches, transfer piping, and leachate collection tank is ignored.

4. Calculate the available storage volume for leachate in the 4 feet of bottom ash placed above the drainage layer during Cell 3A construction and 1 foot of bottom ash placed above the drainage layer during Cell 2A construction.

5. Calculate the volume of storage required for the 25 year, 24-hour storm event.

708 Heartland Trail, Suite 3000, Madison, WI	53717 • www.TRCsolutions.	com	SHEET 2	2 OF 3	
PROJECT / LOCATION: DPC: Alma Offsite Disposal Facility, Phase IV Lan	PROJECT / PROPOSAL NO.				
SUBJECT: Active Area Leachate Disposal Capacity	421717.0000				
PREPARED BY: B. Kahnk	DATE: 4/27/2021	FINAL	Х		
CHECKED BY: J. Hotstream	DATE: 4/29/2021	REVISION			

Step 1. Determine volume of run-off collected during the 25 year, 24-hour storm event

Area: 12.7 acres - Area open (portions of Cell 2 and the entirety of Cell 3)

Rain Event: 5.43 inches

 $Runoff Volume(ft^{3}): Rain Event (inches) \times \frac{1ft}{12 inches} \times Area (acres) \times \frac{43,560 ft^{2}}{1 acre}$

Runoff Volume: 250,328 cubic feet

Step 2. Calculate the available storage volume for leachate in the drainage layer.

Area:	9.2 acres - see attached base grades plan	
Thickness:	1 foot	
Porosity:	0.3	
C $(C)^{3}$	$43,560 ft^2$	

Storage Capacity(ft^3): Area (acres) $\times \frac{43,500 ft^2}{1 \text{ acre}} \times Thickness (foot) \times Porosity$

Storage Capacity: 120,226 cubic feet

Step 3. Ignore storage in pipe trenches, transfer piping and leachate collection tank

Step 4. Calculate the available storage volume in the bottom ash placed above the drainage layer

Cell 2A:		Cell 3A:							
Area:	2.3 acre(s)	Area:	2.75 acre(s)						
Thickness:	1 feet	Thickness:	4 feet						
Porosity:	0.25	Porosity:	0.25						
Storage Capacity(ft^3): Area (acres) $\times \frac{43,560 ft^2}{1 acre} \times Thickness (foot) \times Porosity$ Cell 2A:									
Storage Capacity:	25,047 cubic feet	Storage Capacity:	119,790 cubic feet						

Total Storage Capacity (Cell 2A + Cell 3A): 144,837 cubic feet

708 Heartland Trail, Suite 3000, Madison, WI	53717 • www.TRCsolutions	5.com	5	SHEET 3 OF 3
PROJECT / LOCATION: DPC: Alma Offsite Disposal Facility, Phase IV Landfill			PROJECT / PROPOSAL NO.	
SUBJECT: Active Area Leachate Disposal Capacity			421717.0000	
PREPARED BY: B. Kahnk	DATE: 4/27/2021	FINAL	Х	
CHECKED BY: J. Hotstream	DATE: 4/29/2021	REVISION		

Step 5. Calculate the storage required for the 25 year, 24-hour storm event.

Required Storage:

Required Storage = Run Off Volume – Drainage Layer Capacity – Bottom Ash Capacity

Run-Off Volume:	250,328	cubic feet from Step 1
Drainage Layer:	120,226	cubic feet, from Step 2
Bottom Ash:	144,837	cubic feet from Step 4

Required Storage: -14,734 cubic feet

The negative required storage calculated above indicates that there is sufficient storage capacity in the leachate collection drainage layer and the bottom ash that was placed in the cells above the drainage layer to contain the runoff from a 25 year, 24-hour storm event.

References

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised July 2024

\\madison-vfp\Records\-\WPMSN\PJT2\563618\0000\R5636180000-002_Att 4_Control Plan.docx

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 8, Version 2 Location name: Alma, Wisconsin, US* Latitude: 44.3657°, Longitude: -91.9171° Elevation: 1074 ft* * source: Google Maps

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh. Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF

PDS-	based poi	nt precipi	tation free	quency es	stimates	with 90%	confider	nce interv	vals (in ir	nches) ¹
Duration	1	_		1	recurrence		-			
	1	2	5	10	25	50	100	200	500	1000
5-min	0.366 (0.300-0.455)	0.436 (0.357-0.543)	0.555 (0.453-0.692)	0.657 (0.532-0.822)	0.801 (0.626-1.03)	0.915 (0.697-1.20)	1.03 (0.757-1.38)	1.16 (0.809-1.58)	1.32 (0.887-1.85)	1.45 (0.946-2.06
10-min	0.536 (0.439-0.666)	0.639 (0.523-0.795)	0.813 (0.663-1.01)	0.962 (0.779-1.20)	1.17 (0.917-1.52)	1.34 (1.02-1.75)	1.51 (1.11-2.02)	1.69 (1.19-2.31)	1.94 (1.30-2.71)	2.13 (1.39-3.02)
15-min	0.653 (0.535-0.812)	0.779 (0.638-0.969)	0.991 (0.809-1.24)	1.17 (0.950-1.47)	1.43 (1.12-1.85)	1.64 (1.25-2.14)	1.84 (1.35-2.46)	2.06 (1.45-2.82)	2.36 (1.58-3.31)	2.59 (1.69-3.68)
30-min	0.908 (0.744-1.13)	1.09 (0.894-1.36)	1.40 (1.14-1.74)	1.66 (1.34-2.08)	2.03 (1.58-2.62)	2.32 (1.76-3.03)	2.62 (1.92-3.49)	2.92 (2.05-4.00)	3.34 (2.24-4.68)	3.66 (2.39-5.19)
60-min	1.19 (0.978-1.48)	1.42 (1.16-1.77)	1.82 (1.48-2.27)	2.17 (1.76-2.72)	2.69 (2.12-3.51)	3.13 (2.39-4.11)	3.58 (2.63-4.81)	4.07 (2,86-5.60)	4.76 (3.20-6.70)	5.31 (3.46-7.53)
2-hr	1.48 (1.22-1.82)	1.75 (1.44-2.15)	2.23 (1.84-2.76)	2.68 (2.19-3.33)	3.36 (2.67-4.37)	3.94 (3.04-5.15)	4.55 (3.38-6.09)	5.22 (3.70-7.15)	6.18 (4.20-8.66)	6.96 (4.57-9.80)
3-hr	1.67 (1.38-2.04)	1.95 (1.62-2.39)	2.48 (2.05-3.05)	2.99 (2.46-3.69)	3.79 (3.04-4.93)	4.48 (3.48-5.86)	5.24 (3.92-7.00)	6.07 (4.33-8.31)	7.28 (4.97-10.2)	8.28 (5.46-11.6)
6-hr	1.96 (1.64-2.38)	2.28 (1.91-2.77)	2.90 (2.41-3.53)	3.50 (2.90-4.28)	4.47 (3.63-5.79)	5.32 (4.18-6.93)	6.27 (4.73-8.33)	7.32 (5.27-9.96)	8.86 (6.11-12.3)	10.1 (6.74-14.1)
12-hr	2.23 (1.88-2.68)	2.59 (2.18-3.12)	3.29 (2.76-3.96)	3.96 (3.30-4.79)	5.02 (4.10/6.43)	5.96 (4.71-7.68)	6.99 (5.31-9.21)	8.13 (5.90-11.0)	9.80 (6.81-13.5)	11.2 (7.49-15.5)
24-hr	2.53 (2.15-3.01)	2.91 (2.47-3.46)	3.63 (3.07-4.33)	4.33 (3.64-5.9)	5.43 (4.47-6.89)	6.40 (5.10-8.17)	7.46 (5.72-9.75)	8.65 (6.33-11.6)	10.4 (7.26-14.2)	11.8 (7.97-16.2)
2-day	2.94 (2.52-3.46)	3.29 (2.81-3.87)	3.97 (3.39-4.69)	4.65 (3.94-5.53)	(4.79-7.25)	6.75 (5.44-8.56)	7.86 (6.08-10.2)	9.10 (6.72-12.1)	10.9 (7.72-14.9)	12.5 (8.48-17.0)
3-day	3.23 (2.79-3.79)	3.58 (3.08-4.19)	4.26 (3.65-5.01)	4.95 (4.21-5.84)	6.07 (5.07-7.59)	7.07 (5.72-8.91)	8.19 (6.37-10.6)	9.45 (7.01-12.5)	11.3 (8.02-15.3)	12.8 (8.79-17.5)
4-day	3.48 (3.00-4.05)	3.85 (3.32-4.49)	4.57 (3.93-5.35)	5.28 (4.51-6.21)	6.42 (5.37-7.98)	7.43 (6.03-9.31)	8.55 (6.67-11.0)	9.81 (7.30-12.9)	11.6 (8.29-15.7)	13.2 (9.04-17.9)
7-day	4.09 (3.56-4.73)	4.59 (3.99-5.31)	5.48 (4.75-6.37)	6.30 (5.42-7.35)	7.54 (6.31-9.20)	8.58 (6.97-10.6)	9.70 (7.58-12.3)	10.9 (8.15-14.2)	12.6 (9.03-16.9)	14.0 (9.70-19.0)
10-day	4.64 (4.05-5,34)	5.24 (4.57-6.03)	6.27 (5.45-7.24)	7.17 (6.20-8.32)	8.50 (7.11-10.3)	9.58 (7.80-11.7)	10.7 (8.39-13.4)	11.9 (8.91-15.4)	13.6 (9.73-18.1)	14.9 (10.4-20.1)
20-day	6.27 (5.53-7.14)	7.04 (6.19-8.02)	8.32 (7.29-9.51)	9.40 (8.19-10.8)	10.9 (9.19-13.0)	12.1 (9.95-14.7)	13.4 (10.6-16.6)	14.7 (11.0-18.7)	16.4 (11.8-21.6)	17.7 (12.4-23.7)
30-day	7.70 (6.82-8.72)	8.60 (7.61-9.75)	10.1 (8.89-11.5)	11.3 (9.91-12.9)	13.0 (11.0-15.3)	14.3 (11.8-17.2)	15.7 (12.4-19.3)	17.0 (12.9-21.6)	18.8 (13.6-24.6)	20.2 (14.2-26.9)
45-day	9.58 (8.53-10.8)	10.7 (9.51-12.1)	12.5 (11.1-14.1)	13.9 (12.3-15.8)	15.9 (13.4-18.5)	17.3 (14.3-20.6)	18.8 (14.9-22.9)	20.2 (15.3-25.3)	21.9 (15.9-28.5)	23.3 (16.4-30.8)
60-day	11.2 (10.0-12.6)	12.6 (11.2-14.1)	14.7 (13.0-16.5)	16.3 (14.4-18.5)	18.5 (15.7-21.4)	20.1 (16.6-23.7)	21.5 (17.1-26.1)	22.9 (17.4-28.7)	24.7 (18.0-31.8)	25.9 (18.4-34.2)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

Q TRC	708 Heartland Trail, Suite 3000, Madison,	WI 53717 • www.TRCsolut	tions.com S	SHEET 1 OF 1
PROJECT / LOCATION: DPC: Alma Offsite Disposal Facility, Phase IV Landfill			PROJECT / PROPOSAL NO.	
SUBJECT: Active Area Leachate Disposal Capacity			243332.0002	
PREPARED BY: J. Hots	stream	DATE: 8/31/2016	FINAL	
CHECKED BY:		DATE:	REVISION	

Volume Relationships of Sand

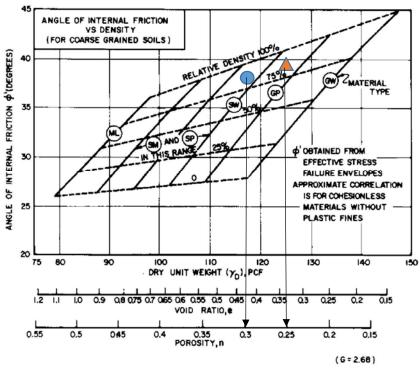
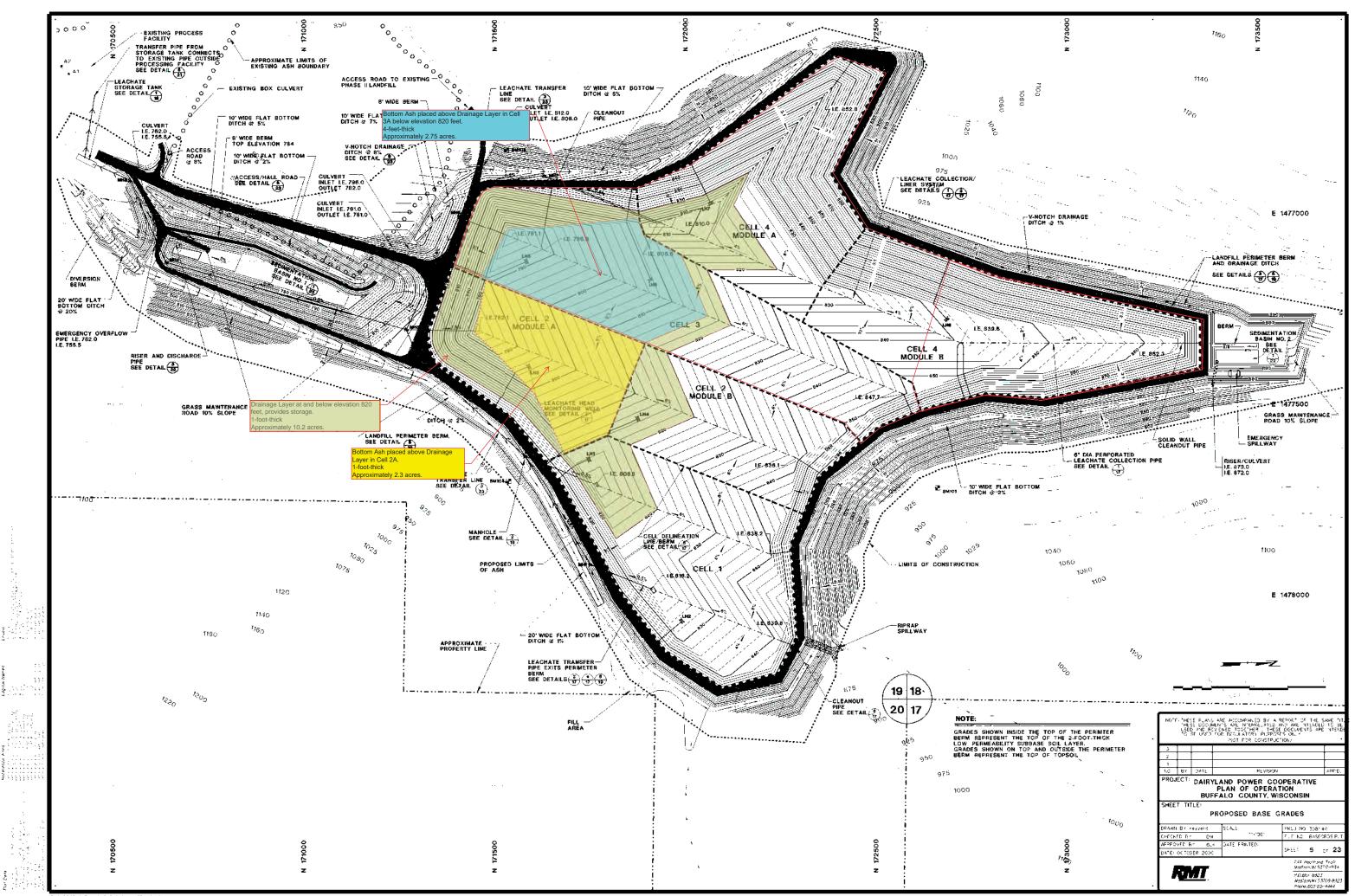
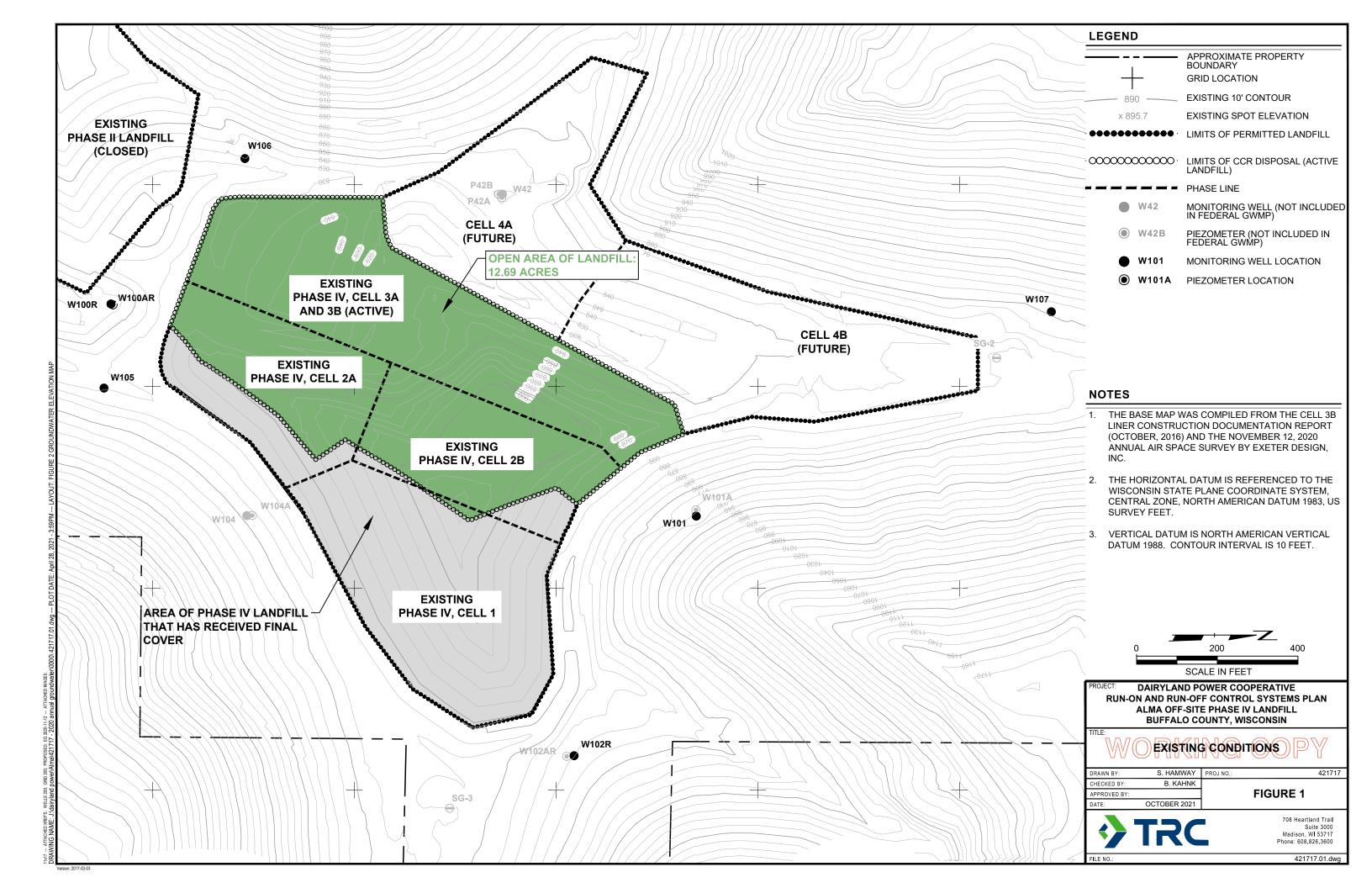
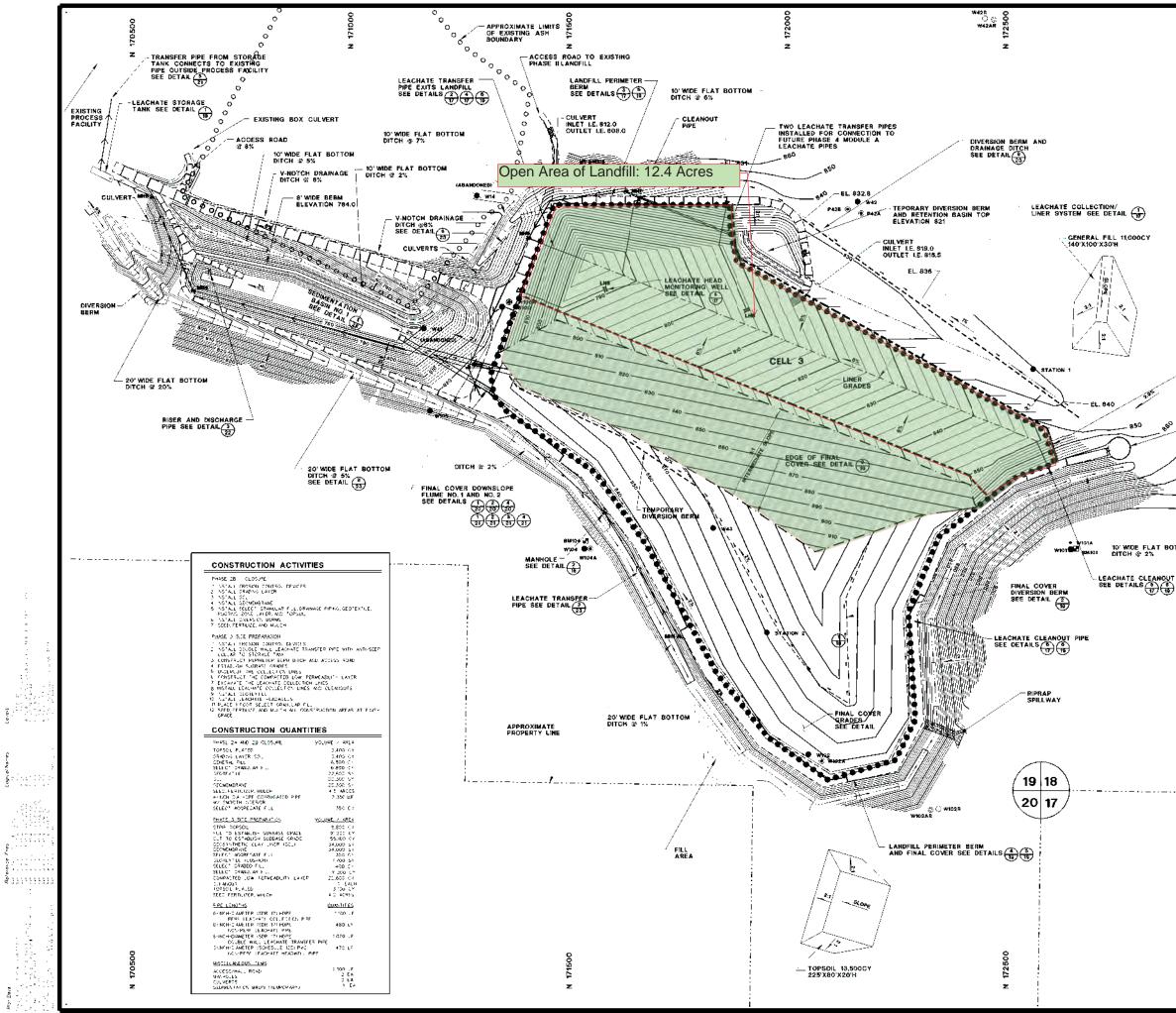



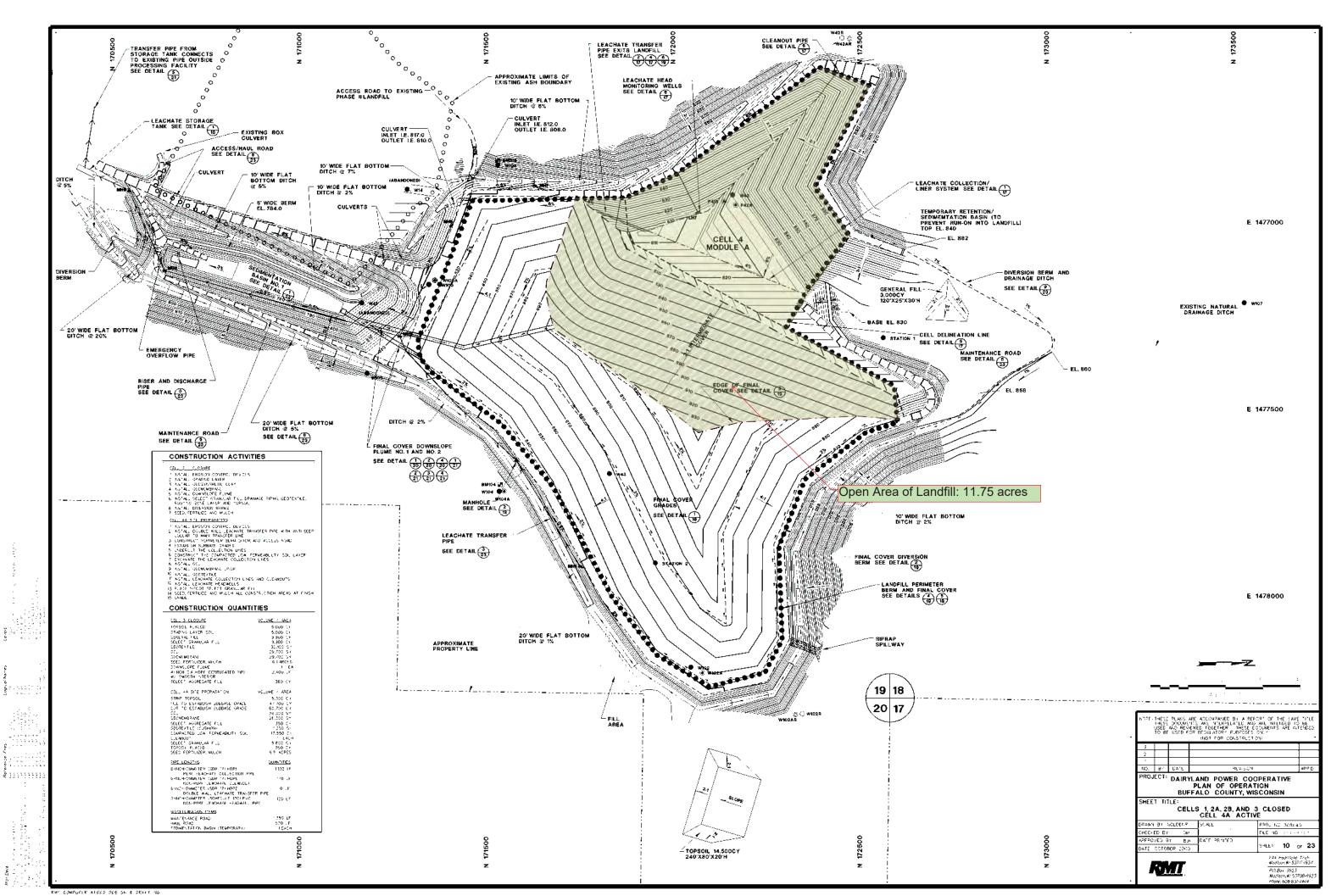
Figure from NavFac DM 7.1 (1986)


Drainage Layer Sand - Poorly Graded Sand (SP)

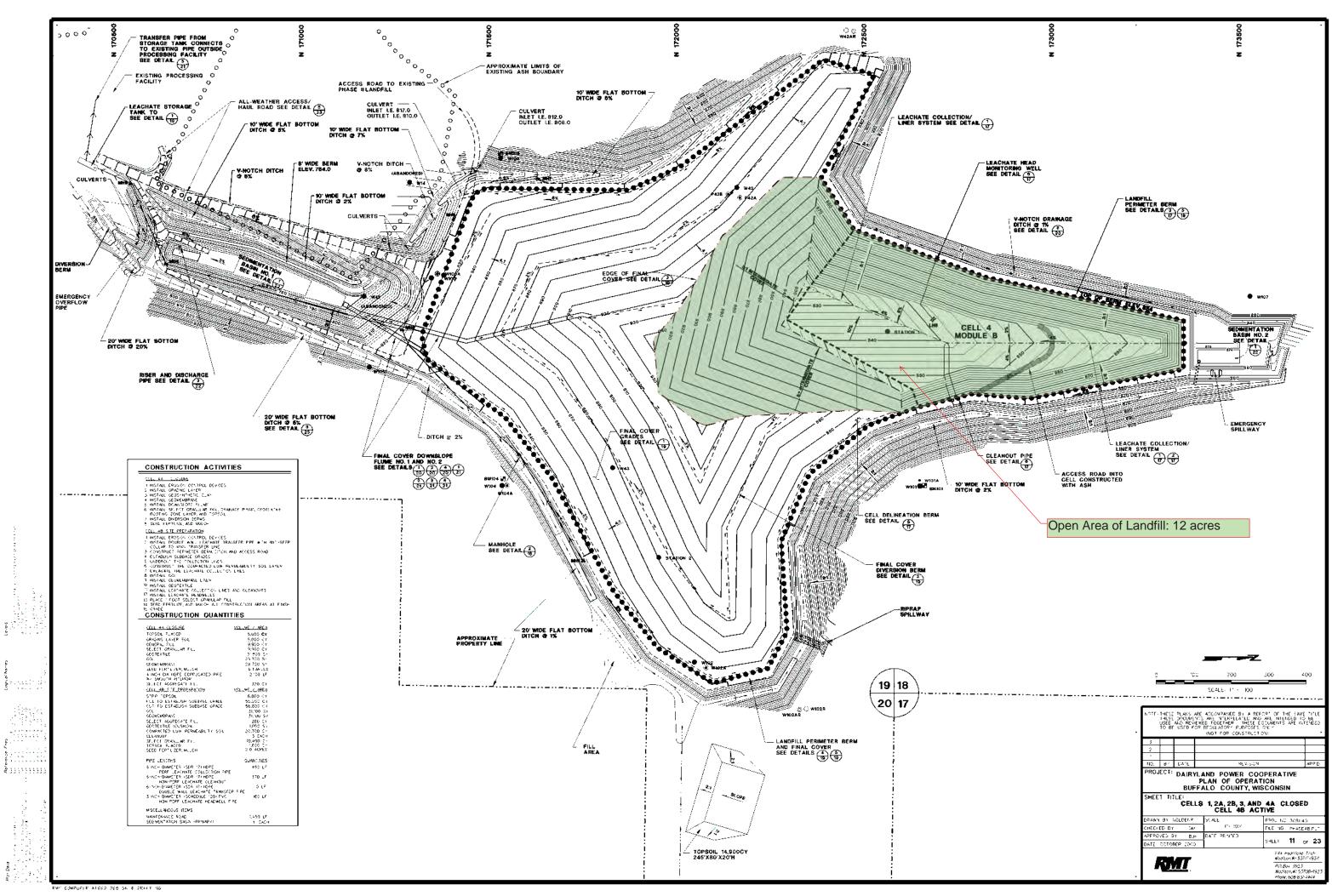

Bottom Ash - Poorly Graded Sand (SP) to Poorly Graded Gravel (GP)

9. 20. 21. 11. 11.

1.11



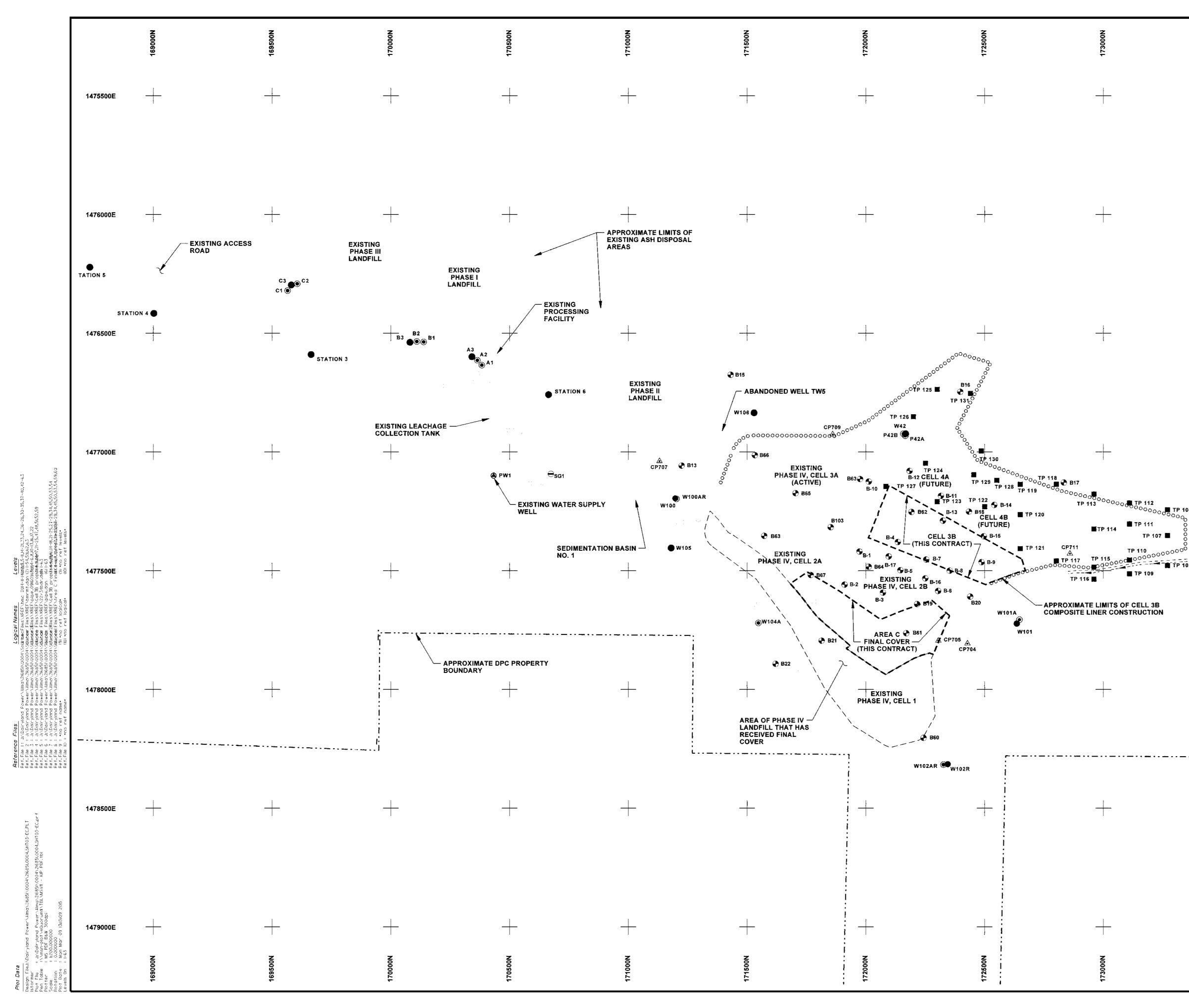
RHY COMPUTER ALGED DOE ON & SRAAT NO


8. 1

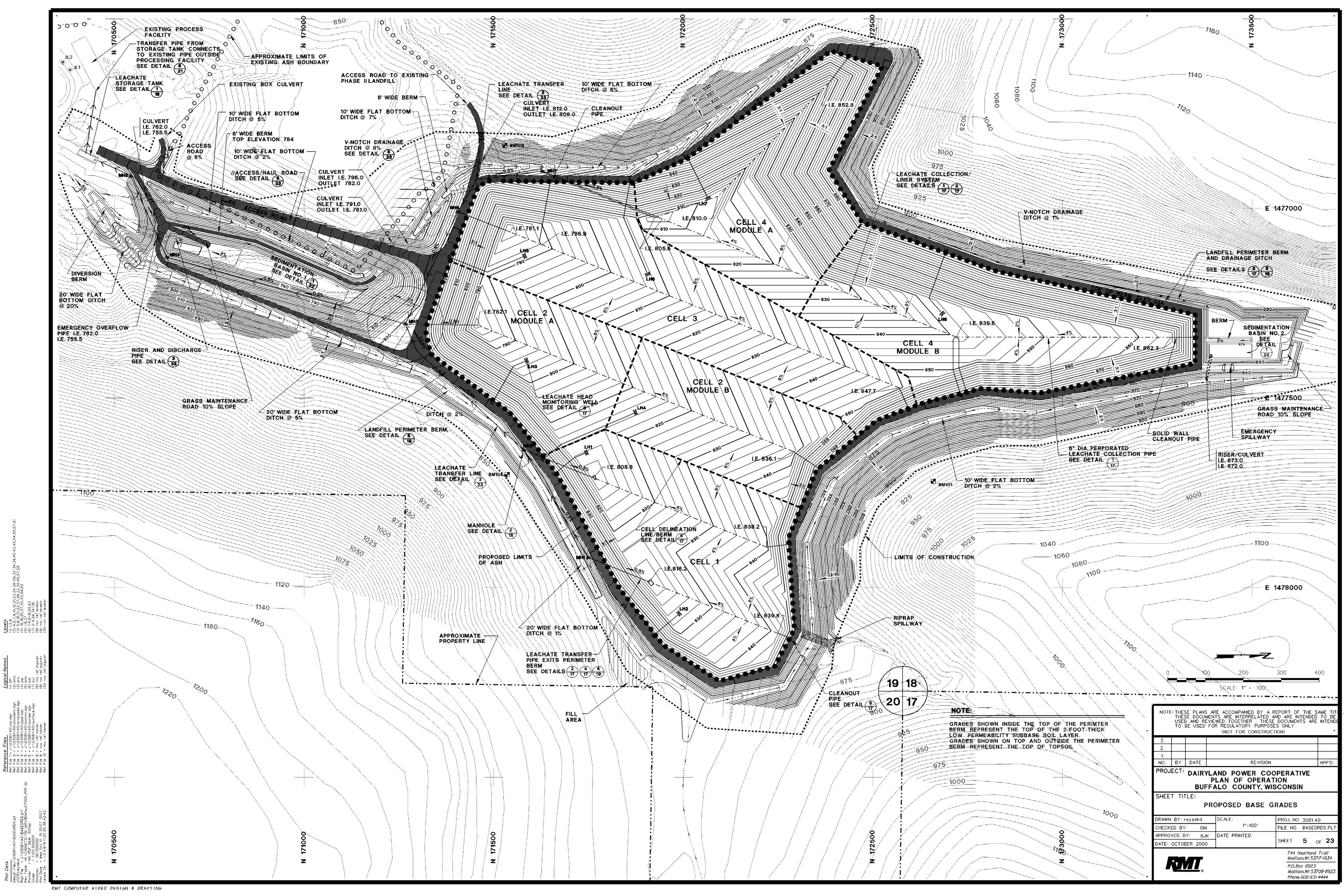
0	· · · · · · · · · · · · · · · · · · ·
N 173000	173500
z	z
	E 1477000
EXISTING NA Drainage P	ATURAL - W107
CELL DELINEATION LINE SEE DETAIL	
..	
TURN-ARQUND AREA	
810	E 1477500
880	
890	
оттом	
T PIPE	
/	
	E 1478000
	
· - ··-··-··-··-··-··-··-	······································
	NOTE THESE PLANS ARE ACCOURAGED BILLA BEFORM OF THE SAVE TITLE HESE DOCUMENTS AND NITHERELATE AND AND INTENDED TO BE USED AND REVEATE TOOETHER THESE FOLLMENTS ARE INTENDED TO BE USED FOR REVEATE OF PLANESSOF PLANESSOF INF.
	USED 440 REVENED TOGETHER THESE COLUMENTS ARE WITENDED TO BE USED FOR REPORTATORY PURPOSES ON Y WOT FOR CONSTRUCTION:
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	PROJECT: DAIRYLAND POWER COOPERATIVE PLAN OF OPERATION BUFFALD COUNTY, WISCONSIN
	SHEET TITLE: CELL 1, 2A, AND 2B CLOSED CELL 3 ACTIVE
<u> </u>	DRAWN BY SCLEE P400_NC_308140 CHECKED BY 34 P**'D0 FILE_NO_PEASL3/PL1
N 173000	APPROVED BY EUX DATE PRIMIED DATE COTOBER 2010 744 PRIMIER 774
z	744 - maritani Treb Bathan N. 5377-3334 Pin Bus 5527 Matteon N. 57200-1923 Matteon N. 57200-1923 Matteon N. 57200-1923
	-rom; budio.or4444

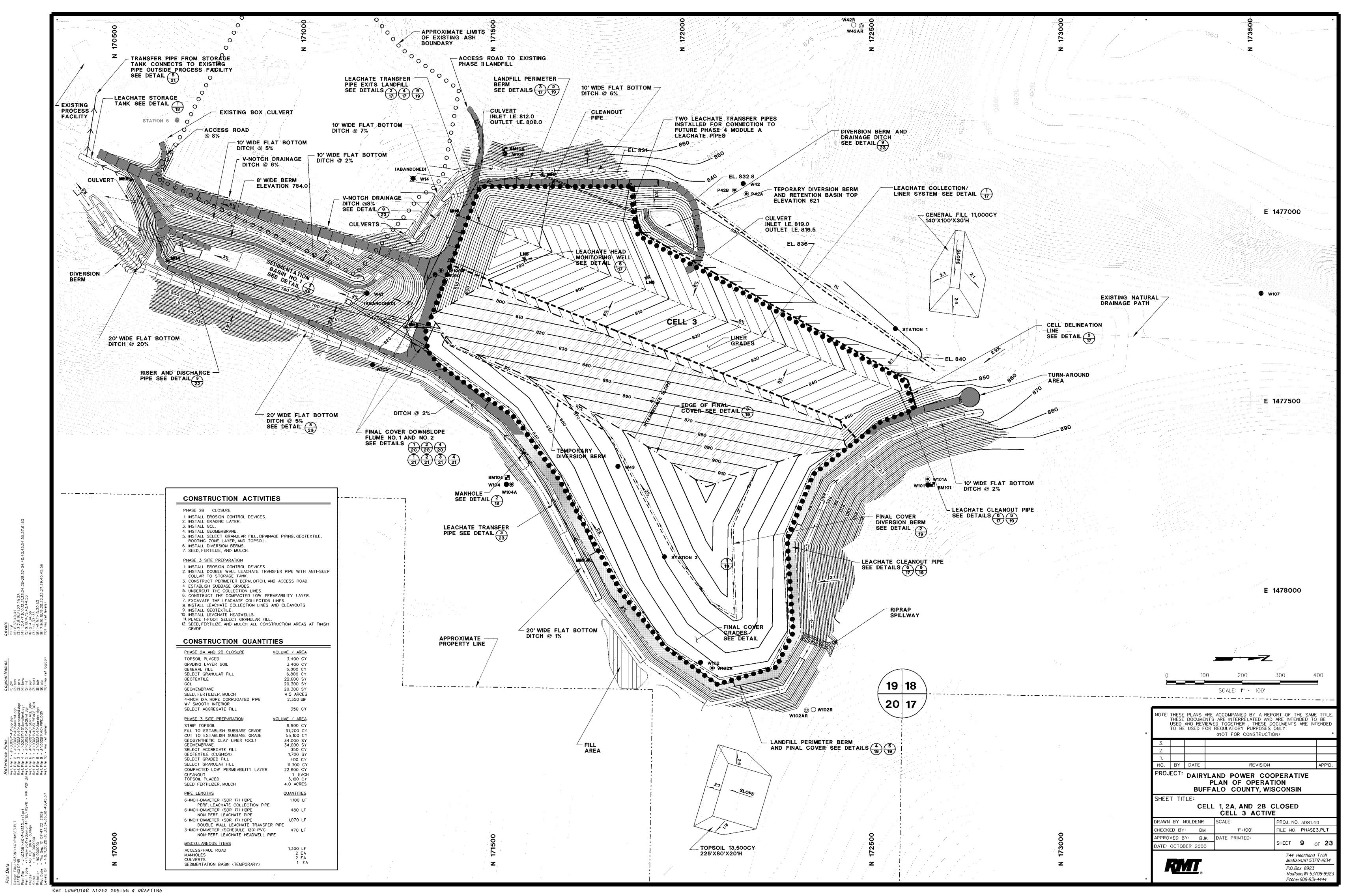
______ ______ \$....

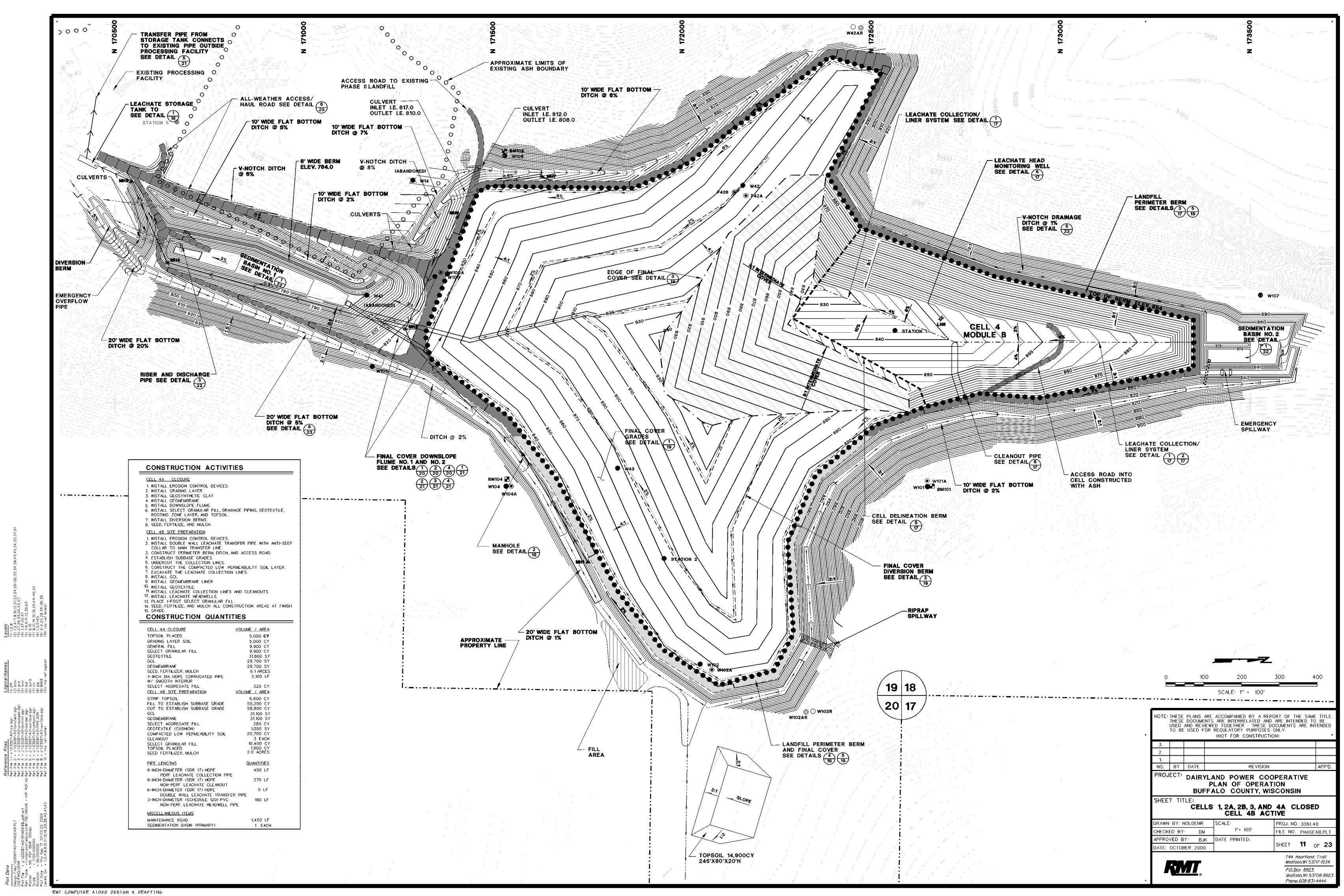
.

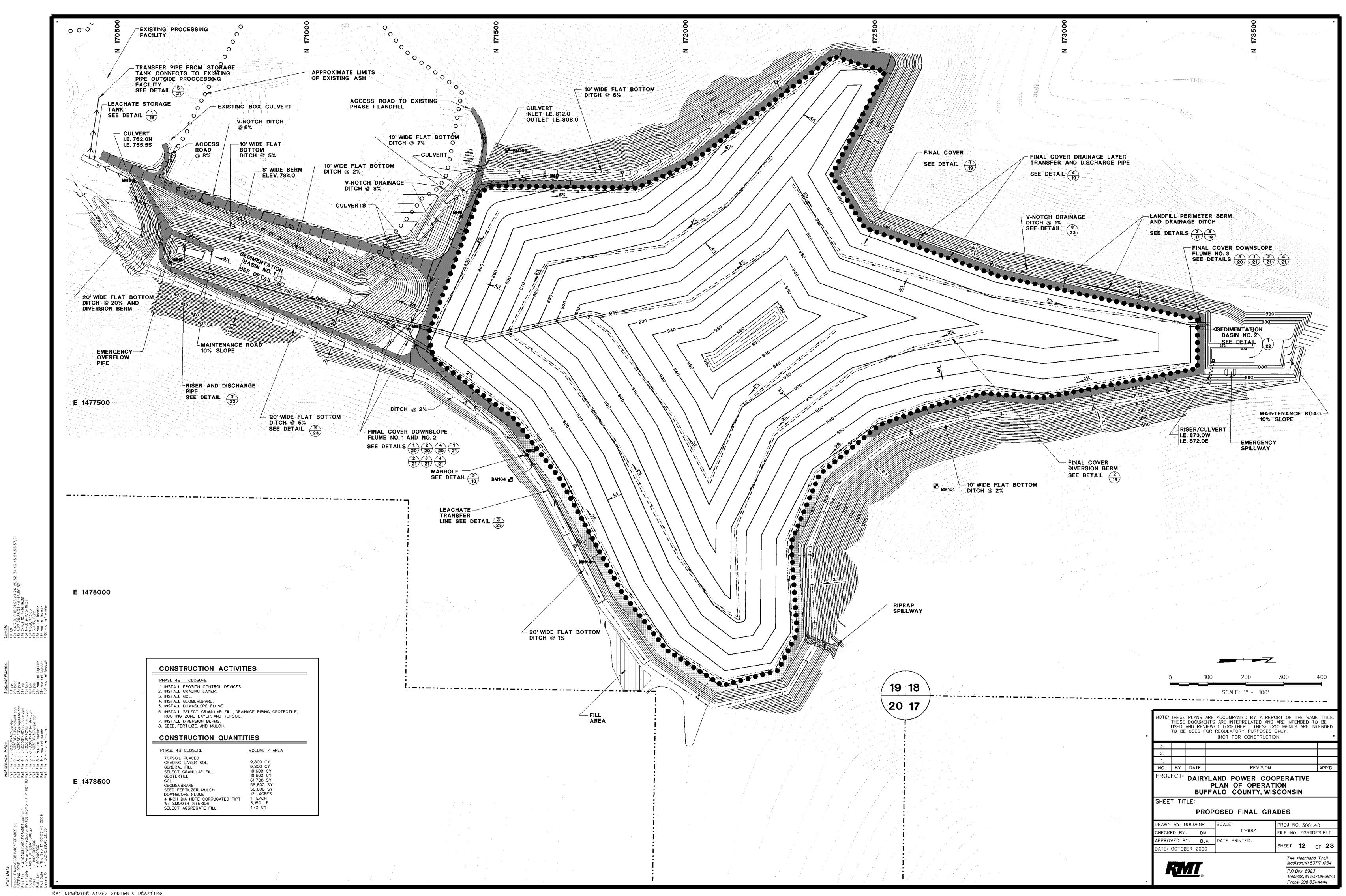


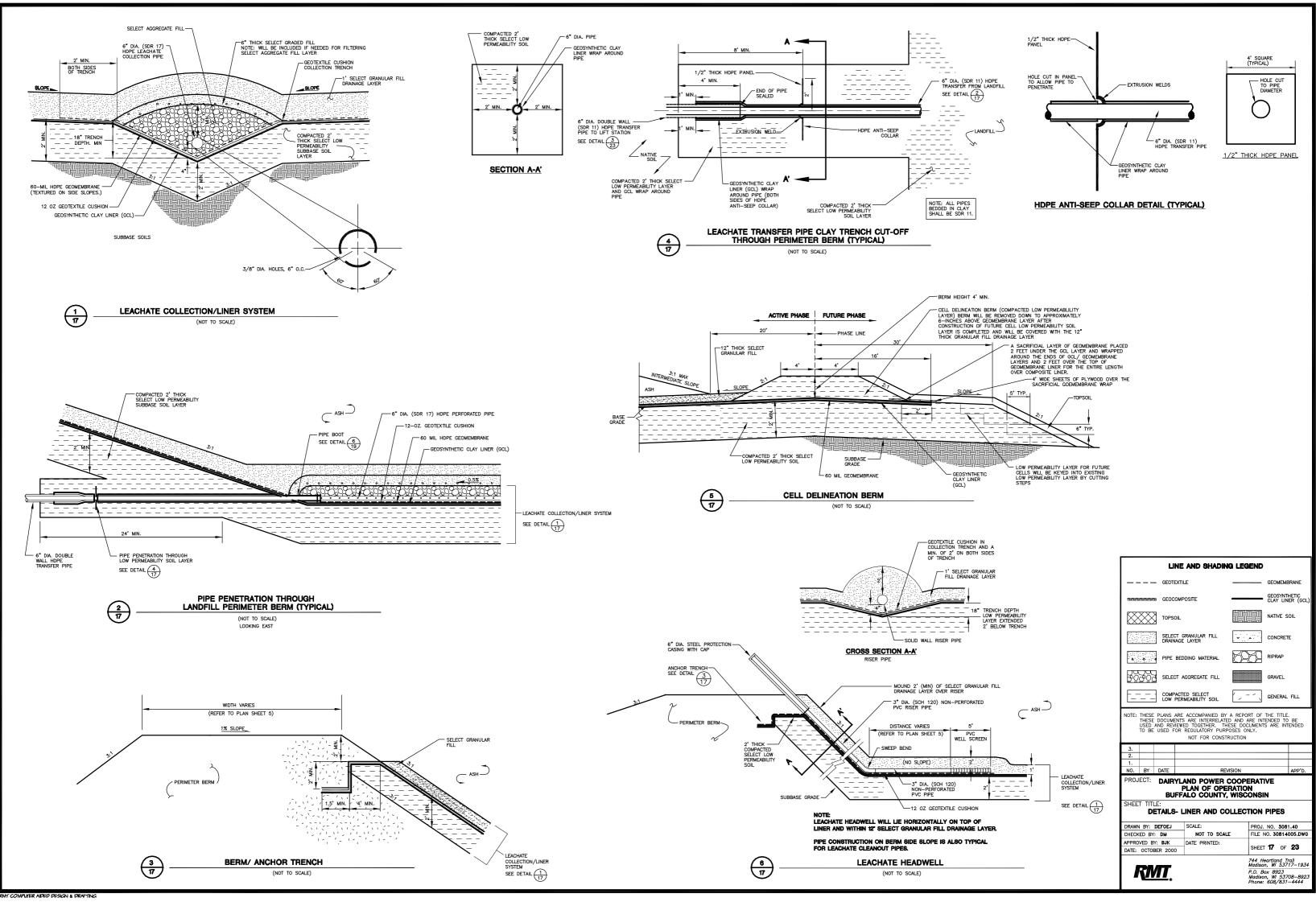
.

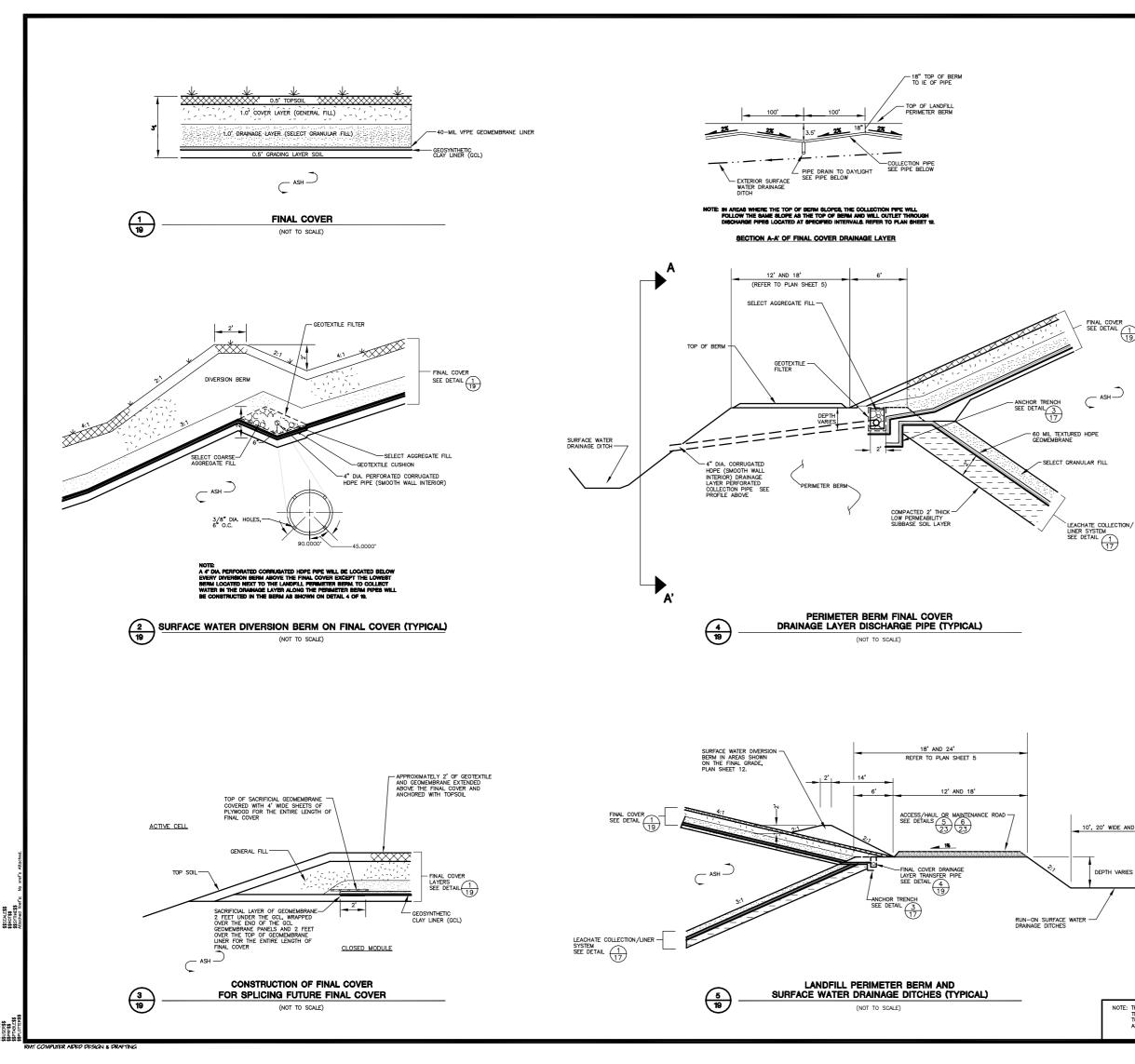


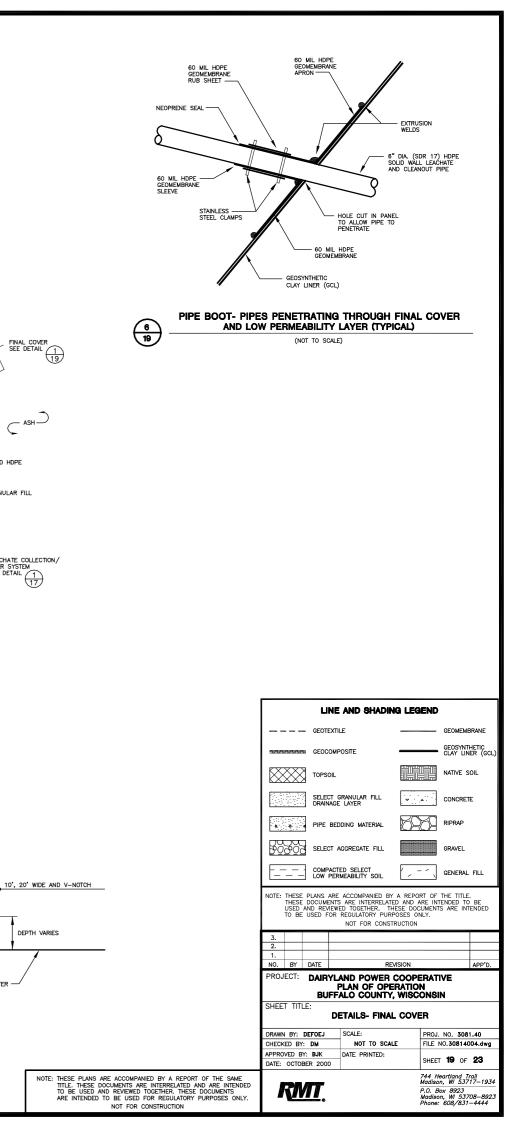

Appendix C: Relevant October 2000 POO Plan Sheets

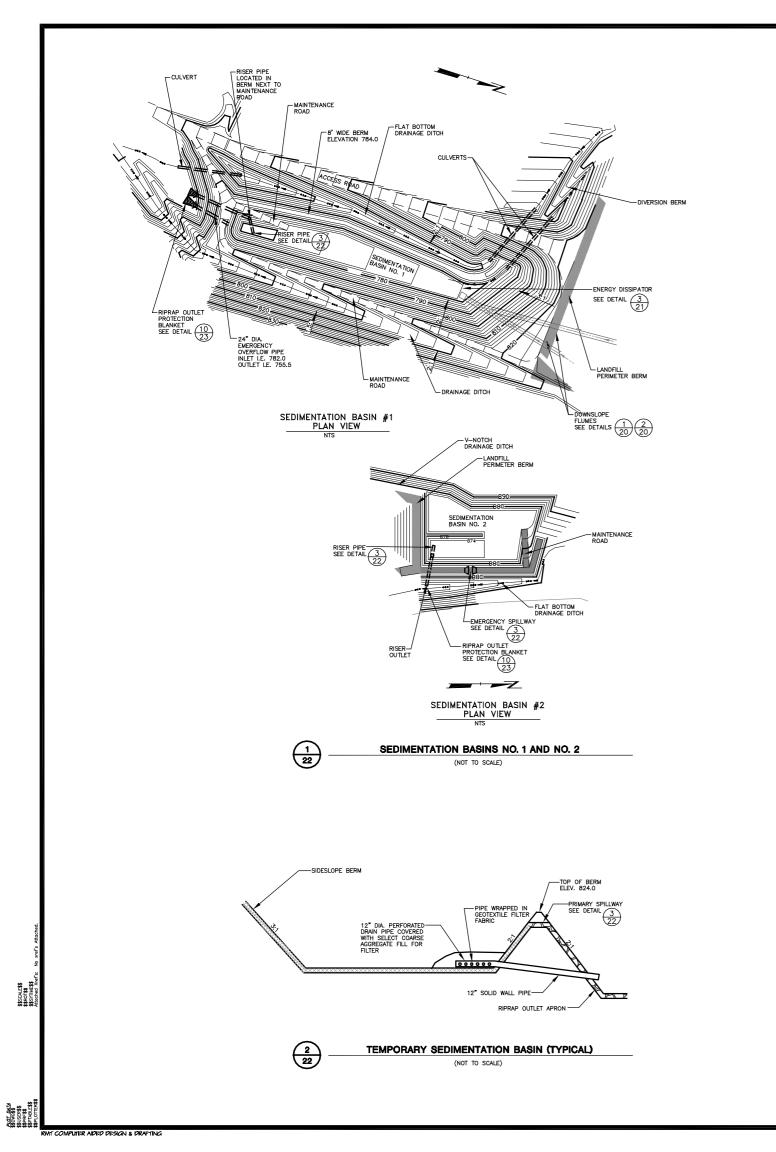

- Sheet 3 Existing Conditions Map Phase IV, Cell 3B Liner & Area C (Over Cells 1 & 2) Final Cover Construction
- Sheet 5 Proposed Base Grades
- Sheet 9 Phasing Plan Cell 1, 2A, and 2B Closed; Cell 3 Active
- Sheet 11 Phasing Plan Cell 1, 2A, 2B, 3, and 4A Closed; Cell 4B Active
- Sheet 12 Proposed Final Grades
- Sheet 17 Details Liner and Collection Pipes
- Sheet 19 Details Final Cover
- Sheet 22 Details Sedimentation Basins
- Sheet 23 Details Miscellaneous

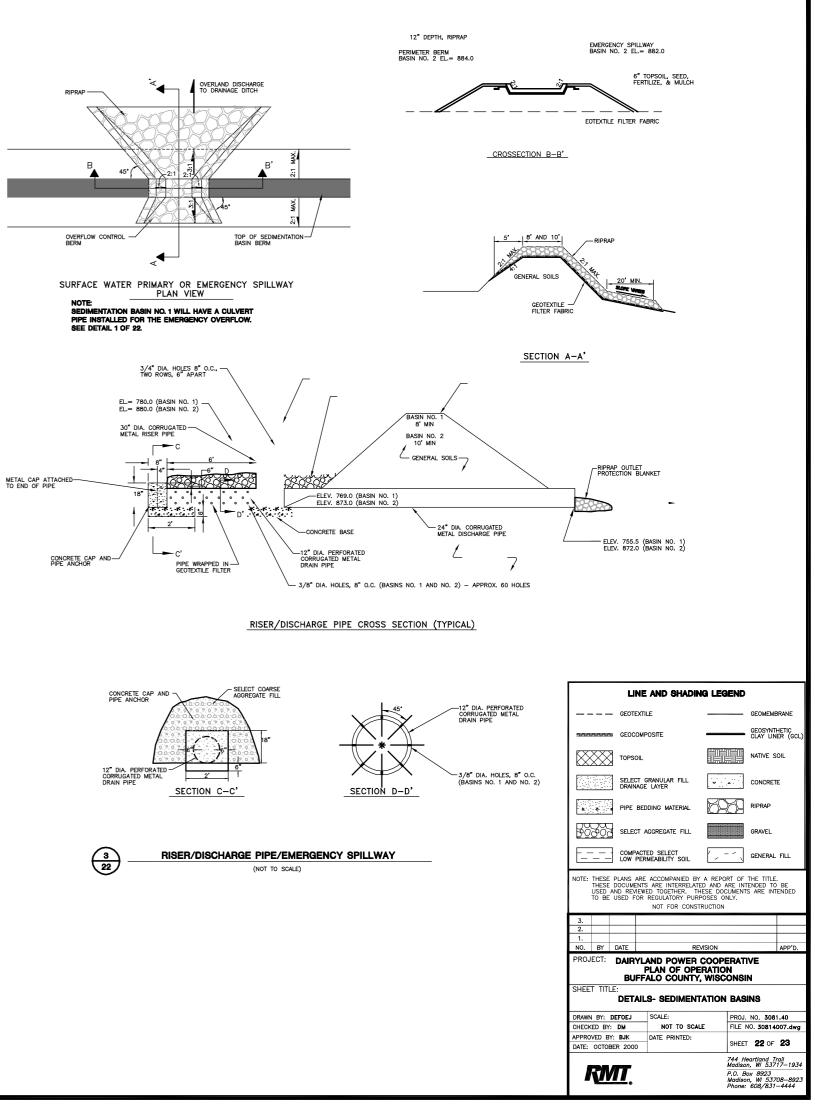


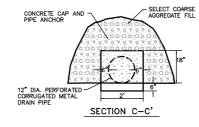

173500N		NOTES
1734		 REFER TO PLAN SHEET 2 FOR STANDARD LEGEND, NOTES, AND BENCHMARK LOCATIONS.
	1475500E	
·		
<u> </u>	1476000E	
1		
<u> </u>	1476500E	
I		
	1477000E	
1		
W107 ● 106 ■ TP 105	ITP 101	
CO O O O O O O O O O O O O O O O O O O	ł :	
	■ TP 102	
108 E TP 103	1477500E	
	-	
	-	
	1478000E	
	1	0 200 400 600 800
	د • ا	SCALE IN FEET
		NOTE: THE CONTRACTOR SHALL NOTIFY ALL AREA UTILITY COMPANIES PRIOR TO COMMENCING WORK ON THIS CONTRACT, IN ACCORDANCE WITH
		STATE AND LOCAL REQUIREMENTS. NOTE: THESE PLANS ARE ACCOMPANIED BY A PROJECT MANUAL OF THE SAME
		TITLE. THESE DOCUMENTS ARE INTERRELATED AND ARE INTENDED TO BE USED TOGETHER.
	1478500E	
		NO. BY DATE REVISION APP'D. PROJECT: DAIRYLAND POWER COOPERATIVE PHASE IV, CELL 3B LINER & AREA C (OVER CELLS 1 & 2)
		FINAL COVER CONSTRUCTION BUFFALO COUNTY, WISCONSIN
		SHEET TITLE: EXISTING CONDITIONS MAP
		DRAWN BY: Istormer SCALE: PROJ. NO. 216851.0004
+	1479000E	CHECKED BY: DM AS SHOWN FILE NO. 215851.0004.SHT03-EC.PLT APPROVED BY: TWM DATE PRINTED: SHEET 3 OF 13
z		DATE: MARCH 2015 TO
173500N		Suite 3000 Madison, WI 53717
7		Phone: 608.826.3600

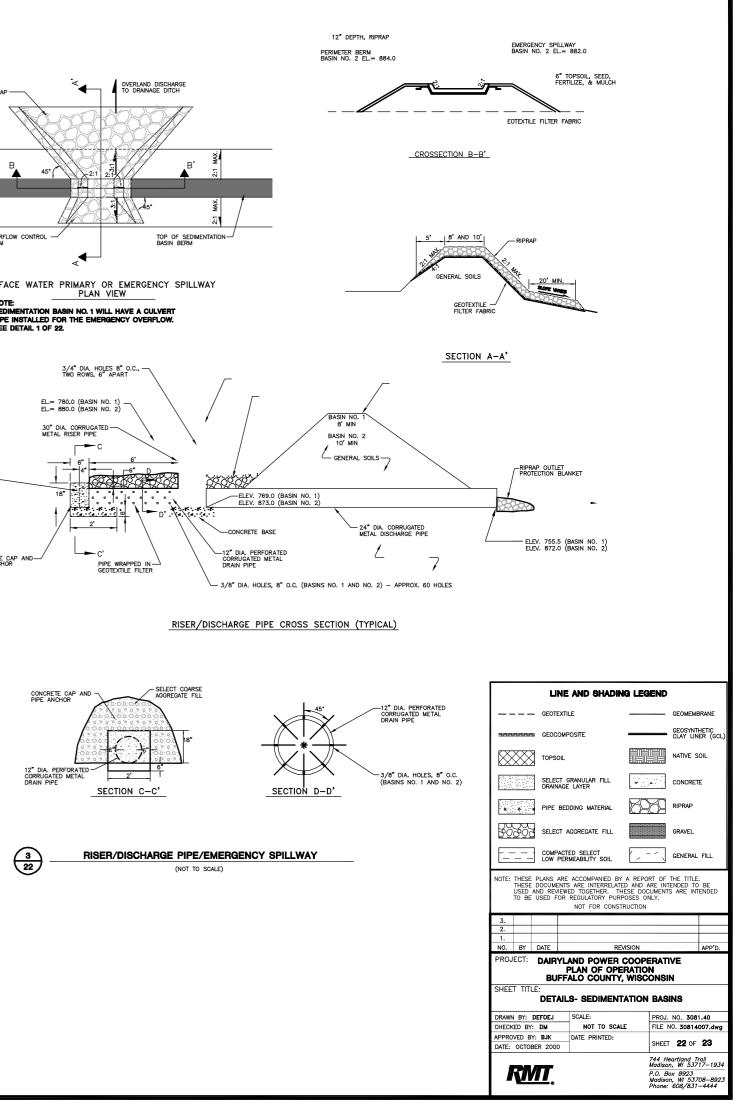


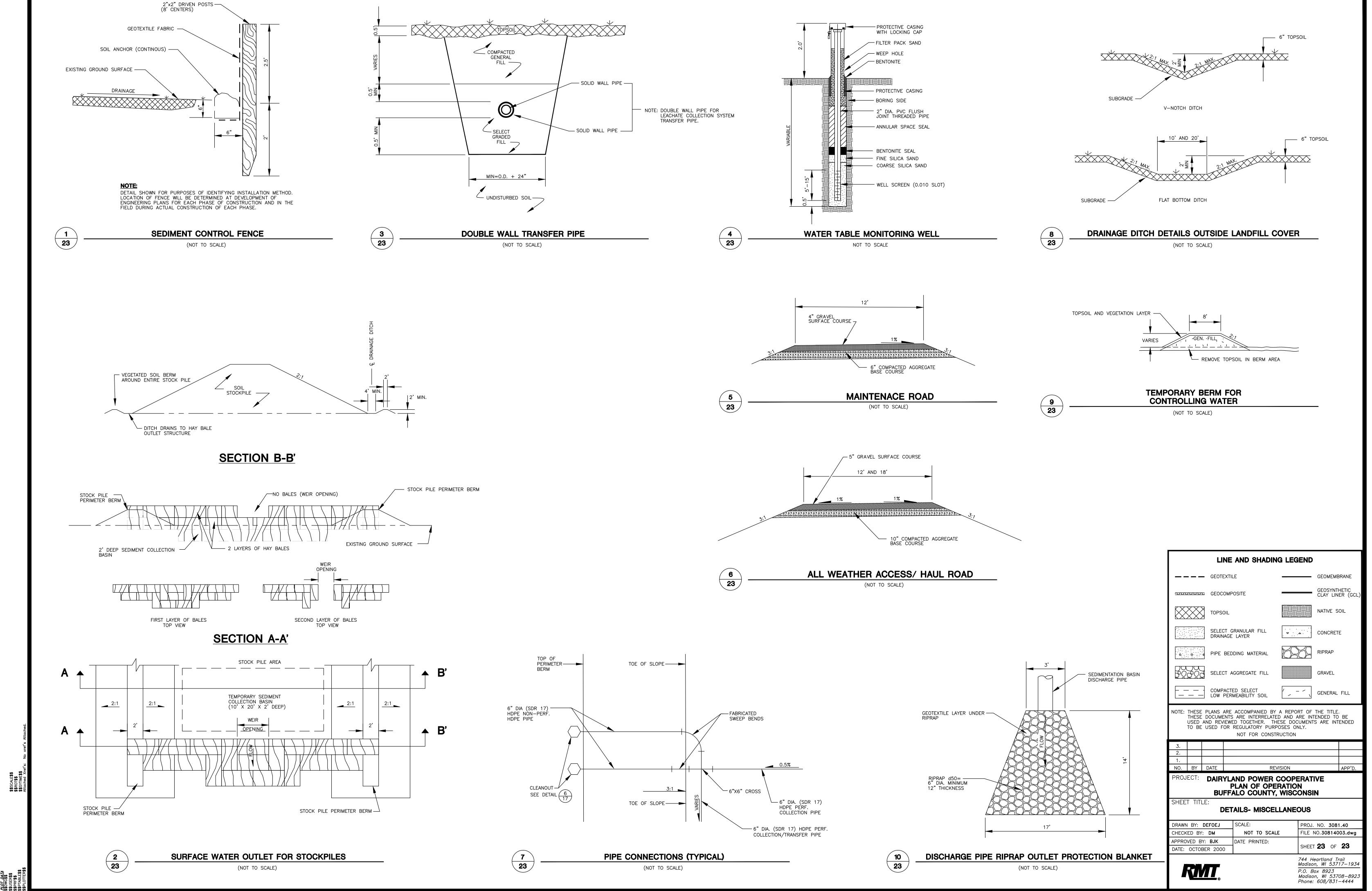



PLOT DATA SSDWGSS SSDWGS SSDWS SSDWGS SSDWGS SSDWGS SSDWGS SSDWS SSDWGS SSDWGS SSDW


\$\$SCALE\$\$ \$\$ROT\$\$ \$\$SYTIME\$\$




PLOT DATA 150WGSS 100WGSS 150WGSS 150W



RMT COMPUTER AIDED DESIGN & DRAFTING

Appendix D: Estimated Control System Construction Schedule

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised July 2024

Estimated Run-on and Run-off Structures Construction Schedule

Run-on and Run-off Control System Plan

Dairyland Power Cooperative, Alma Off-Site Disposal Facility

Plan Modification- June 2024

Control System	System Components	Construction Event	Anticipated Year of Construction
Run-on Control System	 Sedimentation Basin 1 Perimeter Drainage Ditches around Cells 1-3 Temporary diversion berm on the northern boundary of Cell 3 Temporary retention basin on northern boundary of Cell 3 Downslope Flume and diversion berms in final cover Stormwater culverts 	Currently Constructed	N/A
Run-off Control System	- Leachate collection and transfer system for Cells 1 through 3		
Run-on Control System	 Perimeter Drainage Ditches around the northern perimeter of Cell 4A Stormwater culverts beneath access road Temporary diversion berm and drainage ditch within Cell 4B footprint Temporary sedimentation basin east of Cell 4A 	Cell 4A Liner	2026
Run-off Control System	- Leachate collection system for Cell 4A		
Run-on Control System	- Final Cover Diversion Berms and drainage outlets	Cell 3 Final Cover	2029
Run-on Control System	 Sedimentation Basin 2 construction Perimeter drainage ditch around remainder of Cell 4 	Cell 4B Liner	2036
Run-off Control System	- Leachate collection system for Cell 4B		
Run-on Control System	- Final Cover Diversion Berms and drainage outlets	Cell 4A Final Cover	2038
Run-on Control System	- Final Cover Diversion Berms and drainage outlets	Cell 4B Final Cover	2057

Attachment 5

Updated Closure Plan

Closure Plan

Alma Offsite Disposal Facility, Phase IV Landfill Alma, Wisconsin

July 2024 Revision 2

Breanne Kahnk

BreAnne Kahnk, P.E. Senior Engineer

Prepared For:

Dairyland Power Cooperative 3200 East Avenue South La Crosse, Wisconsin 54601

Prepared By:

TRC 999 Fourier Drive, Suite 101 Madison, Wisconsin 53717

W. Mart

Todd W. Martin Principal Project Manager

TABLE OF CONTENTS

REVIS	ION HIS	STORY						
1.0	INTRODUCTION1							
2.0	CLOSURE PLAN							
	2.1 Initiation of Closure Activities							
	2.2	Closure	Performa	nce Standard	2			
	2.3	Final Co	over Syste	em	2			
		2.3.1	Final Cov	er Construction	4			
			2.3.1.1	Fine Grading the Waste Subbase	4			
			2.3.1.2	Soil Barrier Layer and GCL (Future Cover Construction)	4			
			2.3.1.3	Select CCR Layer (Previously Completed Cover Construction)	5			
			2.3.1.4	40-mil LLDPE Geomembrane	5			
			2.3.1.5	Granular Drainage Layer	5			
			2.3.1.6	General Fill Rooting Layer	6			
			2.3.1.7	Topsoil and Vegetation				
		2.3.2		ater Control Features				
	2.4	Comple	tion of Clo	osure Activities	6			
	2.5	Amend	ment of a	Written Closure Plan	7			
3.0	NOTIF	ICATIO	N		8			
	3.1		-	1				
	3.2	Notifica	tion Requ	irements	8			
	3.3	Publicly	Accessib	le Internet Site	8			
4.0	REFERENCES							
5.0	ENGINEER'S CERTIFICATIONS 11							

TABLES

- Table 1:
 Estimated Schedule of Phased Closure
- Table 2:
 Schedule Estimate for Completing Closure

APPENDICES

Appendix A: Engineering Drawings

Revision History

Revision Number	Revision Date	Section Revised	Summary of Revisions
1	01/12/2023	1-3	Text updates.
2	07/09/2024	1-2, Tables	Text updates and Table 1 and Table 2
	1		
	1		

1.0 Introduction

This Closure Plan (Plan) was prepared by TRC Environmental Corporation (TRC) on behalf of Dairyland Power Cooperative (DPC) for the Alma Off-Site Disposal Facility, Phase IV Landfill (Landfill) where coal combustion residuals (CCR) are disposed. The approximately 32.1 acres Landfill is located in Sections 18 and 19, T21N, R12W, Town of Belvidere, Buffalo County, Wisconsin. DPC owns and operates the Landfill in compliance with the Plan of Operation (RMT 2000) as permitted by the Wisconsin Department of Natural Resources (WDNR).

This Plan meets the closure requirements of the U.S. Environmental Protection Agency's (USEPA) CCR Rule, Title 40 Code of Federal Regulations (40 CFR) Parts 257 and 261 Subpart D - "Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments" as well as ch. NR 500-520, Wisconsin Administrative Code. The Landfill is considered an existing CCR landfill according to the CCR rule (40 CFR 257.53).

DPC plans to close the Landfill by leaving the CCR in-place upon completion of CCR placement. The Landfill is operated by moisture conditioning CCR, placing, and compacting the waste in the active area. Final cover will be installed in phases as portions of the Landfill reach the design top of waste grades. The Landfill has a design waste capacity of 3,011,000 cubic yards. Based on the survey conducted on November 13, 2023, 1,322,200 cubic yards of waste has been placed within the landfill. Based on the available capacity (1,688,800 cubic yards as of November 2023) and estimated filling rate (49,000 cubic yards per year), it is anticipated that final closure will be initiated in 2057. This closure date is subject to change based on potential changes in volume of CCR accepted at the Landfill.

Between the Landfill current operations and final closure, several closure events on portions of the Landfill will be conducted. An estimated schedule from current operations (as of June 2024) to the closure of the last portion of the Landfill is provided in Table 1. This schedule includes the estimated acreage and year of when the closure activities for the phased closures would begin. This schedule is subject to changes based both on changes in the volume of CCR accepted at the material and the number of closure phases that would take place.

2.0 Closure Plan

2.1 Initiation of Closure Activities

The owner or operator of the CCR unit shall initiate closure no later than 30 days after the date on which the CCR unit either receives the known final receipt of waste or removes the known final volume of CCR for beneficial use in accordance with 40 CFR 257.102(e) and s. NR 506.083(2). Closure shall also be commenced if the unit has not received waste or is no longer removing CCR for beneficial use within two years of last receipt of waste or last removal for beneficial use. The owner or operator may secure an additional 2 years so long as they are able to demonstrate that there is reasonable likelihood that the unit will accept waste or remove CCR in the foreseeable future. Subsequent 2-year periods may be continued to be requested so long as they are able to continue to demonstrate the reasonable likelihood of CCR waste disposal or removal for beneficial use. Demonstrations must be placed in the operating recorded prior to the end of any two-year period following 40 CFR 257.102(e)(2)(ii and iii). Per s. NR 506.083(2)(b), these delays shall be requested in writing to the WDNR as a modification to the Closure Plan and include the requirements detailed in s. NR 506.083(2)(b)(1-3).

No later than the date of initiating closure, the owner or operator must prepare a notification of intent to close the Landfill including the certification of a qualified professional engineer for the final cover system design as required by 40 CFR 257.102(d)(3)(iii).

Closure activities have been initiated if the owner or operator has ceased placing waste and completes one of the following activities:

- Taken steps necessary to implement the written closure plan,
- Submitted a completed application for required state or agency permit or modification, or
- Taken steps necessary to comply with state or other agency standards that are prerequisite to initiating or completing closure.

2.2 Closure Performance Standard

The owner or operator of the Landfill will close the CCR unit in a manner that controls post-closure infiltration of liquids into the waste, releases of waste, and leachate or contaminated run-off to groundwater or surface water and preclude the probability of impoundment of water, sediment, or slurry. Measures will be included that provide slope stability which will prevent movement of the final cover system during closure and post-closure. Need for further maintenance of the CCR unit will be minimized. The CCR unit closure should be completed in the shortest amount of time consistent with recognized and generally accepted engineering practices and be done in accordance with 40 CFR 257.102 and s. NR 506.083.

2.3 Final Cover System

Closure of the Landfill will occur by leaving the CCR in-place, which requires the construction of a final cover system compliant with 40 CFR 257.102(d) and s. NR 504.12(4). The final cover system shall meet the following requirements:

• Designed to be compliant with s. NR 504.07, or

- The hydraulic conductivity of the final cover must be less than or equal to 1 x 10⁻⁵ centimeters per second (cm/s), or less than or equal to the hydraulic conductivity of the bottom liner system or natural subsoils present, whichever is less.
- An infiltration layer of at least 18 inches of earthen material that meets the requirements of s. NR 504.12(4)(b)(2).
- An erosion layer of at least six inches of earthen material that is capable of sustaining native plant growth that meets the requirements of s. NR 504.12(4)(b)(3).
- The final cover system must be designed to minimize impacts due to settling and subsidence.

The Landfill will be closed using a composite final cover system. For all future final cover events, the following design will be used (from bottom to top):

- a 24-inch compacted soil barrier (barrier layer),
- GCL (barrier layer),
- a 40-mil textured linear low density polyethylene (LLDPE) geomembrane (barrier layer),
- a 12-inch–thick select granular fill drainage layer (infiltration layer),
- an 18-inch–thick general fill rooting layer (infiltration layer), and
- a 6-inch–thick topsoil layer (erosion layer).

In a 2004 Plan of Operation Modification, an alternate final cover system was presented, which has been used in the previous three final cover construction events. This system consisted of the following components (from bottom to top):

- 2-foot (24 inches) moisture-conditioned and compacted "select" fly ash (i.e. mixture containing a minimum of 40 percent of the more reactive J.P. Madgett fly ash) (barrier layer),
- 40-mil geomembrane (barrier layer),
- 1-foot-thick (12 inches) sand drainage layer (infiltration layer),
- 1.5-foot-thick (18 inches) general soil cover layer (infiltration layer), and
- 6-inch-thick topsoil layer (erosion layer).

The general function of each component of the final cover system is provided in parentheses above. The barrier layer consists of 2 feet of compacted material/soil and a 40-mil geomembrane which exceeds the hydraulic conductivity criteria of 1×10^{-5} cm/s. The landfill was constructed with a composite liner system; therefore, a composite final cover system provides an equivalent hydraulic conductivity. The granular fill drainage layer removes water that infiltrates through the erosion and infiltration layers. The infiltration layer and erosion layer meet the requirements of the CCR rule and s. NR 504.07(6) and (7). This final cover system meets the requirements of 40 CFR 257.102(d)(3)(i) and s. NR 504.12(4).

Following placement of final cover and the surface water control features, the area will be fertilized, seeded, and mulched in order to establish vegetation.

The final cover system has design slopes of 25 percent, refer to Sheet 12 from the Plan of Operation in Appendix A. Because the waste is placed and compacted with control of the moisture conditions and the stability of CCR, significant settlement is not anticipated. Global stability of the Landfill and interface stability of the final cover system were evaluated in the Plan of Operation (RMT 2000) with resulting factors of safety that meet the CCR rule. Based on these considerations, the Landfill closure has been designed in a manner to minimize or eliminate infiltration into the waste, preclude the probability of future impoundment of water, provide stable slopes, and minimize future maintenance.

2.3.1 Final Cover Construction

The final cover system will be constructed in phases as the top-of-waste grades are achieved to minimize the active area of the Landfill and leachate generation. The estimated closure phases and the year in which the closure of the phases are projected to be completed are detailed in Table 1. After final CCR placement in the Landfill, the remaining portion of the final cover system will be constructed. Surface water control features on this segment of the final cover will be constructed and connected with the existing surface water control features.

Future final cover will be constructed by fine grading the waste subbase, placing the soil barrier layer and GCL, deploying and installing the 40-mil thick textured geomembrane, placing the granular drainage layer, placing the general fill rooting layer, and placing the topsoil layer. A schedule estimate of closure activities for final closure is presented in Table 2. It is anticipated that closure construction can be completed within the 6-month timeframe, as required by s. NR 506.083(3)(a).

2.3.1.1 Fine Grading the Waste Subbase

The waste subbase will be fine graded and leveled using heavy equipment to provide a surface for the placement of the grading layer and GCL.

2.3.1.2 Soil Barrier Layer and GCL (Future Cover Construction)

The soil barrier layer material will meet the requirements specified in Condition 11b of the Plan of Operation Conditional Approval and January 2024 Addendum to the January 2023 Plan Modification for Initial Permitting of CCR Landfills. The soil barrier layer will have a minimum thickness of 24 inches measured vertically from the top of the ash waste.

The GCL will be deployed above the soil barrier layer such that there is a minimum of 6 inches of overlap on longitudinal seams and a minimum of 24 inches overlap on end seams or as recommended by the manufacturer, whichever is greater. The panels will be placed with the overlap on both longitudinal and end seams shingled down-slope. If the GCL requires granular bentonite to be placed along the seam, the overlapping panel edge will be pulled back and granular sodium bentonite will be poured continuously along all seams, at an application rate of 1/4 pound per linear foot.

The GCL will be tested during manufacturing, and prior to installation. The results of manufacturer's testing will be submitted to the engineer for review and approval prior to the

acceptance of GCL. Samples from selected rolls delivered to the site will also be collected for conformance testing prior to acceptance and installation.

2.3.1.3 Select CCR Layer (Previously Completed Cover Construction)

The select CCR layer was moisture conditioned and compacted according to the construction specifications. The compaction of the select CCR material was observed by the engineer's representative while documenting construction. The select CCR layer had a minimum thickness of two feet measured vertically from the cover surface.

2.3.1.4 40-mil LLDPE Geomembrane

If GCL is used, the LLDPE geomembrane will be deployed at a rate equivalent to that of the GCL deployment rate such that the GCL panels will be covered daily to prevent against physical damage and/or hydration of the GCL. The geomembrane will be fabricated from a polyethylene resin, which will have a density range of 0.939 g/cc or less for LLDPE. The nominal geomembrane thickness will be 40 mils for LLDPE, with no thickness measurements falling below the minimum industry-accepted manufacturing tolerance.

The geomembrane will be installed with the panels orientated perpendicular to the contours (i.e., running up and down the slope). The geomembrane will be deployed in a manner that does not adversely impact the barrier material below the geomembrane.

Geomembrane panels will be seamed in the field. Production seaming (linear seams) will be performed using the dual hot wedge (fusion type) seam method. Non-production seams (detail work and repairs) will be performed using the extrusion fillet weld process. Corners, butt seams, and long repairs will be fusion-welded where possible. The geomembrane component of the adjacent cell will be welded together for a continuous membrane surface.

The geomembrane will be tested during manufacturing, and prior to and during installation. The results of the manufacturer's testing will be submitted for review and approval prior to the acceptance of geomembrane rolls delivered to the site. Samples from selected rolls delivered to the site will also be collected for conformance testing by a third-party laboratory prior to acceptance and installation. Finally, during placement, both nondestructive and destructive testing of the geomembrane seams will be performed. Nondestructive testing will be performed by the installation contractor and observed by a third party. Destructive testing will consist of both field and third-party laboratory testing of the samples collected.

2.3.1.5 Granular Drainage Layer

After placement and testing of the geomembrane, or portions thereof, a 12-inch–thick select granular fill drainage layer will be placed as soon as practicable to protect the geomembrane and to provide a confining pressure for the underlying GCL, if used. At a minimum, the select granular fill will be placed within 30 days of completing the membrane installation and quality assurance testing.

To minimize the potential for large wrinkles in the geomembrane, the drainage layer will be placed during cooler temperatures when possible. Wrinkles in the geomembrane that are higher than they are wide, will be smoothed or cut out and repaired prior to placing the drainage layer.

The initial lift of select granular fill will be 2 to 3 feet thick, depending on the type of equipment being used, to provide an access ramp. A minimum of 2 feet of material will be placed prior to operating tracked vehicles and flotation tire–equipped vehicles, while a minimum of 3 feet of material will be placed prior to operating trucks and other wheeled hauling equipment. The initial lifts of select granular fill will eventually be graded to the designed 1-foot–thick layer with a low ground pressure (< 5 psi) tracked vehicle. The procedure for deployment of the granular drainage blanket will be established at the preconstruction meeting.

2.3.1.6 General Fill Rooting Layer

An 18-inch–thick uncompacted general fill rooting layer will be placed above the drainage layer in a single lift. The general fill rooting layer will provide a rooting zone for vegetation and will protect the cap from damage due to freeze-thaw and desiccation.

2.3.1.7 Topsoil and Vegetation

The top layer of the final cover system will be a 6-inch–thick layer of topsoil. Topsoil stripped from the landfill and perimeter areas during site preparation will be stockpiled and reused in the final cover. After topsoil is placed, the area will be seeded, mulched, and fertilized. Prior to seeding, the topsoil layer will be prepared for seeding by disking and pulverizing soil within 2 inches of the surface.

DPC has established prairie vegetation on previously constructed phases of final cover with good performance. The prairie vegetation is suitable to soil quality/thickness, and slopes and moisture conditions, with minimal need for continuous maintenance. This prairie vegetation is planned for use in future final cover construction events. Erosion control measures will be installed as needed across the site to limit erosion prior to establishing vegetation.

2.3.2 Storm Water Control Features

Storm water control features will be constructed and/or completed for each phase of final cover construction. Storm water control features consist of diversion berms, a downslope flumes, and energy dissipaters. These storm water control features on the final cover deliver water to perimeter ditches, sedimentation basins, and sediment traps that were constructed during liner construction of the various cells. The storm water control features will be constructed in accordance with the specifications and details presented in the Plan of Operation (RMT 2000), refer to Appendix A for relevant plan sheets from the Plan of Operation. These features are designed to manage runoff from 100-year 24-hour storm events and minimizing scour and erosion of the final cover. Additional details on the storm water control features are provided in the Run-On and Run-Off Control Systems Plan.

2.4 Completion of Closure Activities

Within 30 days of completion of closure activities the owner or operator shall prepare a notification of closure of a CCR unit with a certification from a qualified professional engineer that the closure has been performed in accordance with this Plan.

Per 40 CFR 257.102(i) the owner or operator must record a notation on the deed to the property, or some other instrument that is normally examined during title search, that the land has been used for a CCR unit and that it is restricted under the post-closure care requirements as provided

in 40 CFR 257.104(d)(1)(iii). Per s. NR 506.083(4)(a), the deed notation (affidavit) is to be recorded within 60 days after closure is complete. A copy of the affidavit is required to be submitted to the WDNR and placed in the facility's operating record within 30 days of recordation.

2.5 Amendment of a Written Closure Plan

The owner or operator will amend the written closure plan in accordance with s. NR 514.04(6) whenever:

- There is a change in the operation of the Landfill that would substantially affect the plan in effect, or
- Before or after closure activities have commenced, unanticipated events necessitate a revision.

The closure plan must be amended and submitted in writing to the WDNR at least 60 days prior to a planned change in operation of the Landfill, or no later than 60 days after an unanticipated event occurs that requires the need to revise an existing closure plan. If a written closure plan is revised after closure activities have commenced for the Landfill, the current closure plan must be amended and submitted to the WDNR no later than 30 days following the triggering event.

3.0 Notification

3.1 Operating Record

The following items will be maintained in the operating record for a minimum of five years:

- 40 CFR 257.105(i)(4): the most recent written closure plan or amendment of the Plan must be maintained for the life of the operating record
- 40 CFR 257.105(i)(7): the notification of intent to close a CCR unit
- 40 CFR 257.105(i)(8): the notification of completion of closure of a CCR unit
- 40 CFR 257.105(i)(9): the notification of recording a notation on the deed

3.2 Notification Requirements

The following required notifications will be provided before the close of business on the day the notification is required to be completed:

- 40 CFR 257.106(i)(4)/s. NR 506.17(4)(c): a notification of the available written closure plan or amendment of the Plan
- 40 CFR 257.106(i)(7)/s. NR 506.083(1)(a): the notification of intent to close a CCR unit
- 40 CFR 257.106(i)(8) /s. NR 506.083(1)(b): the notification of completion of closure of a CCR unit
- 40 CFR 257.106(i)(9) /s. NR 506.083(4)(a): the notification of recording a notation on the deed

3.3 Publicly Accessible Internet Site

The following required items will be posted on the publicly accessible internet site within 30 days of placing the information in the operating record:

- 40 CFR 257.105(i)(4): the most recent written closure plan or amendment of the Plan must be maintained for the life of the operating record
- 40 CFR 257.107(i)(7): the notification of intent to close a CCR unit
- 40 CFR 257.107(i)(8): the notification of completion of closure of a CCR unit
- 40 CFR 257.106(i)(9): the notification of recording a notation on the deed

Information should be posted within 30 days of placing the pertinent information required by 40 CFR 257.105/NR 506.17(3)(c) in the operating record. Records will be made available to the public for at least five years following the date on which the information was posted to the internet site.

Additional postings to the operating record, notifications, and postings to the publicly accessible internet site may be needed if extensions under 40 CFR 257.102e(2)(ii) or 40 CFR 257.102(f)(2) are pursued.

4.0 References

- RMT, Inc. 2000. Plan of Operation: Phase IV Disposal Area, Alma Off-site Ash Disposal Facility, Town of Belvidere, Buffalo County, Wisconsin. October 2000.
- RMT, Inc. 2004. Plan of Operation Modification: Phase IV Disposal Area, Alma Off-site Disposal Facility, Town of Belvidere, Buffalo County, Wisconsin.
- TRC Environmental Corporation. 2021. Run-On and Run-Off Control Systems Plan. October 2021.

5.0 Engineer's Certifications

Pursuant to 40 CFR 257.102 and by means of this certification I attest that:

- (i) I am familiar with the requirements of the CCR rule (40 CFR 257);
- (ii) I am familiar with the requirements of the ch. NR 500-520, Wisconsin Administrative Code;
- (iii) this Closure Plan has been prepared in accordance with good engineering practice;
- (iv) the design of the final cover system meets the requirements of 40 CFR 257.102(d)(3) and s. NR 504.12(4); and
- (v) this Closure Plan meets the requirements of 40 CFR 257.102 and s. NR 514.07(10)(c).

For the purpose of this document, "certify" and "certification" shall be interpreted and construed to be a "statement of professional opinion." The certification is understood and intended to be an expression of my professional opinion as a Wisconsin licensed professional engineer, based upon knowledge, information, and belief. The statement(s) of professional opinion are not and shall not be interpreted or construed to be a guarantee or a warranty of the analysis herein.

Signature of Registered Professional Engineer

Registration No. E-46825 State: Wisconsin

Dairyland Power Cooperative Closure Plan – Alma Offsite Disposal Facility, Phase IV Landfill Final July 2024 Revision 2

\\madison-vfp\Records\-\WPMSN\PJT2\563618\0000\R5636180000-001_Att 5_Closure Plan.docx

Table 1: Estimated Schedule of Phased Closure Alma Offsite Disposal Facility, Phase IV Landfill

Closure Phase	Acreage	Estimated Year of Closure ⁽¹⁾
Portion of Cell 1 ⁽²⁾	3.6 acres	2010
Portion of Cell 2A and Cell 1 ⁽²⁾	1.7 acres	2012
Portions of Cell 1/2A/2B ⁽²⁾	2.8 acres	2017
Cell 3	5.84 acres	2029
Cell 4A	6.11 acres	2038
Cell 4B	12.05 acre	2057

Footnotes:

⁽¹⁾ Closure construction may be shifted to different years based on rate of filling.

⁽²⁾ Closure phases currently constructed.

Table 2: Schedule Estimate for Completing Closure Closure Plan – Alma Offsite Disposal Facility, Phase IV Landfill

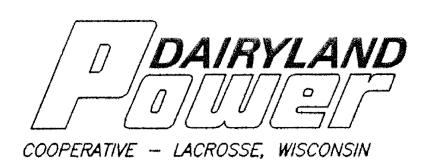
Closure Area: 12.1 Acres - Final Phase of Final Cover on Plan of Operation Phasing Plans				
Task/Milestone	Start Date ⁽¹⁾	Duration	Estimated End Date	
Ash Filling Ceases	2/1/2057		2/1/2057	
Notification to Initiate Closure	3/2/2057		3/2/2057	
Fine Grading Waste	3/5/2057	22 days	3/26/2057	
Select CCR Placement and Compaction ⁽²⁾	3/27/2057	31 days	4/26/2057	
Geomembrane Deployment and Installation	4/27/2057	21 days	5/17/2057	
Granular Drainage Layer Placement	5/18/2057	18 days	6/4/2057	
General Fill Rooting Zone Placement	6/5/2057	21 days	6/25/2057	
Topsoil Placement and Seeding	6/26/2057	11 days	7/6/2057	
Notification of Completion of Closure	7/9/2057	31 days	8/8/2057	
Deed Notation and Notification	7/9/2057	61 days	9/7/2057	
	Total Duration:	124 days ⁽³⁾		

Footnotes:

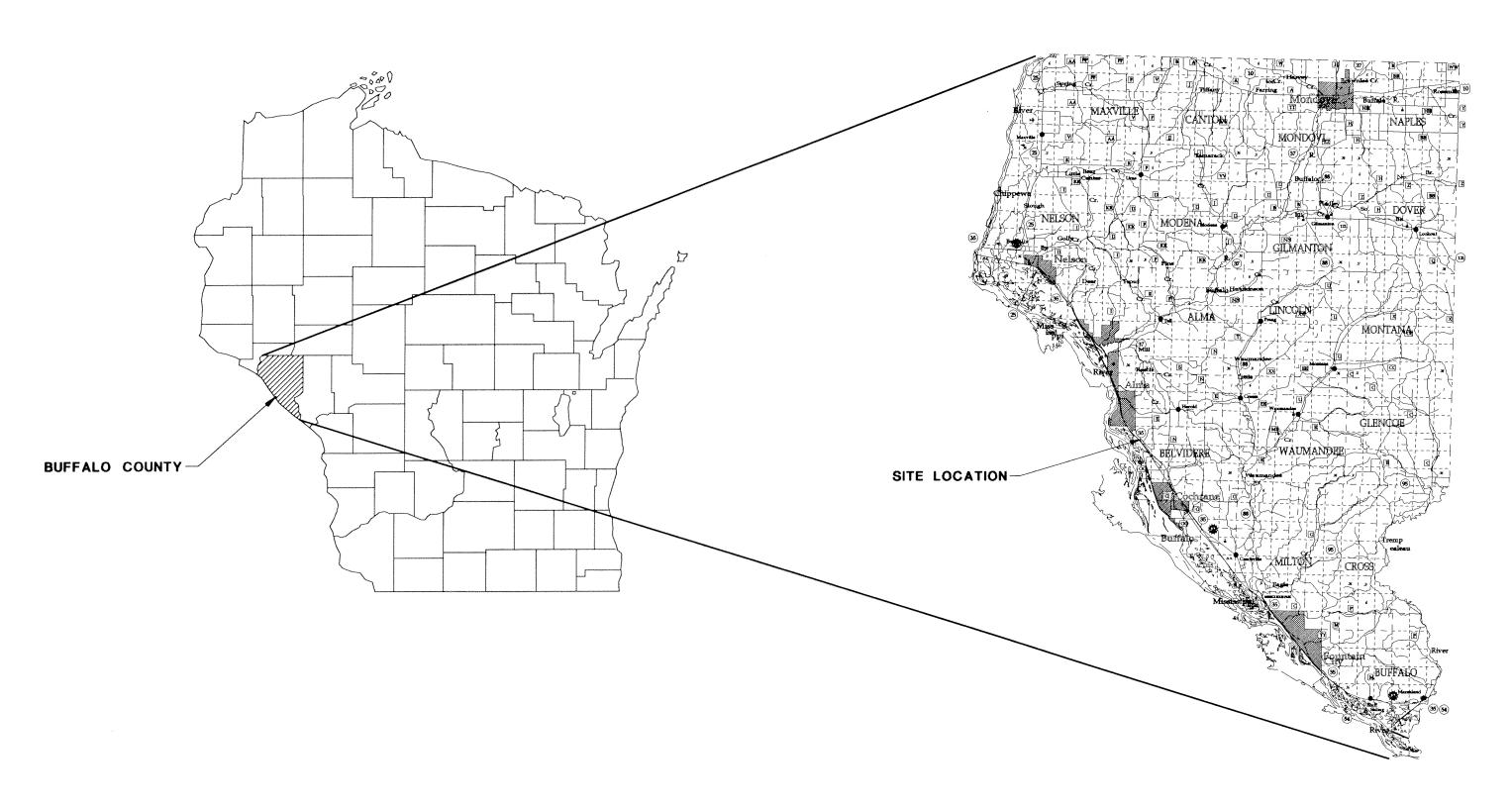
⁽¹⁾ Start date based on assumed beginning of 2057 construction season. Closure construction may be shifted to different years based on rate of filling.

⁽²⁾ Previous final cover construction has utilized the modified final cover design. Timeframes associated for this modified final cover design will be used.

⁽³⁾ Total duration provided in time to substantial completion of final cover placement. At this point, the CCR has been covered and the vegetation seed and temporary erosion control has been applied. Emergence and establishment of vegetation may require additional time.


Created By: J. Hotstream Checked By: S. Sellner

Revised by: B. Kahnk Checked By: Z. Bauman



Appendix A: Engineering Drawings

- Plan of Operation Title Sheet (Sheet 1)
- Plan of Operation Final Grades (Sheet 12)
- Plan of Operation Details Final Cover (Sheet 19)
- Cell 3B Liner Construction and Area C (Over Cells 1 and 2) Final Cover Construction Details (Sheets 12 and 13)

PREPARED BY: RMT, INC. MADISON, WISCONSIN DATE: OCTOBER 2000

WISCONSIN

ref levels* ref levels* ref levels* ref levels* ref levels* ref levels* ref levels* ref levels* ref levels*

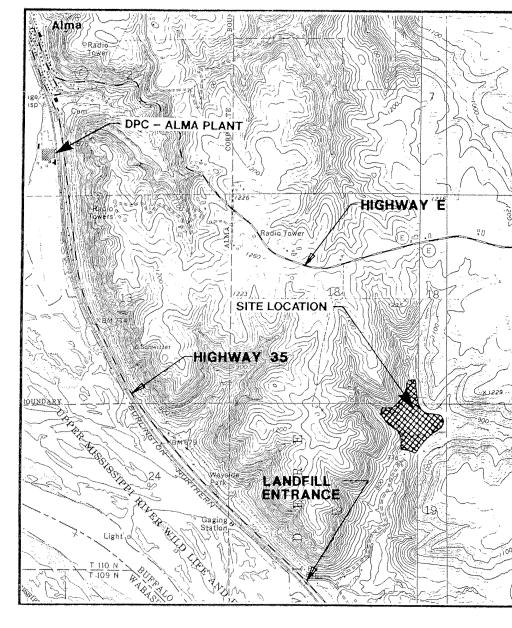
Levels (1) *10 r (2) *10 r (3) *10 r (4) *10 (5) *10 (5) *10 (6) *10 (6) *10 (3) *10

logic logic logic logic logic logic

ref ref ref ref ref

name*

вваляяни <u>___</u> 0 M 4 M 0 M 0 0 0


Ref. Ref. Ref. Ref. Ref. Ref.

r Data pn File ID File Table

DAIRYLAND POWER COOPERATIVE

OF OPERATION PHASE IV DISPOSAL AREA ALMA OFF-SITE ASH DISPOSAL FACILITY

PREPARED FOR: DAIRYLAND POWER COOPERATIVE LACROSSE, WISCONSIN


SCALE: |*=2000'

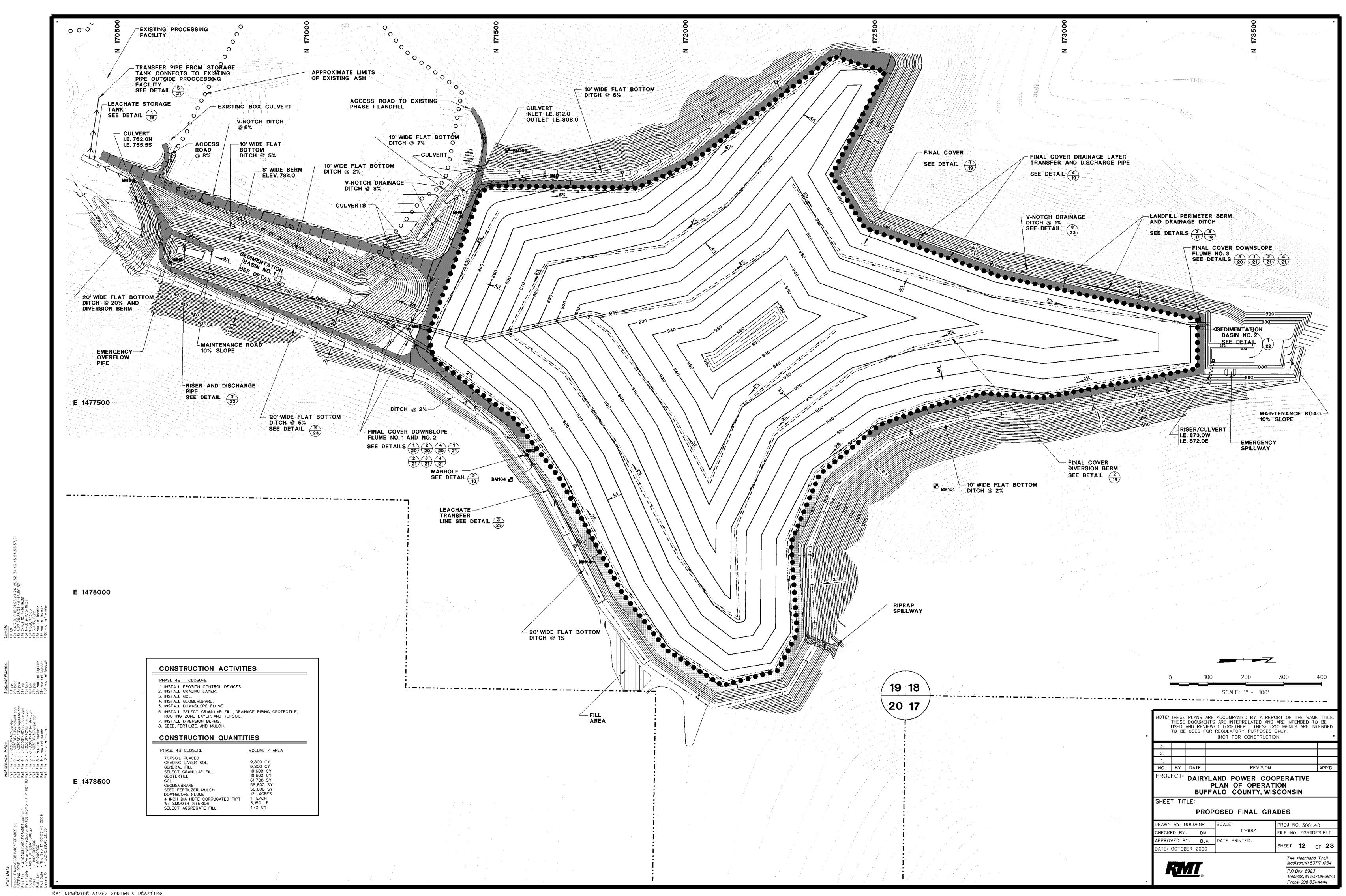
MAP SOURCE: U.S.G.S. CREAM AND ALMA 7.5' QUADRANGLES, DATE 1974.

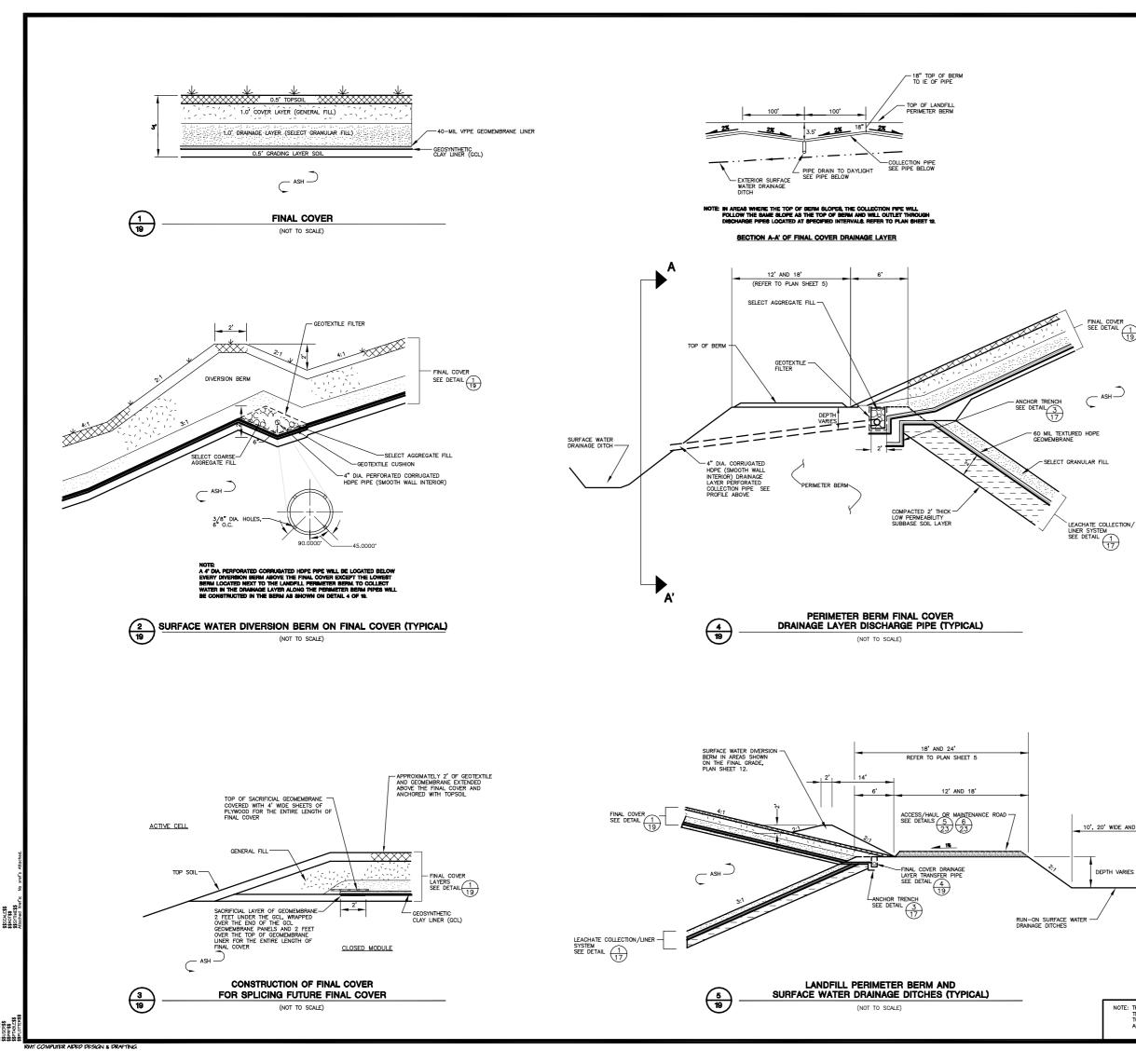
SITE LOCATION

BUFFALO COUNTY

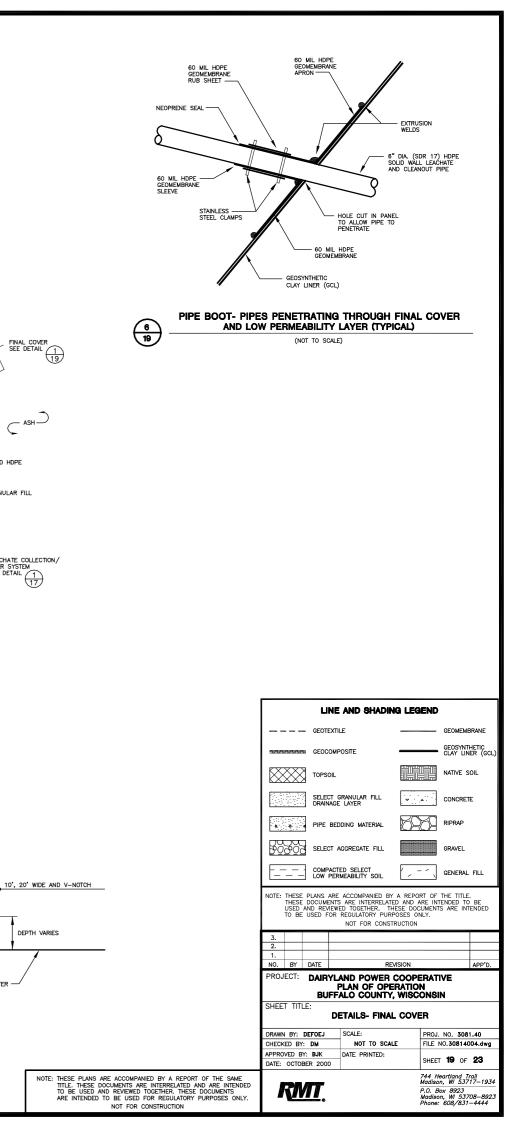
ID E X

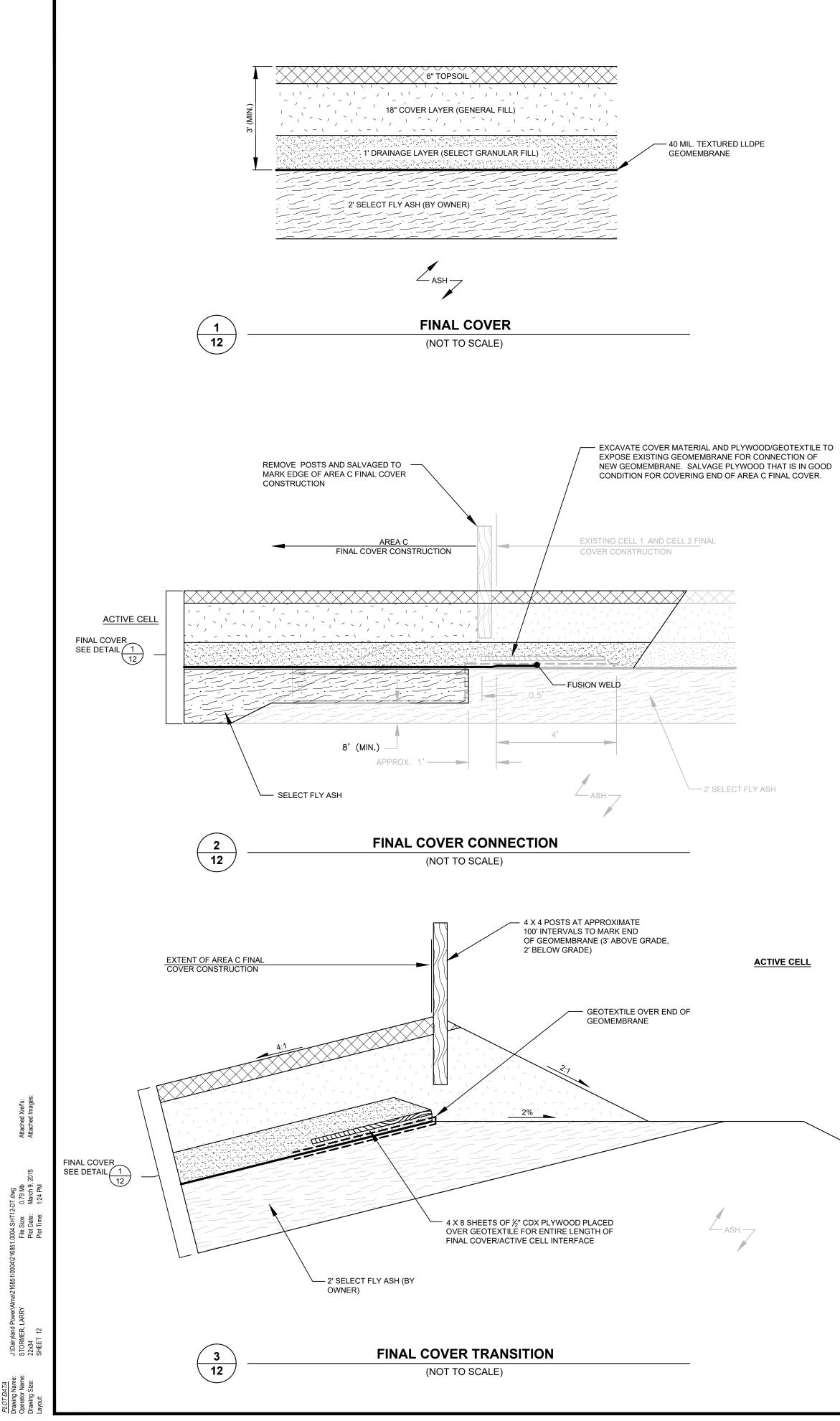
SHEET NUMBER

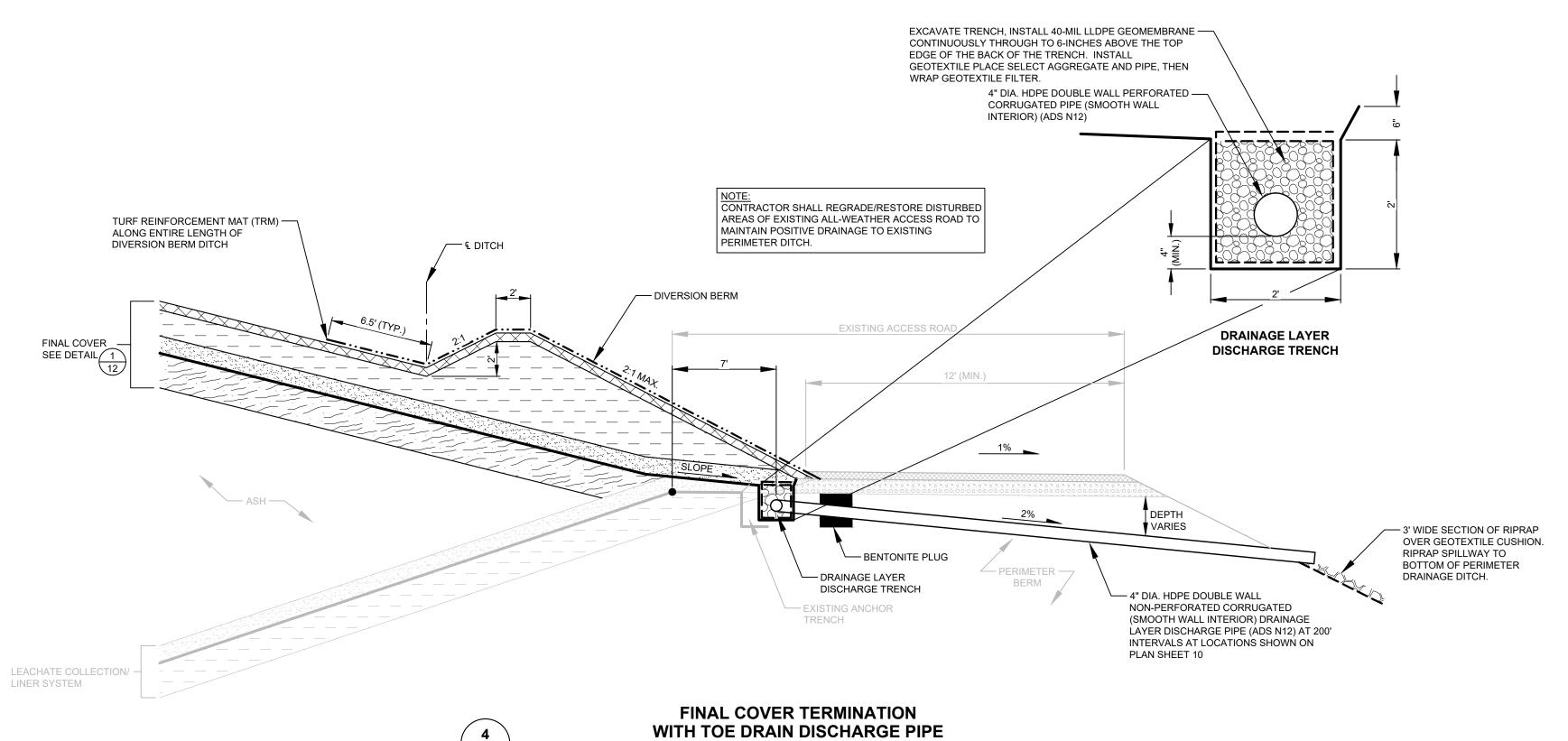

SHEET TITLE


1	TITLE SHEET/INDEX
2	STANDARD LEGEND AND NOTES
3	EXISTING CONDITIONS MAP
4	PROPOSED SUBBASE GRADES
5	PROPOSED BASE GRADES
6	PHASING PLAN- CELL I ACTIVE
7	PHASING PLAN- CELL I CLOSED CELL 2A ACTIVE
8	PHASING PLAN- CELL 1 AND 2A CLOSED CELL 2B ACTIVE
9	PHASING PLAN- CELL 1, 2A, AND 2B CLOSED CELL 3 ACTIVE
10	PHASING PLAN- CELL 1, 2A, 2B AND 3 CLOSED CELL 4A ACTIVE
11	PHASING PLAN- CELL 1, 2A, 2B, 3 AND 4A CLOSED CELL 4B ACTIVE
12	PROPOSED FINAL GRADES
13	PROPOSED ENVIRONMENTAL MONITORING PLAN
14	LONG TERM CARE PLAN
15	ENGINEERING CROSS SECTIONS 171700N AND 172200N
16	ENGINEERING CROSS SECTIONS 1477340E AND 1477710
17	DETAILS- LINER AND COLLETION PIPES
18	DETAILS- LEACHATE STORAGE TANK AND MANHOLE
19	DETAILS- FINAL COVER
20	DETAILS- DOWNSLOPE FLUMES
21	DETAILS- DOWNSLOPE FLUMES
22	DETAILS- SEDIMENTATION BASINS

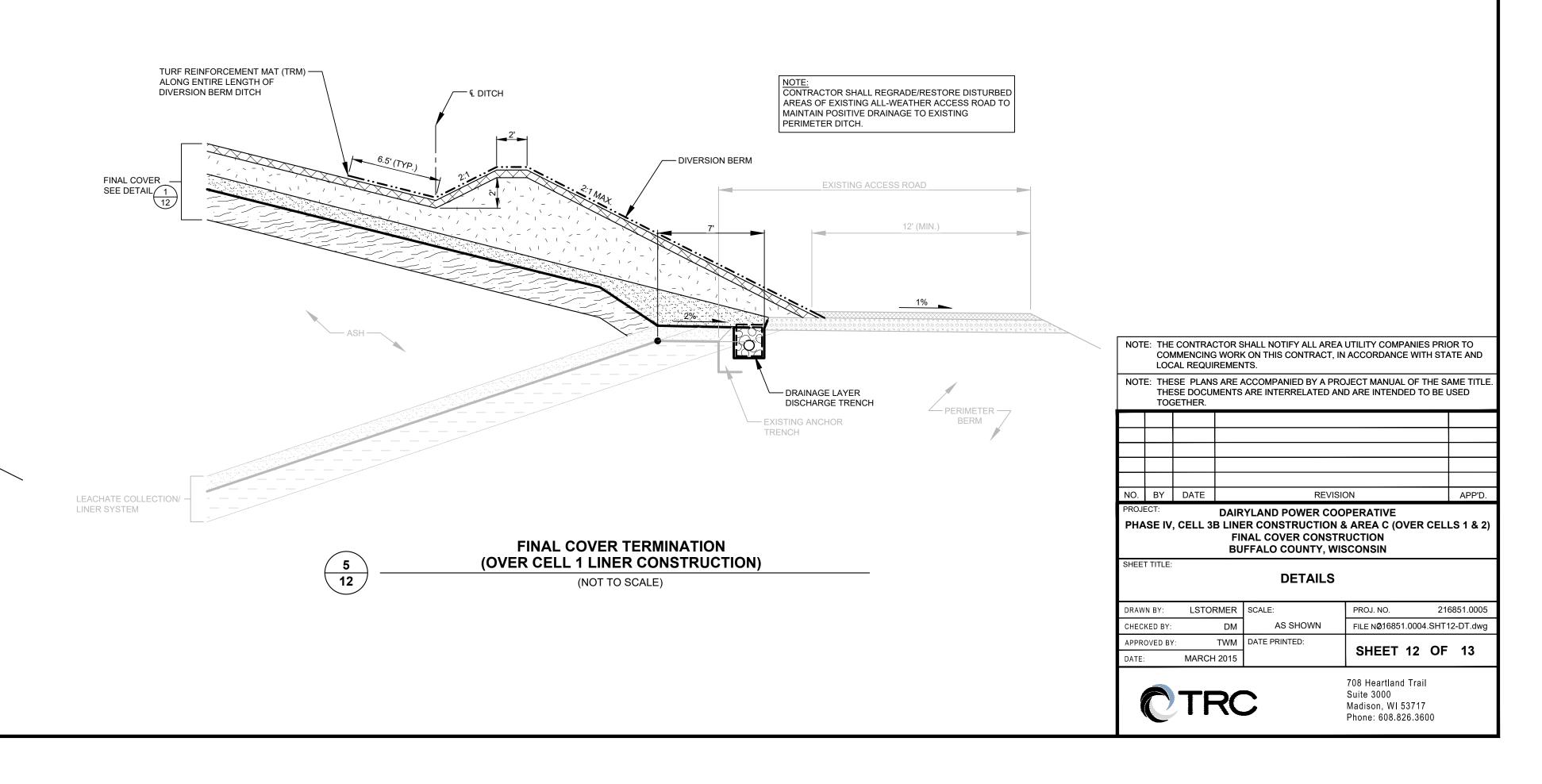
DETAILS- MISCELLANEOUS 23

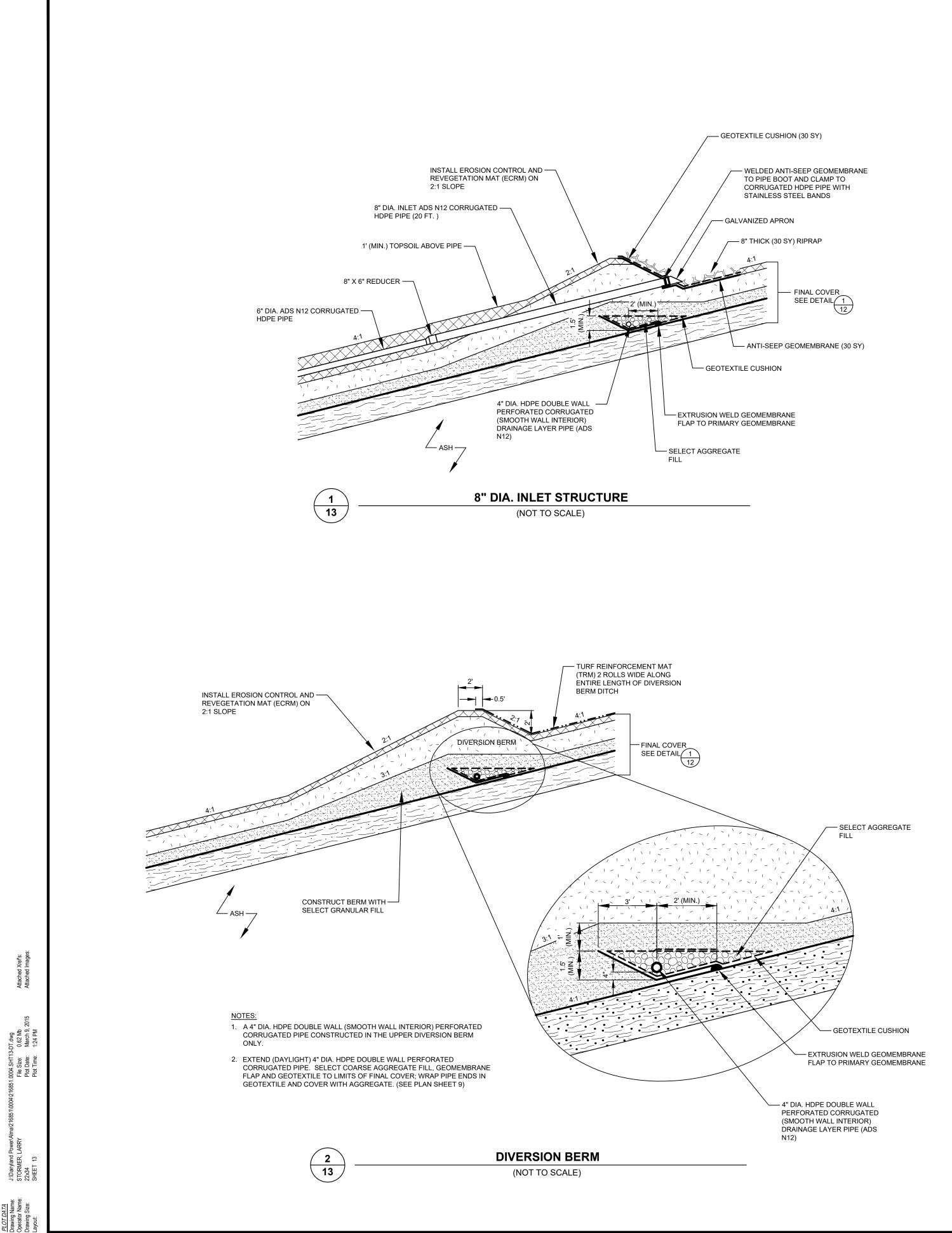


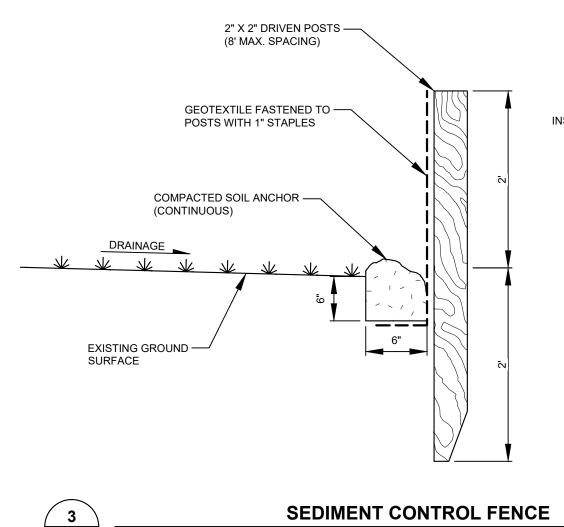




PLOT DATA 150WGSS 100WGSS 150WGSS 150W







(NOT TO SCALE)

(NOT TO SCALE)

LOCAL REQUIREMENTS.

TOGETHER.

Sulte 3000 Madison, WI 53717 Phone: 608.826.3600

NO.	BY	DATE	DATE REVISION										
PROJECT: DAIRYLAND POWER COOPERATIVE PHASE IV, CELL 3B LINER CONSTRUCTION & AREA C (OVER CELLS 1 & 2) FINAL COVER CONSTRUCTION BUFFALO COUNTY, WISCONSIN													
SHEET TITLE:													
DETAILS													
DRAWN BY:		LSTO	RMER	SCALE:	PROJ. NO. 21	6851.0005							
CHECKED BY:		DM	AS SHOWN	FILE NØ16851.0004.SHT13-DT.0									
APPR	OVED BY	·:	TWM	DATE PRINTED:		42							
DATE:		MARCH	12015		SHEET 13 OF	13							
708 Heartland Trail													

NOTE: THE CONTRACTOR SHALL NOTIFY ALL AREA UTILITY COMPANIES PRIOR TO

NOTE: THESE PLANS ARE ACCOMPANIED BY A PROJECT MANUAL OF THE SAME TITLE. THESE DOCUMENTS ARE INTERRELATED AND ARE INTENDED TO BE USED

COMMENCING WORK ON THIS CONTRACT, IN ACCORDANCE WITH STATE AND

INSTALL AT ON-SITE BORROW AREAS

Attachment 6

Long-term Care Costs

Opinion of Probable Cost Long-term Care, Phase IV Landfill Dairyland Power Cooperative, Alma Off-Site Disposal Facility Plan Modification - June 2024

						verage Cost	
Major Cost Item	Unit	Unit Cost ⁽¹⁾		Quantity	Per Year		
Land Surface Care and Site Maintenance							
Reseed/Erosion Damage	Acre	\$	830.00	32	\$	27,000.00	
Lawn Mowing	LS	\$	5,310.00	1	\$	6,000.00	
Snow Plowing	LS	\$	3,000.00	1	\$	3,000.00	
Road Maintenance	LS	\$	2,000.00	1	\$	2,000.00	
Storm Water Control Structures Maintenance	LS	\$	8,300.00	1	\$	9,000.00	
Repair Cover from Settlement	Acre	\$	340.00	32	\$	11,000.00	
Sedimentation Basin Cleaning	LS	\$	830.00	1	\$	1,000.00	
Groundwater Monitoring Maintenance							
Inspections and Maintenance/Purge/Resurvey, Pumps ⁽²⁾	LS	\$	4,000.00	0.025	\$	1,000.00	
Well Replacement/Abandonment ⁽³⁾	LS	\$	10,000.00	0.375	\$	4,000.00	
Leachate Collection System							
Leachate Collection Line Cleaning	LS	\$	3,320.00	1	\$	4,000.00	
Leachate Collection Line Televising ⁽⁴⁾	LS	\$	1,200.00	0.2	\$	300.00	
Operation and Maintenance	LS	\$	4,980.00	1	\$	5,000.00	
Leachate Disposal	Gallon	\$	0.0415	876,000	\$	37,000.00	
Environmental Monitoring ⁽⁵⁾							
Groundwater Monitoring (15 wells)	LS	\$	9,000.00	1	\$	9,000.00	
Leachate Monitoring (1 tank)	LS	\$	1,000.00	1	\$	1,000.00	
Surface Water Monitoring (2 locations)	LS	\$	1,000.00	1	\$	1,000.00	
Data Preparation/Submittal	LS	\$	3,000.00	1	\$	3,000.00	
Inspection and Reporting							
Annual Inspections	LS	\$	3,400.00	1	\$	4,000.00	
Annual Report	LS	\$	5,000.00	1	\$	5,000.00	
	1		Long-term C	are Subtotal:	\$	133,300.00	
Contingency (10%):							
	\$	146,700.00					
40-year Long-term Care Cost:							

Note:

⁽¹⁾ Costs are in 2023 dollars according to Wisconsin DNR Owner Financial Responsibility Inflation Factor Table. Some totals may not agree due to rounding.

⁽²⁾ Resurvey/rehabilitation - Assumed to occur once per 40 years.

⁽³⁾ Replace 15 wells over 40 years.

⁽⁴⁾ All lines televised once per five years.

⁽⁵⁾ Assumes semiannual monitoring.

Update By: B. Kahnk 6/3/2024 Checked By: T. Martin 7/8/2024