

Run-On and Run-Off Control System Plan

Alma Offsite Disposal Facility Phase IV Landfill Alma, Wisconsin

October 2016 Revised October 2021 Revised January 2024

Prepared For:

Dairyland Power Cooperative 3200 East Avenue South La Crosse, Wisconsin 54601

Prepared By:

TRC 999 Fourier Drive, Suite 101 Madison, Wisconsin 53717

Breanne Kahnk

BreAnne Kahnk, P.E. Senior Project Engineer

Todd W. Martin

Todd Martin Principal Project Manager

TABLE OF CONTENTS

REVIS	ION HIS	STORY		ii
1.0	INTRO	DUCTI	ON	1
	1.1	Purpose	e and Scope	. 1
2.0		RUN-OF	G DESIGN CONCEPTS FOR CONTROLLING RUN-ON F	
	2.1		l	
	2.2		n Control System	
		2.2.1	General	
		2.2.2	Control of Surrounding Run-On	
		2.2.3	Diversion Berms	.3
		2.2.4	Downslope Flumes	
		2.2.5	Ditching	.4
		2.2.6	Sedimentation Basins	.4
		2.2.7	Culverts	.4
		2.2.8	Temporary Surface Water Controls	.4
	2.3	Run-Of	f Control System	. 5
		2.3.1	General	.5
		2.3.2	Leachate Collection System	.5
		2.3.3	Leachate Removal and Transfer System	.5
		2.3.4	Leachate Storage Capacity From a 25-Year 24-Hour Storm Event	.6
		2.3.5	Conclusions	.6
3.0	CONS	TRUCT	ION OF RUN-ON AND RUN-OFF CONTROL SYSTEM	7
	3.1	Run-on	Control Systems	. 7
	3.2	Run-off	Control Systems	. 7
4.0	AMEN	DMENT	OF THE PLAN AND NOTIFICATION	8
5.0			CERTIFICATION	

APPENDICES

Appendix A:	Surface Water Run-On Control System Calculations
Appendix B:	Surface Water Run-Off Control System Calculations
Appendix C:	Relevant October 2000 POO Plan Sheets

REVISION HISTORY

Revision Number	Revision Date	Section Revised	Summary of Revisions
1	10/6/2021	1.2, 2.2, 2.3, 3.0, App. B	5-year periodic revision, revised text and Appendix B
2	10/11/2023	Inserted Section 3	Requirements to meet WDNR standards

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024

1.0 Introduction

1.1 **Purpose and Scope**

This Run-On and Run-Off Control System Plan (Plan) was prepared by TRC Environmental Corporation (TRC) on behalf of Dairyland Power Cooperative (DPC) for the Alma Offsite Disposal Facility, Phase IV Landfill (Landfill) where coal combustion residuals (CCR) are disposed. The approximately 32.1 acre Landfill is located in Sections 18 and 19, T21N, R12W, Town of Belvidere, Buffalo County, Wisconsin.

This Plan meets the run-on and run-off control system requirements of the United States Environmental Protection Agency's (USEPA) CCR Rule (Title 40 Code of Federal Regulations (CFR) parts 257 Subpart D – "Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments"). This text and its accompanying appendices and plan sheets present the plans and specifications of the run-off and run-on control systems of the Landfill. The plan sheets and the text, with its appendices, complement each other and should be reviewed and used as one document.

2.0 Engineering Design Concepts for Controlling Run-On and Run-Off

2.1 General

The Landfill design has been developed to provide environmentally sound CCR disposal. The storm water run-on and run-off control systems for the Landfill have been designed and meet the requirements of 40 CFR 257.81.

The supporting calculations for the run-on and run-off design are referenced throughout the text and are included in the appendices. Details and drawings illustrating design layout and specifications are referenced as applicable and presented on the plan sheets and figures. The majority of the calculations provided in the appendices were prepared during the initial permitting of the Phase IV Disposal Area and included in the October 2000 Plan of Operation (POO) in accordance with Wisconsin Administrative Code, Chapters 500 through 520, and conversations with the Wisconsin Department of Natural Resources (WDNR). Plan sheets included in Appendix C are the relevant plan sheets from the October 2000 POO drawing plan set. For the purposes of this Plan, the terms surface water and storm water have been used interchangeably and reflect precipitation routed over land or temporarily stored to manage run-on and run-off. No streams, wetlands, or bodies of water are located in areas that would impact run-on and run-off at the Landfill.

2.2 Run-On Control System

2.2.1 General

The run-on control system for the Landfill consists of perimeter berms, diversion berms, downslope flumes, ditching, sedimentation basins, and culverts, designed and constructed to control surface water during both the operational and post-closure periods of the Landfill. The design of the surface water controls have been performed for the operational periods when the combination of surface conditions and contributing acreage would result in the greatest run-off volume, and for the post-closure period. Given the location of the site, the surface water management system was designed utilizing the 100-year, 24-hour storm event at the time of the design, which exceeds the current 25-year, 24-hour storm event required by 40 CFR 257.81(a)(1). Calculations for the surface water run-on control designs are included in Appendix A.

The surface water control system design has been performed to meet the following requirements:

- Run-off curve numbers (RCNs) used in the analysis provide a conservative analysis of the potential land uses of the upland areas. Upland areas within the watershed primarily include wooded areas and agricultural lands. The wooded areas are located on the steeper-sloped areas of the valley and are unlikely to be affected by future land uses. High RCNs for the agricultural lands were selected to represent a conservative fallow condition with exposed bare soil. The RCNs selected for these areas were 86.
- Surface water run-on controls have been designed to divert off-site surface water away from the active fill areas. On-site surface water is routed to sedimentation basins, except surface water in contact with active fill areas, which is treated as leachate.

2.2.2 Control of Surrounding Run-On

Surface water from areas west, north, and east of the Landfill currently drain to existing drainage channels that have formed in the valleys near the Landfill. These drainage channels converge at the location of the Landfill, are conveyed around the Landfill by perimeter diversion ditches, and continue to the south in a single drainage ditch. The main drainage ditch then routes the water to the south for approximately 1.5 miles before discharging into the Mississippi River (see Plan Sheet 5 in Appendix C).

Diversion ditches are designed to route off-site surface water around the Landfill in a controlled manner. These ditches are constructed in phases as the Landfill is developed.

During previous construction events, the perimeter drainage ditch along the eastern, western, and northern sides of the Landfill were constructed to route storm water from the east, west, and north around the Landfill. Cells 1, 2, and 3 of the Landfill have been constructed (see Plan Sheet 9 in Appendix C). A temporary drainage ditch/diversion berm was constructed on the northwestern side of the Landfill to route surface water from areas northwest of the Landfill around the Landfill. During Cell 4, Module B development, the remaining surface water controls will be completed (see Plan Sheets 11 and 12 in Appendix C).

Temporary and permanent ditching and diversion berms were designed and constructed to manage the peak flows associated with the 100-year, 24-hour storm event.

2.2.3 Diversion Berms

Diversion berms are designed along the final cover system to collect and transfer surface water to the receiving downslope flume or sedimentation basin (see Detail 2 on Plan Sheet 19 in Appendix C). These diversion berms concentrate and control flow, and discharge the non-contact surface water (water that has not come into contact with the CCR) from the Landfill away from the final cover. The swales created by the diversion berms are designed at 2 percent typical slopes along the flow lines. The locations of the surface water diversion berms are shown on Plan Sheet 12 in Appendix C.

Drainage areas for the Landfill are defined by the proposed surface water diversion berms at the site. Run-off computations were performed for the site with the proposed diversion berms inplace and are contained in Appendix A. Figure K-2 in Appendix A shows the post-closure drainage areas for the Landfill.

2.2.4 Downslope Flumes

Downslope flumes are included in the design to collect and transfer surface water from the diversion berms on the final cover to the sedimentation basins. Plan Sheet 12 shows the location of the downslope flumes. The downslope flumes have been designed as enclosed pipe flumes to limit erosion and to control the flow as it crosses roads. Downslope flume calculations are included in the culvert design subsection of Appendix A.

2.2.5 Ditching

Surface water ditching has been designed to minimize velocities and depths of flow. Velocities for the grass-lined ditching have been limited to 4 feet per second (fps). In areas where velocities exceed 4 fps, permanent erosion matting, or grouted riprap are used to limit erosion and reduce velocities. Ditch sizing calculations are contained in Appendix A. Designed ditch locations are shown on Figure K-3 in Appendix A. The ditching to route surface water around the Landfill and away from the active areas of the Landfill are designed at a minimum 2-foot depth as shown on Detail 8 on Plan Sheet 23 in Appendix A. Ditch sizing calculations for operational and post-closure conditions show that a minimum freeboard of 0.4 feet occurs as the worst case condition in the ditches for the 100-year 24-hour storm event. Therefore, the calculations indicate that run-on to the active areas of the Landfill should not occur for the 25-year 24-hour storm event as required by 40 CFR 257.81(a)(1).

2.2.6 Sedimentation Basins

Two permanent sedimentation basins are designed to capture and treat non-contact run-off from the Landfill final cover system. The locations of the permanent sedimentation basins are shown on Plan Sheet 5 in Appendix C. The basins have been designed with a minimum surface area that exceeds the surface area required to settle 0.015 mm particles. The sedimentation basins are designed to accommodate the surface water run-off from a 100-year, 24-hour storm event. The emergency spillways are designed to control the run-off from a storm greater than the 100-year, 24-hour storm event.

2.2.7 Culverts

Several culverts are designed to transport non-contact run-off from the Landfill final cover and surrounding areas. The locations of the permanent culverts are shown on Plan Sheet 12 in Appendix C. The culverts have been designed to allow the peak run-off associated with a 100-year, 24-hour storm to pass through it without creating surface water breaching (i.e., berm overflow and run-on into active areas of the Landfill) or excessive backwater levels. Culvert sizing was performed using design charts developed by the U.S. Department of Transportation Federal Highway Administration. Culvert sizing calculations are provided in Appendix A.

2.2.8 Temporary Surface Water Controls

In addition to the permanent surface water management features discussed above, temporary surface water controls are also implemented during operation of the Landfill to control surface water from entering the active disposal area and to limit erosion of the final cover. These temporary control features include diversion berms, downslope discharge structure, and culverts. Temporary diversion berms will be constructed as needed along the transition from an active area to an area that has reached final grade, or that has intermediate cover, in order to control surface water from entering the active area. Temporary downslope discharge structures will be used to route non-contact run-off from diversion berms (either temporary or permanent) to the perimeter ditches.

2.3 Run-Off Control System

2.3.1 General

The leachate collection and handling system in conjunction with cell delineation berms (see detail 5 on Plan Sheet 17 in Appendix C) and perimeter berms comprise the control system for preventing contact surface water run-off from the active portions of the Landfill. Contact surface water is managed as leachate. The leachate collection system for the Landfill has been designed to provide effective drainage, collection, and removal of leachate from the Landfill.

2.3.2 Leachate Collection System

The primary components of the leachate collection system consist of a drainage layer, leachate collection and transfer piping, cleanouts, manholes, a storage tank, and a load-out facility. The leachate collection system layout is shown on Plan Sheet 5 in Appendix C. The drainage layer is placed over the geomembrane on the base and sidewalls. The drainage layer promotes the efficient transmission of leachate to the leachate collection trenches and pipes. The drainage layer is a minimum of 12 inches thick and has a minimum hydraulic conductivity of 1.0×10^{-2} centimeters per second (cm/s).

The leachate collection piping is placed in vee-shaped trenches and consists of 6-inch–diameter perforated high density polyethylene (HDPE) pipe. Pipe bedding material is placed around the perforated pipe and mounded as shown on Plan Sheet 17 in Appendix C.

Leachate collection pipes in each cell are placed parallel to each other in valleys over the herringbone design across the base. These lines drain at a 4 to 6 percent slope to the leachate removal and transfer system.

Temporary cell delineation berms are used along the cell boundaries to control surface water runoff from exiting the active areas of the Landfill. Refer to Detail 5 on Plan Sheet 17 for further details on the temporary cell delineation berm design.

2.3.3 Leachate Removal and Transfer System

The perforated leachate collection piping will transition to 6-inch–diameter nonperforated leachate transfer piping within the Landfill just prior to where the transfer piping penetrates the liner system at the southern toe-of-slope of each cell. The horizontal pipe penetration has been designed to prevent leachate from leaving the Landfill liner system through the liner penetration.

Outside of the limits of CCR, concrete manholes provide a location for transfer piping to manifold into a single perimeter transfer pipe around the southern end of the Landfill, and to provide a location for cleanout access piping.

The combined transfer piping then extends to the leachate storage tank located near the ash processing facility. Leachate collected in the tank is pumped into tanker trucks and transported to a nearby wastewater treatment plan for treatment which complies with 40 CFR 257.81(b). Plan Sheet 5 illustrates the location of the transfer piping, manholes, and the storage tank.

2.3.4 Leachate Storage Capacity From a 25-Year 24-Hour Storm Event

The proposed phasing plans and existing conditions were reviewed to determine the worst-case scenario for leachate generation. This worst-case scenario was used to show that run-off from the active area of the Landfill would not occur from a 25-year 24-hour storm event. Calculations contained in Appendix B show that there is approximately 14,700 cubic feet of leachate storage capacity remaining in the leachate collection system after a 25-year 24-hour storm event. Therefore, sufficient infrastructure is provided to prevent run-off from the active area of the Landfill as required by 40 CFR 257.81(a)(2).

2.3.5 Conclusions

This Plan has demonstrated that the Landfill has a run-on control system and a run-off control system sufficient to prevent flow onto or off of the active portion during a 24-hour 25-year storm event. The Landfill is in compliance with the requirements of 40 CFR 257.81.

3.0 Construction of Run-on and Run-off Control System

3.1 Run-on Control Systems

As noted in Section 2.2, the run-on control system consists of perimeter berms, diversion berms, downslope flumes, ditching, sedimentation basins, and culverts. Run-on controls have been designed to divert off-site surface water away from the active fill areas. On-site water is routed to sedimentation basins, except surface water in contact with active fill areas which is treated as leachate.

As summarized in Section 2.2.2, the run-on features are constructed incrementally during both the liner construction and final cover construction events. The previously constructed features were constructed per the site specifications with construction oversight directed by a professional engineer licensed in the State of Wisconsin. Documentation reports for construction events at the Landfill were prepared, submitted to the WDNR, and approved by the WDNR.

Temporary systems are used at the limits of the construction event to assist in the run-on control system until the remainder of the components are completed. The remainder of the run-on control system components will be completed during development of Cell 4B and following its closure. Specific schedules of exactly when features will be developed is not practicable, as the development and closure of the Landfill is dependent on filling activities, which are highly variable. Future construction will meet the previously approved design and specifications as noted in the October 2000 Plan of Operation, and construction oversight will be directed by a professional engineer licensed in the State of Wisconsin.

3.2 Run-off Control Systems

As noted in Section 2.3, the run-off control system consists of the leachate collection system in conjunction with cell delineation berms and perimeter berms. The previously constructed features for the active area were constructed during the liner installation of the associated module/cell. The remaining portions of the run-off control system will be constructed during the construction events for Cells 4A and 4B. The general placement of the leachate collection system is summarized in Section 2.3.2 and is detailed in the approved October 2000 Plan of Operation.

Previous and future construction have been/will be completed in accordance with the site specifications and design, as shown in Appendix C. Construction oversight has/will be directed by a professional engineer licensed in the State of Wisconsin. Documentation reports for previous construction events have been prepared, submitted to the WDNR, and previously approved by the WDNR. Following construction of future landfill cells/modules, reports documenting construction will be prepared and submitted to the WDNR as required by ch. NR 516.

4.0 Amendment of the Plan and Notification

This Plan was been completed in compliance with the requirements set forth in 40 CFR 257.81. This document has been placed in the operating record, posted to the publicly accessible website, and government notifications have been provided.

A Run-On and Run-Off Control System Plan must be prepared every 5 years from the completion date of this Plan.

The Plan must be amended whenever the periodic review period is reached or if changes in site conditions, either intentionally or unintentionally, occur that will sustainably impact the current written plan in effect.

5.0 Engineer's Certification

Pursuant to 40 CFR 257.81 and by means of this certification I attest that:

- (i) I am familiar with the requirements of the federal CCR rule (40 CFR 257);
- (ii) this Run-On and Run-Off Control System Plan has been prepared in accordance with good engineering practice; and
- (iii) this Run-On and Run-Off Control System Plan meets the requirements of 40 CFR 257.81(c).

For the purpose of this document, "certify" and "certification" shall be interpreted and construed to be a "statement of professional opinion." The certification is understood and intended to be an expression of my professional opinion as a Wisconsin licensed professional engineer, based upon knowledge, information, and belief. The statement(s) of professional opinion are not and shall not be interpreted or construed to be a guarantee or a warranty of the analysis herein.

CAHNK Signature of Registered Professional Engineer E-46825 ETON Registration No. E-46825 State: Wiscon

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin

Final October 2016 Revised January 2024

Appendix A: Surface Water Run-On Control System Calculations

- Note: For clarification purposes, these run-on calculations estimate "run-off" quantities from areas in and surrounding the Landfill that develop non-contact surface water that is managed to prevent run-on to the active Landfill areas.
- Surface Water Run-off Calculations
 - Purpose/Methodology/Assumptions/Results/References
 - Post-closure Run-off Calculations
 - Operational Run-off Calculations
 - Reference Information
- Diversion Berm, Perimeter Ditch, and Spillway Design Calculations
 - Purpose/Methodology/Assumptions/Results/References
 - Calculations Post-closure Landfill Conditions
 - Calculations Operational Landfill Conditions
 - Reference Information
- Culvert/Downslope Flume Design Calculations
 - Purpose/Methodology/Assumptions/Results/References
 - Calculations Post-closure Landfill Conditions
 - Calculations Temporary Culverts, Operational Conditions
- Vegetation Information

Surface Water Run-off Calculations

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024

Purpose/Methodology/Assumptions/Results/References

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024

COMPUTATION SHEET

744 Heartland Trail (53717-8923) P.	O. Box 8923 (5370	8-8923)	Madison, WI	(608) 831-4444		VOICE: (608) 831-1989
PROJECT/PROPOSAL NAME	PREPARED		CHECKED		PROJECT/PI	ROPOSAL NO.
Dairyland Power Cooperative	e BJK	Dat 5/9				3081.40

CLIET

SURFACE WATER RUNOFF CALCULATIONS

Purpose

The purpose of the surface water runoff calculations was to estimate the amount of surface water runoff and the peak discharge for the 25-year, 24-hour and 100-year, 24-hour storms at the proposed Dairyland Power Landfill. Calculations were performed for the pre- and post-development conditions. Calculations were also performed for operational conditions for the 25-year, 24-hour storm. Once determined, the surface water runoff quantities were compared to determine the effect of the proposed landfill on the existing drainage patterns. The runoff calculations were also used to size diversion ditches, sedimentation basins, culverts, and downslope flumes.

Methodologies

Surface water runoff calculations consist of delineating drainage areas (watersheds), as shown on the attached figures, estimating runoff characteristics, and calculating the peak and total runoff rate and volume for each drainage area. The methods for computing surface water runoff were based on the methodologies presented in the Technical Release No. 55 - "Urban Hydrology for Small Watersheds" by the United States Soil Conservation Service.

The calculations were performed using the QUICK TR-55 computer program developed by Haestad Methods (Haestad 1989). The program incorporates rainfall quantities, storm distributions, surface runoff characteristics, drainage areas, times of concentration, and travel times to generate a hydrograph from which the volume of surface water runoff and the peak discharge are obtained.

It is noted that the storm water control structures have been designed using a 100-year, 24-hour storm event and a TR-55 Type II storm distribution to determine peak flow rates. Rainfall distributions for the Type II storm event include "nested" higher intensity storm events within those needed for longer durations at the same probability. The resulting peak flows using this design method meet or exceed the peak flows obtained using a 25-year, time of concentration storm event (required by NR 504.09).

COMPUTATION SHEET

 SHEET
 2
 OF
 3

 744 Heartland Trail (53717-8923)
 P. O. Box 8923 (53708-8923)
 Madison, WI
 (608) 831-4444
 FAX: (608) 831-3334
 VOICE: (608) 831-1989

 PROJECT/PROPOSAL NAME
 PREPARED
 CHECKED
 PROJECT/PROPOSAL NO.

OJECT/PROPOSAL NAME	PREPAR	ED	CHECKED		PROJECT/PROPOSAL NO.
airyland Power Cooperative	^{By:} BJK	Date: 5/97	By: BLP	Date: 6/97	3081.40

Assumptions

Da

The following assumptions were made in developing the hydrographs (Note: The figures and values referenced in these assumptions have been included in the references portion of this appendix):

- A 2-year, 24-hour storm event in the vicinity of the landfill is 2.8 inches based on rainfall maps prepared by the U.S. Weather Bureau.
- A 25-year, 24-hour storm event in the vicinity of the landfill equates to 4.9 inches based on rainfall maps prepared by the U.S. Weather Bureau.
- A 100-year, 24-hour storm event in the vicinity of the landfill equates to 6.1 inches based on rainfall maps prepared by the U.S. Weather Bureau.
- A Type II rainfall distribution was used, based on SCS storm distribution maps provided in the TR-55 manual.
- Cover types for the pre-development conditions, from which runoff curve numbers were determined, were based on USGS topographic maps and an aerial photograph.
- For the post-development landfill conditions, a runoff curve number of 74 was assumed, based on values provided in the TR-55 manual.
- Based on the USDA-SCS General Soil Map for Buffalo County, Wisconsin, the primary soil formations present include the Dubuque silt loam and the Fayette silt loam. These soils are a Type B soil, based on tables provided in the TR-55 manual.
- Runoff curve numbers for the non-landfill areas ranged from 55 to 86, based on values provided in the TR-55 manual. Refer to the attached calculations for the breakdown and description of each of the curve numbers used for the various drainage areas.

Results

The table below summarizes the results of the surface water runoff analyses and provides a comparison of the pre- and post-development conditions:

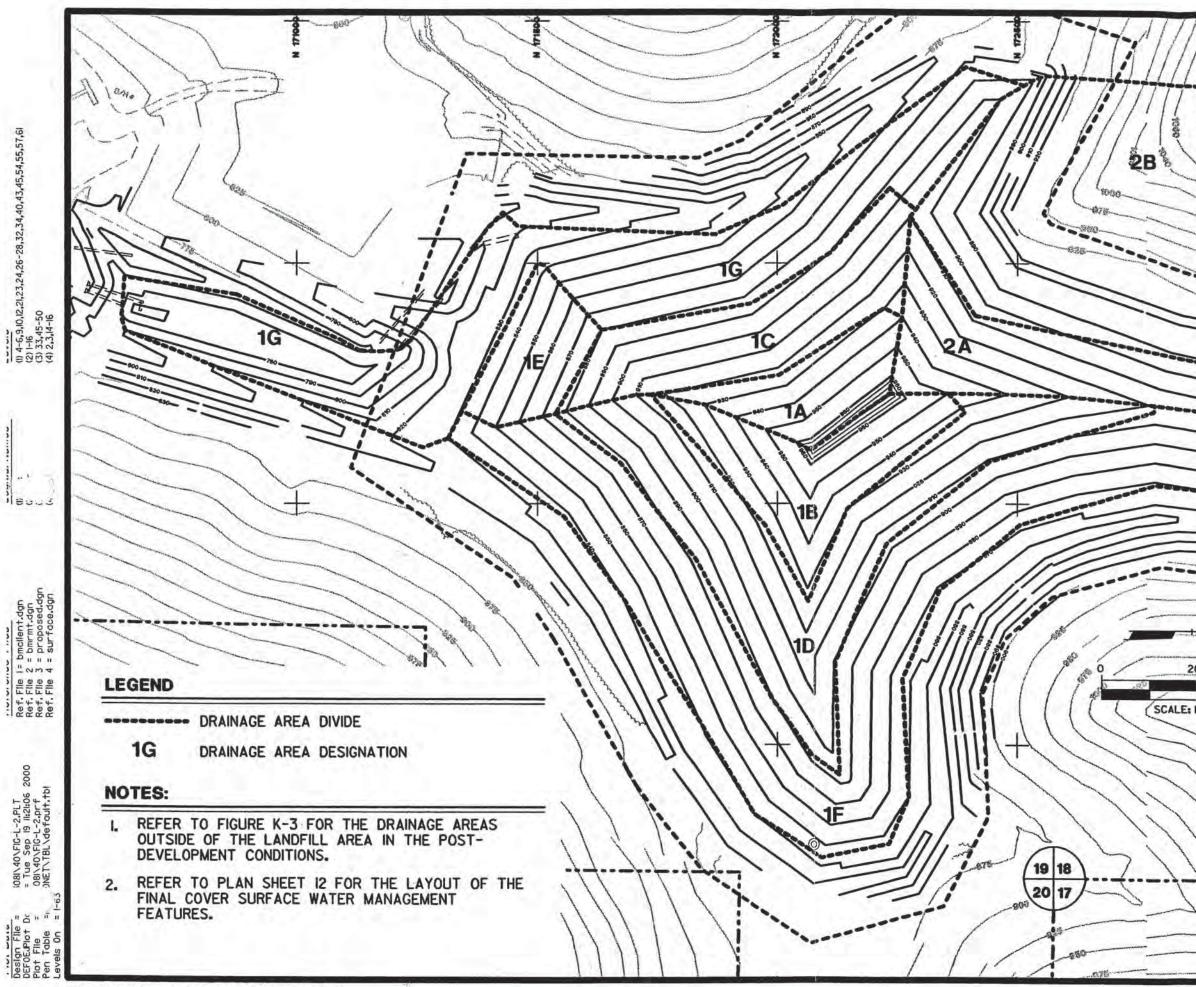
	ТОТ	AL RUNOFF (act	e-ft)	PEAK DISCHARGE (cfs)			
STORM	PRE-	POST-	Δ	PRE-	POST-	Δ	
25-year	153	148	(5)	1,170	1,028	(142)	
100-year	232	225	(7)	1,895	1,622	(273)	

Based on the results of the surface water runoff calculations, the proposed landfill is not anticipated to have an adverse impact on the existing surface water at the site. Total runoff volumes to the existing drainageways are not anticipated to change in the pre- and postdevelopment conditions. Peak runoff volumes to the existing drainageways for post-

COMPUTATION SHEET

				5.	HEEL	3	_OF3
744 Heartland Trail (53717-8923) P.	O. Box 8923 (53708	3-8923)	Madison, WI	(608) 831-44	44 FA	X: (608) 831-3334	VOICE: (608) 831-1989
PROJECT/PROPOSAL NAME	PREPARE	PREPARED		CHECKED		PROJECT/PR	OPOSAL NO.
Dairyland Power Cooperative	e BJK	Dat 5/			ate: /97		3081.40

development conditions are slightly lower than the pre-development conditions. This is primarily due to the use of sedimentation basins to dissipate peak flows from the landfill to the surrounding areas. The reduced peak flows will result in reduced sediment transport from the site.


The results of these surface water runoff calculations have also been used in the attached diversion berm, perimeter ditch, spillway, and sedimentation basin calculations. These structures have been designed to handle the peak runoff from the 100-year, 24-hour storm event.

References

- US Department of Agriculture, Soil Conservation Service. Urban Hydrology for Small Watersheds. Technical Release No. 55. 2nd Edition. June 1986.
- US Department of Agriculture, Soil Conservation Service. 1986. Engineering Field Manual for Conservation Practices. November 1986.
- Haestad Methods. Pond Pack, QUICK TR-55. Hydrology for Small Watersheds. December 1989.

Post-closure Run-off Calculations

E 1477000 E 1477500 200 SCALE: 1=200-1000 1080 E 1478000 POST-DEVELOPMENT SURFACE WATER MANAGEMENT FEATURES -LANDFILL AREAS DAIRYLAND POWER COOPERATIVE JCD Dwn. By: Approved By: KIM Date: SEPT. 2000 Proj." 3081.40 Flle ": FIG-L-2.PLT FIGURE K-2

Quick TR-55 Ver.5.46 S/N: Executed: 09:52:46 04-09-1997

Dairyland Power Coop. Feasibility Report Landfill Runoff BJK 3/97

RUNOFF CURVE NUMBER SUMMARY

Subarea	Area	CN
Description	(acres)	(weighted)

14	1.40	74
18	2.20	74
10	2.90	74
1D	5.30	74
1E	1.20	74
1F	9.50	74
1G	7.40	84

÷

Quick TR-55 Ver.5.46 S/N: Executed: 09:52:46 04-09-1997

6/13/97

Dairyland Power Coop. Feasibility Report Landfill Runoff BJK 3/97

RUNOFF CURVE NUMBER DATA

Composite Area: 1A

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	1.40	74	
COMPOSITE AREA>	1.40	74.0	(74)

Composite Area: 1B

	AREA	CN	
SURFACE DESCRIPTION	(acres)		
Landfill Cover	2.20	74	
COMPOSITE AREA>	2.20	74.0	(74)

Composite Area: 1C

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	2.90	74 -	
COMPOSITE AREA>	2.90	74.0	(74)

Quick TR-55 Ver.5.46 S/N: Executed: 09:52:46 04-09-1997

Composite Area: 1D

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	5.30	74	
COMPOSITE AREA>	5.30	74.0	(74)

Composite Area: 1E

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	1.20	74	/
COMPOSITE AREA>	1.20	74.0	(74)

Composite Area: 1F

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	9.50	74	1
COMPOSITE AREA>	9.50	74.0	(74)

Composite Area: 1G

	AREA	CN
SURFACE DESCRIPTION	(acres)	
Landfill Cover	4.40	74 -
Sedimentation Basin	3.00	98 -

COMPOSITE AREA ---> 7.40 83.7 (84)

Quick TR-55 Ver.5.46 S/N: Executed: 09:53:01 04-09-1997

> Dairyland Power Coop. Feasibility Report Landfill Runoff BJK 3/97

RUNOFF CURVE NUMBER SUMMARY

Subarea	Area	CN
Description	(acres)	(weighted)
2A	2.70	74
2B	21.50	69

Quick TR-55 Ver.5.46 S/N: Executed: 09:53:01 04-09-1997

1

Dairyland Power Coop. Feasibility Report Landfill Runoff BJK 3/97

RUNOFF CURVE NUMBER DATA

Composite Area: 2A

SURFACE DESCRIPTION	AREA (acres)	CN	
Landfill Cover	2.70	74	
COMPOSITE AREA>	2.70	74.0	(74)
111111111111111111111111111111111111111			

Composite Area: 28

Landfill Cover 2.70 7	74
Graded/Grassed Area 2.00 6	51 -
Woods/Brush 15.80 6	57 -
Sedimentation Basin 1.00 9	98 -
COMPOSITE AREA> 21.50 6	58.8 (69)

SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

> Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

Subarea descr.	Tc or Tt	Time (hrs)

14	Tc	0.18
18	Tc	0.23
10	Tc	0.23
10	Tc	0.35
1E	Tc	0.18
1F	Tc	0.45
1G	Tc	0.22

Quick TR-55 Ver.5.46 S/N: Executed: 09:48:41 04-09-1997 B:COVER1.TCT

1

)

)

6/13/97

Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

TC COMPUTATIONS FOR: 1A

SHEET FLOW (Applicable to Tc only)					
Segment ID	-	1			
Surface description	Den	e Grass			
Manning's roughness coeff., n		0.2400	1		
Flow length, L (total < or = 300)		150.0			
Two-yr 24-hr rainfall, P2	in				
Land slope, s					
Cand stope, s	ft/ft	0.2500			
.007 * (n*L)	1.11				202
T =	hrs	0.13		-	0.13
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft	420.0			
Watercourse slope, s	ft/ft	0.0200	1		
0.5					
Avg.V = Csf * (s)	ft/s	2.2818			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282			- 2		
T = L / (3600*V)	hrs	0.05		•	0.05
CHANNEL FLOW					
Segment ID		1.0.00			
Cross Sectional Flow Area, a	sq.ft	0.00			
Wetted perimeter, Pw	ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness-coeff., n		0.0000			
2/3 1/2					
1.49 * r * s					
V =	ft/s	0.0000			
n	1.42				
Flow Length, L					
the congress to	ft	0			
T = L / (3600*V)	hrs	0.00			0.00
		TOTAL T	IME (hrs	0	0.18

Feasibility Report Landfill Final Cover BJK 3/97 TC COMPUTATIONS FOR: 18 SHEET FLOW (Applicable to Tc only) Segment ID 1 Surface description Dense Grass Manning's roughness coeff., n 0.2400 125.0 / Flow length, L (total < or = 300) ft Two-yr 24-hr rainfall, P2 2.800 in 0.2500 -Land slope, s ft/ft 0.8 .007 * (n*L) T = ---hrs 0.11 8 0.11 0.5 0.4 P2 * s SHALLOW CONCENTRATED FLOW Segment ID 2 Surface (paved or unpaved)? Unpaved Flow Length, L 960.0 / ft Watercourse slope, s ft/ft 0.0200 / 0.5 Avg.V = Csf * (s) 2.2818 ft/s where: Unpaved Csf = 16.1345 Paved Csf = 20.3282 T = L / (3600*V)0.12 hrs 0.12 CHANNEL FLOW Segment ID Cross Sectional Flow Area, a 0.00 sq.ft Wetted perimeter, Pw ft 0.00 Hydraulic radius, r = a/Pw ft 0.000 Channel slope, s ft/ft 0.0000 Manning's roughness coeff., n 0.0000 2/3 1/2 1.49 * Π. * 5 V = -----0.0000 ft/s n Flow Length, L ft 0 T = L / (3600*V) hrs 0.00 0.00

TOTAL TIME (hrs) 0.23

Quick TR-55 Ver.5.46 S/N: a:COVER1.TCT Executed: 09:48:41 04-09-1997

Dairyland Power Coop.

Quick TR-55 Ver.5.46 S/N: Executed: 09:48:41 04-09-1997 a:COVER1.TCT

)

1026

Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

1.1

Te COMPUTATIONS FOR: 1C

SHEET FLOW (Applicable to Tc only)			
Segment ID		1	
Surface description	Den	e Grass	
Manning's roughness coeff., n		0.2400	
Flow length, L (total < or = 300)) ft	165.0 /	
Two-yr 24-hr rainfall, P2	in	2.800	
Land slope, s	ft/ft	0.2500 -	
0.8			
.007 * (n*L)			
T =	hrs	0.14	= 0.14
0.5 0.4			
P2 * s			
SHALLOW CONCENTRATED FLOW			
Segment ID		2	
Surface (paved or unpaved)?		Unpaved	
Flow length, L	ft	720.0 /	
Watercourse slope, s	ft/ft	0.0200 /	
		0.0200 /	
0.5			
Avg.V = Csf * (s)	ft/s	2.2818	
where: Unpaved Csf = 16.1345			
Paved Csf = 20.3282			
T = L / (3600*V)	hrs	0.09	= 0.09
CHANNEL FLOW			
Segment ID			
Cross Sectional Flow Area, a	sq.ft	0.00	
Wetted perimeter, Pw	ft	0.00	
Hydraulic radius, r = a/Pw	ft	0.000	
Channel slope, s	ft/ft	0.0000	
Manning's roughness coeff., n		0.0000	
2/3 1/2		-	
1.49 * r * s			
V =	ft/s	0.0000	
n			
FINE DESCRIPTION	100		
Flow length, L	ft	0	
T = L / (3600*V)	hrs	0.00	= 0.00
	0.00	TOTAL TIME (hrs) 0.23

Quick TR-55 Ver.5.46 S/N: Executed: 08:55:25 06-18-1997 a:COVER1.TCT

> Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

TC COMPUTATIONS FOR: 1D

SHEET FLOW (Applicable to Tc only) Segment ID Surface description Dense Grass Manning's roughness coeff., n 0.2400 160.0 / Flow length, L (total < or = 300) ft Two-yr 24-hr rainfall, P2 in 2.800 Land slope, s ft/ft 0.2500 / 0.8 .007 * (n*L) T = 0.13 hrs = 0.13 0.4 0.5 P2 * s SHALLOW CONCENTRATED FLOW Segment ID 2 Surface (paved or unpaved)? Unpeved Flow Length, L 1770.0 ft Watercourse slope, s 0.0200 / ft/ft 0.5 Avg.V = Csf * (s) 2.2818 ft/s where: Unpaved Csf = 16.1345 Paved Csf = 20.3282 T = L / (3600*V) 0.22 hrs 0.22 CHANNEL FLOW Segment ID Cross Sectional Flow Area, a sq.ft 0.00 Wetted perimeter, Pw 0.00 ft Hydraulic radius, r = a/Pw 0.000 ft Channel slope, s 0.0000 ft/ft Manning's roughness coeff., n 0.0000 2/3 1/2 1.49 * r . . 0.0000 ft/s n Flow length, L ft 0 T = L / (3600*V) 0.00 hrs 0.00 TOTAL TIME (hrs) 0.35

B2G 6/13/97 Quick TR-55 Ver.5.46 S/N: Executed: 08:55:25 06-18-1997 a:COVER1.TCT

Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

10000 - 113/97

- K

TC COMPUTATIONS FOR: 1E

SHEET FLOW (Applicable to Tc only)					
Segment ID					
Surface description	Den	se Grass			
Manning's roughness coeff., n		0.2400			
Flow length, L (total < or = 300) ft		1.12		
Two-yr 24-hr rainfall, P2	in	C			
Land slope, s	ft/ft		1		
0.8					
.007 * (n*L)					
T =	hrs	0.14			0.14
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpeved			
Flow length, L	ft	250.0			
Watercourse slope, s	ft/ft	0.0200			
0.5					
Avg.V = Csf * (s)	ft/s	2.2818			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.03			0.03
CHANNEL FLOW			· 4.		
Segment ID					
Cross Sectional Flow Area, a		0.00			
Wetted perimeter, Pw	sq.ft	0.00			
Hydraulic radius, r = e/Pw	ft				
Channel slope, s	ft				
Manning's roughness coeff., n	ft/ft	0.0000			
Haranny's roughness coerr., n		0.0000			
2/3 1/2					
1.49 * r * e					
V a	44.10	0.0000			
94 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ft/s	0.0000			
Flow Length, L	ft	0			

4

Quick TR-55 Ver.5.46 S/N: Executed: 09:48:41 04-09-1997 a:COVER1.TCT

> Dairyland Power Coop, Feasibility Report Landfill Final Cover BJK 3/97

6/13/97

1.14

TC COMPUTATIONS FOR: 1F

SHEET FLOW (Applicable to Tc only)						
Segment ID		1				
Surface description	Dens	e Grass				
Manning's roughness coeff., n		0.2400				
Flow length, L (total < or = 300)	ft	150.0	-			
Two-yr 24-hr rainfall, P2	in	2.800				
Land slope, s	ft/ft	0.2500	1			
0.8						
.007 * (n*L)						
T =	hrs	0.13			0.13	
0.5 0.4						
P2 * s						
SHALLOW CONCENTRATED FLOW						
Segment ID		2				
Surface (paved or unpaved)?		Unpaved				
Flow length, L	ft	2650.0	1			
Watercourse slope, s	ft/ft	0.0200	1			
		010200				
0.5						
Avg.V = Csf * (s)	ft/s	2.2818				
where: Unpaved Csf = 16.1345						
Paved Csf = 20.3282						
T = L / (3600*V)	hrs	0.32		14	0.32	
				1	0.32	
CHANNEL FLOW						
Segment ID						
		0.00				
Wetted perimeter, Pw	sq.ft ft	0.00				
Hydraulic radius, r = a/Pw	1.1	0.00				
Channel slope, s	ft ft/ft	0.000				
Manning's roughness coeff., n	Tt/Tt	0.0000				
Horanny a roughness coerra, n		0.0000				
2/3 1/2						
1.49 * r * s ·						
V =	ft/s	0.0000				
n		100 March 10				

Flow length, L ft 0 T = L / (3600*V) hrs 0.00 = 0.00

TOTAL TIME (hrs) 0.45

Quick TR-55 Ver.5.46 S/N: Executed: 09:48:41 04-09-1997 a:COVER1.TCT

Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

TE COMPUTATIONS FOR: 16

SHEET FLOW (Applicable to Tc only)	÷.				
Segment ID		1			
Surface description	Dens	e Grass			
Manning's roughness coeff., n		0.2400			
Flow length, L (total < or = 300)	ft	170.0	-		
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.2500	1		
0.8					
.007 * (n*L)					
Τ =	hrs	0.14			0.1
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2	3		
Surface (paved or unpaved)?		Unpaved	Unpaved		
Flow length, L	ft	780.0	370.0	-	
Watercourse slope, s	ft/ft	0.0600	0.0800		
0.5					
Avg.V = Csf * (s)	64.1-	3.9521	4.5635		
where: Unpaved Csf = 16.1345	ft/s	3.9321	4.2035		
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.05	+ 0.02	-	0.08
CHANNEL FLOW					
Segment ID					
Cross Sectional Flow Area, a	sq.ft	0.00			
Wetted perimeter, Pw	ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness coeff., n		0.0000			
2/3 1/2					
1.49 * r * s					
V =	ft/s	0.0000			
n					
Flow length, L	ft	0			
riow tength, L					

1828 6/13/97 Quick TR-55 Ver.5.46 S/N: Executed: 08:57:44 06-18-1997 s:COVER2.TCT

> SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

> > Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

Subarea descr.	Tc or Tt	Time (hrs)		
24	Tc	0.28		
28	Tc	0.18		

1.1

Quick TR-55 Ver.5.46 S/N: Executed: 08:57:44 06-18-1997 a:COVER2.TCT

> Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97

> > .

6/13/97

TC COMPUTATIONS FOR: 2A

SHEET FLOW (Applicable to Tc only)					
Segment ID		1			
Surface description	Dens	te Grass			
Manning's roughness coeff., n		0.2400			
Flow length, L (total < or = 300)	ft	200.0			
Two-yr 24-hr rainfall, P2	in				
Land slope, s	ft/ft	0.2500	1		
0.8					
.007 * (n*L)	1.45				
T =	hrs	0.16			0.16
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft	0.000	1		
Watercourse slope, s	ft/ft	0.0200	/		
0.5					
Avg.V = Csf * (s)	ft/s	2.2818			
where: Unpaved Caf = 16.1345		2.2010			
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.11			0.11
CHANNEL FLOW					
Segment ID					
Cross Sectional Flow Area, a	sq.ft	0.00			
Wetted perimeter, Pw	ft	0.00			
Hydraulic radius, r = s/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness coeff., n		0.0000			
2/3 1/2					
1.49 * r * s					
V =	ft/s	0.0000			
n		a fait			
Flow length, L	ft	0			
	1.5				
T = L / (3600*V)	hrs	0.00			0.00
		TOTAL T	IME (hrs)	10	0.28

Quick TR-55 Ver.5.46 S/N: Executed: 08:57:44 06-18-1997 a:COVER2.TCT Dairyland Power Coop. Feasibility Report Landfill Final Cover BJK 3/97 Te COMPUTATIONS FOR: 28 SHEET FLOW (Applicable to Tc only) Segment ID 1 Surface description Brush Manning's roughness coeff., n 0.1300 Flow length, L (total < or = 300) ft 300.0 Two-yr 24-hr rainfall, P2 2.800 in Land slope, s ft/ft 0.2000 0.8 .007 * (n*L)

T = hrs 0.15 = 0.15 0.5 0.4 P2 * s

Segment ID		2	3
Surface (paved or unpaved)?		Unpaved	Unpaved
Flow length, L	ft	560.0	300.0
Watercourse slope, s	ft/ft	0.4400	0.0800
0.5			
Avg.V = Csf * (s)	ft/s	\$10.7024	4.5635
where: Unpaved Csf = 16.1345			
. Paved Csf = 20.3282			

hrs

0.01

0.02

0.03 2

0.00 .

CH/	ANN	EL	FL	OU
		_		

T = L / (3600*V)

Segment ID			
Cross Sectional Flow Area, a	sq.ft	0.00	
Wetted perimeter, Pw	ft	0.00	
Hydraulic radius, r = a/Pw	ft	0.000	
Channel slope, s	ft/ft	0.0000	
Manning's roughness coeff., n		0.0000	
2/3 1/2			
1.49 * r * s			
V =	ft/s	0.0000	
n			
Flow length, L	ft	o	
T = L / (3600*V)	hrs	0.00	
		7.6 144	

0.18

TOTAL TIME (hrs)

Page 1 Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:33 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER1 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER125.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	Rund Rund			/p /used
1A	1.40	74.0	0.20	0.00	4.90	2.2	28 1	1.14	.14
1B	2.20	74.0	0.20	0.00	4.90	2.2	28 1	.14	.14
10	2.90	74.0	0.20	0.00	4.90	2.2	28 1	.14	.14
1D	5.30	74.0	0.40	0.00	4.90	2.2	28 1	.14	.14
1E	1.20	74.0	0.20	0.00	4.90	2.2	28 1	. 14	.14
1F	9.50	74.0	0.50	0.00	4.90	2.2	28 1	.14	.14
1G	7.40	84.0	0.20	0.00	4.90	3.1	18 1	.08	.10

* Travel time from subarea outfall to composite watershed outfall point.

I -- Subarea where user specified interpolation between Ia/p tables.

Total area = 29.90 acres or 0.04672 sq.mi Peak discharge = 67 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

Т	otal Runoff =
22.5 a	c (2.25") + 7.4Ac (3.18m)
	12

6.2 ac - FT

	Input	Values	Rounded	Values	la/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	I Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
A	0.18	0.00	0.20	0.00	Yes	
B	0.23	0.00	0.20	0.00	Yes	
C	0.23	0.00	0.20	0.00	Yes	
D	0.35	0.00	0.40	0.00	Yes	
E	0.18	0.00	0.20	0.00	Yes	**
F	0.45	0.00	0.50	0.00	Yes	
G	0.22	0.00	0.20	0.00	No	Computed Ia/p < .

* Travel time from subarea outfall to composite watershed outfall point.

Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:33 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER1 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER125.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at	
	Composite Outfall	Composite Outfall	
Subarea	(cfs)	(hrs)	
***********	**********		
1A	4	12.2	
1B	6	12.2	
10	8	12.2	
1D	11	12.3	
1E	3	12.1	
1F	17	12.4	
1G	29	12.2	

Composite Watershed	67	12.2	

Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:33 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER1 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER125.HYD

Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Subarea Description	11.0 hr	11.3 hr	11.6 hr	11.9 hr	12.0 hr	12.1 hr	12.2 hr	12.3 hr	12.4 hr
1A	0	0	0	1	2	3	4	2	1
1B	0	0	0	1	3	5	6	4	2
10	0	0	0	2	4	7	8	5	3
1D	0	0	1	1	2	5	8	11	11
1E	0	0	0	1	2	3	3	2	1
1F	0	1	1	2	3	5	9	15	17
1G	1	1	2	8	15	27	29	18	9

Subarea	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13.8
Description	hr	hr	hr	hr	hr	hr	hr	hr	hr
1A	1.	1	1	0	0	0	0	0	0
1B	1	1	1	1	1	1	0	0	0
10	2	1	1	1	1	1	1	1	0
1D	8	6	4	3	2	2	1	1	1
1E	1	1	0	0	0	0	0	0	0
1F	17	13	10	8	5	3	3	2	2
1G	6	5	4	3	3	2	2	2	2
******	••••••								
Total (cfs)	36	28	21	16	12	9	7	6	5

Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:33 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER1 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER125.HYD

Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Composite Hydrograph Summary (cfs)

Subarea Description	14.0 hr	14.3 hr	14.6 hr	15.0 hr	15.5 hr	16.0 hr	16.5 hr	17.0 hr	17.5 hr
1A	0	0	0	0	0	0	0	0	0
1B	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
1D	1	1	1	1	1	1	0	0	0
1E	0	0	0	0	0	0	0	0	0
1F	2	1	1	1	1	1	1	1	1
1G	1	1	1	1	1	1	1	1	1
Total (cfs)		3							

Subarea Description	18.0 hr	19.0 hr	20.0 hr	22.0 hr	26.0 hr	
1A	0	0	0	0	0	
1B	0	0	0	0	0	
10	0	0	0	0	0	
1D	0	0	0	0	0	
1E	0	0	0	0	0	
1F	1	1	1	0	0	
1G	1	1	0	0	0	
Total (cfs)	2	2	1	0	0	

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 07-30-1998 11:54:55 Watershed file: --> A:COVER1 .MOP Hydrograph file: --> A:COVER100.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

1 BLB 5/20/98

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	1	Runoff (in)	10110	/p /used
1A	1.40	74.0	0.20	0.00	6.10	1	3.27	1.12	.12
18	2.20	74.0	0.20	0.00	6.10	i.	3.27	1.12	.12
10	2.90	74.0	0.20	0.00	6.10	î.	3.27	1.12	.12
10	5.30	74.0	0.40	0.00	6.10	î.	3.27	1.12	.12
1E	1.20	74.0	0.20	0.00	6.10	Ì.	3.27	1.12	.12
1F	9.50	74.0	0.50	0.00	6.10	È	3.27	1.12	.12
16	7.40	84.0	0.20	0.00	6.10	i	4.29	1.06	.10

* Travel time from subarea outfall to composite watershed outfall point.

I -- Subarea where user specified interpolation between Ia/p tables.

Total area = 29.90 acres or 0.04672 sq.mi Peak discharge = 98 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

22.5 ac (3.27") +	7. 4 ac (4. 24")
12	
= 3.8 ac-F	÷τ

Total Runoff

	Input	Values	Rounded	Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	i Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
A	0.18	0.00	0.20	0.00	Yes	
в	0.23	0.00	0.20	0.00	Yes	
C	0.23	0.00	0.20	0.00	Yes	
D	0.35	0.00	0.40	0.00	Yes	
E	0.18	0.00	0.20	0.00	Yes	
F	0.45	0.00	0.50	0.00	Yes	
G	0.22	0.00	0.20	0.00	No	Computed la/p < .

* Travel time from subarea outfall to composite watershed outfall point.

Quick TR-55 Version: 5.46 S/N:

Page 2 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 07-30-1998 11:54:55 Watershed file: --> A:COVER1 .MOP Hydrograph file: --> A:COVER100.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at Composite Outfall	Time to Peak at Composite Outfall
Subarea	(cfs)	(hrs)

1A	6	12.2
1B	9	12.2
1C	12	12.2
10	16	12.3
1E	5	12.2
1F	25	12.4
1G	40	12.2
**********	*******	
Composite Watershed	98	12.2

Page 3 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 07-30-1998 11:54:55 Watershed file: --> A:COVER1 .MOP Hydrograph file: --> A:COVER100.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Composite Hydrograph Summary (cfs)

Subarea	11.0	11.3	11.6	11.9	12.0	12.1	12.2	12.3	12.4
Description	hr	hr	hr	hr	hr	hr	hr	hr	hr
1A	0	0	0	1	3	5	6	3	2
18	0	0	0	2	4	8	9	5	3
IC	0	0	1	3	6	11	12	7	4
10	0	1	- t -	2	4	7	12	16	15
1E	0	0	0	1	2	4	5	3	2
(F)	1	1	1	2	4	8	14	22	25
16	1	2	2	10	20	37	40	24	12
Total (cfs)	2	4	5	21	43	80	98	80	63

Subarea	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13.8
Description	hr	hr							

1A	1	1	1	1	1	0	0	0	0
18	2	1	1	1	1	1	1	1	1
10	3	2	2	1	1	1	1	1	1
1D	12	8	6	4	3	2	2	2	1
1E	1	1	1.1	1	0	0	0	0	0
1F	24	19	14	11	7	5	4	3	3
1G	8	6	5	4	3	3	3	2	2
Total (cfs)	51	38	30	23	16	12	11	9	8

-

Page 4 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 07-30-1998 11:54:55 Watershed file: --> A:COVER1 .MOP Hydrograph file: --> A:COVER100.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Composite Hydrograph Summary (cfs)

Subarea Description	14.0 hr	14.3 hr	14.6 hr	15.0 hr	15.5 hr	16.0 hr	16.5 hr	17.0 hr	17.5 hr
1A	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0
10	1	1	1	0	0	0	0	0	0
1D	1	1	1	1	1	1	1	1	1
1E	0	0	0	0	0	0	0	0	0
1F	2	2	2	2	1	1	1	1	1
IG	2	2	2	1	1	1	1	1	1
Total (cfs)	6	6	6	4	3	3	3	3	3

Subarea Description	18.0 hr	19.0 hr	20.0 hr	22.0 hr	26.0 hr	
1A	0	0	0	0	0	
18	0	0	0	0	0	
10	0	0	0	0	0	
1D	1	0	0	0	0	
1E	0	0	0	0	0	
1F	1	1	1	1	0	
1G	1	1	1	1	0	
Total (cfs)	3	2	2	2	0	

-

Page 1 Return Frequency: 25 years

--

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:16 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER225.HYD

Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	ł	Runoff (in)	Ia input	/p /used
2A	2.70	74.0	0.30	0.00	4.90	ï	2.28	1.14	.14
2B	21.50	69.0	0.20	0.00	4.90	î.	1.89	1.18	.18

* Travel time from subarea outfall to composite watershed outfall point. I -- Subarea where user specified interpolation between Ia/p tables.

> Total area = 24.20 acres or 0.03781 sq.mi Peak discharge = 54 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

>> Compu	ter Modif	ications	of Inpu	t Parameters <<	<<<
		*******			************
Input	Values	Rounded	Values	Ia/p	
Tc	* Tt	Tc	* Tt	Interpolated	la/p
(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
	Input Tc	Input Values Tc * Tt	Input Values Rounded Tc * Tt Tc	Input Values Rounded Values Tc * Tt Tc * Tt	Tc * Tt Tc * Tt Interpolated

0.00

Yes

0.30 2B 0.18 0.00 0.20 0.00 Yes 14

* Travel time from subarea outfall to composite watershed outfall point.

2A

0.28

0.00

Page 2 Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:16 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER225.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at Composite Outfall	Time to Peak at Composite Outfall
Subarea	(cfs)	(hrs)

2A	6	12.2
2B	48	12.2
Composite Watershed	54	12.2

Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:51:16 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\COVER2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\COVER225.HYD

Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Subarea Description	11.0	11.3	11.6	11.9	12.0	12.1	12.2	12.3	12.4
Description	hr								
2A	0	0	0	1	2	4	6	6	4
2B	1	1	2	9	20	42	48	31	17

Subarea Description	12.5 hr	12.6 hr	12.7 hr	12.8 hr	13.0 hr	13.2 hr	13.4 hr	13.6 hr	13.8 hr
2A	3	2	1	1	1	1	1	1	0
28	11	9	7	6	5	4	4	4	3

Subarea Description	14.0 hr	14.3 hr	14.6 hr	15.0 hr	15.5 hr	16.0 hr	16.5 hr	17.0 hr	17.5 hr
2A	0	0	0	0	0	0	0	0	0
2B	3	3	2	2	2	2	2	2	1

Total (cfs)	3	3	2	2	2	2	2	2	1

Subarea	18.0	19.0	20.0	22.0	26.0
Description	hr	hr	hr	hr	hr
2A	0	0	0	0	0
2B	- 1	1	1	1	0

Page 1 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 15:19:47 Watershed file: --> A:\COVER2 .MOP Hydrograph file: --> A:\COVER200.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	1	Runoff (in)	Ia input	/p /used
2A	2.70	74.0	0.30	0.00	6.10	1	3.27	1.12	.12
2B	21.50	69.0	0.20	0.00	6.10	Î.	2.79	1.15	.15

* Travel time from subarea outfall to composite watershed outfall point. I -- Subarea where user specified interpolation between Ia/p tables.

> Total area = 24.20 acres or 0.03781 sq.mi Peak discharge = 82 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

>>>> Computer Modifications of Input Parameters <<<<<

	Input	Values	Rounded	Values	la/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
			********		**************	
2A	0.28	0.00	0.30	0.00	Yes	
2B	0.18	0.00	0.20	0.00	Yes	

* Travel time from subarea outfall to composite watershed outfall point.

Page 2 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

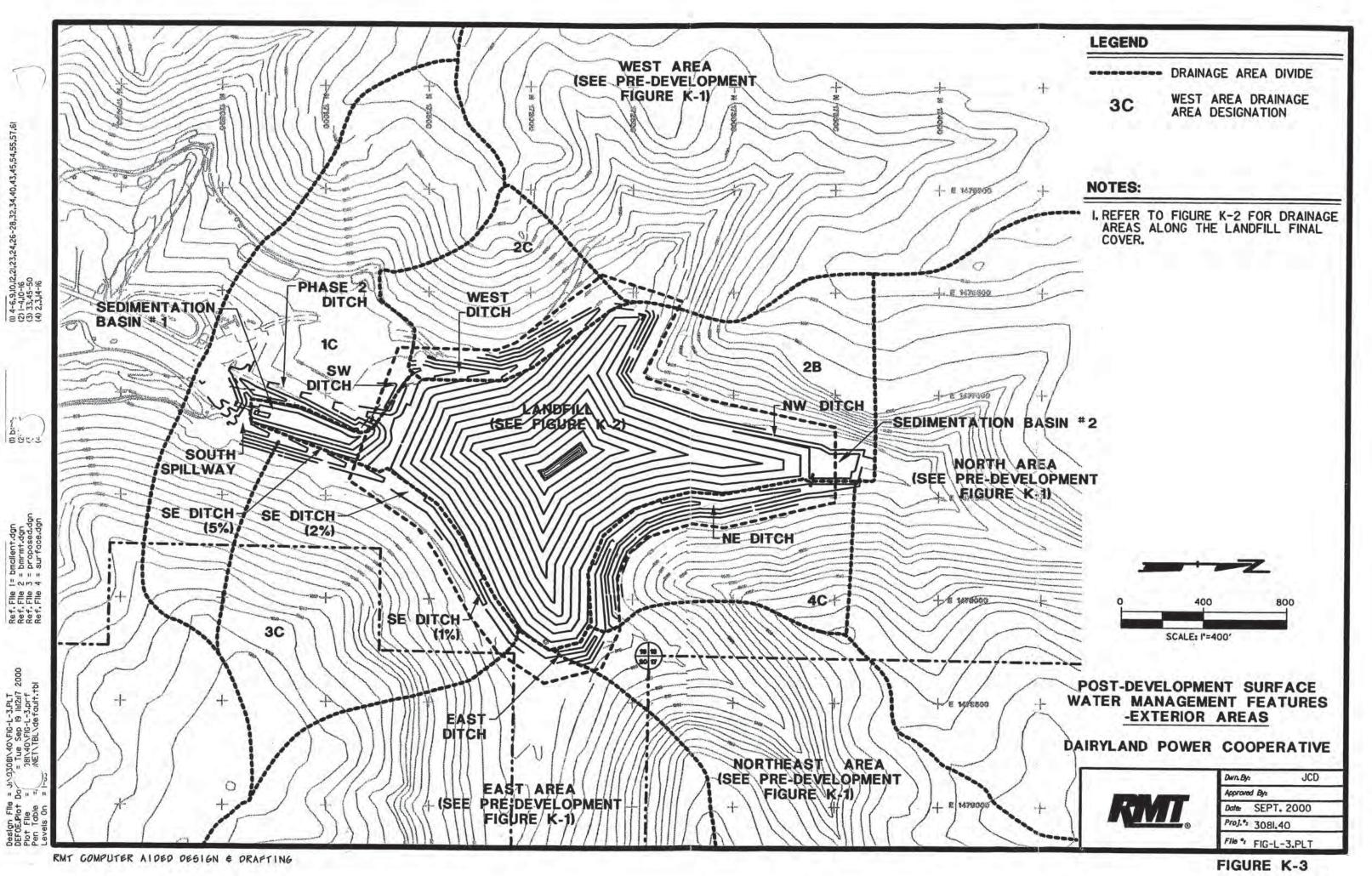
Executed: 10-01-1998 15:19:47 Watershed file: --> A:\COVER2 .MOP Hydrograph file: --> A:\COVER200.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at Composite Outfall	Time to Peak at Composite Outfall
Subarea	(cfs)	(hrs)

2A	9	12.2
2B	73	12.2
************		**********
Composite Watershed	82	12.2


Page 3 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 15:19:47 Watershed file: --> A:\COVER2 .MOP Hydrograph file: --> A:\COVER200.HYD

> Dairyland Power Coop. Fesibility Study Landfill Cover BJK 3/97

Subarea	11.0	11.3	11.6	11.9	12.0	12.1	12.2	12.3	12
Description	hr	hr	hr	hr	hr	hr	hr	hr	h
ZA	0	0	1	1	3	6	9	9	17
2B	2	2	3	16	33	65	73	45	2
Total (cfs)	2	2	4	17	36	71	82	54	3
Subarea	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13
Description	hr	hr	hr	hr	hr	hr	hr	hr	h
2A	4	3	2	2	1	1	1	1	
28	16	13	10	9	7	6	6	5	1
Total (cfs)	20	16	12	11	8	7	7	6	
Subarea	14.0	14.3	14.6	15.0	15.5	16.0	16.5	17.0	17.
Description	hr	hr	hr	hr	hr	hr	hr	hr	h
2A	1	1	0	0	0	0	0	0	
2B	4	4	3	3	3	3	2	2	1
Total (cfs)	5	5	3	3	3	3	2	2	-
			and a						
Subarea	18.0	19.0	20.0	22.0	26 0				
and the second sec	18.0 hr	19.0 hr	20.0	22.0	26.0			3) -	
Subarea Description	18.0 hr	19.0 hr	20.0 hr	22.0 hr	26.0 hr				
and the second sec									

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 rev 7/98

RUNOFF CURVE NUMBER SUMMARY

Subarea	Area	CN
Description	(acres)	(weighted)
10	42.00	67
20	15.00	56
30	33.00	58
40	16.00	57
East	520.00	67
Northeast	80.00	63
North	236.00	63
West	100.00	71

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 rev 7/98

RUNOFF CURVE NUMBER DATA

Composite Area: 1C

SURFACE DESCRIPTION	AREA (acres)	CN	
Woods (35%)	15.00	55	
Existing Landfill (50%)	21.00	74	
Graded Areas (10%)	4.00	61	
Fallow - Bare Soil (5%)	2.00	86	

COMPOSITE AREA ---> 42.00 66.5 (67)

Composite Area: 2C

	AREA	CN	
SURFACE DESCRIPTION	(acres)		
Woods (85%)	12.80	55	
Graded Areas (15%)	2.20	61	

COMPOSITE AREA ---> 15.00 55.9 (56)

Composite Area: 3C

SURFACE DESCRIPTION	AREA (acres)	CN	
Woods (80%)	27.00	55	
Graded Areas (10%)	3.00	61	
Fallow - Bare Soil (10%)	3.00	86	
COMPOSITE AREA>	33.00	58.4	(58)

1940 Martin Martin Martin Martin Martin Martin

Composite Area: 4C

SURFACE DESCRIPTION	AREA (acres)	CN	
	********	****	
Woods (75%)	12.00	55	
Graded Areas (25%)	4.00	61	
COMPOSITE AREA>	16.00	56.5	(57)

Composite Area: East

	AREA	CN	
SURFACE DESCRIPTION	(acres)		

Woods (60%)	312.00	55	
Fallow - Bare Soil (40%)	208.00	86	

COMPOSITE AREA ---> 520.00 67.4 (67)

Composite Area: Northeast

SURFACE DESCRIPTION	AREA (acres)	CN				

Woods (75%)	60.00	55				
Fallow - Bare Soil (25%)	20.00	86				
COMPOSITE AREA>	80.00	62.8	(6	3	2

Composite Area: North

	A COMPANY OF THE		
	AREA	CN	
SURFACE DESCRIPTION	(acres)		
************************************	********		
Woods (75%)	177.00	55	
Fallow - Bare Soil (25%)	59.00	86	

COMPOSITE AREA ---> 236.00 62.8 (63)

> VB28 8/20/98

Composite Area: West

	AREA	CN	
SURFACE DESCRIPTION	(acres)		
Woods (50%)	50.00	55	
Fallow - Bare Soil (50%)	50.00	86	
COMPOSITE AREA>	100.00	70.5	(71)

> SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Subarea descr.	Tc or Tt	Time (hrs)
10	Tc	0.35
20	Tc	0.32
30	Tc	0.41
40	Tc	0.38
East	Tc	0.68
Northeast	Tc	0.37
North	Tc	0.53
West	Tc	0.52

. .

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

TC COMPUTATIONS FOR: 1C

SHEET FLOW (Applicable to Tc only)				
Segment ID	4	1		
Surface description	Woo			
Manning's roughness coeff., n	MOO	0.4000		
Flow length, L (total < or = 300)				
			1	
Two-yr 24-hr rainfall, P2	in	2.800	/	
Land slope, s	ft/ft	0.2700		
0.8				
.007 * (n*L)	1.1.1	1.1		14.4
T =	hrs	0.33		0.3
0.5 0.4 P2 * s				
SHALLOW CONCENTRATED FLOW		1.1		
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow length, L	ft	650.0		
Watercourse slope, s	ft/ft	0.5000	1	
0.5				
Avg.V = Csf * (s)	ft/s	\$11.408	8	
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.02		0.0
CHANNEL FLOW				
Segment ID		3		
Cross Sectional Flow Area, a	sq.ft	42.00		
Wetted perimeter, Pw	ft	28.00		
Hydraulic radius, r = a/Pw	ft	1.500		
Channel slope, s	ft/ft	0.1500		
Manning's roughness coeff., n		0.0450		
2/3 1/2				
1.49 * r * s				
V =	ft/s	\$16.804	0	
n				
Flow Length, L	ft	500	/	
T = L / (3600*V)	hrs	0.01		0.0

6/17/97

-

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Te COMPUTATIONS FOR: 20

SHEET FLOW (Applicable to Tc only)	4			
Segment ID		1		
Surface description	Wood	ds		
Manning's roughness coeff., n		0.4000		
Flow length, L (total < or = 300)	ft	300.0		
Two-yr 24-hr rainfall, P2	in	2.800		
Land slope, s	ft/ft			
0.8		0.4200		
.007 * (n*L)				
	hrs	0.27		
0.5 0.4	0.2	0.21	•	0.27
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpeved		
Flow length, L	ft	370.0 -		
Watercourse slope, s	ft/ft	0.4200 /		
0.5				
Avg.V = Csf * (s)	ft/s	\$10.4564		
where: Unpaved Csf = 16.1345				
Paved Caf = 20.3282				
T = L / (3600*V)	hrs	0.01	•	0.01
CHANNEL FLOW		and the second se		
Segment ID		3		
Cross Sectional Flow Area, a	sq.ft	17.00		
Wetted perimeter, Pw	ft	17.00		
Hydraulic radius, r = a/Pw	ft	1.000		
Channel slope, s	ft/ft	0.0600 -		
Manning's roughness coeff., n		0.0450		
2/3 1/2				
1.49 * r * s				
V =	ft/s	8.1105		
n				
Flow length, L	ft	1050 -		
T = L / (3600*V)	hrs	0.04		0.04
		TOTAL TIME (hrs)		0.32

6/17/97

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

TE COMPUTATIONS FOR: 3C

SHEET FLOW (Applicable to Tc only)	τ.			
Segment ID		1		
Surface description	RON	Crops		
Manning's roughness coeff., n		0.1700		
Flow length, L (total < or = 300)	ft	300.0		
Two-yr 24-hr rainfall, P2	in			
Land slope, s	ft/ft			
0.8				
.007 * (n*L)				
T =	hrs	0.32		0.32
0.5 0.4				0.05
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow length, L	ft			
Watercourse slope, s	ft/ft	0.3600 /		
0.5		- Auto -		
Avg.V = Csf * (s)	ft/s	9.6807		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.03	1.2	0.03
CHANNEL FLOW				
Segment ID				
	12 M	3		
Cross Sectional Flow Area, a	sq.ft	150.00 -		
Wetted perimeter, Pw	ft	45.00 -		
Hydraulic radius, r = a/Pw	ft	3.333		
	ft/ft	0.0150		
Manning's roughness coeff., n		0.0600 -		
2/3 1/2				
2/3 1/2 1.49 * r * s				
V =	4.7			
	ft/s	6.7868		
0				
Flow length, L	ft	1450 -		
T = L / (3600*V)	hrs	0.06		0.06

		TOTAL TIME (1.2)	0.41

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

> > .

TC COMPUTATIONS FOR: 4C

SHEET FLOW (Applicable to Tc only)	-00				
Segment 10		1			
Surface description	Noo	ds			
Manning's roughness coeff., n		0.4000			
Flow length, L (total < or = 300) ft	300.0 /			
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.3700 -			
0.8					
.007 * (n*L)					
T =	hrs	0.29			0.29
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft	390.0 -			
Watercourse slope, s	ft/ft	0.5000 -			
0.5					
Avg.V = Csf * (s)	ft/s	\$11.4088			
where: Unpaved Csf = 16.1345	62.3	C. C	-		
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.01		•	0.01
CHANNEL FLOW					
Segment ID		3			
Cross Sectional Flow Area, a	sq.ft	28.00			
Wetted perimeter, Pw	ft	20.00 /			
Hydraulic radius, r = a/Pw	ft	1.400			
Channel slope, s	ft/ft	0.0200			
Manning's roughness coeff., n		0.0500			
2/3 1/2					
1.49 * 5 * 5					
V =	ft/s	5.2741			
n					
Flow length, L	ft	1670 -			
T = L / (3600*V)	hrs	0.09	1		0.09
		TOTAL TIME			0.38

VB10 6/17/97

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

6/17/97

To COMPUTATIONS FOR: East

SHEET FLOW (Applicable to Tc only)					
Segment ID		1			
Surface description	Row	Crops			
Manning's roughness coeff., n		0.1700			
Flow Length, L (total < or = 300)	ft	300.0	•		
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.0500	-		
0.8					
.007 * (n*L)					
T =	hrs	0.32		1.1.1	0.32
0.5 0.4					
PZ * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow Length, L	ft	2000.0	1		
Watercourse slope, s	ft/ft	0.0700	-		
0.5					
Avg.V = Csf * (s)	ft/s	4.2688			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.13		- 0	0.13
CHANNEL FLOW					
Segment ID		3	4		
Cross Sectional Flow Area, a	sq.ft	27.00	27.	.00	
Wetted perimeter, Pw	ft	16.40			
Hydraulic radius, r = a/Pw	ft	1.646		46	
Channel slope, s	ft/ft	0.0700		- 00	
Manning's roughness coeff., n		0.0700	0.07	700	
2/3 1/2					
1 /0 0 0 0					
1.49 * r * s					

1.49 * r * s		
V =	ft/s 7.8521 5.9356	
n		
Flow length, L	ft 2500 / 3000 /	
T = L / (3600*V)	hrs 0.09 + 0.14 = 0.23	

TOTAL TIME (hrs) 0.68

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Tc COMPUTATIONS FOR: Northeast

SHEET FLOW (Applicable to Tc only)					
Segment ID		1			
Surface description	Row	Crops			
Manning's roughness coeff., n		0.1700			
Flow Length, L (total < or = 300)	ft	300.0	1		
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.0800	1		
0.8					
.007 * (n*L)					
T =	hrs	0.27		14	0.27
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft				
Watercourse slope, s	ft/ft	0.0700	-		
0.5					
Avg.V = Csf * (s)	ft/s	4.2688			
where: Unpaved Csf = 16.1345	100.0				
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.04		•	0.04
CHANNEL FLOW					
Segment ID		3			
Cross Sectional Flow Area, a	sq.ft				
Wetted perimeter, Pw	ft				
Hydraulic radius, r = a/Pw	ft	1.646	0-		
Channel slope, s	ft/ft				
Nanning's roughness coeff., n		0.0700			
2/3 1/2					
1.49 * r * s					
V =	ft/s	\$11.104	5		
n					
Flow length, L	ft	2400			
T = L / (3600*V)	hrs	0.06		÷	0.06
		TOTAL T	IME (hrs)		0.37

1828 6/17/97

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

1888

Te COMPUTATIONS FOR: North

SHEET FLOW (Applicable to Tc only)	1.1				
Segment ID		1			
Surface description	ROW	Crops			
Manning's roughness coeff., n		0.1700			
Flow length, L (total < or = 300)	ft	300.0 -			
Two-yr 24-hr rainfall, P2	in	2.800			
Land slope, s	ft/ft	0.0500			
0.8					
.007 * (n*L)					
T =	hrs	0.32		= 0.32	
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow Length, L	ft	1000.0 /			
Watercourse slope, s	ft/ft	0.0600 /			
0.5					
Avg.V = Csf * (s)	ft/s	3.9521			
where: Unpaved Csf = 16.1345	11/2	3.9321			
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.07	1.1	= 0.07	
CHANNEL FLOW					
Segment 1D		3			
Cross Sectional Flow Area, a	sq.ft	27.00			
Wetted perimeter, Pw	ft	16.40			
Hydraulic radius, r = a/Pw	ft	1.646			
Channel slope, s	ft/ft	0.0830 /			
Manning's roughness coeff., n		0.0700			
2/3 1/2					
1.49 * * * *					
V =	ft/s	8.5502			
n	14.0	CISSOE			
etail (0.5				
Flow length, L	ft	4200			
T = L / (3600*V)	hrs	0.14		0.14	
		TOTAL THE			:
		TOTAL TIME	(nrs)	0.53	

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

To COMPUTATIONS FOR: West

= 0.32
= 0.09
= 0.10

Quick TR-55 Ver.5.46 S/N: Executed: 11:30:57 D6-18-1997 a:POSTDVTT.TCT

> SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Subarea descr.	Tc or Tt	Time (hrs)
10	Tt	0.00
20	Tt	0.05
30	Tt	0.01
40	Tt	0.09
East	Tt	0.07
Northeast	Tt	0.09
North	Tt	0.18
West	Tt	0.08

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

> > 1.1

BfB *

Tt COMPUTATIONS FOR: 2C

SHEET FLOW (Applicable to Tc only)				
Segment ID				
Surface description				
Manning's roughness coeff., n		0.0000		
Flow length, L (total < or = 300)	ft	0.0		
Two-yr 24-hr rainfall, P2	in	0.000		
Land slope, s	ft/ft	0.0000		
0.8				
.007 * (n*L)				
T =	hrs	0.00		0.00
0.5 0.4				11.14
P2 * s				
HALLOW CONCENTRATED FLOW				
Segment ID				
Surface (paved or unpaved)?				
Flow Length, L	ft	0.0		
Watercourse slope, s	ft/ft	0.0000		
0.5				
Avg.V = Csf * (s)	ft/s	0.0000		
where: Unpaved Caf = 16.1345	0.942			
Paved Csf = 20.3282		× .		
T = L / (3600*V)	hrs	0.00	•	0.00
HANNEL FLOW				
Segment ID		3 I I I I I I I I I I I I I I I I I I I		
Cross Sectional Flow Area, a		17.00		
Wetted perimeter, Pw	sq.ft	17.00		
Hydraulic radius, r = a/Pw	ft	17.00		
Channel slope, s	NA 6.74			
Manning's roughness coeff., n	ft/ft			
Manning's roughness coerr., n		0.0450		
2/3 1/2				
1.49 * r * s				
V =	ft/s	7.4039		
n				
Class Januarity 1				
Flow length, L	11	1200 -		
T = L / (3600*V)	hrs	0.05		0.05
		TOTAL TIME (hrs)		0.05

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

TE COMPUTATIONS FOR: 3C

SHEET FLOW (Applicable to Tc only) Segment ID Surface description 0.0000 Hanning's roughness coeff., n Flow length, L (total < or = 300) ft 0.0 Two-yr 24-hr mainfall, P2 in 0.000 0.0000 Land slope, s ft/ft 0.8 .007 * (n*L) T = ----hrs 0.00 0.5 0.4 P2 * 5 SHALLOW CONCENTRATED FLOW Segment ID Surface (paved or unpaved)? Flow Length, L 0.0 ft Watercourse slope, s ft/ft 0.0000 0.5 Avg.V = Csf * (s) 0.0000 ft/s where: Unpaved Csf = 16.1345 Paved Csf = 20.3282

T = L / (3600*V) hrs

CHANNEL FLOW

Segment ID		1	
Cross Sectional Flow Area, a	sq.ft	42.00 -	
Wetted perimeter, Pw	ft	28.00 -	
Hydraulic radius, r = a/Pw	ft	1.500	
Channel slope, s	ft/ft	0.1500 /	
Manning's roughness coeff., n		0.0450	
2/3 1/2			
1/0 * * * *			

V =	ft/s	%16.8040		
n Flow length, L	ft	550 -	3	
T = L / (3600*V)	hrs	0.01		4

TOTAL TIME (hrs) 0.01

0.00

6/17/97

0.00

0.00

0.01

=

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

TE COMPUTATIONS FOR: 4C

T = L / (3600*V)	hrs	80.0	+ 0.01	=	0.09
Flow length, L	ft	1950/	550 /		
n	100				
V =	ft/s	6.7868	\$16.8040		
1.49 * r * s					
2/3 1/2					
		0.0000	0.0400		
Manning's roughness coeff., n		0.0600	0.0450		
Channel slope, s	ft/ft	0.0150/	0.1500		
Hydraulic radius, r = s/Pw	ft	45.00	28.00		
Cross Sectional Flow Area, a Wetted perimeter, Pw		150.00	42.00		
Segment ID		1	2		
CHANNEL'FLOW					
T = L / (3600*V)	hrs	0.00		•	0.00
Paved Csf = 20.3282					
where: Unpaved Csf = 16.1345					
Avg.V = Csf * (s)	ft/s	0.0000			
0.5					
watercourse stope, s	ft/ft	0.0000			
flow length, L Watercourse slope, s	ft				
Surface (paved or unpaved)?					
Segment ID					
SHALLOW CONCENTRATED FLOW					
P2 * s					
0.5 0.4		0.11			
T =	hrs	0.00		i.	0.00
.007 * (n*L)					
0.8		0.0000			
Land slope, s	ft/ft	0.000			
Flow length, L (total < or = 300) Two-yr 24-hr rainfall, P2	ft	0.0			
Manning's roughness coeff., n		0.0000			
the second se					
Surface description					

- ÷.

6/17/97

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

1 alinen

Tt COMPUTATIONS FOR: East

SHEET FLOW (Applicable to Tc only)	+				
Segment ID					
Surface description		E. alta			
Manning's roughness coeff., n		0.0000			
Flow length, L (total < or = 300)		0.0			
Two-yr 24-hr rainfall, P2	in	100000			
Land slope, s	ft/ft	0.0000			
0.8					
.007 * (n*L)					1.2.2.
T =	hrs	0.00			0.00
0.5 0.4					
P2 * s					
HALLOW CONCENTRATED FLOW					
Segment ID					
Surface (paved or unpaved)?					
Flow length, L	ft	0.0			
Watercourse slope, s	ft/ft	0.0000			
0.5					
Avg.V = Csf * (s)	ft/s	0.0000			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.00		•	0.00
HANNEL FLOW					
Segment ID	3.2	1	2		
Cross Sectional Flow Area, a	sq.ft	150.00	42.00		
Wetted perimeter, Pw	ft	45.00	28.00		
Hydraulic radius, r = a/Pw	ft	3.333	1.500		
Channel slope, s	ft/ft	0.0150	0.1500		
Manning's roughness coeff., n		0.0600	0.0450		
2/3 1/2					
1.49 * r * s					
V =	ft/s	6.7868	\$16.8040	é in l	
n	675	1.00			
Flow length, L	ft	1600 /	550	•	
T = L / (3600*V)	hrs	0.07 4	0.01	*	0.07
		TOTAL TIP	E (hrs)		0.07

Quick TR-55 Ver.5.46 S/N: Executed: 11:30:57 06-18-1997 a:POSTDVTT.TCT

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Tt COMPUTATIONS FOR: Northeast

and the second se					
SHEET FLOW (Applicable to Tc only)	1				
Segment ID					
Surface description					
Manning's roughness coeff., n		0.0000			
Flow length, L (total < or = 300	0) ft	0.0			
Two-yr 24-hr rainfall, P2	in	0.000			
Land slope, s	ft/ft	0.0000			
0.8					
.007 * (n*L)					
T =	hrs	0.00			0.0
0.5 0.4					
PZ * s					
SHALLOW CONCENTRATED FLOW					
Segment ID					
Surface (paved or unpaved)?					
Flow length, L	ft	0.0			
Watercourse slope, s	ft/ft	0.0000			
0.5 Avg.V = Csf * (s)	40.10	0.0000			
Avg.V = Csf * (s) where: Unpaved Csf = 16.1345	ft/s	0.0000			
Paved Csf = 20.3282					
T = L / (3600 * V)	hrs	0.00		*	0.00
CHANNEL FLOW					
Segment ID					
		150.00	2		
Cross Sectional Flow Area, a Wetted perimeter, Pw	sq.ft		42.00		
Hydraulic radius, r = e/Pw	ft	45.00	28.00		
Channel slope, s	ft	3.333	1.500		
Manning's roughness coeff., n	ft/ft	0.0150	0.1500		
Haranny's roughness coerr., n		0.0600	0.0450		
2/3 1/2					
1.49 * r * s					
V =	ft/s	6.7868	\$16.8040	i e	
n				٢.,	
Flow length, L	ft	1870 /	550	2	
T = L / (3600*V)	hrs	0.08 +	0.01		0.09
		TOTAL TIN	99312787	-	0.09
		940			

6/17/91

•

Quick TR-55 Ver.5.46 S/N: Executed: 11:30:57 06-18-1997 a:POSTDVTT.TCT

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Tt COMPUTATIONS FOR: North

SHEET FLOW (Applicable to Tc only)					
Segment ID					
Surface description					
Manning's roughness coeff., n		0.0000			
Flow length, L (total < or = 300)	ft	0.0			
Two-yr 24-hr rainfall, P2	in	0.000			
Land slope, s	ft/ft	0.0000			
0.8					
.007 * (n*L)					
T =	hrs	0.00			0.00
0.5 0.4					12.00
P2 * s					
HALLOW CONCENTRATED FLOW					
Segment ID					
Surface (paved or unpaved)?					
Flow length, L	ft	0.0			
Watercourse slope, s	ft/ft	0.0000			
0.5					
Avg.V = Csf * (s)	ft/s	0.0000			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.00		•	0.00
HANNEL FLOW					
Segment ID		1	2		
	sq.ft	28.00	150.00		
Wetted perimeter, Pw	ft	20.00	45.00		
Hydraulic radius, r = a/Pw	ft	1.400	3.333		
	ft/ft	0.0200-	0.0150	1	
Manning's roughness coeff., n		0.0500	0.0600		
2/3 1/2					
1.49 * r * s					
V =	ft/s	5.2741	6.7868		
		3.6141	0.7000		
Flow length, L	ft	1670 -	2250	1	
the tenging a					
T = L / (3600*V)	hrs	0.09 +	0.09	=	0.18
					0.18
		0.09 +		•	0.18

BBBINAN

1.0

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97

Tt COMPUTATIONS FOR: West

SHEET FLOW (Applicable to Tc only)					
Segment ID					
Surface description					
Manning's roughness coeff., n		0.0000			
Flow length, L (total < or = 300)	ft	0.0			
Two-yr 24-hr rainfall, P2	in	0.000			
Land slope, s	ft/ft	0.0000			
0.8					
.007 * (n*L)					
T =	hrs	0.00			0.00
0.5 0.4					
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID					
Surface (paved or unpaved)?					
Flow length, L	ft	0.0			
Watercourse slope, s	ft/ft	0.0000			
0.5	12.	water.			
Avg.V = Csf * (s)	ft/s	0.0000			
where: Unpaved Csf = 16.1345			1.1		
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.00			0.00
CHANNEL FLOW					
Segment ID			2		
Cross Sectional Flow Area, a	sq.ft		17.00		
Wetted perimeter, Pw	ft	17.00	17.00		
Hydraulic radius, r = a/Pw	ft	1.000	1.000	1	
	ft/ft	0.0600	0.0500	5	
Manning's roughness coeff., n		0.0450	0.0450		
2/3 1/2					
1.49 * r * s					
V =	ft/s	8.1105	7.4039		
n					
Flow length, L	ft	1050 -	1200	1	
T = L / (3600*V)	hrs	0.04 +	0.05	4	0.08
		TOTAL TIM			

10000

Page 1 Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:58:17 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV25.HYD

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA CN (acres)		Tc (hrs)	* Tt (hrs)	Precip. (in)	Runoff (in)	Ia input	/p /used
10	42.00	67.0	0.40	0.00	4.90	1.73	1.2	.20
20	15.00	56.0	0.30	0.10	4.90	0.99	1.32	.32
30	33.00	58.0	0.40	0.00	4.90	1.11	1.3	.30
4C	16.00	57.0	0.40	0,10	4.90	1.05	1.31	.31
East	520.00	67.0	0.75	0.00	4.90	1.73	1.2	.20
Northeast	80.00	63.0	0.40	0.10	4.90	1.45	1.24	.24
North	236.00	63.0	0.50	0.20	4.90	1.45	1.24	.24
West	100.00	71.0	0.50	0.10	4.90 İ	2.04	1.17	.17

* Travel time from subarea outfall to composite watershed outfall point.

1 -- Subarea where user specified interpolation between Ia/p tables.

Total area = 1042.00 acres or 1.6281 sq.mi Peak discharge = 1027 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

>>>> Computer Modifications of Input Parameters <<<<<

	Input	Values	Rounder	d Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages

10	0.35	0.00	0.40	0.00	Yes	
20	0.32	0.05	0.30	0.10	Yes	
3C	0.41	0.01	0.40	0.00	Yes	1441
4C	0.38	0.09	0.40	0.10	Yes	1000
last	0.68	0.07	0.75	0.00	Yes	
lortheast	0.37	0.09	0.40	0.10	Yes	(4.4)
lorth	0.53	0.18	0.50	0.20	Yes	
lest	0.52	0.08	0.50	0.10	Yes	

Travel time from subarea outfall to composite watershed outfall point.

Total Runoff

= 141.9 ac-ft

Page 2 Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:58:17 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV25.HYD

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at Composite Outfall	Time to Peak at Composite Outfall
Subarea	(cfs)	(hrs)
10	61	12.3
20	11	12.4
3C	28	12.4
4C	12	12.5
East	533	12.7
Northeast	84	12.5
North	219	12.6
West	145	12.5

Composite Watershed	1027	12.6

Page 3

Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type 11. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:58:17 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV25.HYD

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

Composite Hydrograph Summary (cfs)

Subarea	11.0	11.3	11.6	11.9	12.0	12.1	12.2	12.3	12.4
Description	hr	hr	hr	hr	hr	hr	hr	hr	hr
10	1	1	2	5	9	22	43	61	61
20	0	0	0	0	0	1	4	9	11
30	0	0	0	0	1	6	17	27	28
4C	0	0	0	0	0	0	2	6	10
East	9	13	17	25	33	52	102	197	329
Northeast	1	1	2	4	7	14	31	57	80
North	2	3	4	6	8	13	28	66	126
West	3	5	6	11	17	30	56	95	128
•••••	******								
Total (cfs)	16	23	31	51	75	138	283	518	773

Subarea	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13.8
Description	hr	hr	hr	hr	hr	hr	hr	hr	hr
			******	•••••					
10	48	34	26	20	13	10	8	7	7
20	10	8	6	5	3	2	2	2	2
30	24	18	13	11	7	6	5	4	4
4C	12	11	9	7	4	3	3	2	2
East	454	527	533	490	350	248	183	143	117
Northeast	84	74	58	45	28	20	16	14	12
North	187	219	217	191	130	86	62	49	41
West	145	136	115	92	58	39	29	24	20
Total (cfs)	964	1027	977	861	593	414	308	245	205

Page 4 Return Frequency: 25 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 09-18-2000 12:58:17 Watershed file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV2 .MOP Hydrograph file: --> P:\DATA\PROJECTS\3081\40\SW\POSTDV25.HYD

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

Subarea	14.0	14.3	14.6	15.0	15.5	16.0	16.5	17.0	17.5
Description	hr								
1C	6	5	5	4	4	4	3	3	3
20	1	1	1	1	1	1	1	1	1
3C	3	3	3	3	2	2	2	2	2
4C	2	2	1	1	1	1	1	1	1
East	98	81	69	59	53	47	42	38	36
Northeast	11	9	8	8	7	6	6	5	5
North	35	30	26	23	21	19	17	16	14
West	18	15	13	12	11	10	9	8	7
Total (cfs)	174	146	126	111	100	90	81	74	69

Subarea	18.0	19.0	20.0	22.0	26.0
Description	hr	hr	hr	hr	hr
10	3	2	2	2	0
20	1	1	1	0	0
3C	2	1	1	1	0
4C	1	1	1	1	0
ast	34	30	27	22	0
Northeast	5	4	4	3	0
North	14	12	10	9	0
West	7	6	5	5	0

Total (cfs)	67	57	51	43	0

Page 1 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 11:25:28 Watershed file: --> A:\POSTDV2 .MOP Hydrograph file: --> A:\POSTDV00.HYD

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip, (in)	1	Runoff (in)	11.000	/p /used
10	42.00	67.0	0.40	0.00	6.10	1	2.61	1.16	.16
20	15.00	56.0	0.30	0.10	6.10	i.	1.66	1.26	.26
30	33.00	58.0	0.40	0.00	6.10	Î.	1.82	1.24	.24
40	16.00	57.0	0.40	0.10	6.10	î.	1.74	1.25	.25
East	520.00	67.0	0.75	0.00	6.10	i	2.61	1.16	.16
Northeast	80.00	63.0	0.40	0.10	6.10	i.	2.25	1.19	. 19
North	236.00	63.0	0.50	0.20	6.10	ì.	2.25	1.19	. 19
West	100.00	71.0	0.50	0.10	6.10	i.	2.98	1.13	.13

* Travel time from subarea outfall to composite watershed outfall point.

I -- Subarea where user specified interpolation between Ia/p tables.

Total area = 1042.00 acres or 1.6281 sq.mi Peak discharge = 1618 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

>>>> Computer	Modifications	of	Input	Parameters	*****
---------------	---------------	----	-------	------------	-------

Subarea Description	Input Tc (hr)	Values * Tt (hr)	Rounded Tc (hr)	Values * Tt (hr)	la/p Interpolated (Yes/No)	la/p Messages
10	0.35	0.00	0.40	0.00	Yes	
20	0.32	0.05	0.30	0.10	Yes	
3C	0.41	0.01	0.40	0.00	Yes	**
40	0.38	0.09	0.40	0.10	Yes	44.1
East	0.68	0.07	0.75	0.00	Yes	
ortheast	0.37	0.09	0.40	0.10	Yes	
lorth	0.53	0.18	0.50	0.20	Yes	
lest	0.52	0.08	0.50	0.10	Yes	

* Travel time from subarea outfall to composite watershed outfall point.

Total Runoff

= 215.7 ac-ft

Page 2 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 11:25:28 Watershed file: --> A:\POSTDV2 .MOP Hydrograph file: --> A:\POSTDV00.HYD

> Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
***********	*********	
10	96	12.3
20	20	12.4
30	49	12.4
40	20	12.5
East	837	12.6
Northeast	136	12.4
North	360	12.6
West	223	12.5
Composite Watershed	1618	12.6

Page 3 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 11:25:28 Watershed file: --> A:\POSTDV2 .MOP Hydrograph file: --> A:\POSTDV00.KYD

Dairyland Power Coop, Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

Composite Hydrograph Summary (cfs)

	Subarea Description	11.0 hr	11.3 hr	11.6 hr	11.9 hr	12.0 hr	12.1 hr	12.2 hr	12.3 hr	12.4 hr	
	10	2	3	4	9	18	38	71	96	94	
	20	0	0	0	1	2	4	10	18	20	
	3C	1	1	1	2	6	15	33	48	49	
	40	0	0	0	1	1	3	7	13	19	
	East	19	27	36	53	69	105	190	343	547	
	Northeast	3	4	5	10	18	36	70	109	136	
Y	North	6	9	11	17	22	33	63	127	224	
ŀ	West	6	9	12	20	32	56	102	165	209	
	Total (cfs)	37	53	69	113	168	290	546	919	1298	

Subarea Description	12.5	12.6	12.7	12.8	13.0	13.2	13.4	13.6	13.8
Description	hr								
c	73	51	38	29	19	14	12	10	0
C	18	13	10	7	5	4	3	3	3
C	39	28	21	17	11	9	7	6	6
C	20	18	14	11	7	5	4	3	3
ast	733	837	830	756	531	370	270	208	168
ortheast	132	110	85	65	40	28	23	19	17
orth	315	360	350	303	200	130	92	71	59
est	223	201	163	128	79	53	40	32	27
otal (cfs)	1553	1618	1511	1316	892	613	451	352	292

Page 4 Return Frequency: 100 years

TR-55 TABULAR HYDROGRAPH METHOD Type II. Distribution (24 hr. Duration Storm)

Executed: 10-01-1998 11:25:28 Watershed file: --> A:\POSTDV2 .MOP Hydrograph file: --> A:\POSTDV00.HYD

Dairyland Power Coop. Feasibility Report PostDevelopment Conditions BJK 5/97 REV 9/98

Composite Hydrograph Summary (cfs)

Subarea	14.0	14.3	14.6	15.0	15.5	16.0	16.5	17.0	17.5
Description	hr								
10	8	7	7	6	5	5	4	4	4
20	2	2	2	2	1	1	1	1	1
3C	5	5	4	4	3	3	3	3	2
40	3	2	2	2	2	2	1	1	1
East	141	115	97	83	74	66	59	53	49
Northeast	15	13	12	11	10	9	8	7	7
North	51	44	38	33	30	27	24	22	20
West	24	21	18	16	14	13	12	11	10
Total (cfs)	249	209	180	157	139	126	112	102	94

Subarea	18.0	19.0	20.0	22.0	26.0	
Description	hr	hr	hr	hr	hr	
10	4	3	3	2	0	
2C	1	1	1	1	0	
3C	2	2	2	2	0	
÷C	1	1	1	1	0	
ast	47	42	37	30	0	
lortheast	6	6	5	4	0	
lorth	19	17	15	13	0	
lest	10	8	7	6	0	

otal (cfs)	90	80	71	59	0	

Data directory: p:\data\projects\3081\40\sw*.HYD

File Summary for Composite Hydrograph

Time	POSTDV25	BSN1OUT1	BSN2OUT1	TPTPST25	
(hrs)	(cfs)	(cfs)	(cfs)	(Total)	
*******	*******		*******		
11.00	16.0	0.0	0.0	16.0	
11.10	18.0	0.2	0.2	18.4	
11.20	21.0	0.2	0.2	21.4	
11.30	23.0	0.3	0.2	23.5	
11.40	26.0	0.3	0.2	26.5	
11.50	28.0	0.3	0.2	28.5	
11.60	31.0	0.4	0.2	31.6	
11.70	38.0	0.4	0.3	38.7	
11.80	44.0	0.4	0.3	44.7	
11.90	51.0	0.5	0.3	51.8	
12.00	75.0	0.5	0.4	75.9	
12.10	138.0	0.6	0.4	139.0	
12.20	283.0	0.6	0.5	284.1	
12.30	518.0	0.7	0.5	519.2	
12.40	773.0	0.7	0.5	774.2	
12.50	964.0	0.7	0.6	965.3	245
12.60	1027.0	0.7	0.6	1028.3 🗻	Peak
12.70	977.0	0.7	0.6	978.3	
12.80	861.0	0.7	0.6	862.3	
12.90	727.0	0.7	0.6	728.3	
13.00	593.0	0.8	0.6	594.3	
13.10	503.0	0.8	0.6	504.4	
13.20	414.0	0.8	0.6	415.4	
13.30	361.0	0.8	0.6	362.4	
13.40	308.0	0.8	0.6	309.4	
13.50	277.0	0.8	0.6	278.4	
13.60	245.0	0.8	0.6	246.4	
13.70	225.0	0.8	0.6	226.4	
13.80	205.0	0.8	0.6	206.4	
13.90	190.0	0.8	0.6	191.4	
14.00	174.0	0.8	0.6	175.4	
14.10	165.0	0.8	0.6	166.4	
14.20	155.0	0.8	0.6	156.4	
14.30	146.0	0.9	0.6	147.5	
14.40	139.0	1.2	0.6	140.8	
14.50	133.0	1.5	0.6	135.1	
14.60	126.0	1.8	0.6	128.4	
14.70	122.0	2.0	0.6	124.6	
14.80	118.0	2.2	0.6	120.8	
14.90	115.0	2.3	0.6	117.9	

Combined Post - Development

Hydrograph 25 yr storm

Basin 1 + Basin Z +

Surrounding watershed .

Data directory: p:\data\projects\3081\40\sw*.HYD

Time	POSTDV25	BSN10UT1	BSN2OUT1	TPTPST25
(hrs)	(cfs)	(cfs)	(cfs)	(Total)
*******				*******
15.00	111.0	2.4	0.6	114.0
15.10	109.0	2.5	0.6	112.1
15.20	107.0	2.6	0.6	110.2
15.30	104.0	2.7	0.6	107.3
15.40	102.0	2.7	0.6	105.3
15.50	100.0	2.8	0.6	103.4
15.60	98.0	2.8	0.6	101.4
15.70	96.0	2.8	0.6	99.4
15.80	94.0	2.9	0.6	97.5
15.90	92.0	2.9	0.6	95.5
16.00	90.0	2.9	0.6	93.5
16.10	88.0	2.9	0.6	91.5
16.20	86.0	2.9	0.6	89.5
16.30	85.0	2.9	0.6	88.5
16.40	83.0	2.7	0.6	86.3
16.50	81.0	2.6	0.6	84.2
16.60	80.0	2.5	0.6	83.1
16.70	78.0	2.4	0.6	81.0
16.80	77.0	2.3	0.6	79.9
16.90	75.0	2.3	0.6	77.9
17.00	74.0	2.2	0.6	76.8
17.10	73.0	2.2	0.6	75.8
17.20	72.0	2.2	0.6	74.8
17.30	71.0	2.1	0.6	73.7
17.40	70.0	2.1	0.6	72.7
17.50	69.0	2.1	0.6	71.7
17.60	69.0	2.1	0.6	71.7
17.70	68.0	2.1	0.6	70.7
17.80	68.0	2.0	0.6	70.7
17.90	67.0	2.0	0.6	69.6
18.00	67.0	2.0	0.6	69.6
18.10	66.0	2.0	0.6	68.6
18.20	65.0	2.0	0.6	67.6
18.30	64.0	2.0	0.6	66.6
18,40	63.0	2.0	0.6	65.6
18.50	62.0	2.0	0.6	64.6
18,60	61.0	2.0	0.6	63.6
18,70	60.0	2.0	0.6	62.6
18.80	59.0	2.0	0.7	61.7
18.90	58.0	2.0	0.7	60.8
19.00	57.0	2.0	0.8	59.8

-

Executed 09-18-2000 13:11:11

Data directory: p:\data\projects\3081\40\sw*.HYD

Time			BSN10UT1	BSN2OUT1	TPTPST25
(hrs	:)	(cfs)	(cfs)	(cfs)	(Total)
			*******	*******	
19.		56.0	2.0	0.8	58.8
19.		56.0	2.0	0.9	58.9
19.		55.0	2.0	0.9	57.9
19.		55.0	2.0	0.9	57.9
19.		54.0	2.0	0.9	56.9
19.	60	53,0	1.9	0.9	55.9
19.	70	53.0	1.8	0.9	55.7
19.	80	52,0	1.6	1.0	54.6
19.	90	52.0	1.5	1.0	54.5
20.	00	51.0	1.4	1.0	53.4
20.	10	51.0	1.4	1.0	53.3
20.	20	50.0	1.3	1.0	52.3
20.	30	50.0	1.2	1.0	52.2
20.	40	49.0	1.2	1.0	51.2
20.	50	49.0	1.2	1.0	51.2
20.	60	49.0	1.1	1.0	51.1
20.	70	48.0	1.1	1.0	50.1
20.	80	48.0	1.1	1.0	50.1
20.	90	47.0	1.1	1.0	49.1
21.	00	47.0	1.0	1.0	49.0
21.	10	47.0	0.8	1.0	48.8
21.	20	46.0	0.8	1.0	47.8
21.3	30	46.0	0.8	1.0	47.8
21.4	40	45.0	0.8	1.0	46.8
21.5	50	45.0	0.8	1.0	46.8
21.0	50	45.0	0.8	1.0	46.8
21.7	70	44.0	0.8	1.0	45.8
21.8	80	44.0	0.8	1.0	45.8
21.9	90	43.0	0.8	1.0	44.8
22.0	00	43.0	0.8	1.0	44.8
22.	10	42.0	0.8	1.0	43.8
22.2	20	41.0	0.8	1.0	42.8
22.3	30	40.0	0.8	1.0	41.8
22.4	40	39.0	0.8	1.0	40.8
22.5	50	38.0	0.8	1.0	39.8
22.6	50	37.0	0.8	1.0	38.8
22.7	70	35.0	0.8	1.0	36.8
22.8		34.0	0.8	1.0	35.8
22.5	20	33.0	0.8	1.0	34.8
23.0		32.0	0.8	1.0	33.8
23.1		31.0	0.8	1.0	32.8

Data directory: p:\data\projects\3081\40\sw*.HYD

Time	POSTDV25	BSN10UT1	BSN2OUT1	TPTPST25	
(hrs)	(cfs)	(cfs)	(cfs)	(Total)	
23.20	30.0	0.8	1.0	31.8	
23.30	29.0	0.8	1.0	30.8	
23.40	28.0	0.8	1.0	29.8	
23.50	27.0	0.8	1.0	28.8	
23.60	26.0	0.8	1.0	27.8	
23.70	25.0	0.8	1.0	26.8	
23.80	24.0	0.8	1.0	25.8	
23.90	23.0	0.8	1.0	24.8	
24.00	22.0	0.8	0.9	23.7	
24.10	20.0	0.8	0.7	21.5	
24.20	19.0	0.8	0.6	20.4	
24.30	18.0	0.8	0.6	19.4	
24.40	17.0	0.8	0.6	18.4	
24.50	16.0	0.8	0.6	17.4	
24.60	15.0	0.8	0.6	16.4	
24.70	14.0	0.8	0.6	15.4	
24.80	13.0	0.8	0.6	14.4	
24.90	12.0	0.8	0.6	13.4	
25.00	11.0	0.8	0.6	12.4	
25.10	10.0	0.8	0.6	11.4	
25.20	9.0	0.8	0.6	10.4	
25.30	8.0	0.8	0.6	9.4	
25.40	6.0	0.8	0.6	7.4	
25.50	5.0	0.8	0.6	6.4	

Data directory: p:\data\projects\3081\40\sw*.HYD

File Summary for Composite Hydrograph

Time	POSTDV00	BSN10UT2	BSN2OUT2	TOTPSTOO
(hrs)	(cfs)	(cfs)	(cfs)	(Total)
*******	*******			
11.00	37.0	0.0	0.0	37.0
11.10	42.0	0.2	0.2	42.4
11.20	48.0	0.3	0.2	48.5
11.30	53.0	0.3	0.2	53.5
11.40	58.0	0.4	0.3	58.6
11.50	64.0	0.4	0.3	64.7
11.60	69.0	0.4	0.3	69.7
11.70	84.0	0.4	0.3	84.7
11.80	98.0	0.5	0.3	98.8
11.90	113.0	0.5	0.4	113.9
12.00	168.0	0.6	0.4	169.0
12.10	290.0	0.6	0.5	291.1
12.20	546.0	0.7	0.5	547.2
12.30	919.0	0.7	0.6	920.3
12.40	1298.0	0.7	0.6	1299.3
12.50	1553.0	0.8	0.6	1554.4
12.60	1618.0	2.8	1.2	1622.0 - Peak
12.70	1511.0	8.2	3.7	1522.9
12.80	1316.0	12.2	5.2	1333.4
12.90	1104.0	14.8	6.1	1124.9
13.00	892.0	15.7	6.6	914.3
13.10	752.0	15.5	6.9	774.4
13.20	613.0	14.8	7.0	634.8
13.30	532.0	14.0	7.0	553.0
13.40	451.0	13.3	7.0	471.3
13.50	402.0	12.5	7.0	421.5
13.60	352.0	11.7	6.9	370.6
13.70	322.0	10.8	6.7	339.5
13.80	292.0	10.0	6.6	308.6
13.90	270.0	9.6	6.5	286.0
14.00	249.0	9.1	6.3	264.3
14.10	236.0	8.5	6.0	250.6
14.20	222.0	8.1	5.8	235.9
14.30	209.0	7.7	5.7	222.4
14.40	199.0	7.4	5.4	211.9
14.50	190.0	7.2	5.2	202.3
14.60	180.0	7.0	4.8	191.8
14.70	174.0	6.8	4.5	185.3
14.80	168.0	6.6	4.2	178.8
14.90	163.0	6.2	4.0	173.2

Combined Post - Development

Hydrograph - 100 yr storm

Basin 1 + Basin 2 + Surrounding Watershed.

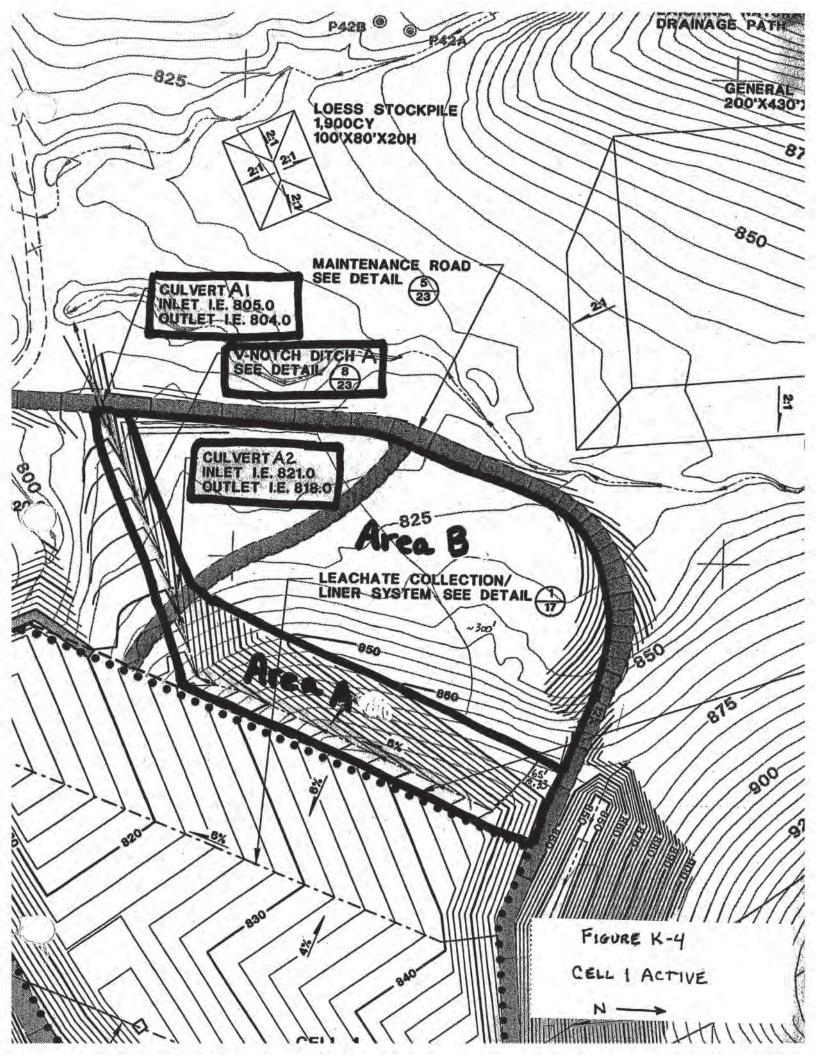
Data directory: p:\data\projects\3081\40\sw*.HYD

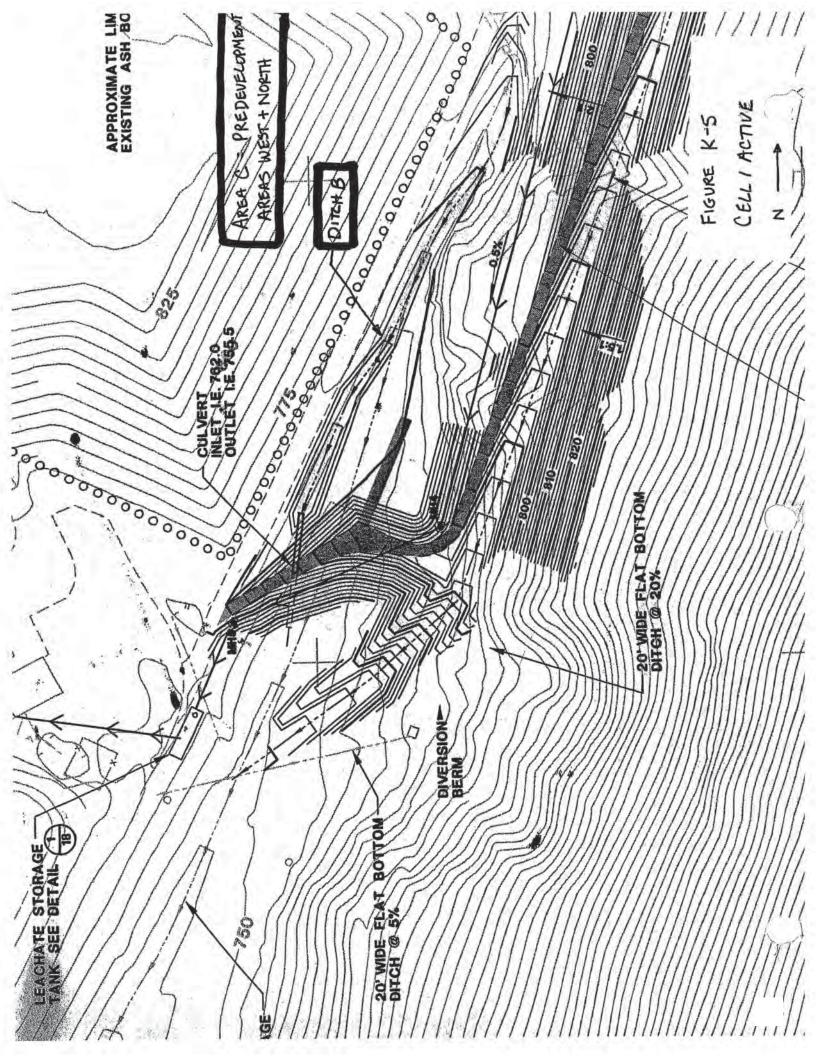
Time	POSTDV00	BSN10UT2		TOTPSTOO
(hrs)	(cfs)	(cfs)	(cfs)	(Total)
15.00	157.0	5.8	3.8	166.6
15.10	153.0	5.5	3.6	162.1
15.20	150.0	5.3	3.5	158.8
15.30	146.0	5.0	3.4	154.4
15.40	143.0	4.6	3.3	150.9
15.50	139.0	4.3	3.3	146.6
15.60	136.0	4.1	3.2	143.3
15,70	134.0	3.9	3.2	141.1
15.80	131.0	3.8	3.1	137.9
15.90	129.0	3.6	3.1	135.7
16.00	126.0	3.5	3.1	132.6
16.10	123.0	3.4	3.1	129.5
16.20	120.0	3.4	3.1	126.4
16.30	118.0	3.3	3.0	124.2
16.40	115.0	3.2	2.8	121.0
16.50	112.0	3.2	2.6	117.8
16.60	110.0	3.2	2.5	115.7
16.70	108.0	3.1	2.4	113.5
16.80	106.0	3.1	2.3	111.4
16.90	104.0	3.1	2.3	109.3
17.00	102.0	3.1	2.2	107.3
17.10	100.0	3.1	2.2	105.2
17.20	99.0	3.0	2.1	104.2
17.30	97.0	3.0	2.1	102.2
17.40	96.0	3.0	2.1	101.1
17.50	94.0	3.0	2.1	99.1
17.60	93.0	3.0	2.1	98.1
17.70	92.0	3.0	2.0	97.1
17.80	92.0	3.0	2.0	97.1
17.90	91.0	3.0	2.0	96.0
18.00	90.0	3.0	2.0	95.0
18.10	89.0	3.0	2.0	94.0
18.20	88.0	3.0	2.0	93.0
18.30	87.0	3.0	2.0	92.0
18.40	86.0	3.0	2.0	91.0
18.50	85.0	2.9	2.0	89.9
18.60		2.8	2.0	88.8
18.70	83.0	2.6	2.0	87.6
18.80	82.0	2.5	2.0	86.5
18.90	81.0	2.4	2.0	85.4
19.00	80.0	2.4	2.0	84.4

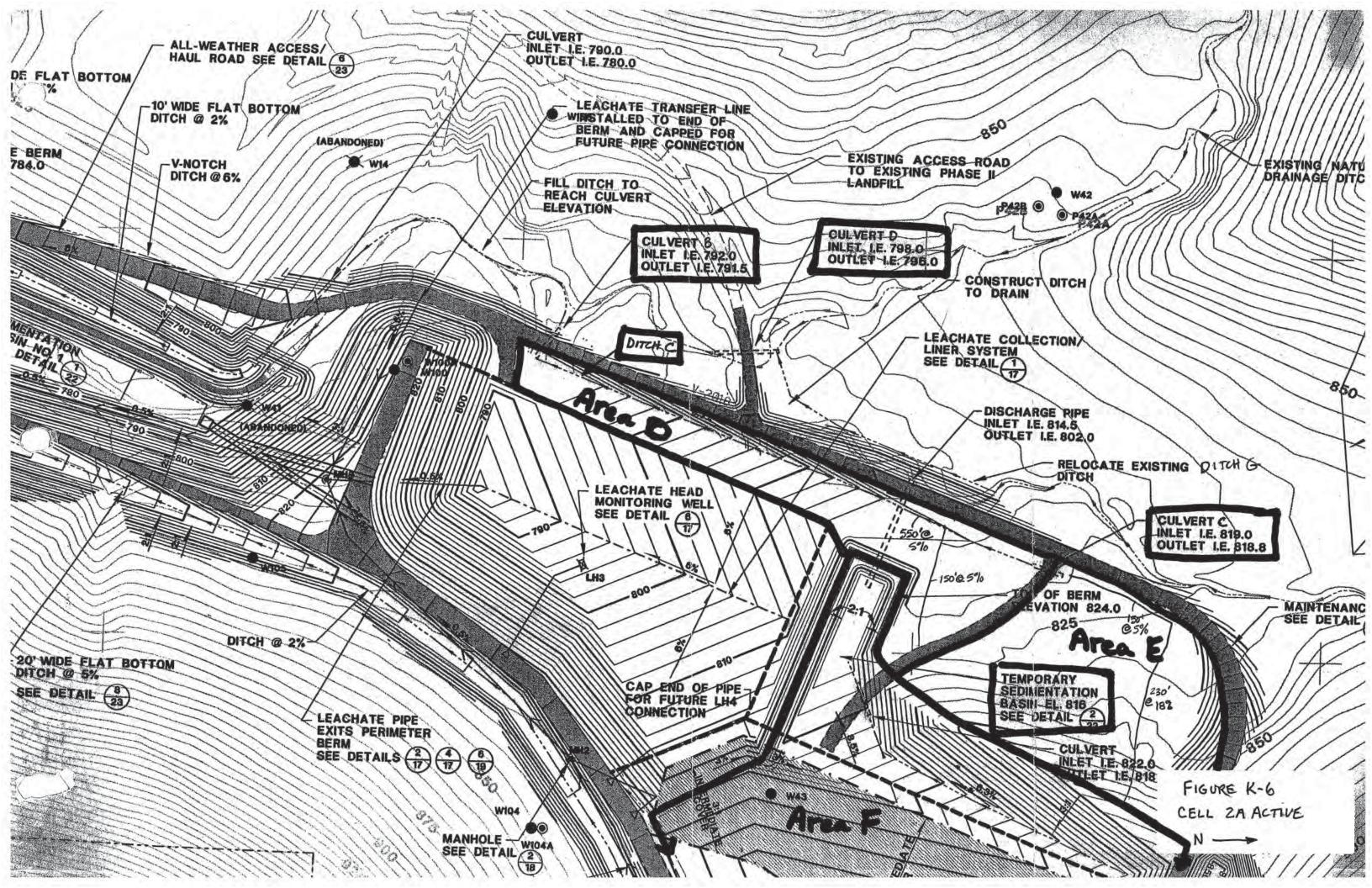
Data directory: p:\data\projects\3081\40\sw*.HYD

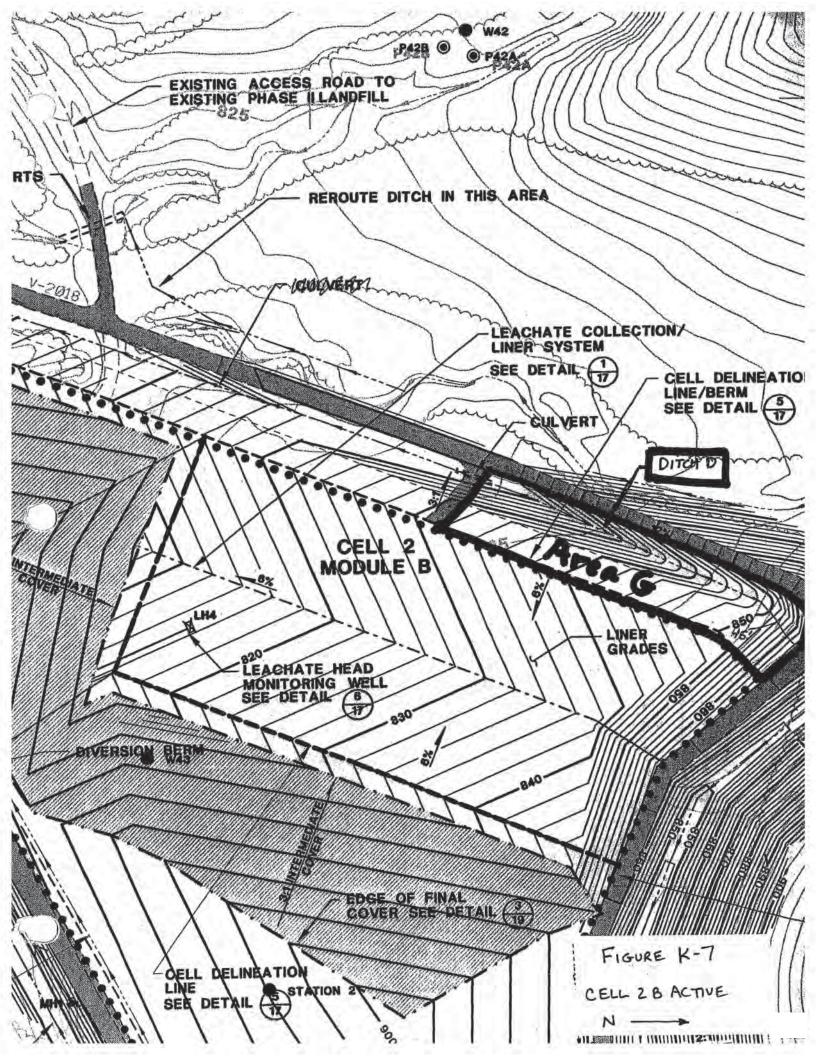
Time	POSTDVOO	BSN10UT2	BSN2OUT2	TOTPSTOO
(hrs)	(cfs)	(cfs)	(cfs)	(Total)

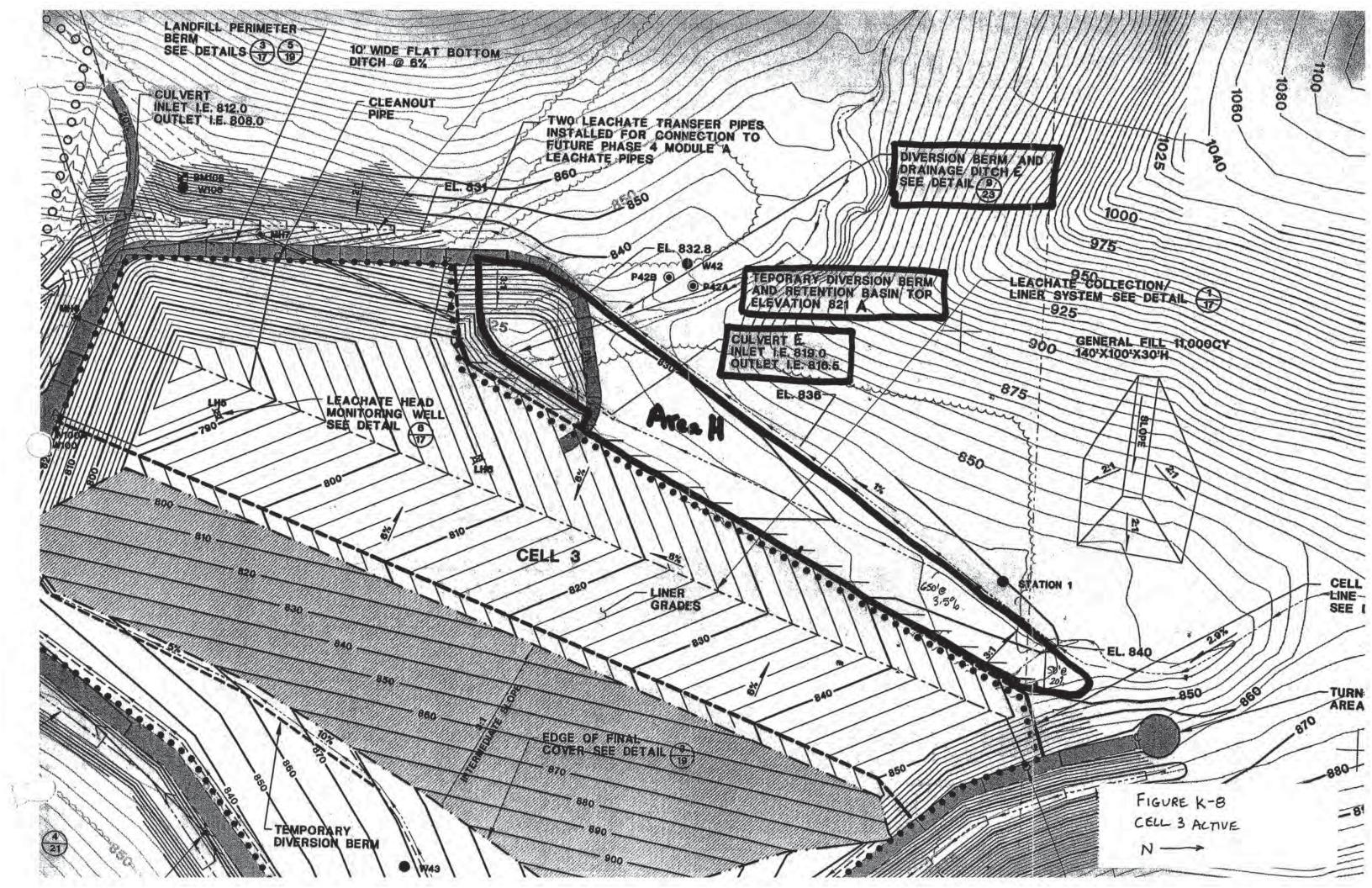
19.10	79.0	2.3	2.0	83.3
19.20	78.0	2.2	2.0	82.2
19.30	77.0	2.2	2.0	81.2
19.40	76.0	2.2	2.0	80.2
19.50	76.0	2.1	2.0	80.1
19.60	75.0	2.1	1.9	79.0
19.70	74.0	2.1	1.7	77.8
19.80	73.0	2.1	1.6	76.7
19.90	72.0	2.1	1.5	75.5
20.00	71.0	2.0	1.4	74.4
20.10	70.0	2.0	1.3	73.3
20.20	70.0	2.0	1.3	73.3
20,30	69.0	2.0	1.2	72.2
20.40	69.0	2.0	1.2	72.2
20.50	68,0	2.0	1.1	71.1
20.60	67.0	2.0	1.1	70.1
20.70	67.0	2.0	1.1	70.1
20.80	66.0	2.0	1.1	69.1
20.90	66.0	2.0	1.0	69.1
21.00	65.0	2.0	1.0	68.1
21.10	64.0	2.0	1.0	67.0
21.20	64.0	2,0	1.0	67.0
21.30	63.0	2,0	1.0	66.0
21.40	63.0	2.0	1.0	66.0
21.50	62.0	2.0	1.0	65.0
21.60		2.0	1.0	64.0
21.70	61.0	2.0	1.0	64.0
21.80		2.0	1.0	63.0
21.90	60.0	2.0	1.0	63.0
22.00	59.0	2.0	1.0	62.0
22.10		2.0	1.0	61.0
22.20	56.0	2.0	1.0	59.0
22.30	55.0	2.0	1.0	58.0
22.40	52.0	2.0	1.0	56.0
22.50	52.0	2.0	1.0	55.0
22.60	50.0	2.0	1.0	53.0
22.70	49.0	2.0	1.0	52.0
22.80	47.0	2.0	1.0	50.0
22.90	46.0	2.0	1.0	49.0
23.00	44.0	2.0	1.0	47.0
23.10	43.0	1.9	1.0	45.9

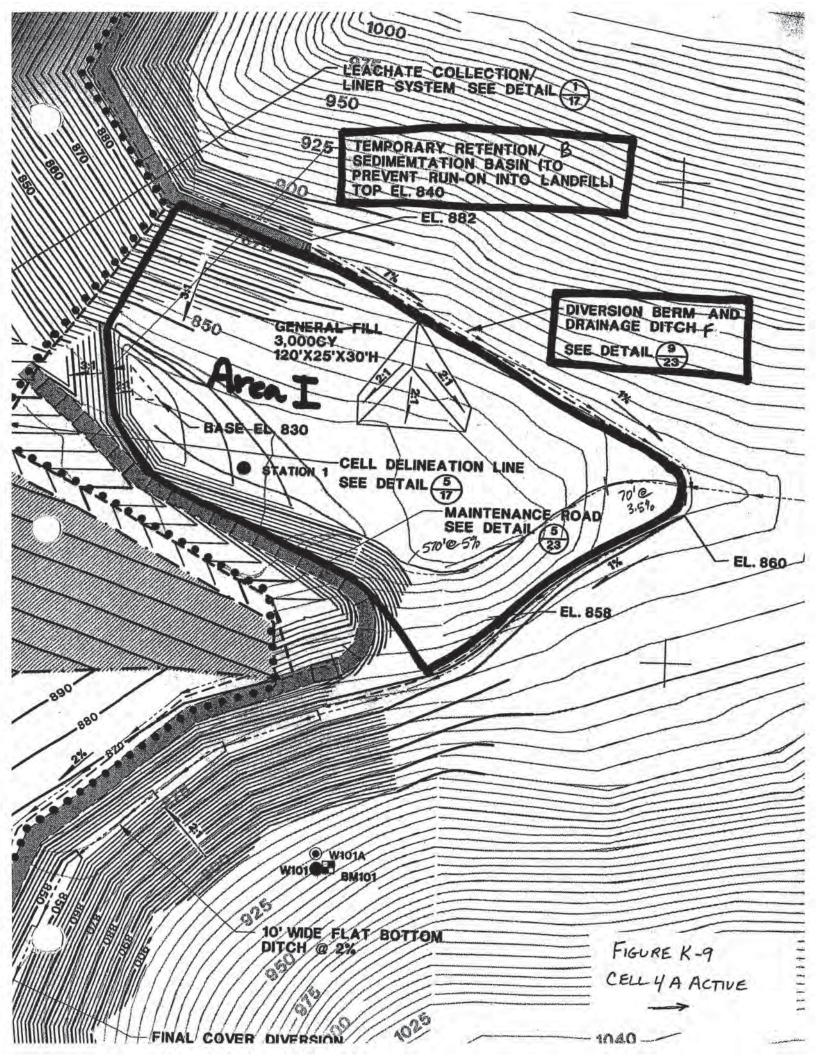

Data directory: p:\data\projects\3081\40\sw*.HYD


			Station Street	Sec. 20.	
Time	POSTDV00	BSN10UT2	BSN2OUT2	TOTPST00	
(hrs)	(cfs)	(cfs)	(cfs)	(Total)	
	*******	*******		******	
23.20	41.0	1.8	1.0	43.8	
23.30	40.0	1.6	1.0	42.6	
23.40	38.0	1.5	1.0	40.5	
23.50	37.0	1.4	1.0	39.4	
23.60	35,0	1.4	1.0	37.3	
23.70	34.0	1.3	1.0	36.3	
23.80	32.0	1.2	1.0	34.2	
23.90	31.0	1.2	1.0	33.2	
24.00	30.0	1.2	0.9	32.1	
24.10	28.0	1.1	0.7	29.9	
24.20	27.0	1.1	0.6	28.7	
24.30	25.0	1.1	0.6	26.7	
24.40	24.0	1.1	0,6	25.7	
24.50	22.0	1.1	0.6	23.7	
24.60	21.0	1.0	0.6	22.6	
24.70	19.0	1.0	0.6	20.6	
24.80	18.0	1.0	0.6	19.6	
24.90	16.0	1.0	0.6	17.6	
25.00	15.0	0.9	0.6	16.5	
25.10	13.0	0.8	0.6	14.4	
25.20	12.0	0.8	0.6	13.4	
25.30	10.0	0.8	0.6	11.4	
25.40	9.0	0.8	0.6	10.4	
25.50	7.0	0.8	0.6	8.4	




Operational Run-off Calculations


Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024



> SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods)

> > Dairyland Power Coop. Plan of Operation Operational Conditions

Subarea descr.	Tc or Tt	Time (hrs)

Area A	Tc	0.08
Area B	Tc	0.21
Area D	Tc	0.06 - Round to 0.10
Area E	Tc	0.15
Area F	Tc	0.24
Area G	Tc	0.05 - Rourd to 0.10
Area H	Tc	0.10
Area I	Tc	0.15

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area A

SHEET FLOW (Applicable to Tc only)				-
Segment ID		1		
Surface description	gras	55		
Manning's roughness coeff., n		0.1500		
Flow length, L (total < or = 300)	ft	65.0		
Two-yr 24-hr rainfall, P2	in	2.800		
Land slope, s	ft/ft	0.3330		
0.8				
.007 * (n*L)				
T =	hrs	0.04	-	0.04
0.5 0.4				
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow Length, L	ft	625.0		
Watercourse slope, s	ft/ft	0.0600		
0.5		7 0504		
Avg.V = Csf * (s)	ft/s	3.9521		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.04	-	0.04
CHANNEL FLOW				
Segment ID				
Cross Sectional Flow Area, a	sq.ft	0.00		
Wetted perimeter, Pw	sy.rt ft			
Hydraulic radius, r = a/Pw	ft			
Channel slope, s	ft/ft	0.0000		
Manning's roughness coeff., n	11/11			
Maining's roughness coerr., n		0.0000		
2/3 1/2				
1.49 * r * s				
V =	ft/s	0.0000		
n				
Flow length, L	ft	0		
T = L / (3600*V)	hrs	0.00	-	0.00
				5100
mannannannannann				umm
		TOTAL TIME (hr	s)	0.08

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area B

SHEET FLOW (Applicable to Tc only) Segment ID			
		1	
Surface description	gras		
Manning's roughness coeff., n		0.1500	
Flow length, L (total < or = 300)		300.0	
Two-yr 24-hr rainfall, P2	in	2.800	
Land slope, s	ft/ft	0.1700	
0.8			
.007 * (n*L) T =			
0.5 0.4	hrs	0.18	= 0.18
P2 * s			
HALLOW CONCENTRATED FLOW			
Segment ID		2	
Surface (paved or unpaved)?		Unpaved	
Flow length, L	ft	220.0	
Watercourse slope, s	ft/ft	0.0200	
0.5			
Avg.V = Csf * (s)	ft/s	2.2818	
where: Unpaved Csf = 16.1345			
Paved Csf = 20.3282			
T = L / (3600*V)	hrs	0.03	= 0.03
HANNEL FLOW			
Segment ID			
Cross Sectional Flow Area, a	sq.ft	0.00	
Wetted perimeter, Pw	ft	0.00	
Hydraulic radius, r = a/Pw	ft	0.000	
Channel slope, s	ft/ft	0.0000	
Manning's roughness coeff., n		0.0000	
2/3 1/2			
1.49 * r * s			
V =	ft/s	0.0000	
n			
Flow length, L	ft	0	
T = L / (3600*V)	hrs	0.00	= 0.00

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area D

HEET FLOW (Applicable to Tc only) Segment ID					
		1			
Surface description	soil				
Manning's roughness coeff., n Flow length, L (total < or = 300)		0.0110			
		150.0			
Two-yr 24-hr rainfall, P2	in				
Land slope, s	ft/ft	0.0500			
0.8					
.007 * (n*L)					
1 =	hrs	0.02		=	0.02
0.5 0.4					
P2 * s					
HALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft	550.0			
Watercourse slope, s	ft/ft	0.0500			
0.5					
Avg.V = Csf * (s)	ft/s	3.6078			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.04		-	0.04
none com					
HANNEL FLOW					
Segment ID					
Cross Sectional Flow Area, a	sq.ft	0.00			
Wetted perimeter, Pw	ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness coeff., n		0.0000			
2/3 1/2					
1.49 * r * s					
V =	ft/s	0.0000			
n					
Flow Length, L	ft	0			
		5. Sec.			35.1
T = L / (3600*V)	hrs	0.00		=	0.00
inanananananananan		mmm		(11)	mm
		TOTAL TI	ME (hrs)		0.06

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area E

Contrast, period of the provide the local states of the					\sim
SHEET FLOW (Applicable to Tc only)		100			
Segment ID	. Saint	1			
Surface description Manning's roughness coeff., n	gras				
Flow length, L (total < or = 300)		0.1500			
Two-yr 24-hr rainfall, P2) ft in	230.0			
Land slope, s	ft/ft	2.800			
0.8	10/10	0.1000			
.007 * (n*L)					
T =	hrs	0.14		= 0.14	
0.5 0.4	111.5	0.14		- 0.14	
P2 * s					
SHALLOW CONCENTRATED FLOW					
Segment ID		2			
Surface (paved or unpaved)?		Unpaved			
Flow length, L	ft	150.0			
Watercourse slope, s	ft/ft				
	1.0/10.	0.0500			
0.5					
Avg.V = Csf * (s)	ft/s	3.6078			
where: Unpaved Csf = 16.1345					
Paved Csf = 20.3282					
T = L / (3600*V)	hrs	0.01	n l'i q	= 0.01	
CHANNEL FLOOR					
CHANNEL FLOW Segment ID					
Cross Sectional Flow Area, a		0.00			
Wetted perimeter, Pw	sq.ft ft	0.00			
Hydraulic radius, r = a/Pw	ft	0.000			
Channel slope, s	ft/ft	0.0000			
Manning's roughness coeff., n	11/11	0.0000			
hanning a roughicaa coerrey n		0.0000			
2/3 1/2					
1.49 * r * s					
V =	ft/s	0.0000			
n					
Flow length, L	ft	0			

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area F

SHEET FLOW (Applicable to Tc only)				
Segment ID		Q		
Surface description	gras			
Manning's roughness coeff., n		0.1500		
Flow length, L (total $< \text{ or } = 300$)	ft	185.0		
Two-yr 24-hr rainfall, P2	în	2.800		
Land slope, s	ft/ft	0.2500		
0.8				
.007 * (n*L)				
T =	hrs	0.10	=	0.10
0.5 0.4				
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow Length, L	ft	1370.0		
Watercourse slope, s	ft/ft	0.0300		
0.5				
Avg.V = Csf * (s)	ft/s	2.7946		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.14	1.4	0.14
CHANNEL FLOW				
Segment ID				
Cross Sectional Flow Area, a	sq.ft	0.00		
Wetted perimeter, Pw	ft	0.00		
Hydraulic radius, r = a/Pw	ft	0.000		
Channel slope, s	ft/ft	0.0000		
Manning's roughness coeff., n		0,0000		
2/3 1/2				
1.49 * r * s				
V =	ft/s	0.0000		
n				
Flow length, L	ft	0		
T = L / (3600*V)	hrs	0.00		0.00
			(ME (hrs)	0.24

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area G

SHEET FLOW (Applicable to Tc only)				
Segment ID		1		
Surface description	gras	ss		
Manning's roughness coeff., n		0.1500		
Flow length, L (total < or = 300)	ft	45.0		
Two-yr 24-hr rainfall, P2	in	2.800		
Land slope, s	ft/ft	0.3300		
0.8				
.007 * (n*L)				
T =	hrs	0.03	1	0.03
0.5 0.4				
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow length, L	ft	320.0		
Watercourse slope, s	ft/ft	0.1200		
0.5				
Avg.V = Csf * (s)	ft/s	5.5892		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.02	4.174	0.02
HANNEL FLOW				
Segment ID	1.00	6.52		
Cross Sectional Flow Area, a	sq.ft	0.00		
Wetted perimeter, Pw	ft	0.00		
Hydraulic radius, r = a/Pw	ft	0.000		
Channel slope, s	ft/ft			
Manning's roughness coeff., n		0.0000		
2/3 1/2				
1.49 * r * s	1205	3.24.11		
V =	ft/s	0.0000		
n				
Flow length, L	ft	0		
T = L / (3600*V)	hrs	0.00		0.00

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area H

SHEET FLOW (Applicable to Tc only) Segment ID				
Surface description				
Manning's roughness coeff., n	gras	0.1500		
Flow length, L (total < or = 300)	ft			
Two-yr 24-hr rainfall, P2	in	2.800		
Land slope, s	ft/ft	0.2000		
0.8	14/14	0.2000		
.007 * (n*L)				
T =	hrs	0.04		0.04
0.5 0.4	in a	0.04	-	0.04
P2 * s				
SHALLOW CONCENTRATED FLOW				
Segment ID		2		
Surface (paved or unpaved)?		Unpaved		
Flow length, L	ft	650.0		
Watercourse slope, s	ft/ft	0.0350		
0.5				
Avg.V = Csf * (s)	ft/s	3.0185		
where: Unpaved Csf = 16.1345				
Paved Csf = 20.3282				
T = L / (3600*V)	hrs	0.06		0.06
CHANNEL FLOW				
Segment ID				
Cross Sectional Flow Area, a	sq.ft	0.00		
Wetted perimeter, Pw	sq.it ft	0.00		
Hydraulic radius, r = a/Pw	ft			
Channel slope, s	ft/ft			
Manning's roughness coeff., n	10/10	0.0000		
naming a rodginica coerry in		0.0000		
2/3 1/2				
1.49 * r * s				
V =	ft/s	0.0000		
n		0.00		
Flow length, L	ft	0		
T = L / (3600*V)	hrs	0.00	-	0.00

Dairyland Power Coop. Plan of Operation Operational Conditions

Tc COMPUTATIONS FOR: Area I

SHEET FLOW (Applicable to Tc only)			
Segment ID		1	
Surface description	gras		
Manning's roughness coeff., n		0.1500	
Flow length, L (total < or = 300)	ft	70.0	
Two-yr 24-hr rainfall, P2	în	2.800	
Land slope, s	ft/ft	0.0350	
0.8			
.007 * (n*L)			
T =	hrs	0.10	= 0.10
0.5 0.4			
P2 * s			
SHALLOW CONCENTRATED FLOW			
Segment ID		2	
Surface (paved or unpaved)?		Unpaved	
Flow length, L	ft	570.0	
Watercourse slope, s	ft/ft	0.0500	
0.5			
Avg.V = Csf * (s)	ft/s	3.6078	
where: Unpaved Csf = 16.1345			
Paved Csf = 20.3282			
T = L / (3600*V)	hrs	0.04	= 0.04
annual and an			
CHANNEL FLOW			
Segment ID			
Cross Sectional Flow Area, a	sq.ft	0.00	
Wetted perimeter, Pw	ft	0.00	
Hydraulic radius, r = a/Pw	ft	0.000	
Channel slope, s	ft/ft	0.0000	
Manning's roughness coeff., n		0.0000	
2/3 1/2			
1.49 * r * s			
V =	ft/s	0.0000	
n			
Flow length, L	ft	ō	
T = L / (3600 * V)	hrs	0.00	= 0.00

Page 1

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:42 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL1 .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL1 .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 1

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	1	Runoff (in)	Ia input	/p /used
Area A	1.10	69.0	0.10	0.00	6.10	Ĩ	2.79	.15	.10
Area B	2.70	69.0	0.20	0.00	6.10	Ť	2.79	.15	.10

* Travel time from subarea outfall to composite watershed outfall point. Total area = 3.80 acres or 0.00594 sq.mi

Peak discharge = 14 cfs

>>>> Computer Modifications of Input Parameters <<<<<

	Input	Values	Rounded	Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
Area A	0.10	0.00	**	**	No	
Area B	0.21	0.00	0.20	0.00	No	

* Travel time from subarea outfall to composite watershed outfall point.

** Tc & Tt are available in the hydrograph tables.

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:42 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL1 .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL1 .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 1

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
	*************	*********
Area A	5	12.1
Area B	9	12.1

Composite Watershed	14	12.1

Page 1

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:49 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL2A .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL2A .HYD

Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2A

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	1			/p /used
Area D	1.30	69.0	0.10	0.00	6.10	T	2.79	.15	.10
Area E	1.60	69.0	0.20	0.00	6.10	Ť.	2.79	.15	.10

* Travel time from subarea outfall to composite watershed outfall point.

Total area = 2.90 acres or 0.00453 sq.mi Peak discharge = 11 cfs

>>>> Computer Modifications of Input Parameters <<<<<

	Input	Values	Rounded	d Values	la/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
Area D	0.10	0.00	**	**	No	
Area E	0.15	0.00	0.20	0.00	No	

* Travel time from subarea outfall to composite watershed outfall point.

** Tc & Tt are available in the hydrograph tables.

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:49 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL2A .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL2A .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2A

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at	
	Composite Outfall	Composite Outfall	
Subarea	(cfs)	(hrs)	

Area D	6	12.1	
Area E	6	12.2	

Composite Watershed	11	12.1	

TR-55 TABULAR HYDROGRAPH METHOD Type I1 Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:57 Watershed file: --> p:\data\projects\3081\40\sw\op\TEMPBAS .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\TEMPBAS .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2A Temporary Basin

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN			Precip. (in)				

Area F	7.60	69.0	0.20	0.00	6.10	1	2.79	.15	.10

Total area = 7.60 acres or 0.01187 sq.mi Peak discharge = 27 cfs

	Input	Values	Rounded	Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
rea F	0.24	0.00	0.20	0.00	No	

1.1

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:11:57 Watershed file: --> p:\data\projects\3081\40\sw\op\TEMPBAS .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\TEMPBAS .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2A Temporary Basin

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
Area F	27	12.2
Composite Watershed	27	12.2

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:12:03 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL2B .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL2B .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2B

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)		Ia/p input/used
Area G	0.60	69.0	0.10	0.00	6.10	2.79	.15 .10

* Travel time from subarea outrall to composite watersned outrall point. Total area = 0.60 acres or 0.00094 sq.mi Peak discharge = 3 cfs

>>>> Computer Modifications of Input Parameters <<<<< Input Values Rounded Values Ia/p Tc * Tt Tc * Tt Interpolated Subarea Ia/p Description (hr) (hr) (hr) (hr) (Yes/No) Messages Area G 0.10 0.00 ** ** No * Travel time from subarea outfall to composite watershed outfall point.

** Tc & Tt are available in the hydrograph tables.

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:12:03 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL2B .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL2B .HYD

> Dairyland Power Coop. Plan of Opertaion Operational Conditions Cell 2B

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
Area G	3	12.1
Composite Watershed	3	12.1

Page 1

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:12:08 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL3 .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL3 .HYD

Dairyland Power Coop. Plan of Operation Operational Conditions Cell 3

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)		Runoff (in)	Ia/p input/used
Area H	1.70	69.0	0.10	0.00	6.10	1	2.79	.15 .10

Total area = 1.70 acres or 0.00266 sq.mi Peak discharge = 7 cfs

>>>> Computer Modifications of Input Parameters <<<<< Input Values Rounded Values Ia/p Subarea Tc * Tt Tc * Tt Interpolated la/p (hr) (hr) Description (hr) (hr) (Yes/No) Messages Area H 0.10 0.00 ** ** No --

* Travel time from subarea outfall to composite watershed outfall point.

** Tc & Tt are available in the hydrograph tables.

~

Page 2

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:12:08 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL3 .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL3 .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 3

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)
***********	********	
Area H	7	12.1
**********	***********	
Composite Watershed	7	12.1

Page 1

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:21:09 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL4A .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL4A .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 4A

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)		Precip. (in)			
Area I	3.60	69.0	0.20	0.00	6.10	L	2.79	.15 .

Total area = 3.60 acres or 0.00562 sq.mi Peak discharge = 13 cfs

	Input	Values	Rounded	Values	Ia/p	
Subarea	Tc	* Tt	Tc	* Tt	Interpolated	Ia/p
Description	(hr)	(hr)	(hr)	(hr)	(Yes/No)	Messages
Area I	0.15	0.00	0.20	0.00	No	

Page 2

TR-55 TABULAR HYDROGRAPH METHOD Type II Distribution (24 hr. Duration Storm)

Executed: 10-12-2000 20:21:09 Watershed file: --> p:\data\projects\3081\40\sw\op\CELL4A .WSD Hydrograph file: --> p:\data\projects\3081\40\sw\op\CELL4A .HYD

> Dairyland Power Coop. Plan of Operation Operational Conditions Cell 4A

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at	Time to Peak at
	Composite Outfall	Composite Outfall
Subarea	(cfs)	(hrs)

Area I	13	12.2

Composite Watershed	13	12.2

Reference Information

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024

Cover description			Curve nu hydrologic	mbers for soil group-	•
Cover type and hydrologic condition	Average percent impervious area ²	A	B	с	D
Fully developed urban areas (vegetation established)					
Open space (lawns, parks, golf courses, cemeteries, etc.) ² :					
Poor condition (grass cover < 50%)			-		
Fair condition (grass cover 50% to 75%)		68	61	86	89
Good condition (grass cover > 75%)		- 49	(69)	79	84
Impervious areas:		39	61	74	30
Paved parking lots. roofs, driveways, etc.	*		* -	*	
(excluding right-of-way).					
Streets and roads:		98	98	98	98
Paved: curbs and storm sewers (excluding					
right-of-way)					
Paved: open ditches (including right-of-way)		98	98	98	98
Gravel (including right-of-way)		83	-69	92	93
Dirt (including right-of-way)		76	85	89	91
Western desert urban areas:		72	82	87	89
Natural desert landscaping (pervious areas only)4					
Artificial desert landscaping (impervious weed		63	77	85	S 8
barrier, desert shrub with 1- to 2-inch sand					
or gravel mulch and basin borders).					
Jrban districts:		96	96	96	96
Commercial and business					100.00
Inductrial	85	89	92	94	95
Industrial	72	81	88	91	93
Residential districts by average lot size:					
1/S acre or less (town houses)	65	77	85	90	92
1/4 acre	38	61	75	83	87
1/3 acre	30	57	72	81	
1/2 acre	25	54	70	80	85
1 acre	20	51	68	79	84
2 acres	12	46	65	77	82
)===========			8. 8.8 .		06
Developing urban areas					
ewly graded areas (pervious areas only,					
no vegetation) ⁵					
lle lands (CN's are determined using cover types similar to those in table 2.2c).		77	(86)	91	94

Table 2-2a .- Runoff curve numbers for urban areas!

¹Average runoff condition, and $l_a = 0.2S$.

"The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 24 or 24. "CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space over type.

"Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition. "Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 24 or 24.

based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

	Cover description			Curve num hydrologic so	bers for il group–	-1
Cover type	Treatment ²	Hydrologic condition ³	A	B	С	D
Fallow	Bare soil		77	(86)	91	94
	Crop residue cover (CR)	Poor Good	76 74	86) 85 83	90 88	93
Row crops	Straight row (SR)	Poor Good	72 67	81 (78)	88	91
	SR + CR	Poor Good	71 64	80 75	85 87 82	89 90 85
-		Poor Good	70 65	79 ANC 75 = 77	84 82	88 86
	C + CR	Poor Good	69 64	78 74	83 81	87 85
	Contoured & terraced (C&T)	Poor Good	66 62	74 71	80 78	82 81
	C&T + CR	Poor Good	65 61	73 70	79 77	81 80
mall grain	SR	Poor Good	65 63	76 75	84 83	88
	SR + CR	Poor Good	64 60	75 72	83 80	87 86 84
	С	Poor Good	63 61	74 73	82 81	85 84
	C + CR	Poor Good	62 60	73 72	81 80	84 83
	C&T	Poor Good	61 59	72 70	79 78	. 82 81
	C&T + CR	Poor Good	60 58	71 69	78 77	81 80
ose-seeded or broadcast	SR	Poor Good	66	77	85	89
egumes or otation	C	Poor Good	58 64 55	72 75	81 83	85 85
neadow [.]	C&T	Poor Good	63 51	69 73 67	78 80 76	83 83 80

Table 2-2b .- Runoff curve numbers for cultivated agricultural lands'

¹Average runoff condition, and $I_n = 0.2S$. ²Crop residue cover applies only if residue is on at least 5% of the surface throughout the year. ²Hydrologic condition is based on combination of factors that affect infiltration and runoff, including (a) density and canopy of vegetative ²Hydrologic condition is based on combination of factors that affect infiltration and runoff, including (a) density and canopy of vegetative ²Hydrologic condition is based on combination of factors that affect infiltration and runoff, including (a) density and canopy of vegetative ²Hydrologic condition is based on combination of factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes in rotations, (d) percent of residue cover on the land surface (good ≥ 20%), and (e) degree of surface roughness. Poor: Factors impair infiltration and tend to increase runoff.

Ginst: Factors encourage average and better than average infiltration and tend to decrease runoff.

Cover description			Curve numbers for hydrologic soil group-			
Cover type	Hydrologic condition	A	B	с	D	
Pasture grassland, or range-continuous	Poor	68	79	86	89	
forage for grazing. ²	Fair	49	69	79	84-	
	Good	39	1	.79 `74	80	
Meadow-continuous grass, protected from grazing and generally mowed for hay.	·**	30	58	71	78	
Brush-brush-weed-grass mixture with brush	Poor	48	T	\overline{n}	83	
the major element. ³	Fair	35	67 56	. 70	77	
с. А. 4	Good	*30	48	65	73	
Woods-grass combination (orchard	Poor	57	73	82	86	
or tree farm). ⁵	Fair	43	65	76	82	
	Good	32	58	72	79	
Woods. ⁶	Poor	45	66	77	83	
	Fair	36	60	73	79 -	
	Good	430	65	70	77	
Farmsteads—buildings, lanes, driveways, and surrounding lots.	-	59	74	82	86	

Table 2-2c.-Runoff curve numbers for other agricultural lands'

¹Average runoff condition, and I_a = 0.2S.

² Poor: <50% ground cover or heavily grazed with no mulch.
 Fair: 50 to 75% ground cover and not heavily grazed.
 Good: >75% ground cover and lightly or only occasionally grazed.

*Poor: <50% ground cover.

50 to 75% ground cover. Fair: Goud:

>75% ground cover.

⁴Actual curve number is less than 30; use CN = 30 for runoff computations.

SCN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

"Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.

Woods are grazed but not burned, and some forest litter covers the soil. Fair:

Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

Sheet flow

Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. With sheet flow, the friction value (Manning's n) is an effective roughness coefficient that includes the effect of raindrop impact; drag over the plane surface; obstacles such as litter, crop ridges, and rocks; and erosion and transportation of sediment. These n values are for very shallow flow depths of about 0.1 foot or so. Table 3-1 gives Manning's n values for sheet flow for various surface conditions.

For sheet flow of less than 300 feet, use Manning's kinematic solution (Overton and Meadows 1976) to compute Tt:

$$T_t = \frac{0.007 \text{ (nL)}0.8}{(P_2)0.5 \text{ s}0.4}$$
 [Eq. 3-3]

Table 3-1 .- Roughness coefficients (Manning's n) for sheet flow

Surface description	n¹
Smooth surfaces (concrete, asphalt, gravel, or	
bare soil)	0.011
Fallow (no residue)	0.05 👉
Cultivated soils:	
Residue cover ≤20%	0.06
Residue cover >20%	0.17 🖛
Grass:	
Short grass prairie	0.15
Dense grasses ²	0.24
Bermudagrass	0.41
Range (natural)	0.13 🕳
Woods:3	
Light underbrush	0.40
Dense underbrush	0.80

'The n values are a composite of information compiled by Engman (1986).

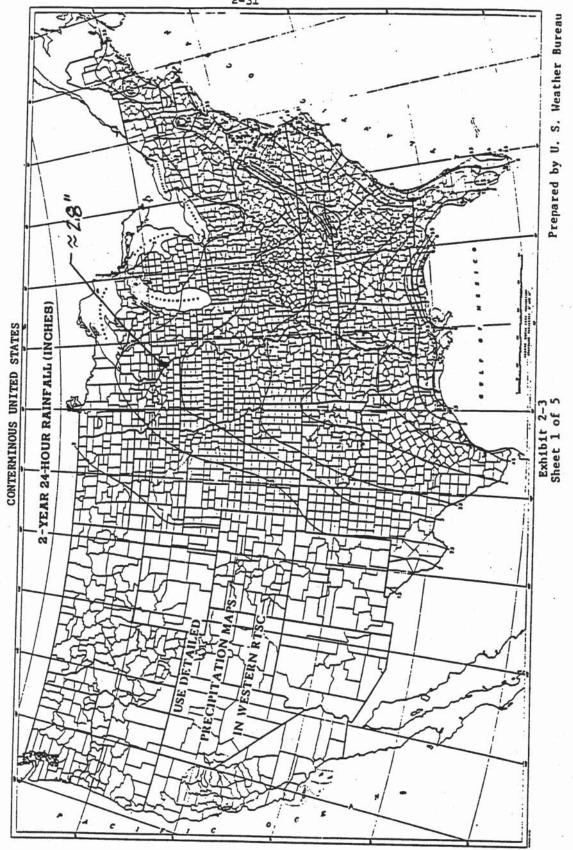
Includes species such as weeping lovegrass, bluegrass, buffalo

grass, blue grama grass, and native grass mixtures. When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

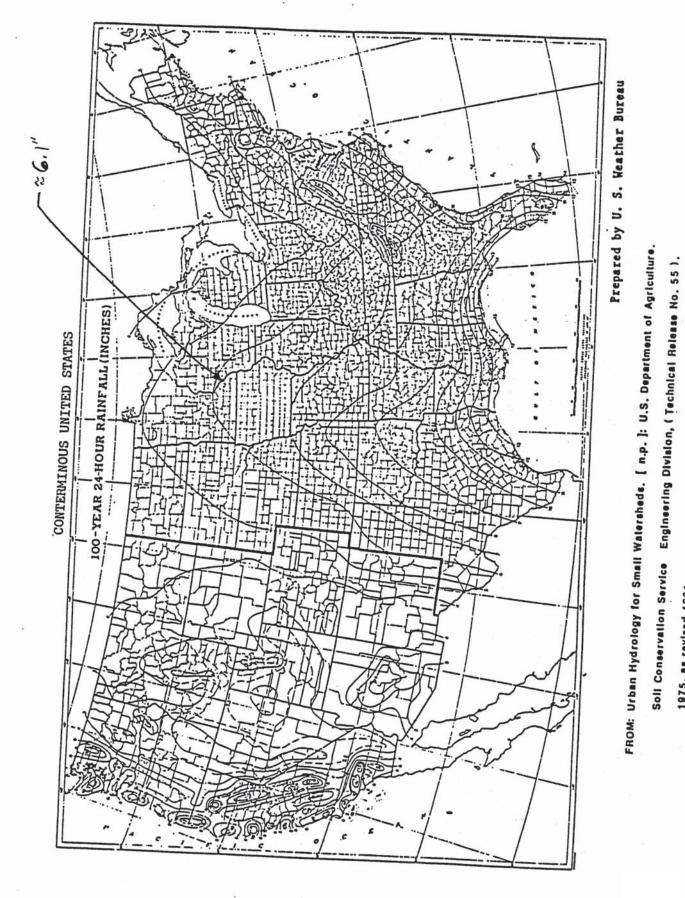
where

- $T_t = travel time (hr),$
- n = Manning's roughness coefficient (table 3-1).
- L = flow length (ft),
- $P_2 = 2$ -year, 24-hour rainfall (in), and
- s = slope of hydraulic grade line (land slope, ft/ft).

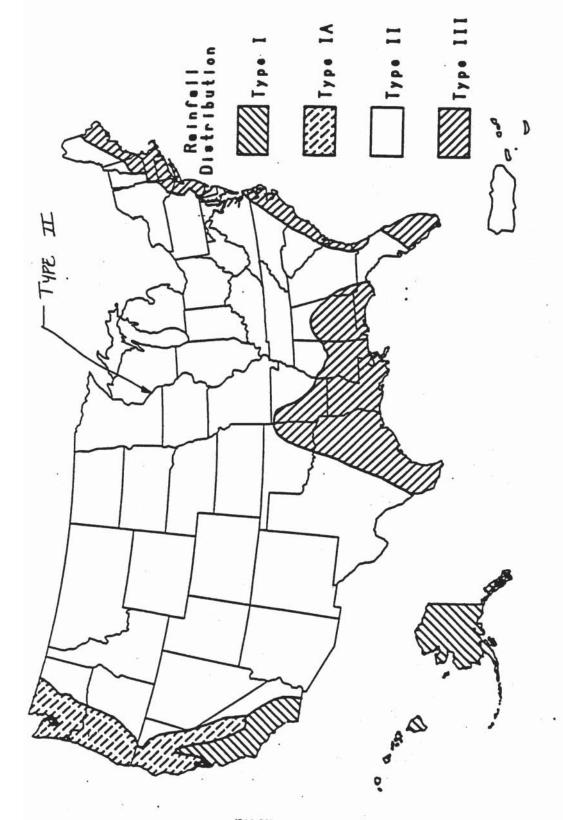
This simplified form of the Manning's kinematic solution is based on the following: (1) shallow steady uniform flow, (2) constant intensity of rainfall excess (that part of a rain available for runoff), (3) rainfall duration of 24 hours, and (4) minor effect of infiltration on travel time. Rainfall depth can be obtained from appendix B.


Shallow concentrated flow

After a maximum of 300 feet, sheet flow usually becomes shallow concentrated flow. The average velocity for this flow can be determined from figure 3-1, in which average velocity is a function of watercourse slope and type of channel. For slopes less than 0.005 ft/ft, use equations given in appendix F for figure 3-1. Tillage can affect the direction of shallow concentrated flow. Flow may not always be directly down the watershed slope if tillage runs across the slope.


After determining average velocity in figure 3-1, use equation 3-1 to estimate travel time for the shallow concentrated flow segment.

Open channels


Open channels are assumed to begin where surveyed cross section information has been obtained, where channels are visible on aerial photographs, or where blue lines (indicating streams) appear on United States Geological Survey (USGS) quadrangle sheets. Manning's equation or water surface profile information can be used to estimate average flow velocity. Average flow velocity is usually determined for bank-full elevation.

2-31

1975, as revised 1981.

⁽²¹⁰⁻VI-TR-55, Second Ed., June 1986)

.-Approximate geographic boundaries for SCS rainfall distributions.

Diversion Berm, Perimeter Ditch, and Spillway Design Calculations

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024

Purpose/Methodology/Assumptions/Results/References

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024

COMPUTATION SHEET

744 Heartland Trail (53717-8923) P	P. O. Box 8923 (537	708-8923)	Madison, WI	(608) 831-4444		
PROJECT/PROPOSAL NAME PREPARED		RED	CH	ECKED	PROJECT/PI	ROPOSAL NO.
Dairyland Power Cooperativ	ve BJK	By: Date:		Date:		3081.40

DIVERSION BERM, PERIMETER DITCH, AND SPILLWAY DESIGN CALCULATIONS

Purpose

To size the diversion berms, perimeter ditches and spillway at the proposed Dairyland Power Cooperative Landfill to adequately handle the surface water runoff from a 100-year, 24-hour storm.

Methodologies

Ditches, diversion berms and spillways were designed to channel the surface water runoff from the landfill drainage areas to the sedimentation basins, receiving ditches, or spillways. The direction of surface water runoff from the drainage areas surrounding the proposed landfill is towards the proposed landfill. Perimeter drainage ditches were therefore incorporated into the design to route the surface water runoff from outside the proposed landfill limits along the perimeter of the landfill area to the existing main channel at the south end of the landfill. These ditches are labeled as the NW, NE, West, SE, and SW ditches. The perimeter ditches sized in this subsection of the appendix, then, include ditches to collect runoff from the landfill drainage areas as well as ditches to collect surface water run-on from the drainage areas surrounding the landfill.

The adequacy of the diversion berms and ditches in handling the surface water runoff and runon and in limiting the amount of erosion is based on the depth of flow and velocity, respectively, in the ditch. An in-house RMT spreadsheet incorporating Manning's equation was used to assist in the design of the diversion berms and ditches. This program allows the user to input the ditch geometry, the peak flow (as determined by the surface water runoff calculation), and the vegetative retardance factor (Chow, 1959). The program then begins an iterative process which adjusts the flow depth and Manning's coefficient until the trial velocity and the resultant velocity are within 0.002 feet per second (fps) of each other. The end result is the peak flow depth and peak velocity for the geometry and peak flow entered. Design software provided by Synthetic Industries was also used to select erosion control matting for ditches and grouted riprap for spillways.

Permanent ditches, diversion berms, and spillways will be constructed as early in the site development as practicable. Where temporary ditching is required, these temporary ditches have been designed to the same standards as the permanent ditches. Calculations for the sizing of the temporary ditches are also attached.

RMT.

COMPUTATION SHEET

A Contraction of the second				SHEE	2	OF3
744 Heartland Trail (53717-8923) P. C). Box 8923 (53708	8-8923)	Madison, WI	(608) 831-4444	FAX: (608) 831-3334	VOICE: (608) 831-1989
PROJECT/PROPOSAL NAME	PREPARED		CHECKED		PROJECT/PR	ROPOSAL NO.
Dairyland Power Cooperative	By: BJK	Date 9/0	-,-	Date:		3081.40

It is noted that the storm water control structures have been designed using a 100-year, 24-hour storm event and a TR-55 Type II storm distribution. As noted in the surface water runoff calculations, the peak flows calculated using this method meet or exceed the peak flows calculated using a 25-year, time of concentration storm event (required by NR 504.09).

Assumptions

The following assumptions were used to design the diversion berms and perimeter ditches:

- Diversion berms, perimeter ditches and the spillway were designed to handle the runoff from the 100-year, 24-hour storm event.
- Diversion berm ditches were designed as V-notch ditches with a minimum 0.5 foot of freeboard for the 25-year, 24-hour storm. Diversion berm ditches were designed to convey the 100-year, 24-hour storm without overtopping.
- Perimeter ditches were designed as both V-notch and flat bottom (10-foot and 20-foot-wide) ditches with a minimum 0.5 foot of freeboard for the 25-year, 24-hour storm. Perimeter ditches were designed to convey the 100-year, 24-hour storm without overtopping.
- Grass-lined diversion berm and perimeter ditches were designed for a maximum velocity of 4 fps. Ditches with velocities exceeding 4 fps were designed to be lined with erosion mat or riprap, as appropriate.
- The spillway was designed as 20-foot-wide, flat-bottom spillway with a minimum 0.5 foot of freeboard.
- The peak flows in the diversion berms, perimeter ditches and the spillway were obtained from the hydrographs generated in the "Surface Water Runoff Calculations" subsection of this appendix.
- Manning's numbers were selected for both "low" retardance (Type "D") and "moderate" retardance (Type "C") as given by the U.S. Soil and Conservation Service. Type "D" is typical of spring conditions while Type "C" is typical of summer conditions. For ditches lined with erosion matting, default Manning numbers from the Synthetic Industries design software were utilized.

Results

The diversion berms and perimeter ditches were adequately sized to handle the surface water runoff from a 100-year, 24-hour storm event. The diversion berms at a 2 percent slope will be grass-lined. To limit erosion, permanent erosion matting will be placed in the diversion berms at a 6 percent slope, as well as in most of the perimeter ditching. Grouted riprap will be constructed in the spillways. The attached figure highlights the ditch sizing results.

COMPUTATION SHEET

3081.40

 SHEET
 3
 OF
 3

 744 Heartland Trail (53717-8923)
 P. O. Box 8923 (53708-8923)
 Madison, WI
 (608) 831-4444
 FAX: (608) 831-3334
 VOICE: (608) 831-1989

 PROJECT/PROPOSAL NAME
 PREPARED
 CHECKED
 PROJECT/PROPOSAL NO.

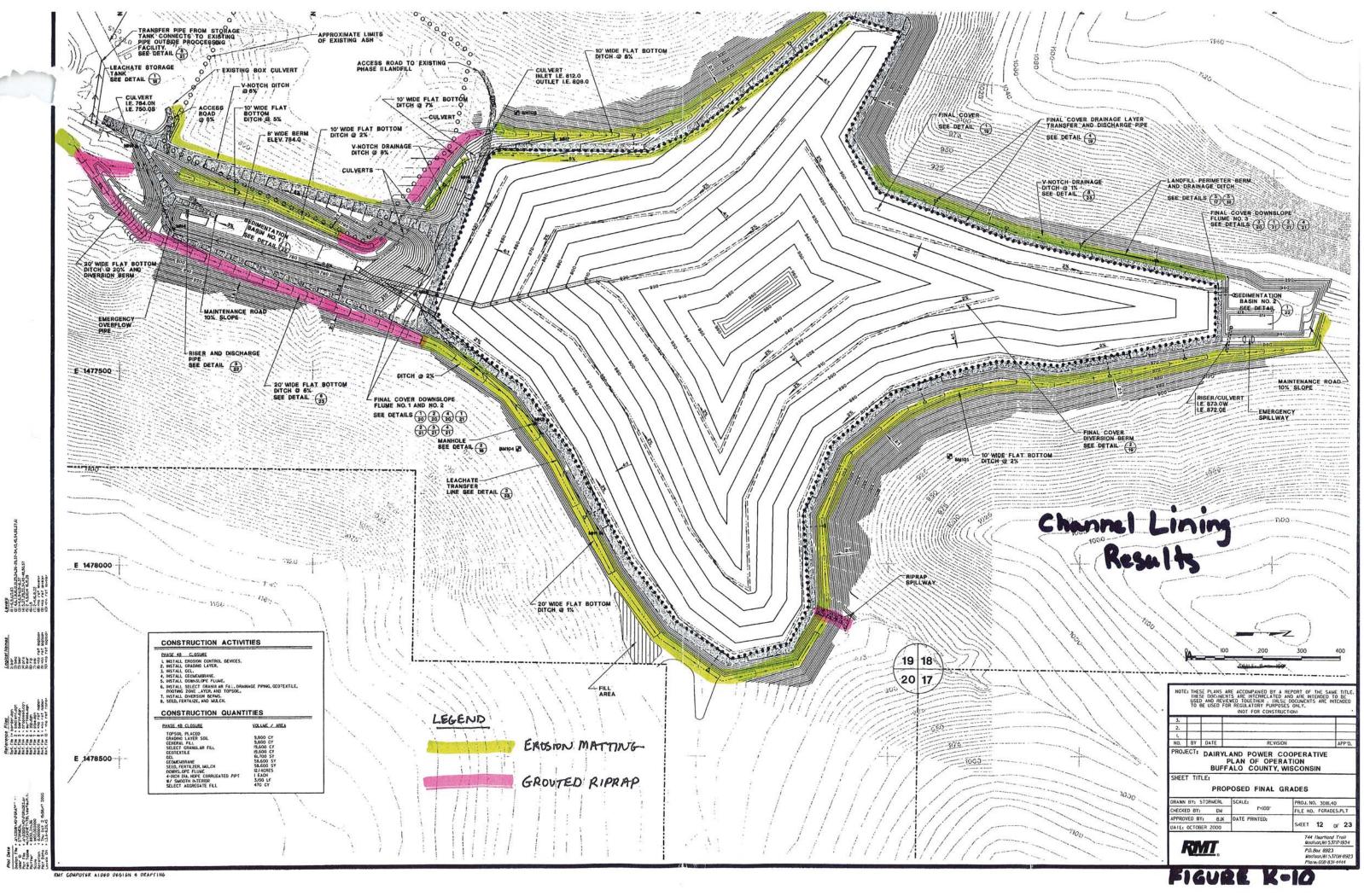
 By:
 Date:
 By:
 Date:
 PROJECT/PROPOSAL NO.

References

Dairyland Power Cooperative

Chow, V.T. 1959. Open Channel Hydraulics, McGraw Hill, New York.

9/00


BJK

- Wisconsin Department of Transportation. 1994. Facilities Development Manual. February 1994.
- U.S. Department of Agriculture, Soil Conservation Service. 1986. Engineering Field Manual for Conservation Practices. November 1986.

Goldman, S.J., et al. Erosion and Sediment Control Handbook. New York: McGraw-Hill. 1986.

Synthetic Industries. EC-Design 2000. Stormwater Management and Erosion Control Design Software. V.1.2.

Wisconsin DNR, Bureau of Water Resources Management. 1989. Wisconsin Construction Site Best Management Practice Handbook, Publication WR-222-89.

Calculations – Post-closure Landfill Conditions

		Grass Channel Sizing Calculation	5		
Site: Proje Char		Dairyland Power Cooperative 3081.33 Diversion Berm (2%) - worst case fl Area 1F	Date: User: ow	10/1/98 BLP VIOL 10195	
L	Input Para	ameters.			
	A. Side slo	ope, Z1 (hor/vert) =		4.000	ft/ft -
	B. Side slo	ope, Z2 (hor/vert) =		2.000	ft/ft ~
	C. Bottom	width, B =		0.000	ft 🖉
	D. Design	channel slope, S =		0.020	ft/ft <
	E. Channe	l Peak Flow, Q =		25.000	cfs 🗸
	F. Enter	- 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence		1	Conditions
а.	Peak Flow	Calculations.			
	A. Trial flo	ow depth, D = (Bisection method until Va=Vb)		1.570	ft 0.4' freeboard
	B. Channel	l flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)		7.390	sq ft
	C. Wetted	Perimeter, Pw = (D*(Z1^2+1)^.5) + B + (D*(Z2^2+1)'	`.5)	9.981	ft
	D. Hydrau	lic radius, Rh = (Ac/Pw)		0.740	ft
	E. Velocity	and hydraulic radius, VR = (Va * Rh)		2.505	sfps
	F. Channel	flow Manning's coeff, nc = 0		0.051	
	G. Trial vel	locity, Va = (Q/Ac)		3.383	
		nt velocity, Vb = 1.49/nc) * (Rh^.667) * (S^.5)		3.383	fps < 4 Fps

RMT, Inc. Grass Channel Sizing Calculations

Invoke Solution Macro by typing - 'ctrl' D

h:\data\common\template\sc-51\grasscha.xls

RMT, Inc. Grass Channel Sizing Calculations

Site:	Dairyland Power Cooperative	Date:	10/1/98
Project #:	3081.33	User:	BLP
Channel:	Diversion Berm (2%) - worst case f Area 1F	low	10/98 10/98

I. Input Parameters.

П.

A. Side slope, Z1 (hor/vert) =	4.000 ft/ft <
B. Side slope, Z2 (hor/vert) =	2.000 ft/ft
C. Bottom width, B =	0.000 ft
D. Design channel slope, S =	0.020 ft/ft <
E. Channel Peak Flow, Q =	25.000 cfs -
F. Enter - 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence	2 - Spring Conditions
Peak Flow Calculations.	
A. Trial flow depth, D = (Bisection method until Va=Vb)	1.456 ft 0.5' freeboard
B. Channel flow area, Ac = $(.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)$	6.357 sq ft
C. Wetted Perimeter, $Pw = (D^*(Z1^2+1)^{.5}) + B + (D^*(Z2^2+1)^{.5})$	9.257 ft
D. Hydraulic radius, Rh = (Ac/Pw)	0.687 ft
E. Velocity and hydraulic radius, VR = (Va * Rh)	2.701 sfps
F. Channel flow Manning's coeff, nc = 0	0.042
G. Trial velocity, Va = (Q/Ac)	3.933 fps
H. Resultant velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)	3.933 fps 24 fps

Invoke Solution Macro by typing - 'ctrl' D

h:\data\common\template\sc-51\grasscha.xls

		RMT, Inc.			
		Grass Channel Sizing Calculat	ions		
		ones chance sharing carcum	1015		
Site:		Dairyland Power Corp.	Date:	31-July-98	
Proje	ct #:	3081.33	User:	SRC	
Chan	nel:	Ditch (8%)			
		Area 1G - Flow From Landfill P	ortion - 15 cfs	VIDIL	
		icadonico a presión de la centra d			-
I.	Input Pa	arameters.			
	A. Side s	slope, Z1 (hor/vert) =		3.000	ft/ft ,
	B. Side s	lope, Z2 (hor/vert) =		2.000	ft/ft
	C. Botto	m width, B =		0.000	ft
	D. Desig	n channel slope, S =		0.080	ft/ft -
	E. Chanr	nel Peak Flow, Q =		15.000	cfs
	F. Enter	- 1 - for Type "C" Veg. Retarden	ce	1	- summer conditions
		- 2 - for Type "D" Veg. Retarden	ce		conditions
I.	Peak Flo	w Calculations.			
	A. Irial	flow depth, D =		1.071	ft 0.9' freeboard
	R Chann	(Bisection method until Va=Vb) el flow area, Ac =			
	D. Charu	(.5*Z1*D^2) + (B*D) + (.5*Z2*D^	2)	2.870	sq ft
	C. Wette	d Perimeter, Pw =	2)	5.784	4
	123 11 276	(D*(Z1^2+1)^.5) + B + (D*(Z2^2	+1)^ 5)	5.704	IC .
	D. Hydra	ulic radius, Rh =		0.496	4
		(Ac/Pw)		0.490	it is a second s
	E. Veloci	ty and hydraulic radius, VR =		2.593	sfps
		(Va * Rh)		2.070	sips
	F. Chann	el flow Manning's coeff, nc =		0.051	
		0		0.002	
	G. Trial v	velocity, Va =		5.226	fps
		(Q/Ac)			· ·
	H. Resul	tant velocity, Vb =		5.226	fps > 4425
		(1.49/nc) * (Rh^.667) * (S^.5)		C.L.L.U	fps > 4fps se permanent
		and the state of the state			se permanent
				u	- F-11

H:\data\common\src\Grassch5.xls

erosion

	RMT, Inc.			
	Grass Channel Sizing Calculatio	ns		
Site: Project #: Channel:	Dairyland Power Corp. 3081.33 Ditch (8%)	Date: User:	31-July-98 SRC	
	Area 1G - Flow From Landfill Por	tion - 15 cfs	verticias	<u>.</u>
In	put Parameters.			
A.	. Side slope, Z1 (hor/vert) =		3.000	ft/ft
B.	Side slope, Z2 (hor/vert) =		2.000	ft/ft
C.	Bottom width, B =		0.000	ft 1
D.	Design channel slope, S =		0.080	ft/ft ~
E.	Channel Peak Flow, Q =		15.000	cfs ,
F.	Enter - 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence		2	conditions
. Pe	ak Flow Calculations.			
A.	Trial flow depth, D = (Bisection method until Va=Vb)		0.992	ft l' freeboard
B. (Channel flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)	ġ.	2.459	sq ft
C.	Wetted Perimeter, Pw = (D*(Z1^2+1)^.5) + B + (D*(Z2^2+1)	.)^.5)	5.353	ft
D.	Hydraulic radius, Rh = (Ac/Pw)		0.459	ft
E. 1	Velocity and hydraulic radius, VR = (Va * Rh)		2.802	sfps
F. 0	Channel flow Manning's coeff, nc = 0		0.041	
G. '	Trial velocity, Va = (Q/Ac)		6.101	fps
H.	Resultant velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)		6.101	fps > 4 fps
			use erosi	fps > 4 fps permanent on matting

H:\data\common\src\Grassch6.xls

NORTH AMERICAN GREEN - ECMDS VER.IV - CHANNEL PROTECTION - ENGLISH USER SPECIFIED CHANNEL LINING ANALYSIS

PROJECT NAME: Dairyland Power COMPUTED BY: BJK FROM STATION/REACH: Area 1G - Fl DRAINAGE AREA: PROJECT NO.: 3081.33 DATE: 10-06-1998 TO STATION/REACH: DESIGN FREQUENCY: 100

Channel Bottom Side Slope Lt. Side Slope Rt. Channel Slope Width (ft) (Horz. to 1) (Horz. to 1) (ft/ft)

.....

Discharge (cfs)	Peak Flow Period (hrs)	Velocity (ft/sec)	Area (ft^2)	Hydraulic Radius (ft)	Normal Depth (ft)	
						014
15.0	2.0	5.34	2.81	0.49	1.06	

.....

Lining Growth Veg. Manning Permissible Calculated Safety Remark Type Habit Den Coefficient Shear (lb/sf) Shear (lb/sf) Factor P300 0.049 8.00 5.29 1.51 STABLE Staple E

Phase 3 (Mature Vegetation)

	RMT, Inc.			
	Grass Channel Sizing Calculation	tions		
Site: Project #: Channel:	Dairyland Power Corp. 3081.33 Ditch (1%)	Date: User:	31-July-98 SRC	
	Area 2B		NONT 10KK	-
I. Input Par	rameters.			
A. Side sl	lope, Z1 (hor/vert) =		3.000	ft/ft
B. Side sl	ope, Z2 (hor/vert) =		2.000	ft/ft -
C. Botton	n width, B =		0.000	ft -
D. Desigr	n channel slope, S =		0.010	ft/ft
E. Chann	el Peak Flow, Q =		73.000	cfs -
F. Enter	- 1 - for Type "C" Veg. Retarder - 2 - for Type "D" Veg. Retarder		1	- Summer conditions
II. Peak Flow	w Calculations.			
A. Trial f	low depth, D = (Bisection method until Va=Vb)		2.593	ft 0,4' freeboard
B. Channe	el flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D	^2)	16.814	sq ft
C. Wetted	l Perimeter, Pw = (D*(Z1^2+1)^.5) + B + (D*(Z2^2	2+1)^.5)	14.000	ft
D. Hydra	ulic radius, Rh = (Ac/Pw)		1.201	ft
E. Velocit	y and hydraulic radius, VR = (Va * Rh)		5.214	sfps
F. Channe	el flow Manning's coeff, nc = 0		0.039	
G. Trial v	elocity, Va = (Q/Ac)		4.342	
	ant velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)		4.341	fps > 4 fps
			use eros	fps > 4 fps permanent ion matting

H:\data\common\src\Grassch7.xls

	RMT, Inc. Grass Channel Sizing Calculati	ons		
Site: Project #: Channel:	Dairyland Power Corp. 3081.33 Ditch (1%) Area 2B	Date: User:	31-July-98 SRC ↓Ю [⊮] ω]άδ	
I. Input Par				-
а. приста	rameters.			
A. Side sl	lope, Z1 (hor/vert) =		3.000	ft/ft _
B. Side sl	ope, Z2 (hor/vert) =		2.000	ft/ft -
C. Botton	n width, B =		0.000	ft <
D. Desigr	n channel slope, S =		0.010	ft/ft ~
E. Channe	el Peak Flow, Q =		73.000	cfs 1
F. Enter	- 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence		2	Spring conditions
II. Peak Flow	v Calculations.			
	low depth, D = (Bisection method until Va=Vb)		2.512	ft 0.5' freebard
	el flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)	15.774	sq ft
C. Wetted	Perimeter, Pw = (D*(Z1^2+1)^.5) + B + (D*(Z2^2+	1)^.5)	13.560	ft
D. Hydrau	ulic radius, Rh = (Ac/Pw)		1.163	ft
E. Velocity	y and hydraulic radius, VR = (Va * Rh)		5.383	sfps
F. Channe	l flow Manning's coeff, nc = 0		0.036	
G. Trial ve	elocity, Va = (Q/Ac)		4.628	fps
	ant velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)			fps > 4 fps
			use erosi	permanent on matting

H:\data\common\src\GRASSCH8.xls

10/6/98

1

NORTH AMERICAN GREEN - ECMDS VER.IV - CHANNEL PROTECTION - ENGLISH USER SPECIFIED CHANNEL LINING ANALYSIS

PROJECT NAME: Dairyland Paower Coop.	PROJECT NO .: 3081.33
COMPUTED BY: BJK	DATE: 10-06-1998
FROM STATION/REACH: Area 28	TO STATION/REACH:
DRAINAGE AREA:	DESIGN FREQUENCY: 100

Channel Bottom	Side Slope Lt.	Side Slope Rt.	Channel Slope	
Width (ft)	(Horz. to 1)	(Horz. to 1)	 A second s second second s second second se	
0.00	3.0	2.0	0.010	

Discharge (cfs)	Peak Flow Period (hrs)	Velocity (ft/sec)	Area (ft^2)	Hydraulic Radius (ft)	Normal Depth (ft)	
73.0	2.0	3.64	20.08	1.31	2.83	oK

Lining Growth Veg. Manning Permissible Calculated Safety Remark Type Habit Den Coefficient Shear (lb/sf) Shear (lb/sf) Factor P300 0.049 8.00 1.77 4.52 STABLE Staple E

Phase 3 (Mature Vegetation)

	rtland	1	_						697	-		10	-	821		-		-	-		_		- 16	101.0	1	080	1	. OF	-	3	5	-
	T/PRC	1.7.4			8923	M		n, wi	53/1			10			EM		~ 1		1.1.1.1	1000			- 100		-	-	CT/	PRO	POSA	L NO	5.	-
	AIRY				ow	ER	4	TOP.					-	By.	6	R	3	19/	17	B	to		Ti	19	21:	30	61.	27	1			
	1					1			×					1	Rev	BLF	133	r.	1019	3												
	11	1	T	T	1			1	1	T	T	٦	5		-	+0	9	-	0					1					1	1		
D	TZ	H	0	31	GN	0	A	ru	4	170	a	5	-	De	51	61		IN	Fa	RI	n	m	21	1	12	5 7	R .	24	the	ST	DRI	M
~	T	4	Ŧ	T	T			T			T					11.1							61						1	i	1	
11				1													10	1.5						273							10	
50	UTH		spi	de	NAI	•							e.		2											5					\leq	
1 R			T	T	T						•		15			1		1.54	1		1						1		1	1	1	1
	W	OT	*	= 20	1			PE	AK	F	lon	1-	4	N	R	BI	m	16	0	e.A.	NI	60	A	RE	15			10				
	54	ORE	=	20	%			3	C +	.4	C	1	EA	FT	+	NO	AT	TE	tst	- 4	NO	ET	4 4	B	15 1	N2	00	TR	PW	1-	1	
	Mm	12	AF	TH	= 4	1			1	1		_	1.4					1.1							21	2						
		-	+				-	18	+	N	+	1	14	5	+	6	5	+	19	4	+	10	-	7	46	cf	s	(2	5-	YE	AR)	
1		+	+	+			_	-1	1	- 1-	-	Ļ		_		1	L	_		2		-		4	A	av	nd	10	75	0	6-	Co
		-	+	+	-		-	2	5+	18	5 +	8	2	1±	11	0+	- 30	60	+ 2	21	3	Ji	374			_	+7	1.1.1	<u>i)</u>	1	-	
10.4			+	-				+	+	+	+	+		-	-	N	0+	-:	A	re	F	a	5 0	-	-	-	12S	+>=	5 4	ne	1	-
E	DI	TOP	+ (27	() ((9	74	4	+	+	+	+	-	-	-			-	-	- 4	nd	e	17	. 6	H	25	Cle	p-1	YR.	Fa	low	57
		-	+	+	-		+	-	+	-	+	+				-			-			-			- /	-	-	+-	-	-	-	-
	WiD	_	_		-		-	PEA			-	- 1			-	-							-					-	-	-		-
	SLO				5'	-	-	30	1	40		E	1.57	11	N	PR	HE	151	+ 1	NO	27	4 4	64	\$11	/ 2		TE	200	-	12		-

E DITCH KIRD			1.1						1.163			
	5A	me	FL	rus	15	100	E			1111		
WIDTH-ZO'		11	-				1.1	12	1.1			
SLOPE - 190		14						14 11				
MIN DEDTH -6'										181		

E	0	ITC	M	-	+				-	-	-	-						-					2				111		_	+	-
ì	W	07		10	1				P	A	1	10	w	-	co.	~7	RI	BL	77	16		R	m	re	κ.	AR	EA	5		+	-
ľ	Su	PE	==	2%			112	1											5						_	1.1					
-	MIN	1	EF	n+	•	10t			4	1	c	*	N	RI	#	+	6	151	N	2	00	T		Ł							
1										1	+	19	ч	+	10		2	15	0	FS		(2	5-	VEI	K	5	1			-	5
	+	-	+		-					8	+	36	0+	1	1	-	-	399	CF	-	CI	00	- 71	A	F	mu	ou)		-	+
		1				110									+	-N	-	_	-	_	- 1	2.	. 1	ks	(5.	-)		nd	A .	r
1			1								12			10				1.1.1.1	-5	1.00		loc		1.1.1							
	Orto	h													1									10		10					
1	in	44	4=	10		1		Pe	uk	F	lo	6	-0	bn	tri	bu	h	19	0	an	has	le	Ar	La	1			1.11	1	T	
b .	51	0	1.	2	7.						C	4 1	Jor	the	es	- +	N	5	H	1	B	1.	5 7	10						1	+

510pe = 2% Min Depth = 10't 1

= 18 + 110 + 360 + 21 = 509 cfs (100 4r)

				-	923	Madia	ion, WI S	3708-	8923	(6	08) 8	-		_	X: 18	08)8	and the second second	of Local Division of Local Division in which the		NCE	(60	8) 83			¥ / 5	0000		-	_	_
OJECT	/ PROP	OSAL	NAME	00		0 ,	0.00	2					6J		Deter			HEC:	B	10	Tra	4	-			2Y				
DAI	RYL	AN	0	pa	DE	K C	2000		-	-	-	-	CAR	_	-		14	00	0	10			-							
											_	_	_	_						_	_				-		_			_
1 1		1				-									_	-	1	-	-	4	+	+	1	+	-	_	1	1		
NW	PI	TE	*								3	-			-	+	4	+	-	4	+	+	+	-	+				_	_
TI		T				-		-		-	-	-	_	-	_	-	+	+	+	+	-	-	+	-		-	1	1	+	-
					-1	TH		-	P	EA	-	FO	au	1+	- 4	on	TR	10	vp	4	-	DR	AN	VA	4	A	RE	AS		-
and the owner whether the local division of	DPE		-		-	_		-		-		_	_	-	_	-	+	-	-		+	-	-	-	+	-	-		- ton	_
M	ND	EP	H	-4	H	-	+	-		-	2	B	-	4	в	CF	5	4	25	X	4	-1	4	+	+	+	-	1		-
	- 1 0 1	-				-	++	-	-	-	-	_	-	-	_	-	+	10	-	-	-	-		1	-	+	-	+	+	-
		1	-			-	++	-	-		-	-	-	-	3	n	-	4	201	14	4	ny	ou	4	-	+	+	+	+	-
		-	-	-		-	++	+	-	-	-	-			-	+	+	+	+	+	-	+	+	+	-	-	+	i		-
WE	ST	DI	E.h	4		-		-	-		-	-	-		-	-	+	+	+	+	+	-	+	+	+	1	ī		1	-
++	-	+	-	-		-		0	-		-	-	1	-	-	-	-	-	14	1	-		AA	5	-	ER	ret	-	+	-0
	107			2		-		1	EA	F	-4	a	-	0	N	10	24	-	40	4	-			-	-	-	-	+	+	
	OPE			0	,		++	-	+		20		-	Ale		A	00		1	1	1	-	-	-		+	+	+	+	
11	NO	P	1	6			++	+	+		-0	- 1		VE	-	//		+	-	1	1		1	-		-	1		+	
		+	-	-		-		-	-		10	+	1	1.	-	: 12	,	d	R	1	24	- 1	EA			1	+	+	1	
+		+	-	-			++	-	1		-	-			-	14	+	7	-	1	-	-1		1			1	1	+	
+	+	-	-					-	-	-	12	+	2	23	11	24	11	1	FS	1	HO	04	EA	R	F	the	out	5	1	-
+		+	1	-			11	+	1		i -		17	_	Los		C	-	.5	_	-			-		M			+	Ē
		+	-			-		1			•	1		-			-		5	_	_					FA		1	1	
+ 1	-	+	1				++		1								1		-		-	-0		-	-			1	1	Ū
sw	Dm	te	1				++			-												1					1			
	1	1	1			-	$\uparrow \uparrow$											1											1	
1.00	OTH	-	h'					P	AN	F	L	w	-	ro.	UT	21	NV2	ZN	6	0	RA	IN	10	C	AR	EA	S			
Kin	PE	- 2	20	57.	7	20	11	1	T	1	-																			
	u be						11		1		10	c	4	20	-	4 4	JE	57	-	RE	A	1	1	1.1						
1			T					1		1	1											1.5		161						
	- 13	1		E		12212					46		10	+	111			16	70	FS		12	5-	YEA	k)	1				
											ľ																			
1.1		1						1			94	+	20	+	20	59	1	3	23	cf	(100	-4	EA	e	FAI	10	w)	-	1
10		1	1-			1210	TT		T		Γ		Γ	Γ		F		S	2	12	-		-	-			_	AN	0	
																C	12	.4	the	50	100	- Y	EAI	A.F	m	kor	(ب			
MA IN	1 CH	m	NE	-													4													
11		I	T	i																										L
W	DTH	1~	20	1'1	411	1		Pe	AX	F	10	w	-0	PA	T	10	VT	N	4	DR	AN	VA	E	A	RE	#5				
	DPE													1.1				-				-								
MA	NID	EP	74 -	+	6	1		1	¢,	20	+	30	+	4	¢+	E	457	+	N	E+	N	RT	+ +	W	ES7	+	BA	sm	1 1	
1		1																		-										
11		1				24			18	BT	C	FS	+	8	+	1	2		90	5	EF	5	(2	5	YR	0				
	1 by	T		1						18						21	-	-	164			-		1		F	ne	ow) -	
-		1						1	1	1	1		L	10	1												1			
11		1					TT		1	1				11	FLO	es.	Q	12.	6 1	RS	16	25.	YEI	AR	Y	AN.	60	212	2.6	H

744 Heartland Trail Madison, WI 53717-1934 Tel. (608) 831-4444 • Fax (608) 831-3334

SHEET 3 OF 3

PROJECT / PROPOSAL NAME / LOCATION:		PROJECT / PROPOSAL NO.
SUBJECT: Dairyland Power Coop		3081.40
PREPARED BY:	DATE: 9 00	FINAL D
CHECKED BY:	DATE:	REVISION D

AREA IG DITCH

PEAK FLOW - CONTRIBUTING DRAINAGE AREA = 15 CFS FLOW FROM LF.

PHASE 2 DITCH

WIOTAL: V-NOTCH SLOPE : 6% MIN DEPTH: 2'

Width - V-NOTCH

SLOPE . 8%

MIN DEPTH = 4'

PEAK FLOW - CONTRIBUTING DRAINAGE ARED

~ 1.5 ACRES DF PHASE Z LOVER DRAINAGE AREA -1C = 42 ACRES $\frac{1.5}{42}$ (96 CFs) = 3.4 CFs

USE 4 CFS

EC-Design 2000 Channel Analysis Report

Page 1 of 4

Analysis By:

Jser Information:	Generated by EC-Design:
Bernie Krantz RMT, Inc. 744 Heartland Trail	SYNTHETIC INDUSTRIES
	Geosynthetic Products Division
Madison, WI 53717	4019 Industry Drive • Chattanooga, TN 37416 • USA (423) 899-0444 • (800) FIX-SOIL www.fixsoil.com

General Information:

Project Details:		Project Notes:
Project Name: Description:	DPC Plan of Operation Channel Lining	
State\Country:	WI	
City:	La Crosse	
Units:	English	
Created:	01/19/99 @ 10:43	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Disclaimer:

The information presented herein is for general information only. While every effort has been made to ensure its accuracy, this information should not be used for a specific application without independent professional examination and verification of its suitability, applicability and accuracy.

Channel Analysis Information:

Channel Analysis Name: South Spillway

Name:

Channel Geometry & Hydraulics:

Bed Slope (ft/ft):0.20000Req. Freeboard (ft):0.00Channel Length (ft):270.00Bottom Width (ft):20.00
Channel Depth (ft): 4.00
Soll Filled:
Soil Filled: No
÷.

Analysis Results:

	Note and	和広場は自然のまた	自己の で しゅうり	Velocity		TRA LINGER	Shear S	tress (lbs/	saft)	Flow	and the second second	
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	0K7
	Left:	PYRAMAT	0.0280	24.0	23.3	1.0	20.2	9.4	0.5			
Analysis #1	Bottom	PYRAMAT	0.0280	27.3	23.3	0.9	26.0	9.4	0.4	2.0857	1374.0	No
	Right:	PYRAMAT	0.0280	24.0	23.3	1.0	20.2	9.4	0.5			
	Left:	GABIONS	0.0270	28.6	17.0	0.6	17.3	35.0	2.0	-	-	
Analysis #2	Bottom	GABIONS	0.0270	32.6	17.0	0.5	22.4	35.0	1.6	1.7968	1374.0	No
	Right:	GABIONS	0.0270	28.6	17.0	0.6	17.3	35.0	2.0			
1.1.1	Left:	ROCK RIPRAP	0.0300	26.6	50.0	1.9	18.3	45.0	2.5			
Analysis #3	Bottom	ROCK RIPRAP	0.0300	30.4	50.0	1.6	23.8	45.0	1.9	1.9093	1374.0	Yes
Control Control	Right:	ROCK RIPRAP	0.0300	26.6	50.0	1.9	18.3	45.0	2.5			100
							-					

Channel Calculation Results:

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	50.4146	1.7190	0.0351	4.6638	4.6638	29.3276	27.2540	1374.0	3.06
Analysis #2	42.3935	1.5121	0.0270	4.0178	4.0178	28.0356	32.4106	1374.0	3.94
Analysis #3	45.4772	1.5935	0.0300	4.2694	4.2694	28.5387	30.2130	1374.0	3.55

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: SE Ditch (2%)

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 1374.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.02000Req. Freeboard (ft):0.00Channel Length (ft):200.00Bottom Width (ft):20.00Channel Depth (ft):5.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

Tan Sala and		and the second	2 Martine	Velocity	(ft/s)	ar galance an	Shear St	ress (lbs/s	aft)	Flow		The A Street
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	10.0	16.5	1.6	4.2	4.7	1.1	1		
Analysis #1	Bottom	LANDLOK TRM	0.0250	11.3	16.5	1.5	5.3	4.7	0.9	4.2678	1374.0	No
	Right:	LANDLOK TRM 435	0.0250	10.0	16.5	1.6	4.2	4.7	1.1			
	Left:	LANDLOK TRM	0.0250	10.0	16.8	1.7	4.2	6.5	1.6	(
Analysis #2	Bottom	LANDLOK TRM	0.0250	11.3	16.8	1.5	5.3	6.5	1.2	4.2678	1374.0	Yes
	Right:	LANDLOK TRM	0.0250	10.0	16.8	1.7	4.2	6.5	1.6		1221	
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			-
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			1.14

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	121.7841	3.1158	0.0397	9.5431	9.5431	39.0862	11.2823	1374.0	.890
Analysis #2	121.7841	3.1158	0.0397	9.5431	9.5431	39.0862	11.2823	1374.0	.890
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Channel Analysis Information:

Name:

Channel Analysis Name: SE Ditch (5%)

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00	Discharge (cfs): 1374.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.05000Req. Freeboard (ft):0.00Channel Length (ft):750.00Bottom Width (ft):20.00Channel Depth (ft):5.00
Right Slope (xH:1V); 2.00	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soll Filled: No
Outside Bend: Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

The second		的原始主要的影		Velocity			Shear S	tress (Ibs/s		Flow		
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK
1.000-00	Left:	LANDLOK TRM	0.0260	14.3	19.1	1.3	7.8	7.5	1.0	1.0	1.001	
Analysis #1	Bottom	LANDLOK TRM	0.0260	16.2	19.1	1.2	10.0	7.5	0.8	3.2178	1374.0	No
	Right:	LANDLOK TRM	0.0260	14.3	19.1	1.3	7.8	7.5	1.0	1.1		
C	Left:	PYRAMAT	0.0280	14.3	23.3	1.6	7.8	9.4	1.2			-
Analysis #2	Bottom	PYRAMAT	0.0280	16.2	23.3	1.4	10.0	9.4	0.9	3.2184	1374.0	No
	Right:	PYRAMAT	0.0280	14.3	23.3	1.6	7.8	9.4	1.2	1.2		
1.2.1.1.1	Left:	ROCK RIPRAP	0.0300	17.6	50.0	2.8	6.6	45.0	6.8		1	
Analysis #3	Bottom	ROCK RIPRAP	0.0300	19.9	50.0	2.5	8.5	45.0	5.3	2.7285	1374.0	Yes
101101	Right:	ROCK RIPRAP	0.0300	17.6	50.0	2.8	6.6	45.0	6.8			
		and the second second		Address of the second			1.					

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	85.0635	2.4735	0.0378	7.1952	7.1952	34.3903	16.1526	1374.0	1.47
Analysis #2	85.0856	2.4739	0.0378	7.1967	7.1967	34.3933	16.1484	1374.0	1.47
Analysis #3	69.4578	2.1569	0.0280	6.1010	6.1010	32.2020	19.7818	1374.0	1.96

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: SE Ditch (1%)

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry;
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 1374.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.01000Req. Freeboard (ft):0.00Channel Length (ft):1000.0Bottom Width (ft):20.00Channel Depth (ft):6.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

				Velocity		HAN IN THE	Shear Si	ress (lbs/s	saft)	Flow	S Deventor Viente	and the second
	Side	Lining Type	Manning's	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	7.7	16.5	2.2	2.6	4.7	1.8			1
Analysis #1	Bottom	LANDLOK TRM	0.0250	8.6	16.5	1.9	3.3	4.7	1.4	5.2542	1374.0	Yes
	Right:	LANDLOK TRM 435	0.0250	7.7	16.5	2.2	2.6	4.7	1.8			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.000	1.000	1
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		1.00	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	160.2976	3.6852	0.0413	11.7488	11.7488	43.4975	8.5716	1374.0	.615
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Channel Analysis Information:

Channel Analysis Name: NE Ditch

Name:

Channel Geometry & Hydraulics:

Bed Slope (ft/ft): 0.02000 Req. Freeboard (ft): 0.00 Channel Length (ft): 1800.0		
Bottom Width (ft): 10.00		
Channel Depth (ft): 5.00 Soil Filled:		
Soil Filled: No		

Analysis Results:

Million State Strategy		N 1997 E. 3	A SHIER WAS	Velocity		3 1 N	Shear St	ress (lbs/	sqft)	Flow		Par Su
之中的。	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	7.1	16.5	2.3	3.1	4.7	1.5	11.00		
Analysis #1	Bottom	LANDLOK TRM	0.0250	7.9	16.5	2.1	3.9	4.7	1.2	3.1235	399.0	Yes
	Right:	LANDLOK TRM 435	0.0250	7.1	16.5	2.3	3.1	4.7	1.5			
	Left:	1.1.1	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	L mm -		1
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		22220	
A	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom	Sec. 1. 1. 1. 1.	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
		1	1 and a second				1.					

		Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
	Analysis #1	50.7483	2.1173	0.0440	6.9844	6.9844	23.9689	7.8623	399.0	.735
Ī	Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
•	Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: East Ditch

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Stopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 509.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.02000Req. Freeboard (ft):0.00Channel Length (ft):350.00Bottom Width (ft):10.00Channel Depth (ft):5.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend:YesBend Radius (ft):200.00Outside Bend:L	Vegetated: Yes Vegetation Class: C	Soll Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

	10 J.		The second section	Velocity			Shear St	ress (lbs/s	sqft)	Flow	2	(Factor
	Side		Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK7
	Left:	LANDLOK TRM	0.0250	7.8	16.5	2.1	3.6	4.7	1.3	-		
Analysis #1	Bottom	LANDLOK TRM	0.0250	8.6	16.5	1.9	4.4	4.7	1.1	3.4942	509.0	No
	Right:	Right: LANDLOK TRM	0.0250	7.8	16.5	2.1	3.6	4.7	1.3			
	Left:	LANDLOK TRM	0.0250	7.8	16.8	2.2	3.6	6.5	1.8			
Analysis #2	Bottom	LANDLOK TRM	0.0250	8.6	16.8	1.9	4.4	6.5	1.5	3.4942	3.4942 509.0	Yes
	Right:	LANDLOK TRM 450	0.0250	7.8	16.8	2.2	3.6	6.5	1.8			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
nalysis #3 Bottom:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No	
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	Pro Paris		

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	59.3615	2.3164	0.0429	7.8133	7.8133	25.6267	8.5746	509.0	.760
Analysis #2	59.3615	2.3164	0.0429	7.8133	7.8133	25.6267	8.5746	509.0	.760
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Channel Analysis Information:

Name: Channel Analysis Name: NW Ditch

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:		
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 73.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.01000Req. Freeboard (ft):0.00Channel Length (ft):1000.0Bottom Width (ft):0.01Channel Depth (ft):4.00		
Channel Bend:	Vegetation:	Soil Filled:		
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No		
Factor of Safety: 1.10		Functional Longevity: 999		

Analysis Results:

	A4 22	and the second	Stand I Town States	Velocity		ABS ES V	Shear St	ress (lbs/s		Flow		
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor		Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	3.4	16.5	4.8	2.1	4.7	2.3	1.		
Analysis #1	Bottom	LANDLOK TRM	0.0250	3.4	16.5	4.8	2.0	4.7	2.3	3.2826	73.0	Yes
		LANDLOK TRM	0.0250	3.4	16.5	4.8	2.1	4.7	2.3	CE VICE	12	
S. Contra	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			1
Analysis #2	Bottom	1	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
1	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
1.122	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	10000000		
			A	A								

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	21.5836	1.4693	0.0564	7.3401	7.3401	14.6902	3.3822	73.0	.331
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: West Ditch

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:		
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 241.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.06000Req. Freeboard (ft):0.00Channel Length (ft):1020.0Bottom Width (ft):10.00Channel Depth (ft):6.00		
Channel Bend:	Vegetation:	Soll Filled:		
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No		
Factor of Safety: 1.10		Functional Longevity: 999		

Analysis Results:

an a	1.00		1 Charles II	Velocity		Statement and	Shear S	tress (lbs/s	aft)	Flow	The second wat	14.34
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK7
	Left:	PYRAMAT	0.0280	8.9	23.3	2.6	5.1	9.4	1.8	1		
Analysis #1	Bottom	PYRAMAT	0.0280	10.1	23.3	2.3	6.6	9.4	1.4	1.7595	241.0	Yes
	ght: PYRAMAT 0.0280	8.9	23.3	2.6	5.1	9.4	1.8	1.00				
	Left:	LANDLOK TRM	0.0260	8.9	19.1	2.1	5.1	7.5	1.5			
Analysis #2	Bottom	LANDLOK TRM	0.0260	10.1	19.1	1.9	6.6	7.5	1.1	1.7684	241.0	No
	Right:	LANDLOK TRM	0.0260	8.9	19.1	2.1	5.1	7.5	1.5			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	Sector.	1.1.1	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	23.7860	1.3312	0.0439	3.9343	3.9343	17.8685	10.1320	241.0	1.24
Analysis #2	23.9376	1.3367	0.0438	3.9541	3.9541	17.9083	10.0679	241.0	1.23
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Channel Analysis Information:

Name:

Channel Analysis Name: SW Ditch (7%)

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:		
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 323.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.07000Req. Freeboard (ft):0.00Channel Length (ft):225.00Bottom Width (ft):10.00Channel Depth (ft):4.00		
Channel Bend:	Vegetation:	Soil Filled:		
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No		
Factor of Safety: 1.10		Functional Longevity: 999		

Analysis Results:

	- Angle	· 公司管理:	Same Suite Same	Velocity	(ft/s)	1 2013	Shear St	ress (lbs/		Flow	「「「「「「「「「」」」	tarini ili s	
	Side	Lining Type	ng Type Manning's	ng Type Manning's	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	0К?
	Left:	PYRAMAT	0.0280	10.6	23.3	2.2	6.6	9.4	1.4	1.200	1.001		
Analysis #1	Bottom	PYRAMAT	0.0280	12.0	23.3	1.9	8.4	9.4	1.1	1.9335	323.0	No	
	이 아이는 아이는 아이는 아이는 것을 물었다. 같은 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 하는 것을 하는 것을 하는 것을 하는 것을 수 있다. 이 가지 않는 것을 하는 것을 하는 것을 수 있다. 이 가지 않는 것을 수 있다. 이 가지 않는 것을 하는 것을 수 있다. 이 가지 않는 것을 수 있다. 이 가 지 않는 것을 수 있다. 이 가 있는 것을 수 있다. 이 가 지 않는 것을 수 있다. 이 가 있는 것을 수 있다. 이 가 있는 것을 수 있다. 이 가 있는 것이 같이 않다. 이 가 있는 것이 같이 않다. 이 가 있는 것이 않다. 이 가 있 않다. 이 가 있는 것이 않다. 이 하는 것이 않다. 이 가 있는 것이 않다. 이 하는 것이 않이 않다. 않다. 이 하는 것이 않이 않다. 않다. 이 있 않이 않다. 이	PYRAMAT	0.0280	10.6	23.3	2.2	6.6	9.4	1.4	1000	12.00		
5.77.27	Left:	ROCK RIPRAP	0.0300	13.4	50.0	3.7	5.5	45.0	8.2				
Analysis #2	Bottom	ROCK RIPRAP	0.0300	15.2	50.0	3.3	7.1	45.0	6.4	1.6178	323.0	Yes	
	Right:	ROCK RIPRAP	0.0300	13.4	50.0	3.7	5.5	45.0	8.2				
	Left:		0.0280	0.0	0.0	0.0	0.0	0.0	0.0	1	1		
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No	
Conserved a	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.00			
			and the second				1				1 million 1	1.2	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	26.8125	1.4379	0.0419	4.3235	4.3235	18.6470	12.0466	323.0	1.40
Analysis #2	21.4118	1.2424	0.0300	3.6174	3.6174	17.2348	15.0851	323.0	1.94
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: SW Ditch (2%)

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 323.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.02000Req. Freeboard (ft):0.00Channel Length (ft):300.00Bottom Width (ft):10.00Channel Depth (ft):4.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

	Citiz .		Manning's		Max.	Safety		tress (lbs/: Max.	sqft) Safety	Flow Depth	Discharge	新版
	Side	Lining Type	"""	Actual	Allowed	Factor	Actual	Allowed	Factor	(ft)	(cfs)	OK?
	Left:	PYRAMAT	0.0280	6.5	23.3	3.6	2.8	9.4	3.3	1.011.1	1001	
Analysis #1	Bottom:	PYRAMAT	0.0280	7.3	23.3	3.2	3.5	9.4	2.7	2.8325	323.0	Yes
	Right:	PYRAMAT	0.0280	6.5	23.3	3.6	2.8	9.4	3.3		1.28.24.00.20	
Sec. As an	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1		
Analysis #2			0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.000	- CTA	
Cara - S	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3			0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		10000		

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	44.3719	1.9575	0.0451	6.3337	6.3337	22.6675	7.2794	323.0	.709
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: SW Ditch (5%)

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00	Discharge (cfs): 323.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft): 0.05000 Req. Freeboard (ft): 0.00 Channel Length (ft): 240.00 Bottom Width (ft): 10.00
Right Slope (xH:1V): 2.00 Channel Bend:	Vegetation:	Channel Depth (ft): 4.00 Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
the second s	Vegetation Class: C	Functional Longevity: 999

Analysis Results:

Charles Merry	N. IN T	A CALL STREET	The Street Parts	Velocity			Shear S	ress (lbs/s	saft)	Flow	Maria and	10000
上主范	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	OK?
	Left:	PYRAMAT	0.0280	9.3	23.3	2.5	5.2	9.4	1.8	1.2.4	1.1.1	1.00
Analysis #1	Bottom	PYRAMAT	0.0280	10.5	23.3	2.2	6.7	9.4	1.4	2.1429	323.0	Yes
Right:	PYRAMAT	0.0280	9.3	23.3	2.5	5.2	9.4	1.8	1. C.	10.00		
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		1	
Left: Analysis #2 Bottom	1.1	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No	
	Right:		0.0000	0.0	0.0	0,0	0.0	0.0	0.0	10-245		
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
the second se	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1.000	10.0	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	30.6135	1.5632	0.0427	4.7917	4.7917	19.5835	10.5509	323.0	1.17
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 2 of 4

Channel Analysis Information:

Name: Channel Analysis Name: Main Channel

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 1660.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.01300Req. Freeboard (ft):0.00Channel Length (ft):3500.0Bottom Width (ft):20.00Channel Depth (ft):6.00
Channel Bend:	Vegetation:	Soll Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

一些一些	Le Marine	Constant of the	Velocity		E sale	Shear S	Shear Stress (lbs/sqft)				Gal and a second
Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	0К7
Left:	LANDLOK TRM	0.0250	9.1	16.5	1.8	3.4	4.7	1.4			
Bottom	LANDLOK TRM	0.0250	10.2	16.5	1.6	4.3	4.7	1.1	5.3260	1660.0	No
Right:	LANDLOK TRM	0.0250	9.1	16.5	1.8	3.4	4.7	1,4			
Left:	LANDLOK TRM	0.0250	9.1	16.8	1.8	3.4	6.5	1.9	-		
	0.0250	10.2	16.8	1.6	4.3	6.5	1.5	5.3260	1660.0	Yes	
Right:	LANDLOK TRM	0.0250	9.1	16.8	1.8	3.4	6.5	1.9	1.00		
Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			-
Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
	Left: Bottom: Right: Left: Bottom: Right: Left: Bottom:	Left: Bottom Right: LANDLOK TRM LANDLOK TRM LANDLOK TRM Bottom Right: LaNDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM	Left: Bottom Right:LANDLOK TRM LANDLOK TRM LANDLOK TRM0.0250 0.0250Left: Bottom Right:LANDLOK TRM LANDLOK TRM LANDLOK TRM 0.02500.0250Left: Bottom Bottom0.0000 0.0000	SideLining TypeManning's "n"ActualLeft: Bottom Right:LANDLOK TRM LANDLOK TRM LANDLOK TRM LANDLOK TRM D.02500.02509.1Left: Bottom Right:LANDLOK TRM LANDLOK TRM LANDLOK TRM D.02500.02509.1Left: Bottom Right:LANDLOK TRM LANDLOK TRM D.02500.02509.1Left: Bottom Bottom0.02509.1Left: Bottom0.00000.0	Side Lining Type "n" Actual Allowed Left: LANDLOK TRM 0.0250 9.1 16.5 Bottom LANDLOK TRM 0.0250 10.2 16.5 Right: LANDLOK TRM 0.0250 9.1 16.5 Left: LANDLOK TRM 0.0250 9.1 16.8 Bottom: LANDLOK TRM 0.0250 9.1 16.8 Bottom: LANDLOK TRM 0.0250 9.1 16.8 Bottom: LANDLOK TRM 0.0250 9.1 16.8 Left: LANDLOK TRM 0.0250 9.1 16.8 Bottom: LANDLOK TRM 0.0250 9.1 16.8 Bottom: LANDLOK TRM 0.0250 9.1 16.8 Left: Bottom: 0.0000 0.0 0.0	Side Lining Type Manning's "n" Max. Actual Max. Allowed Safety Factor Left: LANDLOK TRM 0.0250 9.1 16.5 1.8 Bottom LANDLOK TRM 0.0250 9.1 16.5 1.6 Right: LANDLOK TRM 0.0250 9.1 16.5 1.6 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 Left: LANDLOK TRM 0.0250 9.1 16.8 1.6 Bottom LANDLOK TRM 0.0250 9.1 16.8 1.6 Bottom LANDLOK TRM 0.0250 9.1 16.8 1.8 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 Bottom LANDLOK TRM 0.0250 9.1 16.8 1.8 Left: Bottom: 0.00000 0.0 0.0 0.0 Bottom: 0.00000 0.0 0.0 0.0 0.0	Side Lining Type Manning's "n" Actual Max. Allowed Safety Factor Actual Left: LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 Bottom LANDLOK TRM 0.0250 10.2 16.5 1.6 4.3 Right: LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 Left: LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 Bottom: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 Bottom: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 Left: Bottom: 0.0000 0.0 0.0 0.0 0.0 Bottom: Co0000 0.0 0.0 0.0 0.0 0.0	Side Lining Type Manning's "n" Actual Actual Max. Allowed Safety Factor Max. Actual Max. Allowed Left: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 4.7 Bottom Right: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.5 1.6 4.3 4.7 Left: LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 4.7 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 Bottom Right: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 Left: Bottom 0.0000 0.0 0.0 0.0 0.0 0.0 Bottom 0.0000 0.0 0.0 0.0 0.0 <	Side Lining Type Manning's "n" Max. Actual Safety Allowed Max. Factor Max. Actual Safety Actual Factor Left: Bottom Right: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 Left: Bottom Right: LANDLOK TRM 0.0250 9.1 16.8 1.6 4.3 6.5 1.5 Left: Bottom 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 Left: Bottom 0.0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Side Lining Type Manning's "n" Actual Actual Max. Allowed Safety Factor Max. Allowed Safety Factor Depth (ft) Left: Bottom Right: LANDLOK TRM LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 4.7 1.4 5.3260 Left: Bottom Right: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 4.7 1.4 5.3260 Left: Bottom Right: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 5.3260 Left: Bottom Right: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 5.3260 Left: Bottom Right: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 5.3260 Left: Bottom: 0.0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Side Lining Type Manning's "n" Max. Actual Safety Allowed Max. Factor Max. Actual Safety Actual Depth Actual Depth (ft) Discharge (cfs) Left: LANDLOK TRM LANDLOK TRM Right: 0.0250 9.1 16.5 1.8 3.4 4.7 1.4 5.3260 1660.0 Left: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.5 1.6 4.3 4.7 1.4 5.3260 1660.0 Left: LANDLOK TRM LANDLOK TRM 0.0250 9.1 16.5 1.8 3.4 4.7 1.4 5.3260 1660.0 Left: LANDLOK TRM Bottom 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 5.3260 1660.0 Left: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 5.3260 1660.0 Left: Bottom: LANDLOK TRM 0.0250 9.1 16.8 1.8 3.4 6.5 1.9 5.3260 1660.0 <tr< td=""></tr<>

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	163.2521	3.7256	0.0400	11.9093	11.9093	43.8185	10.1683	1660.0	.723
Analysis #2	163.2521	3.7256	0.0400	11.9093	11.9093	43.8185	10.1683	1660.0	.723
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Channel Analysis Information:

Name:

Channel Analysis Name: Area 1G Ditch

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 2.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 15.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.08000Req. Freeboard (ft):0.00Channel Length (ft):140.00Bottom Width (ft):0.10Channel Depth (ft):4.00
Channel Bend:	Vegetation:	Soll Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No
Factor of Safety: 1.10		Functional Longevity: 999

Analysis Results:

a de transfilia	a) - 0	14. 日本市 在日本市在	1 A. C. S. S. S.	Velocity			Shear St	tress (lbs/		Flow	a liter and the second	Star 1
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	0К?
	Left:	LANDLOK TRM	0.0250	4.7	16.5	3.5	6.3	4.7	0.8	1.00	1.1	1.1
Analysis #1	Bottom:	LANDLOK TRM	0.0250	4.6	16.5	3.5	6.2	4.7	0.8	1.2450	15.0	No
	Right:	LANDLOK TRM	0.0250	4.7	16.5	3.5	6.3	4.7	0.8	11.22	2.1.1	
1986	Left:	LANDLOK TRM	0.0250	4.7	16.8	3.6	6.3	6.5	1.0			
Analysis #2	Bottom	LANDLOK TRM	0.0250	4.6	16.8	3.6	6.2	6.5	1.1	1.2450	15.0	No
1000	Right:	LANDLOK TRM	0.0250	4.7	16.8	3.6	6.3	6.5	1.0			
	Left:	PYRAMAT	0.0280	4.7	23.3	5.0	6.3	9.4	1.5			
Analysis #3	Bottom	PYRAMAT	0.0280	4.7	23.3	5.0	6.2	9.4	1.5	1.2502	15.0	Yes
	Right:	PYRAMAT	0.0280	4.7	23.3	5.0	6.3	9.4	1.5	1.1		
		the second se	De Circus	1			and the second second			the second second	- 1	

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	3.2247	0.5689	0.0624	2.7840	2.7840	5.6680	4.6516	15.0	.737
Analysis #2	3.2247	0.5689	0.0624	2.7840	2.7840	5.6680	4.6516	15.0	.737
Analysis #3	3.2511	0.5713	0.0622	2.7956	2.7956	5.6912	4.6138	15.0	.741

Page 2 of 4

Channel Analysis Information:

Channel Analysis Name: Phase 2 Ditch

Name:

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:		
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 4.00 Right Slope (xH:1V): 2.00	Discharge (cfs): 4.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.06000Req. Freeboard (ft):0.00Channel Length (ft):560.00Bottom Width (ft):0.01Channel Depth (ft):2.00		
Channel Bend:	Vegetation:	Soil Filled:		
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: Yes Vegetation Class: C	Soil Filled: No		
Factor of Safety: 1.10		Functional Longevity: 999		

Analysis Results:

北部 理比的 加心		COULD BE AVERAGE AND	Velocity (ft/s)		and the second	Shear St	tress (lbs/s	saft)	Flow		Tere 1.1-	
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	ОК?
	Left:	LANDLOK TRM	0.0250	2.3	16.5	7.1	4.0	4.7	1.2		1	1
Analysis #1	Bottom	ttom: LANDLOK TRM	0.0250	2.0	16.5	8.1	3.1	4.7	1.5	0.8207 4.0	4.0	Yes
	Right:	LANDLOK TRM	0.0250	2.1	16.5	8.0	3.1	4.7	1.5		140	
0.0000	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1		
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
1.000	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		1000	1007

建港板	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	2.0287	0.3880	0.0955	3.3837	1.8351	5.2288	1.9717	4.0	.415
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Page 4 of 4

Suggested Vegetation for: La Crosse,WI

All Season Grasse	S				
Species	Scentific Name	Retardance Class	Seed Rate (lbs/ac)	Height at Maturity (in)	Recommended Planting Dates
Alsike Clover	Trifolium hybridum	A - E	15		4/1 - 5/31 or8/16 - 10/15
Reed Canarygrass	Phalaris arundinacea	A-E	20		4/1 - 5/31 or 8/16 - 10/15
Colonial Bentgrass	Agrostis tenius	A - E	50		4/1 - 5/31 or 8/16 - 10/15
Creeping Bentgrass	Agrostis palustris	A - E	50		4/1 - 5/31 or 8/16 - 10/15
Poa Trivialis	Poa trivialis	A - E	50		4/1 - 5/31 or 8/16 - 10/15
Creeping Foxtrail	Alopecurus arundinaceus	A - E	50	19 19 19 19 19 19 19 19 19 19 19 19 19 1	4/1 - 5/31 or 8/16 - 10/15
Meadow Foxtail	Alopecurus pratensis	A - E	50		4/1 - 5/31 or 8/16 - 10/15
Perennial Ryegrass	Lolium perenne	A - E	240	the second states of the secon	4/1 - 5/31 or 8/16 - 10/15
RedTop	Agrostis alba	A - E	80		4/1 - 5/31 or 8/16 - 10/15
Meadow Fescue	Festuca elatior	A - E	160		4/1 - 5/31 or 8/16 - 10/15
Cold Season Grass	es Scentific Name	Retardance Class	Seed Rate (Ibs/ac)	Height at Maturity (in)	Recommended Planting Dates
Crested Wheatgrass	Agropyron desertorum	A		2 - 3	
Green Needlegrass	Stipa viridula	A		3 - 4	
Russian WildRye	Psathyrostachys gunceus	A		3 - 4	
Smooth Bromegrass	Bromus inermis	A		3 - 4	
Tall Fescue	Festuca arundinacea	A		3 - 4	
Tall Wheatgrass	Elytriga pontica	A		4 - 5	
Western Wheatgrass	Agropyron smithii	A		2 - 3	
Warm Season Gras	Ses				
Species	Scentific Name	Retardance Class	Seed Rate (Ibs/ac)	Height at Maturity (in)	Recommended Planting Dates
Bermuda Grass	Cynodon dactylon	C		3/4 - 2	
Big Bluestem	Andropogon gerardii	В		4 - 6	
Blue grama	Boutelova gracillis	В		1 - 2	анан — — — — — — — — — — — — — — — — — —
Buffalo grass	Buchloe dactyloides	D		1/3 - 1	
Green Sprangletop	Leptochloa dubia	A		3 - 4	
ndian grass	Sorghastrum nutans	A		5 - 6	
Kleingrass	Panicum coloratum	A		3 - 4	
Little bluestem	Schizachyrium scoparium	A		3 - 4	
Plains bristlegrass	Setaria macrostachya	В		1 - 2	
Sand bluestem	Andropogon hallii	· A		5 - 6	
Sideoats grama	Bouteloua curtipendula	A		2 - 3	
	Douteioua curtiperiouia				
Switch grass	Panicum Virgatum	A		4 - 5	
Switch grass /ine mesquitegrass		AB		4 - 5 1 - 2	

Calculations – Operational Landfill Conditions

744-Heartland Trail Madison, WI 53717-1934 Tel. (608) 831-4444 • Fax (608) 831-3334

RM

FORM 383A

PROJECT / PROPOSAL NAME / LOCATION: DPC - PO SUBJECT: OPERATIONAL DITCH 31211		PROJECT / PROPOSAL NO. 3078.40
PREPARED BY: BJ-	DATE: 10/00	FINAL 😿
CHECKED BY:	DATE:	REVISION 🗖

OPERATIONAL C		(ALCULATIONS)		
DITCH	LOCATION	100 - YR FLOW	SLOPE	SMAPE
V-NOTCH DITCH	A CELL I ACTIVE	5 CPS	6%	V-NOTEH
DITCH B	CELL I ACTIVE	561 583 CFS'	2%	10' FLAT
DITCH С	CELL ZA ACTIVE	6 Cfs	6.3%	V-NOTCH
DITCH D	CELL 2B ACTIVE	3 CFS	12%	V-NOTCH
DITCH E	CELL 3 ALTIVE	561 583 CFS' V	1%	10' FLAT
DITCH F	CELL YA ACTIVE	373 433 CF5 2	1010	10' FLAT
Ditch G	CELL ZA ACTIVE	360 CF54		(34.)
2. 3 4	PERMANANT DITCHES SI CALCULATIONS.	12-ED UNDER PO	ST-DEVEL	OPMENT
3 4.	PERMANANT DITCHES SI	12-ED UNDER PO	TH + 28 @ ST-DEVEL	OPMENT
3 4.	PERMANANT DITCHES SI CALCULATIONS. FLOW FROM PREDEVELOPMIES	NT AN AREA NO	ПН + 28 @ ST-DEVELI РТН (See p.98)
3 4.	PERMANANT DITCHES SI CALCULATIONS. FLOW FROM PREDEVELOPMIES	NT AN AREA NO	ПН + 28 @ ST-DEVELI РТН (See p.98)
3 4.	PERMANANT DITCHES SI CALCULATIONS. FLOW FROM PREDEVELOPMIES	NT AN AREA NO	ПН + 28 @ ST-DEVELI РТН (See p.98)
3 4.	PERMANANT DITCHES SI CALCULATIONS. FLOW FROM PREDEVELOPMIES	NT ANDER PO NT ANA AREA NO 561 CFS	ГН + 28 @ ST-DEVELI РТН (See p.99 590)
3 4.	PERMANANT DITCHES SI CALCULATIONS. FLOW FROM PREDEVELOPMIES	NT ANDER PO NT ANA AREA NO 561 CFS	ПН + 28 @ ST-DEVELI РТН (See p.98)
3 4. Sw Ditc.H	PERMANANT DITLIES SI CALCULATIONS. FLOW FROM PREDEVELOPMIES CELL 2A ACTIVE	NT AND AREA NO 561 CFS	ГН + 28 @ ST-DEVELI PTH (See p.99 590)
3 1. 5W DITC.H	PERMANANT DITLIES SI CALCULATIONS. FLOW FROM PREDEVELOPMIES CELL 2A ACTIVE	NT AND AREA NO 561 CFS	ГН + 28 @ ST-DEVELI PTH (See p.99 590	DPMENT 5) 10' FLAT
3 1. 5W DITCH	PERMANANT DITLIES SI CALCULATIONS. FLOW FROM PREDEVELOPMIS CELL 2A ACTIVE	NT AND AREA NO 561 CFS	ГН + 28 @ ST-DEVELI PTH (See p.99 590	DPMENT 5) 10' FLAT
3 f. Sw Ditc.H	PERMANANT DITLIES SI CALCULATIONS. FLOW FROM PREDEVELOPMIS CELL 2A ACTIVE	NT AND AREA NO 561 CFS	ГН + 28 @ ST-DEVELI PTH (See p.99 590	DPMENT 5) 10' FLAT
3 1. 5W DITCH	PERMANANT DITLIES SI CALCULATIONS. FLOW FROM PREDEVELOPMIC CELL ZA ACTIVE	NT AND AREA NO 561 CFS	ГН + 28 @ ST-DEVELI PTH (See p.99 590	0PMENT 5) 10' FLAT
3 f. Sw Ditc.H	PERMANANT DITLIES SI CALCULATIONS. FLOW FROM PREDEVELOPMIES CELL 2A ACTIVE	NT AND AREA NO 561 CFS	ГН + 28 @ ST-DEVELI PTH (See p.99 590	0PMENT 5) 10' FLAT
3 f. Sw Ditc.H	PERMANANT DITLIES SI CALCULATIONS. FLOW FROM PREDEVELOPMIC CELL ZA ACTIVE	NT AND AREA NO 561 CFS	ГН + 28 @ ST-DEVELI PTH (See p.99 590	0PMENT 5) 10' FLAT

Site: Project # Channel		Date: User:	10/00 BJK		
I.	Input Parameters.				
	A. Side slope, Z1 (hor/vert) =			3.000	ft/ft
	B. Side slope, Z2 (hor/vert) =			16.000	ft/ft
	C. Bottom width, B =			0.000	ft
	D. Design channel slope, S =			0.060	ft/ft
	E. Channel Peak Flow, Q =			5.000	cfs
	F. Enter - 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence			2	
II.	Peak Flow Calculations.				
	A. Trial flow depth, D = (Bisection method until Va=Vb)			0.533	ft
	B. Channel flow area, Ac = (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)			2.703	sq ft
	C. Wetted Perimeter, Pw = (D*(Z1^2+1)^.5) + B + (D*(Z2^2+1)^.	.5)		10.239	ft
	D. Hydraulic radius, Rh = (Ac/Pw)			0.264	ft
	E. Velocity and hydraulic radius, VR = (Va * Rh)			0.488	sfps
	F. Channel flow Manning's coeff, nc = 0			0.081	
	G. Trial velocity, Va = (Q/Ac)			1.850	fps
	H. Resultant velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)			1.850	fps √0K

RMT, Inc. Grass Channel Sizing Calculations

Invoke Solution Macro by typing - 'ctrl' D

h:\data\common\template\sc-51\grasscha.xls

2

这些人,这些人的问题,这些人的问题,

Channel Analysis Information:

Name:

Channel Analysis Name: Ditch B

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW	Discharge (cfs): 583.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.02000Req. Freeboard (ft):0.00Channel Length (ft):530.00
Left Slope (xH:1V): 3.00 Right Slope (xH:1V): 3.00	Average velocity (105). 0.00	Bottom Width (ft): 10.00 Channel Depth (ft): 4.00
Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: No Vegetation Class:	Soil Filled: Yes
Factor of Safety: 1.00		Functional Longevity: 48

Analysis Results:

	Side	Lining Type	Manning's "n"	Velocity Actual	(ft/s) Max. Allowed	Safety Factor	Shear St Actual	Max. Allowed	Safety Factor	Flow Depth (ft)	Discharge (cfs)	OK?	
	Left:	LANDLOK TRM	0.0250	13.4	16.5	1.2	2.5	6.2	2.5				
Analysis #1	Bottom	om LANDLOK TRM	0.0250	14.5	16.5	1.1	2.9	6.2	2.1	2.3594 58	583.0	Yes	
-	Right:	LANDLOK TRM 450	0.0250	13.4	16.5	1.2	2.5	6.2	2.5				_
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0		*		
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No	
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0				
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0				
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No	
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0				
								215					

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	40.2945	1.6168	0.0200	7.4611	7.4611	24.9222	14.4685	583.0	1.58
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

RMT, Inc. Grass Channel Sizing Calculations

Site: Project Channe		Dairyland Power Cooperative 3081.40 Ditch C	Date: User:	10/00 BJK			
I.	Input Param	neters.					
	A. Side slop	e, Z1 (hor/vert) =			3.000	ft/ft	
	B. Side slope	e, Z2 (hor/vert) =			16.000	ft/ft	
	C. Bottom w	idth, B =			0.000	ft	
	D. Design ch	annel slope, S =			0.063	ft/ft	
	E. Channel I	Peak Flow, Q =			6.000	cfs	
	F. Enter	 - 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence 			2	4	
II.	Peak Flow C	alculations.					
	A. Trial flov	v depth, D = (Bisection method until Va=Vb)			0.550	ft	
	B. Channel f	low area, Ac = $(.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)$			2.870	sq ft	
	C. Wetted Pe	erimeter, $Pw =$ (D*(Z1^2+1)^.5) + B + (D*(Z2^2+1)^.5)			10.549	ft	
	D. Hydrauli	c radius, Rh = (Ac/Pw)			0.272	ft	
×	E. Velocity a	nd hydraulic radius, VR = (Va * Rh)			0.569	sfps	
	F. Channel f	low Manning's coeff, nc = 0			0.075		
	G. Trial velo	city, Va = (Q/Ac)			2.091	fps	
		t velocity, Vb = 1.49/nc) * (Rh^.667) * (S^.5)			2.091	fps 🗸	OK

Invoke Solution Macro by typing - 'ctrl' D

h:\data\common\template\sc-51\grasscha.xls

		Grass Channel Sizing Calculations					
Site: Project #: Channel:		Dairyland Power Cooperative 3081.40 Ditch D	Date: User:	10/00 BJK			
I.	Input Paran	neters.					
	A. Side slop	e, Z1 (hor/vert) =			3.000	ft/ft	
	B. Side slope	e, Z2 (hor/vert) =			3.000	ft/ft	
	C. Bottom w	ridth, B =			0.000	ft	
	D. Design cl	nannel slope, S =			0.120	ft/ft	
	E. Channel I	Peak Flow, Q =			3.000	cfs	
	F. Enter	- 1 - for Type "C" Veg. Retardence - 2 - for Type "D" Veg. Retardence			2		
II.	Peak Flow C	Calculations.					
	A. Trial flow	v depth, D = (Bisection method until Va=Vb)			0.547	ft	
	B. Channel f	Tow area, $Ac =$ (.5*Z1*D^2) + (B*D) + (.5*Z2*D^2)			0.897	sq ft	
	C. Wetted P	erimeter, $Pw =$ (D*(Z1^2+1)^.5) + B + (D*(Z2^2+1)^.5)			3.459	ft	
		c radius, Rh = (Ac/Pw)			0.259	ft	
		nd hydraulic radius, VR = (Va * Rh)			0.867	sfps	
		low Manning's coeff, nc = 0			0.063		
	G. Trial velo	(Q/Ac)			3.344	-	,
		t velocity, Vb = (1.49/nc) * (Rh^.667) * (S^.5)			3.344	fps	VOK

RMT, Inc.

Invoke Solution Macro by typing - 'ctrl' D

h:\data\common\template\sc-51\grasscha.xls

Page 2 of 4

Channel Analysis Information:

Name:

Channel Analysis Name: Ditch E

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes:	Discharge (cfs):583.00Flow Duration (hrs):1.00Average Velocity (ft/s):0.00	Bed Slope (ft/ft): 0.01000 Req. Freeboard (ft): 0.00 Channel Length (ft): 1000.0
Left Slope (xH:1V): 3.00 Right Slope (xH:1V): 10.00		Bottom Width (ft): 10.00 Channel Depth (ft): 3.00
Channel Bend:	Vegetation:	Soll Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: No Vegetation Class:	Soil Filled: Yes
Factor of Safety: 1.00		Functional Longevity: 60

Analysis Results:

		·····································		Velocity (ft/s)			Shear St	ress (lbs/s	sqft)	Flow		STREET, MAR
	Side	Lining Type	Manning's "n"	Actual	Max. Allowed	Safety Factor	Actual	Max. Allowed	Safety Factor	Depth (ft)	Discharge (cfs)	ОК?
	Left:	LANDLOK TRM	0.0250	8.9	16.5	1.9	1.3	6.2	4.9			
Analysis #1	Bottom	LANDLOK TRM	0.0250	9.6	16.5	1.7	1.5	6.2	4.2	2.3865	583.0	Yes
	Right:	LANDLOK TRM	0.0250	9.3	16.5	1.8	1.4	6.2	4.5			
anter contra	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			-
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
141	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			

	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	60.8850	1.4660	0.0200	7.5468	23.9840	41.5308	9.5754	583.0	1.06
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

Channel Analysis Information:

Name:

Channel Analysis Name: Ditch F

Channel Geometry & Hydraulics:

Design By:	Flow/Velocity:	Channel Geometry:
Designed By: FLOW Channel Side Slopes: Left Slope (xH:1V): 3.00	Discharge (cfs): 433.00 Flow Duration (hrs): 1.00 Average Velocity (ft/s): 0.00	Bed Slope (ft/ft):0.01000Req. Freeboard (ft):0.00Channel Length (ft):750.00Bottom Width (ft):10.00Channel Depth (ft):3.00
Right Slope (xH:1V): 5.00 Channel Bend:	Vegetation:	Soil Filled:
Channel Bend: No Bend Radius (ft): 0.00 Outside Bend:	Vegetated: No Vegetation Class:	Soil Filled: Yes
Factor of Safety: 1.00	· · · · · · · · · · · · · · · · · · ·	Functional Longevity: 0

Analysis Results:

	Side	Lining Type	Manning's "n"	Velocity Actual	(ft/s) Max. Allowed	Safety Factor	Shear St Actual	tress (lbs/s Max. Allowed	Safety Factor	Flow Depth (ft)	Discharge (cfs)	OK?
	Left:	LANDLOK TRM	0.0250	9.1	16.5	1.8	1.2	6.2	5.1			
Analysis #1	Bottom	LANDLOK TRM	0.0250	9.9	16.5	1.7	1.4	6.2	4.4	2.2978	433.0	Yes
	Right:	LANDLOK TRM	0.0250	9.5	16.5	1.7	1.3	6.2	4.7			
	Left:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #2	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	1		
-14	Left:	P.	0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
Analysis #3	Bottom		0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0000	0.0	No
	Right:		0.0000	0.0	0.0	0.0	0.0	0.0	0.0			
										1		

· · · · · · · · · · · · · · · · · · ·	Flow Area (sq ft)	Hydraulic Radius (ft)	Composite 'n'	Left Wetted Perimeter(ft)	Right Wetted Perimeter(ft)	Total Wetted Perimeter(ft)	Average Veleocity (ft/s)	Average Discharge (cfs)	Froude
Analysis #1	44.0967	1.5215	0.0200	7.2662	11.7164	28.9826	9.8193	433.0	1.10
Analysis #2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000
Analysis #3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	.000

EC-DESIGN(R) 2000 Channel Analysis Report

Project Informa	tion									
)roject Name: Description:	DPC Cell 2A	operational Calcs			Last Units: Neares		8/25/2003 English	10:58:10 A	e.	
Brekwa	ter from	to stope section culture 1 will section			intuites	, city.				
Channel Design			No. 10							6 <u>.</u>
Channel Name: S	W Ditch - (Operational 100 yr		Units	English		Des	ign life:	1,200	month
Design Criteria		Vegetation and So	il	Channel	Geometry	Ŷ	Fl	ow/Velocity		-
Flow Rate (Q)		Vegetated Vegetation Class Soil Filled	Yes B No	1.52	be (ft/ft) eeboard (f			scharge (cf ow Duratio vg. Velocity	n (hrs)	61.000 1.000 5.490
Channel Side Slop Left (H:1 V) Kight (H:1 V)	es 2.000 2.000	Channel Bend Bend Radius (ft) Outside Bend	No 0.000	Bottom '	Width (ft) Depth (f) 10.00	00 Reg	luired Fact afety	or	1.00
Results										
Lining Materials		Ð		elocity (ft/ Max Allowed	Safety	Shear S Computed	tress (lbs Max Allowed	Safety	Avg. Depti	
Left PYRAM	AT		5.100	23.340	4.580	2.720	9.400	3.460		
Bottom PYRAM Right PYRAM		- 	5.510 5.100	23.340 23.340	4.240 4.580	3.170 2.720	9.400 9.400	2.970 3.460		÷
Calculation Res	ılts:	-				(
Flow Depth		5.070				Perimeter (1979 - Carlos Maria - Carlos A.	11.350 9.990		
Flow Area (it)	102.230		Rigl	nt Wetted	ed Perimete Perimeter Perimeter	(ft)	11.350 32.690		
Hydraulic R	adius (ft)	3.130			. Velocity			5.490		
Composite '	.1	0.0580		Ava	. Dischar	re (cf/s)	4	61.000		

Project Information								
roject Name: DPC Description: Cell 2	A operational Calcs			Last U Units:		8/25/2003 English	10:53:12 A	A
Notes: Fore 5% slor section 25-	DE YR STURM			Neares	t City:			
Channel Design								
Channel Name: SW Ditch -	Operational 25 yr		Units	: English	I	Desi	gn life:	48 month
Design Criteria	Vegetation and So	oil	Channel	Geometr	v	Flo	ow/Velocity	y
Flow Rate (Q)	Vegetated Vegetation Class Soil Filled	Yes B No		eeboard (scharge (c ow Duratio yg. Velocit	on (hrs) 1.000
Channel Side Slopes	Channel Bend	No		Length (
eft (H:1 V) 2.000 reight (H:1 V) 2.000	Bend Radius (ft) Outside Bend	0.000		Width (ft l Depth (f		Req	uired Fac afety	tor 1.00
Results								
	- 1 (f	V	elocity (ft		Shear S	tress (lbs		Avg. Flow
Lining Materials		Computed	Max Allowed	Safety Factor	Computed	Max Allowed	Safety Factor	Depth (ft) 2.610
Left PYRAMAT	÷.	8.030	23.340	2.910	6.450	9.400	1.460	
Bottom PYRAMAT		9.020	23.340	2.590	8.140	9.400	1.150	
Right PYRAMAT	a - A	8.030	23.340	2.910	6.450	9.400	1.460	
Calculation Results:	101.He. 1							
Flow Depth (ft)	2.610		Left	Wetted I	Perimeter (ft)	5.830	
Flow Area (ft)	39.690				ed Perimete		10.000	
			Rig	nt Wetted	Perimeter	(ft)	5.830	
			Tota	al Wetted	Perimeter	(ft)	21.660	
Hydraulic Radius (ft	1.830			al Wetted . Velocity	Perimeter	(ft)	21.660 8.940	

EC-DESIGN(R) 2000 Channel Analysis Report

Project Informa	ation									
roject Name:	DPC				Last U	pdate:	8/25/2003	11:00:48 A	1	
Description:	Cell 2A	operational Calcs			Units:	:	English			
			7		Neares	t City:				
Notes:										
				12						
										-
Channel Design	l									
Channel Name: 1	Phase III So	uth Slope Ditch		Units	English		Des	ign life:	24	months
Design Criteria		Vegetation and So	il	Channel	Geometry	Ŷ	Fl	ow/Velocit	v	
Flow Rate (Q)		Vegetated	No	Bed Slop	oe (ft/ft)	0.0	50 D i	ischarge (c	f/s)	4.000
		Vegetation Class		Beg Fre	eboard (1	ît) 0.00		ow Duratio	on (hrs)	1.000
		Soil Filled	Yes				A	vg. Velocit	y (ft/s)	6.280
Channel Length (ft) 500.000						00 L				
Channel Side Slop	pes	Channel Bend	No	Bottom	Width (ft)) 1.00	00			
Left (H:1 V)	2.000	Bend Radius (ft)	0.000	Channel	Depth (f	t) 1.50		uired Fac	tor	1.00
Right (H:1 V)	3.000	Outside Bend				,	013	Safety		
[la necesi Multi di necesi contra ta contra								
Results										
			v	elocity (ft/	(s)	Shear S	tress (lb		Avg.	
Lining Materials			Commuted	Max	Safety	Computed	Max	Safety Factor	Dept	h (ft) 0.340
	OK TRM 45	0	6.080	16.490	2.710	1.050	6.250	5.950		0.510
	OK TRM 45	1940 - 1947 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 -	6.730	16.490	2.450	1.280	6.250	4.880		
Right LANDL	OK TRM 45	i0	6.350	16.490	2.600	1.140	6.250	5.480		
Calculation Res	sults:		:					+		
Flow Depth	n (ft)	0.340		Left	Wetted I	Perimeter (ft)	0.770		
Flow Area	(ft)	0.640				ed Perimete		1.000		
						Perimeter	· · ·	1.080		
				Tota	al Wetted	Perimeter	(Ħ)	2.850		
Hydraulic I	Radius (ft)	0.220		Avg	. Velocity	(ft/s)		6.280		
Composite '	'n	0.0200		Avg	. Dischar	ge (cf/s)		4.000		
1										

Project Information							_
)roject Name: DPC Description: Cell 2A operatio Notes:	nal Calcs	48	Last Up Units: Nearest	1	8/25/2003 English	11:00:48 A	A
					9-11-11-11-1		
Channel Design							
Channel Name: Ditch G		Units:	English		Desi	gn life:	48 months
Design Criteria Vegetat	ion and Soil	Channel (Geometry	1	Flo	w/Velocit	y
Flow Rate (Q) Vegetat Vegetat Vegetat Soil Fill Soil Fill	tion Class led No	Bed Slope Req. Free Channel I	board (f	- -	00 Flo	scharge (c ow Duratio g. Velocit	on (hrs) 1.000
	adius (ft) 0.000	Bottom W Channel I			Req	uired Fac afety	tor 1.00
Results							
Lining Materials		elocity (ft/s Max Allowed	Safety		tress (lbs Max Allowed	Safety	Avg. Flow Depth (ft) 2.040
Left LANDLOK TRM 450	10.170	16.490	1.620	1.610	6.250	3.880	
Bottom LANDLOK TRM 450	11.090	16.490	1.490	1.910	6.250	3.270	
Right LANDLOK TRM 450	10.170	16.490	1.620	1.610	6.250	3.880	
Calculation Results:							
Flow Depth (ft) 2.040		Left	Wetted P	erimeter (1	ť)	6.460	
Flow Area (ft) 32.920				d Perimete		9.990	
		-		Perimeter Perimeter	· · · · · ·	6.460 22.910	
Hydraulic Radius (ft) 1.440			Velocity		n ¢	10.930	
Composite 'n' 0.0210		•	Discharg			60.000	

Reference Information

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024 roughness) varies with VR. The term VR is the product of velocity and the hydraulic radius. This relationship will be referred to as the "n-VR relationship", which is the recommended basis for vegetated channel design.

The five general retardance curves, designated as A, B, C, D, and E in Exhibit 7-1, have been developed for various cover conditions. The vegetal conditions under which the various retardance values apply are shown in Exhibit 7-2. These cover classifications are based on tests in experimental channels when the covers were green and generally uniform.

Most of the vegetation used in waterways does not exceed 18 inches in height and may be much shorter at times during the year. Therefore, it is recommended that when designing the channel for safe velocity, a retardance not greater than "D" be used. After designing the channel for safe velocity, it must be checked for capacity to accommodate the peak flow under conditions where vegetation gives the highest retardance. The retardance used in this instance is the curve corresponding to the expected vegetal cover and, in most cases, it will be retardance "C", though curve "B"

All pertinent design data and computations should be recorded.

DESIGN DATA

The following information is required for designing a waterway:

- Watershed area in acres, together with the soil characteristics, cover and topography. This information is used to estimate runoff by the procedures set forth in Chapter 2 of this manual.
- Grade of the proposed waterway in percent slope (this is the fall in feet per 100 feet of length).
- 3. Vegetal cover adapted to site conditions.
- 4. Erodibility of the soil in the waterway.
- 5. Expected height at which vegetative cover will be maintained.
- 6. The permissible velocity for the conditions encountered.
- Allowance for space that will be occupied by the vegetative lining.
- Allowance for freeboard, if required by State Standards and Specifications.

NON-EROSIVE VELOCITY OF FLOW

In designing grassed waterways, care must be taken to insure that the design velocity is well within the limits of permissible velocities given in Exhibit 7-3. These values apply to average, uniform stands of each type of cover.

Source: U.S. Department of Agriculture, Soil Conservation Service. <u>Engineering Field Manual</u>. November 1986.

30 2	Slope	Permissible	velocity <u>1</u> /]
Cover	(percent)	Erosion re- sistant soils (ft.per sec.)	Easily eroded soils (ft.per sec.)	
Bermudagrass	0-5 5-10 over 10	8 7 6	6 5 4	
Bahia Buffalograss Kentucky bluegrass Smooth brome Blue grama Tall fescue	0-5 5-10 over 10	7 6 5	5 4 3	
Grass mixtures Reed canarygrass	<u>2/</u> 0-5 5-10	15	4	<u>U5</u>
Lespedeza sericea Weeping lovegrass Yellow bluestem Redtop Alfalfa Red fescue	<u>3</u> / 0-5	3.5	2.5	
Common lespedeza $\frac{4}{}$ Sudangrass $\frac{4}{}$	<u>5</u> / 0-5	3.5	2.5	

- 1/ Use velocities exceeding 5 feet per second only where good covers and proper maintenance can be obtained.
- 2/ Do not use on slopes steeper than 10 percent except for vegetated side slopes in combination with a stone, concrete, or highly resistant vegetative center section.
- 3/ Do not use on slopes steeper than 5 percent except for vegetated side slopes in combination with a stone, concrete, or highly resistant vegetative center section.
- 4/ Annuals--use on mild slopes or as temporary protection until permanent covers are established.
- 5/ Use on slopes steeper than 5 percent is not recommended.

Exhibit 7-3. Permissible velocities for channels lined with vegetation

Source: U.S. Department of Agriculture, Soil Conservation Service. <u>Engineering Field Manual</u>. November 1986.

7-14

Culvert/Downslope Flume Design Calculations

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024

\madison-vfp\Records\-\WPMSN\PJT2\525154\0000\R5251540000-004_Control Plan.docx

Purpose/Methodology/Assumptions/Results/References

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024

COMPUTATION SHEET

744 Heartland Trail (53717-8923) P	. O. Box 892	3 (53708-8923)	Madison, WI	(608) 831-4	444 FAX:	(608) 831-3334	VOICE: (608) 831-1989
PROJECT/PROPOSAL NAME	PI	REPARED	CHECKED			PROJECT/PR	OPOSAL NO.
Dairyland Power Cooperativ	ve B	7: Dat JK 9/		S	Date: 0/00		3081.40

CULVERT DESIGN CALCULATIONS

Purpose

To determine the appropriate culvert and downslope flume sizes for the anticipated peak flows resulting from the 100-year, 24-hour storm at the proposed Dairyland Power Cooperative Landfill.

Methodologies

Culvert design involves the process of selecting an appropriate culvert size capable of allowing the estimated peak storm water runoff to pass through it without creating surface water breaching (i.e., berm overflow) or excessive backwater levels. Culvert sizing was performed using design charts developed by the U.S. Department of Transportation Federal Highway Administration.

Downslope flumes will convey flow from the final cover diversion berms to the sedimentation basin. Downslope flumes were also sized using design charts developed by the U.S. Department of Transportation Federal Highway Administration. The energy dissipater for the downslope flume was sized using design guidance from the US Department of the Interior, Bureau of Reclamation.

Assumptions

The following assumptions were used in the culvert and downslope flume sizing analysis:

- 1. Culvert and downslope flume layout and allowable headwater levels are shown on the accompanying plan set.
- 2. Tailwater depths were assumed based on anticipated flows within the ditching. For culverts discharging into sedimentation basins, the tailwater elevation in the basin from the routing calculations.
- 3. Culverts are assumed to be corrugated metal culvert pipes or concrete box culverts.
- 4. Culverts were designed to maintain a minimum 1 to 2 feet of freeboard, depending on the location.

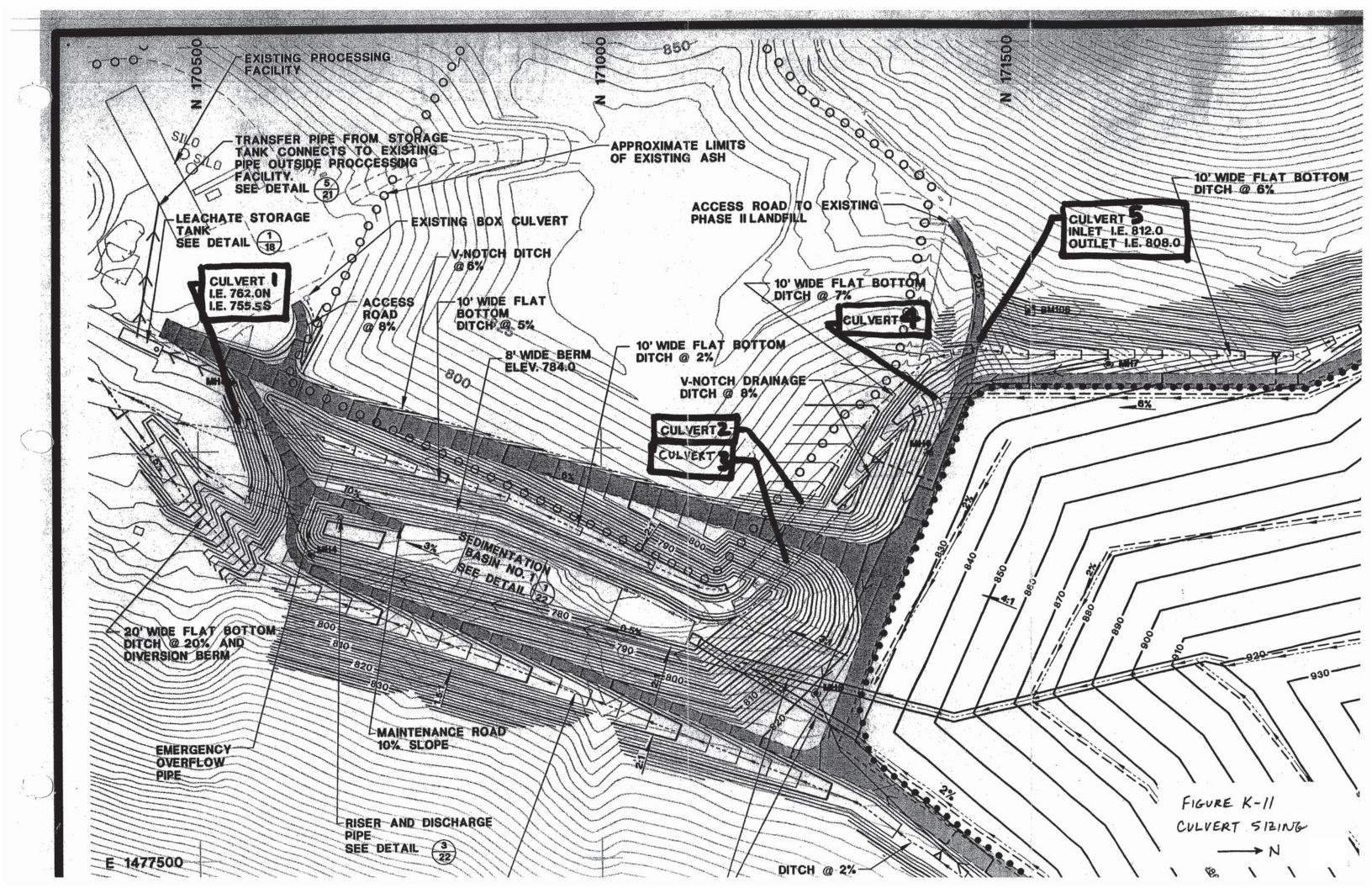
COMPUTATION SHEET

744 Heartland Trail (53717-8923) P. O. Box 8923 (53708-8923)		Madison, WI	(608) 831-444	4 FAX	2 (: (608) 831-3334			
PROJECT/PROPOSAL NAME	PREPARED		CHECKED			PROJECT/PR	ROPOSAL NO.	
Dairyland Power Cooperative	By: BJK	Dat 9/		A	re: /00		3081.40	

Results

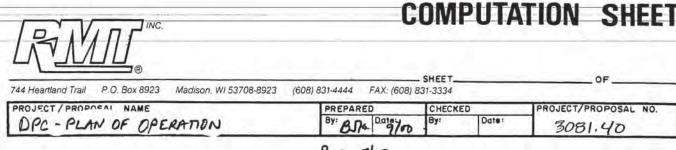
The table below summarizes the results of the culvert pipe sizing analyses:

CULVERT	SLOPE (%)	LENGTH (ft)	100-YR. FLOW (cfs)	SIZE
Culvert #1	7.0	96	323	4'x 7' Box
Culvert #2	7.7	126	323	4'x 7' Box
Culvert #3	11.2	125	15	30" CMP
Culvert #4	9.3	75	15	30" CMP
Culvert #5	lvert #5 5		323	4' x 7' Box

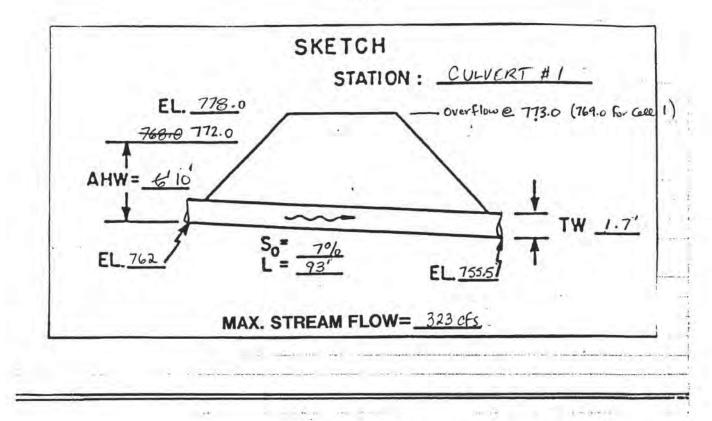

Note:

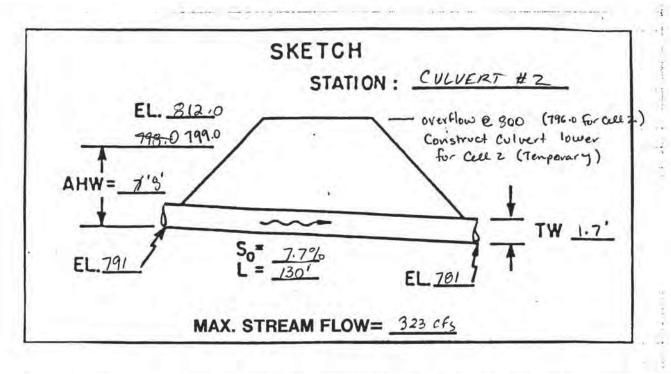
Culvert lengths to be adjusted based on available culvert section lengths.

Downslope pipe and energy dissipater sizing are shown on the engineering details included in the Plan Set.

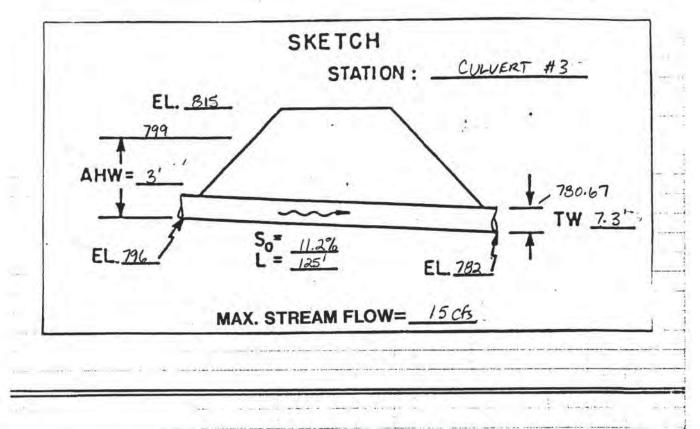

References

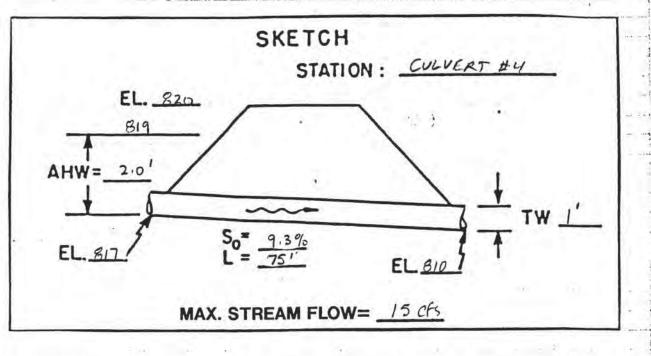
- U.S. Department of Transportation. Hydraulics charts for the selection of highway culverts. Hydraulic engineering circular no. 5. December 1965.
- U.S. Department of the Interior, Bureau of Reclamation. Hydraulic Design of Stilling Basins and Energy Dissipaters. Engineering Nomograph No. 25. May 1984.

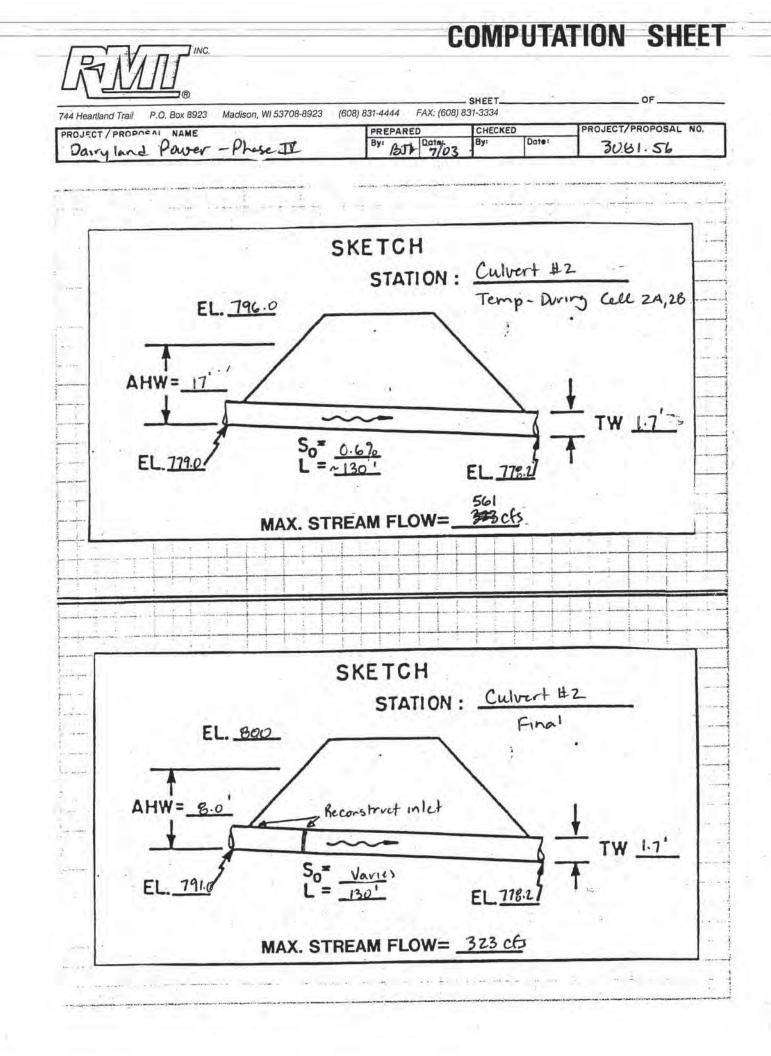




Calculations – Post-closure Landfill Conditions



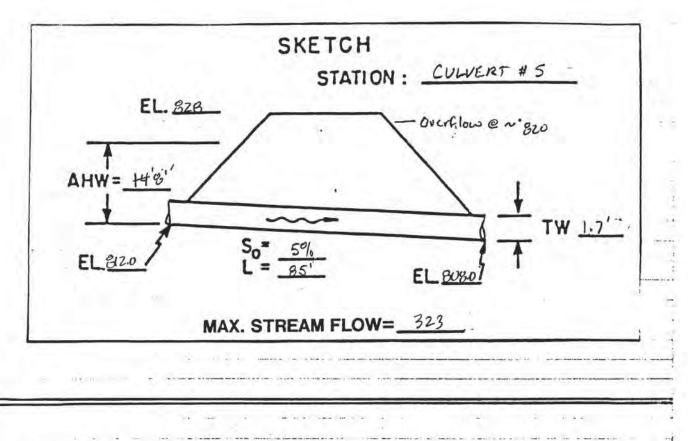


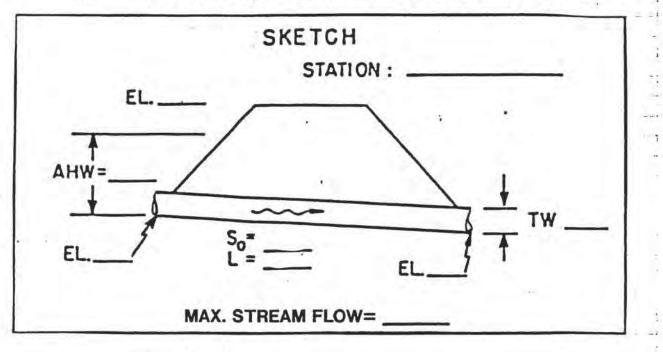


BIN				C	UMI	PUIA	IIUN SHEE
744 Heartland Trail	P.O. Box 8923	Madison, WI 53708-8923 (6	08) 831-4444	FAX: (608) 8	SHEET	-	OF
PROJECT / PROP		OPERATION	By:		CHECKE By:	Date:	PROJECT/PROPOSAL NO.

Culvert Calculator Report Culvert 2 - Operational

Solve For: Headwater Elevation


Culvert Summary		_			
Allowable HW Elevation	796.00 ft	Ê I I I	Headwater Depth/ Height	3.86	
Computed Headwater Elevation	794.45 ft		Discharge	561.00	cfs
Inlet Control HW Elev	792.30 ft		Tailwater Elevation	779.90	ft
Outlet Control HW Elev	794.45 ft	<u> </u>	Control Type	Outlet Control	£
Grades					
Upstream Invert	779.00 ft		Downstream Invert	778.20	ft
Length	130.00 ft		Constructed Slope	0.006154	ft/ft
Hydraulic Profile					-
Profile	Pressure		Depth, Downstream	4.00	ft
Slope Type	N/A		Normal Depth	N/A	ft
Flow Regime	N/A		Critical Depth	4.00	ft
Velocity Downstream	20.04 ft/	/s	Critical Slope	0.022277	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 4 ft		Rise	4.00	ft
Number Sections	1	-			
Outlet Control Properties					-
Outlet Control HW Elev	794.45 ft	t -	Upstream Velocity Head	6.24	ft
Ke	0.50	<u>.</u>	Entrance Loss	3.12	ft
Inlet Control Properties	- 2 %				
Inlet Control HW Elev	792.30 ft	1	Flow Control	Submerged	
Inlet Type 18 to 33.7 ° wingwall fl	are, d=0.0830		Area Full	28.0	ft²
к	0.48600		HDS 5 Chart	9	
M	0.66700		HDS 5 Scale	2	
С	0.02490		Equation Form	2	
Y	0.83000				


Culvert Calculator Report Culvert 2 - Final

Solve For: Headwater Elevation

Culvert Summary				
Allowable HW Elevation	799.00 ft	Headwater Depth/ Height	1.78	1.5
Computed Headwater Elevation	798.10 ft	Discharge	323.00	cfs
Inlet Control HW Elev	797.44 ft	Tailwater Elevation	779.90	ft
Outlet Control HW Elev	798.10 ft	Control Type	Entrance Control	1
Grades			_	
Upstream Invert	791.00 ft	Downstream Invert	778.20	ft
Length	130.00 ft	Constructed Slope	0.098462	ft/ft
Hydraulic Profile				-
Profile	S2	Depth, Downstream	1.60	ft
Slope Type	Steep	Normal Depth	1.32	ft
Flow Regime	Supercritical	Critical Depth	4.00	ft
Velocity Downstream	28.87 ft/s	Critical Slope	0.007385	ft/ft
Section				
Section Shape	Box	Mannings Coefficient	0.013	
Section Material	Concrete	Span	7.00	ft
Section Size	7 x 4 ft	Rise	4.00	ft
Number Sections	1			-
Outlet Control Properties	2 1 mar			
Outlet Control HW Elev	798.10 ft	Upstream Velocity Head	2.07	ft
Ke	0.50	Entrance Loss	1.03	ft
Inlet Control Properties				
Inlet Control HW Elev	797.44 ft	Flow Control	Submerged	1.25
Inlet Type 18 to 33.7 ° wingwall	flare, d=0.0830	Area Full	28.0	ft ²
к	0.48600	HDS 5 Chart	9	
M	0.66700	HDS 5 Scale	2	
С	0.02490	Equation Form	2	
Y	0.83000			

CUMPUTATION SHEET INC. SHEET OF 744 Heartland Trail P.O. Box 8923 Madison, WI 53708-8923 (608) 831-4444 FAX: (608) 831-3334 PROJECT / PROPOSAL NAME CHECKED PREPARED PROJECT/PROPOSAL NO. By Bro Qin 3091.40 Date By: OPC POO

Internet there are a marine a

Ξ	DATE: 9/2000 TCH	STATION : SEE SKETTHES		EL	Y=	_	COMMENTS	^	Not Rec.	Recommended		Recommended		Not Rec.	Recommended	1
DE	SKETCH	STAT		L=STREAM VELOCITY =	SIREAM VELOCITY=	No -LSA	NTR(_	6.5 1.3 58		10' - 50		6 4.1	6 21	= ge'and 126' RESPECTIVELY
		EL.	AHW=	EL	1.7	SUL HW=H+ha-LSA	F		1	0.4 1.1	-	1.7 4.0	1	7.3 7.3	7.3' 7.3'	
	TION		ч 	1	HEADWATER CON	OUTLET CONTROL	H de de+D	-	10 10 10 2 2	2		10.4 10.4 8.c		11 11 97	0.8 1.3 1.9	2+1+2
	INFORMATION		TW ₁ = TW ₂ =	025 050 0R 0,000	HEAD	INLET CONT. 0	HW Ke	6-	5.65 0.4	2.6		0.4	_	S	5.0 1.1	OF CULVERTS
ĺ	CHANNEL			SCHARGE , SAY SCHARGE , SAY		SIZE INLE		2- 1.2	Shit xit	-	7'X 1 11	T	24" 1.15	-	LL'0 05	0
	HYDROLOGIC AND CHANNEL		= SEE Skemmes	O1 = DESIGN DISCHARGE , SAY Q2 = CHECK DISCHARGE , SAY	RT	D NOIL	11761	162	323 ERT 46101		323	NON COLVERT 46174	15	T		
	нүрас		0 ² = 0 02	<u> </u>	CULVERT	LENTRANCE TUCH		CMP	CULVERT # 1 BOX CULVERT		CULVERT # 2		CUEVERT # 3	11	CMP SIMMADV 0	NEWINO

Figure 7

•

. .

HYDROLOGIC AND CHANNEL												DE	SIGNE	DESIGNER: BUR	8
	CHA	NNE		INFORMATION	ATIC	N					St	SKETCH STATIC	DATE: 0		SEE SKETTHES
01 = <u>566 Sk</u> etches	SHO		= - = -		1		, HA	AHW=		1		1 15	$\langle $		
$Q_1 = DESIGN DISCHARGE, SAY Q_{25}$ $Q_2 = CHECK DISCHARGE, SAY Q_{50} OR Q_{100}$	CHARG	E, SAY E, SAY	025 050 OR	0100	1-		Ъ	·]	MEAN	STRE/	So= L= EAM VE	MEAN STREAM VELOCITY=	1 - 1	1	¥ {
DESCRIPTION Q S	SIZE	INLE	INLET CONT.	HEAL	HEADWATER	ER C	COMPR	151	LION	SIKEAM	W A		1 4		
		MA	MH	×	Ŧ	0	d+2p	1 F	Poq	$W = H + h_0 - LS_0$	HW	N H W		COST	COMMENTS
15	30"	11:0	1.91	0.5	1.0	1.3	6.	1.0	6.1	1	1	,6.1			Recommended
CULVERT # 5 323 7	×,2	1 th	20	. 0.4	30	0,4	0.1	-	C P		5				
-		1:45	18	-	1				2	-	2.0	age	1		Recommended
													1		
													+		
				-								T	+		

Figure 7

TABLE 1 - ENTRANCE LOSS COEFFICIENTS

Outlet Control, Full or Partly Full

Entrance head loss $H_e = k_e \frac{v^2}{2g}$

Type of Structure and Design of Entrance

Coefficient ke

1.4

Pipe, Concrete

1

. 1

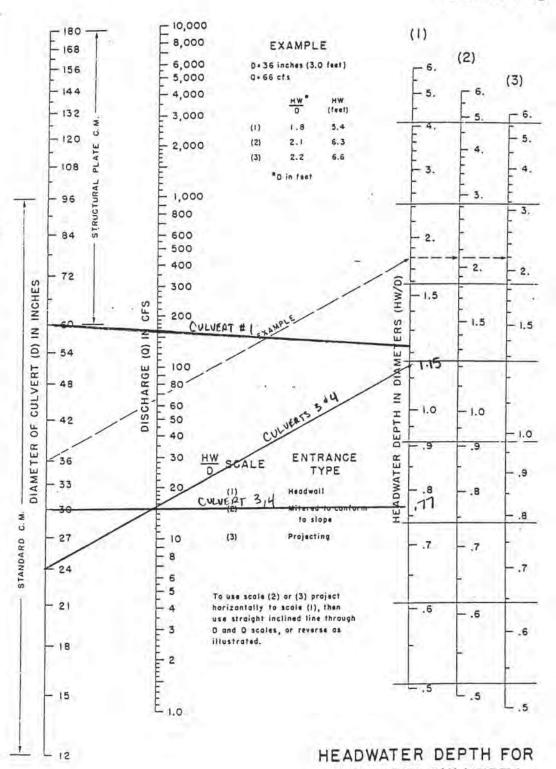
Se 1.

Projecting from fill, socket end (grow	ove	e-e	end	1)		6	÷	0.2
Projecting from fill, sq. cut end .				4		÷		0.5
Headwall or headwall and wingwalls								
Socket end of pipe (groove-end)		• '			÷			0.2
Square-edge				÷		÷,		0.5
Rounded (radius = 1/12D)					÷			0.2
Mitered to conform to fill slope								0.7
*End-Section conforming to fill slope				÷				0.5
Beveled edges, 33.7° or 45° bevels .				i.		à.		0.2
Side-or slope-tapered inlet								0.2

Pipe, or Pipe-Arch, Corrugated Metal

Projecting from fill (no headwall)	0.9	1
Headwall or headwall and wingwalls square-edge	0:5	1
Mitered to conform to fill slope, paved or unpaved		
· slope	0.7	
*End-Section conforming to fill slope	0.5 - CULVERTS 3,4	
Beveled edges, 33.7° or 45° bevels	0.2	
Side-or slope-tapered inlet	0.2	

Box, Reinforced Concrete

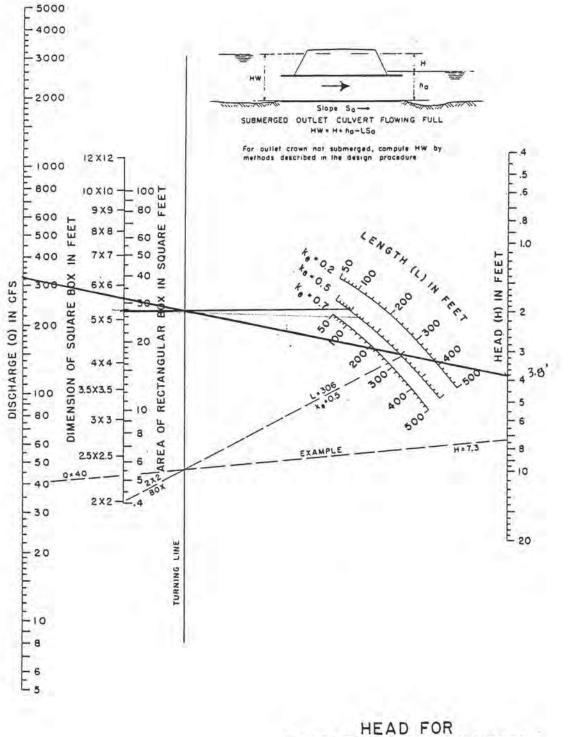

Headwall parallel to embankment (no wingwalls)	
Square-edged on 3 edges	0.5
Rounded on 3 edges to radius of 1/12 barrel	
dimension, or beveled edges on 3 sides	0.2
Wingwalls at 30° to 75° to barrel	
Square-edged at crown	0.4 + CULVERTS 1,2
Crown edge rounded to radius of 1/12 barrel	
dimension, or beveled top edge	0.2
Wingwall at 10° to 25° to barrel	
Square-edged at crown	0.5
Wingwalls parallel (extension of sides)	
Square-edged at crown	0.7
Side-or slope-tapered inlet	0.2

*Note:

"End Section conforming to fill slope," made of either metal or concrete, are the sections commonly available from manufacturers. From limited hydraulic tests they are equivalent in operation to a headwall in both inlet and outlet control. Some end sections, incorporating a closed taper in their design have a superior hydraulic performance." These latter sections can be designed using the information given for the beveled inlet, p. 5-13.

-12 F 600 (1) (3) (2) - 11 F 8 500 L10 8 EXAMPLE 5'x 2' 80x Q = 75 cfs Q/B = 15 cfs/ft. 10 F 400 7 8 6 adata a handa e 7 HW D 6 9 300 Inlet feet 5 6 1.75 3.5 5 (1) 5 8 (2) 1,90 3.8 4 200 (3) 2.05 4.1 4 3 7 E 3 3 CFS PER FOOT 100 6 (D/MH) 80 2 2. 60 HEADWATER DEPTH IN TERMS OF HEIGHT 5 1.5 1.5 RATIO OF DISCHARGE TO WIDTH (Q/B) IN HEIGHT OF BOX (D) IN FEET 40 1.5 30 have have 20 - 1.0 1.0 - 1.0 .9 Angle of 3 Wingwall Flare .9 .9 * 10 .8 8 8 .8 6 WINGWALL FLARE .7 .7 HW SCALE -.6 4 2 30" to 75" (1) 3 .6 ,6 90" and 15" (2) - .5 (3) O* (extensions E 2 of sides) - .5 .5 To use scale (2) or (3) project horizontally to scale (1), then - .4 use straight inclined line through D and Q scales, or reverse as Ę) illustrated. - ,8 .4 .4 E .6 L .35 .35 - .30 1 .5 HEADWATER DEPTH FOR BOX CULVERTS WITH INLET CONTROL

CHART I



2. i o

C. M. PIPE CULVERTS WITH INLET CONTROL

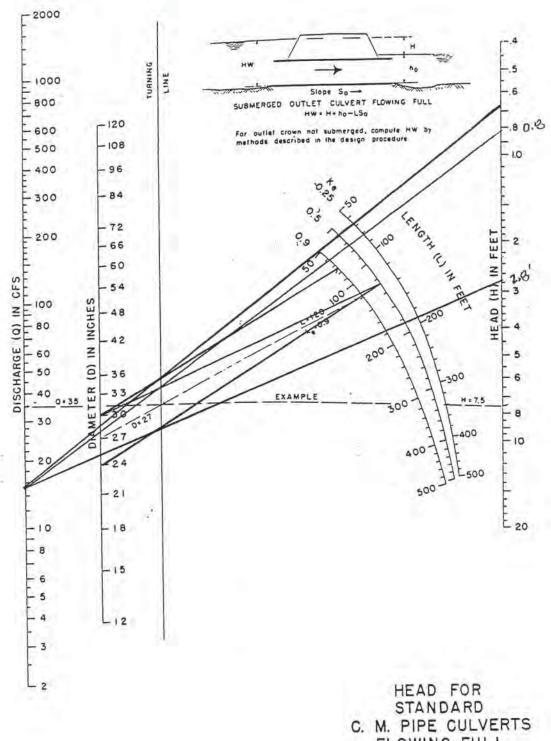

CHART 5

CHART 8 '

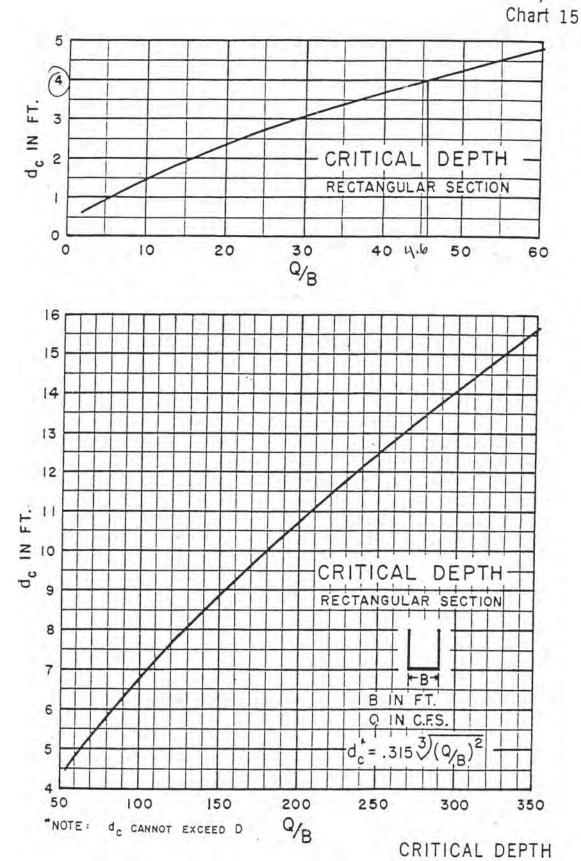
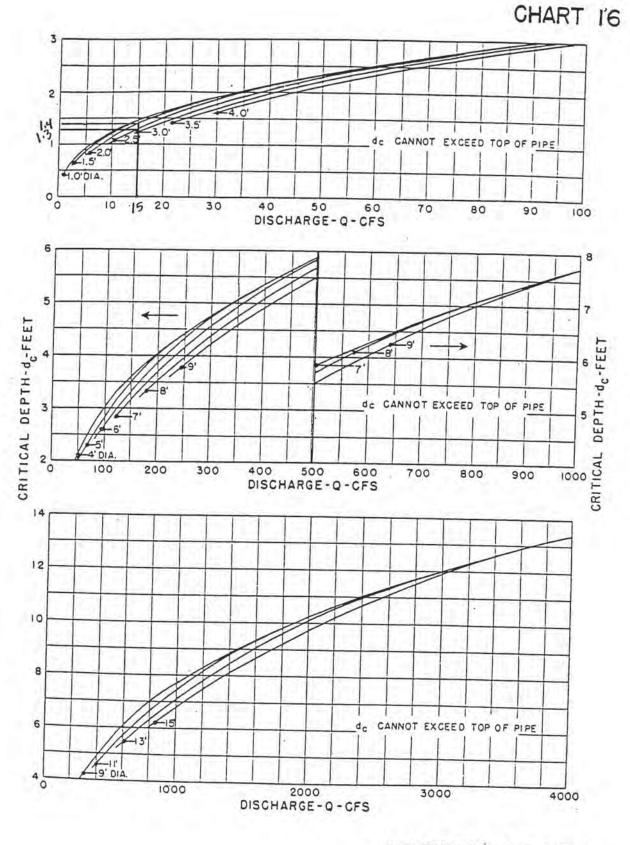

CONCRETE BOX CULVERTS FLOWING FULL n = 0.012

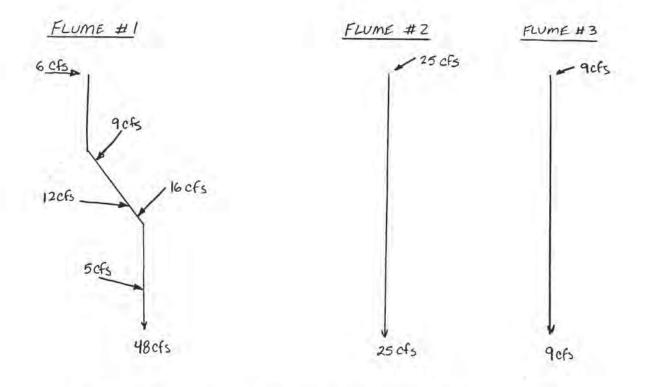
CHART H


÷

FLOWING FULL n=0.024

RECTANGULAR SECTION

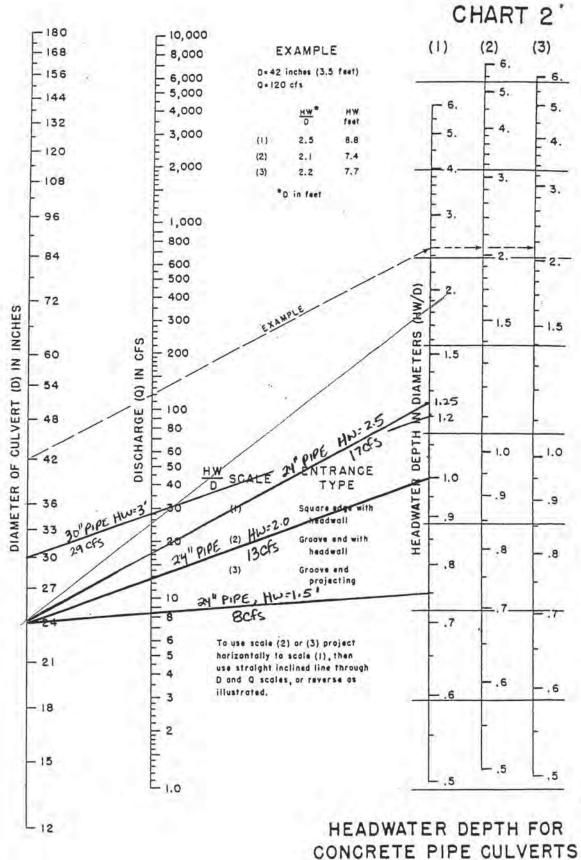
2



CRITICAL DEPTH CIRCULAR PIPE

744 Heartland Trail Madison, WI 53717-1934 Tel. (608) 831-4444 • Fax (608) 831-3334		SHEETOF
	AND POWER - POO	PROJECT / PROPOSAL NO.
TEORIE JI LING	01	3081.40
PREPARED BY: B.J.K	DATE: 9/00	FINAL D
CHECKED BY:	DATE:	REVISION 🗖

DOWNSLOPE FLUME SIZING


1. SIZE INLET PIPES

NOTE: PEAK FLOWS OBTAINED FROM RUNOFF CALCULATIONS PEAK FLOWS ADDED TO OBTAIN TOTALS (CONSERVATIVE)

ESTABLISH INLET PIPE SIZES AND BERM HEIGHTS USING INLEF CONTROL NOMOGRAPHS!

FLOW RANGE	INL FT PIPE SIZE	Hwy	REQ'O BERM HEIGHT
0-B cfs	24"	1.5'	2.5'
9-13 cfs	24"	2.0'	2.5'
14-17 CFS	24"	2.5	3.0'
18-29 CFS	30"	3.0'	3.5'

WITH INLET CONTROL

744 Heartland Trail Madison, WI 53717-1934 • Tel. (608) 831-4444 • Fax (608) 831-3334		SHEETOF
PROJECT / PROPOSAL NAME / LOCATION: DAIRY SUBJECT: FLUME SIZING	LAND POWER - POO	PROJECT/PROPOSAL NO. 3081 40
PREPARED BY: BJK	DATE: 9100	FINAL D
CHECKED BY:	DATE:	REVISION O

CHECK STRAIGHT PIPE FLUME SIZING

WORST-CASE FLOW - FLUME #1

SLOPE = 20% (AT RIDGE) PIPE DIA = 1.5' MAX FLOW = 48 CFS

FULL PIPE FLOW :

 $\begin{aligned} \mathcal{Q} &= \frac{1.49}{7L} R^{2/3} 5^{1/2} A \\ \mathcal{R} &= 0.010 \text{ for HOPE PIPE} \\ R &= D/4 = 1.5/4 = 0.375 \\ 5 &= 0.20 \text{ FHFH} \\ A &= \pi D^2/4 = \pi (1.5)^2/4 = 1.77 \text{ FH}^2 \\ \end{aligned}$ $\begin{aligned} \mathcal{Q} \text{ FULL} &= \frac{1.49}{0.01} (0.375)^{2/3} (0.20)^{1/2} (1.77) \end{aligned}$

= 61 cfs > 48 cfs 0K V

A WATER RESOURCES TECHNICAL PUBLICATION

Engineering Monograph No. 25

Hydraulic Design of Stilling Basins and Energy Dissipators

By A. J. PETERKA

Denver, Colorado

United States Department of the Interior

BUREAU OF RECLAMATION

NOV 22 1999

STILLING BASIN FOR PIPE OR OPEN CHANNEL OUTLETS

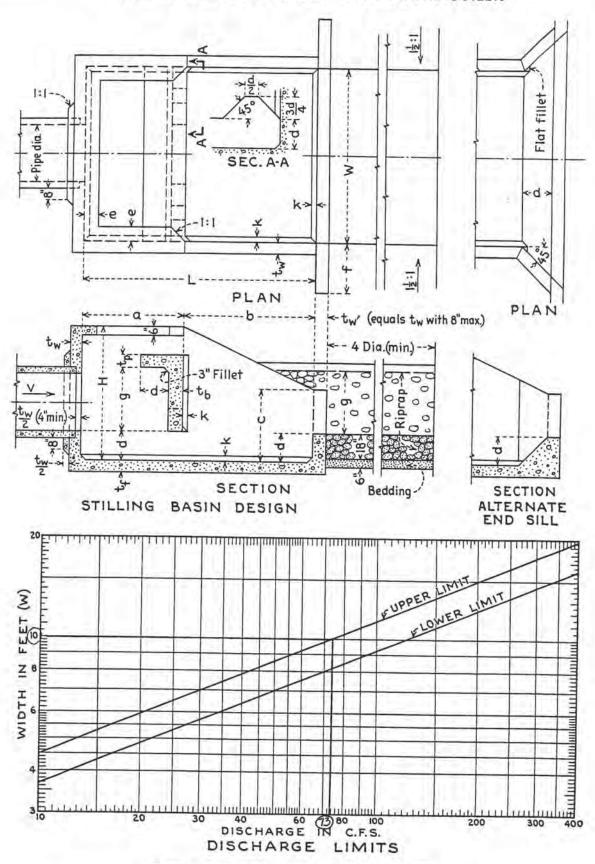


FIGURE 42.-Impact-type energy dissipator (Basin VI).

83

86

÷.

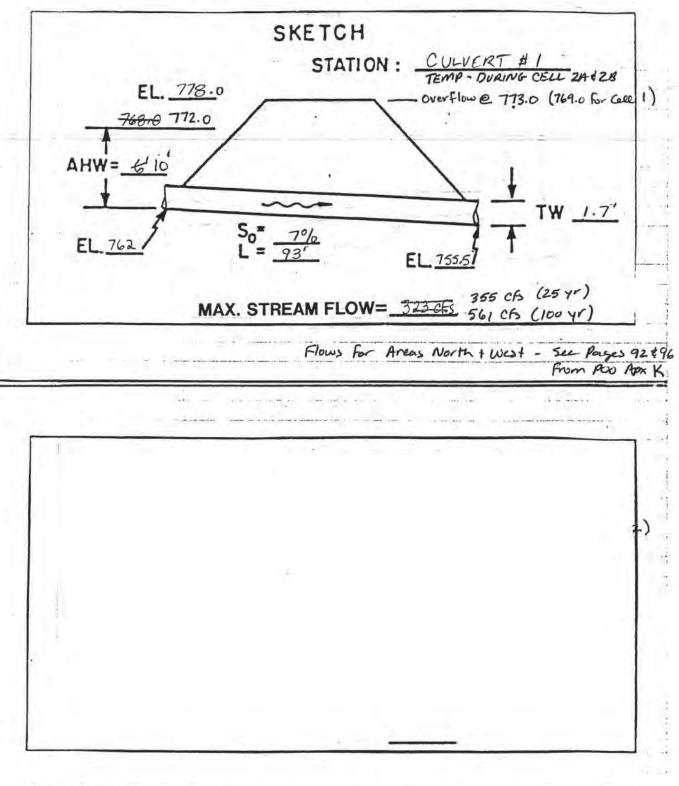
HYDRAULIC DESIGN OF STILLING BASINS AND ENERGY DISSIPATORS

	1		dis-													-	Callon		
	Dia In.	Area (sq ft)	cliarge Q	M	п	Г	đ	q	o	p	e	1	8	3	t,	th	t,	ж	Suggest
1	(1)	(2)	(3)	(4)	(2)	(9)	(2)	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	t (61)
	18	1.77	2 21	5-6	4-3	7-4	3-3	4-1	2-4	0-11	0-6	1-6	2-1	4	616	4	4	6	
	24	3.14	38	6-9	5-3	0-6	3-11	5-1	2-10	1-2	0-6	5-0	9-6	2	612	2 4	2 4	0 0	
	30	4.91	69	8-0	6-3	10-8	4-7	1-9	3-4	1	0-8	2-6	3-0-2	9 4	615			0 0	1
73ch3	₩ 36	7.07	85	9-3	7-3	12-4	5-3	1-2	3-10	1-7	0-8	3-0	3-6		211	- 0	- 0	0 0	
	42	9.62	115	10-6	8-0	14-0	0-9	8-0	4-5-	1-9	0-10	3-0	3-11	- 0	010		0 0	0 4	
	48	12.57	151	11-9	0-6	15-8	6-9	8-11	4-11	2-0	01-0	5-0	110	0 0	017		0 0	* -	
	54	15.90	101	13-0	6-6	17-4	7-4	10-0	2-2	2-2	1-0	3-0	11-1	01	1012		0 0	* *	
	60	19.63	236	14-3	10-9	19-0	8-0	11-0	5-11	2-5	9	3-0	5-4	11	1114		0 0	+ 4	
	72	28. 27	339	16-6	12-3	22-0	9-3	12-9	6-11	2-9	1-3	3-0	6-2	12	12%	12	0 00	9	14.0

TABLE 11.-Stilling basin dimensions (Basin VI). Impact-type energy dissipator.

1 Suggested pipe will run full when velocity is 12 feet per second or half full when velocity is 24 feet per second. Size may be modified for other velocities by Q=AV, but relation between Q and basin dimensions shown must be maintained.

³ For discharges less than 21 second-feet, obtain basin width from curve of Fig. 42. Other dimensions proportional to W; $H = \frac{3W}{4}$, $L = \frac{4W}{3}$, $d = \frac{W}{6}$, etc.

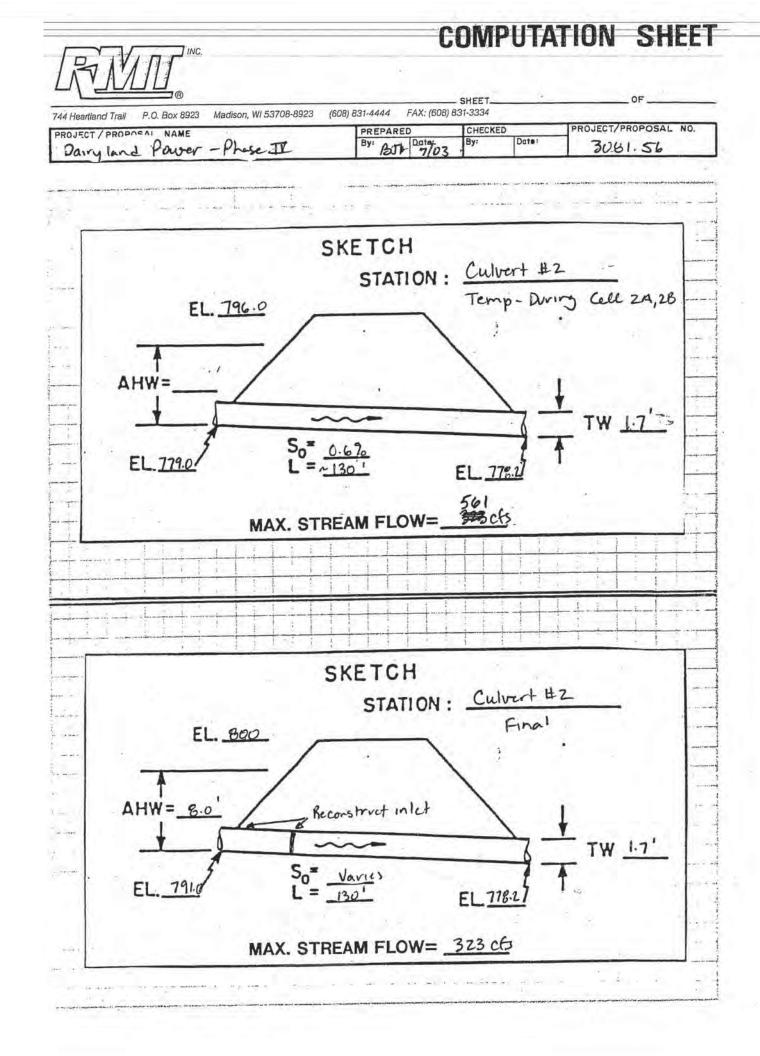

¹ Determination of riprap size explained in Sec. 10.

Calculations – Temporary Culverts, Operational Conditions

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024

COMPUTATION SHEET JINC. SHEET OF 744 Heartland Trail P.O. Box 8923 Madison, WI 53708-8923 (608) 831-4444 FAX: (608) 831-3334 PROJECT / PROPOSAL NAME CHECKED PREPARED PROJECT/PROPOSAL NO. By: BJA Dotayo Date: DPC - PLAN OF OPERATION By: 3081.40 REV 7/03

Culvert Calculator Report Culvert 1 - Operational (25-Year)


Solve For: Headwater Elevation

Culvert Summary Allowable HW Elevation	773.00 ft		1.01	-
Computed Headwater Elevation	769.75 ft	Headwater Depth/ Height	1.94 355.00	
Inlet Control HW Elev	769.18 ft	Discharge Tailwater Elevation	757.20	1.010
Outlet Control HW Elev	769.75 ft	Control Type	Entrance Control	n
Grades				-
Upstream Invert	762.00 ft	Downstream Invert	755.50	ft
Length	93.00 ft	Constructed Slope	0.069892	ft/ft
Hydraulic Profile				
Profile	S2	Depth, Downstream	2.10	ft
Slope Type	Steep	Normal Depth	1.58	ft
Flow Regime	Supercritical	Critical Depth	4.00	ft
Velocity Downstream	24.17 ft/s	Critical Slope	0.008921	ft/ft
Section				
Section Shape	Box	Mannings Coefficient	0.013	
Section Material	Concrete	Span	7.00	ft
Section Size	7 x 4 ft	Rise	4.00	ft
Number Sections	1			
1				
Jutlet Control Properties		and the second second		
Outlet Control HW Elev	769.75 ft	Upstream Velocity Head	2.50	ft
Ke	0.50	Entrance Loss	1.25	ft
nlet Control Properties				
inlet Control HW Elev	769.18 ft	Flow Control	Submerged	1.7
Inlet Type 18 to 33.7 ° wingwall	flare, d=0.0830	Area Full	28.0	ft²
<	0.48600	HDS 5 Chart	9	
M	0.66700	HDS 5 Scale	2	
C	0.02490	Equation Form	2	
Y	0.83000			

Culvert Calculator Report Culvert 1 - Operational (100-Year)

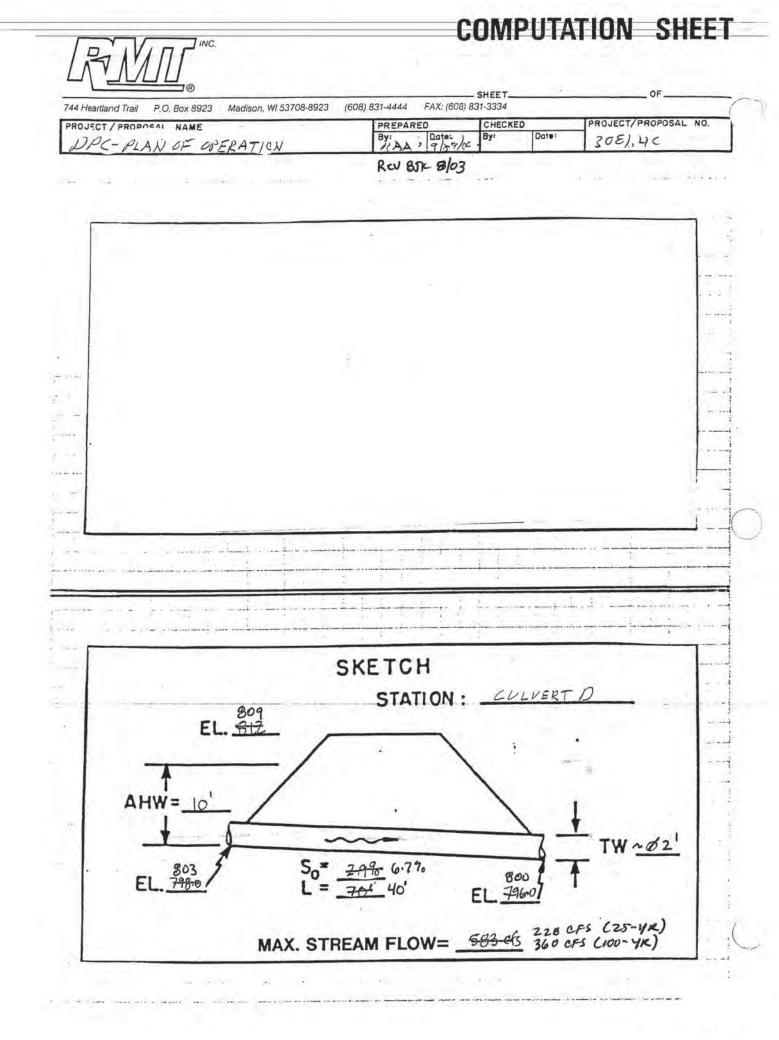
Joive For: Headwater Elevation

Culvert Summary					_
Allowable HW Elevation	1		Headwater Depth/ Height	3.34	
Computed Headwater Elevation				561.00	
Inlet Control HW Elev	54.534.65			757.20	ft
Outlet Control HW Elev	775.36	ft	Control Type	Entrance Control	-
Grades					
Upstream Invert	762.00	ft	Downstream Invert	755.50	ft
Length	93.00	ft	Constructed Slope	0.069892	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	2.93	ft
Slope Type	Steep		Normal Depth	2.18	fť
Flow Regime	evation 775.36 ft Discharge 561.0 775.18 ft Tailwater Elevation 757.2 775.36 ft Control Type Entrance Control 762.00 ft Downstream Invert 755.5 93.00 ft Constructed Slope 0.06985 762.00 ft Downstream Invert 755.5 93.00 ft Constructed Slope 0.06985 S2 Depth, Downstream 2.5 Steep Normal Depth 2.1 Supercritical Critical Depth 4.0 27.37 ft/s Critical Slope 0.02227 Box Mannings Coefficient 0.01 Concrete Span 7.0 1 Tise 4.0 1 775.36 ft Upstream Velocity Head 6.2 0.50 Entrance Loss 3.1 775.18 ft Flow Control Submerge	4.00	ft		
Velocity Downstream	27.37	ft/s	Critical Slope	0.022277	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.013	in.
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 4 ft		Rise	4.00	ft
Number Sections	1				
)					
Sutlet Control Properties					
Outlet Control HW Elev		ft	the second s	6.24	
Ke	0.50		Entrance Loss	3.12	ft
Inlet Control Properties					
nlet Control HW Elev		ft	Flow Control	Submerged	
nlet Type 18 to 33.7 ° wingwall	flare, d=0.0830		Area Full	28.0	ft2
к	0.48600		HDS 5 Chart	9	
M	0.66700		HDS 5 Scale	2	
C	0.02490		Equation Form	2	
Y	0.83000				

Culvert Calculator Report Culvert 2 - Operational

Suive For: Headwater Elevation

Culvert Summary				
Allowable HW Elevation	796.00 ft	Headwater Depth/ Height	3.86	
Computed Headwater Elevation	794.45 ft	Discharge	561.00	cfs
Inlet Control HW Elev	792.30 ft	Tailwater Elevation	779.90	ft
Outlet Control HW Elev	794.45 ft	Control Type	Outlet Control	<u> </u>
Grades				
Upstream Invert	779.00 ft	Downstream Invert	778.20	ft
Length	130.00 ft	Constructed Slope	0.006154	ft/ft
Hydraulic Profile	-			
Profile	Box Mannings Coefficient 0.013 Concrete Span 7.00 N/A Critical Slope 0.006154 Pressure Depth, Downstream 4.00 N/A Normal Depth N/A N/A Critical Depth 4.00 N/A Critical Depth 0.022277 Box Mannings Coefficient 0.013 Concrete Span 7.00 1 Pressure 0.013 Concrete Span 7.00 1 Pressure 0.013 Concrete Span 7.00 1 Press 4.00 1 Press 4.00 1 Example 0.013 Concrete Span 7.00 1 Press 4.00 1 Example 4.00 1 Example 4.00 1 Example 4.00 1 Example 4.00 1 Example		ft	
Slope Type	N/A	Normal Depth	N/A	ft
Flow Regime	N/A	Critical Depth	4.00	ft
Velocity Downstream	20.04 ft/s	Critical Slope	0.022277	ft/ft
Section				
Section Shape	Box	Mannings Coefficient	0.013	
Section Material	Concrete	Span	7.00	ft
Section Size	7 x 4 ft	Rise	4.00	ft
Number Sections	1			
			Contraction of the	
outlet Control Properties				
Outlet Control HW Elev	794.45 ft	Upstream Velocity Head	6.24	ft
Ke	0.50	Entrance Loss	3.12	ft
nlet Control Properties				
Inlet Control HW Elev	792.30 ft	Flow Control	Submerged	1.00
Inlet Type 18 to 33.7 ° wingwall fla	are, d=0.0830	Area Full	28.0	ft ²
ĸ	0.48600	HDS 5 Chart	9	
M	0.66700	HDS 5 Scale	2	
C	0.02490	Equation Form	2	
Y	0.83000			


.

Culvert Calculator Report Culvert 2 - Final

Solve For: Headwater Elevation

Culvert Summary					
Allowable HW Elevation	799.00	ft	Headwater Depth/ Height	1.78	
Computed Headwater Elevation	798.10	ft	Discharge	323.00	cfs
Inlet Control HW Elev	797.44	ft	Tailwater Elevation	779.90	ft
Outlet Control HW Elev	798.10	ft	Control Type	Entrance Control	
Grades		-			
Upstream Invert	791.00	ft	Downstream Invert	778.20	ft
Length	130.00	ft	Constructed Slope	0.098462	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.60	ft
Slope Type	Steep		Normal Depth	1.32	ft
lydraulic Profile Profile S2 Slope Type Steep Flow Regime Supercritical Velocity Downstream 28.87 ft/s Section Shape Box Section Shape Box Section Shape Soc Section Size 7 x 4 ft Sumber Sections 1 Dutlet Control Properties			Critical Depth	4.00	ft
Velocity Downstream	28.87	ft/s	Critical Slope	0.007385	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 4 ft		Rise	4.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	798.10	ft	Upstream Velocity Head	2.07	ft
Ke	0.50	-	Entrance Loss	1.03	ft
Inlet Control Properties					
Inlet Control HW Elev	797.44	ft	Flow Control	Submerged	
Inlet Type 18 to 33.7 ° wingwall	flare, d=0.0830		Area Full	28.0	ft ²
к	0.48600		HDS 5 Chart	9	
M	0.66700		HDS 5 Scale	2	
С	0.02490		Equation Form	2	
Y	0.83000				

Page 1 of 1

Culvert Calculator Report Culvert D - 25 Year

olve For: Headwater Elevation

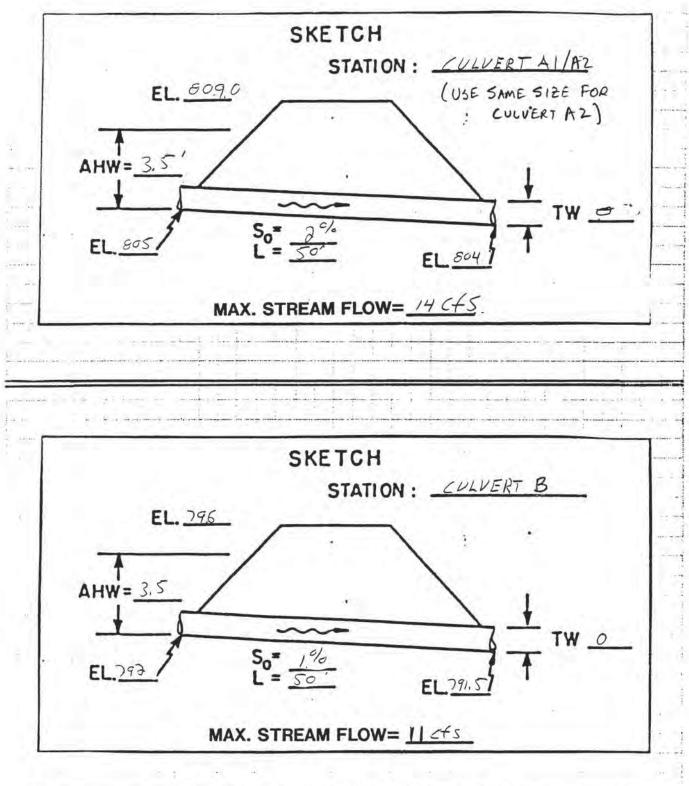
Culvert Summary					
Allowable HW Elevation	809.00	ft	Headwater Depth/ Height	1.40	
Computed Headwater Elevation 808.61		ft	Discharge	228.00	cfs
Inlet Control HW Elev	807.84	ft	Tailwater Elevation	802.00	ft
Outlet Control HW Elev	808.61	ft	Control Type	Entrance Control	
Grades					
Upstream Invert	803.00	ft	Downstream Invert	800.00	ft
Length	45.00	ft	Constructed Slope	0.066667	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.74	ft
Slope Type	Steep		Normal Depth	1.19	ft
Flow Regime	Supercritical		Critical Depth	3.21	ft
Velocity Downstream	18.70	ft/s	Critical Slope	0.003975	ft/ft
Section					-
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 4 ft.		Rise	4.00	ft
Number Sections	1				
	2				
Outlet Control Properties					
Outlet Control HW Elev	808.61	ft	Upstream Velocity Head	1.60	ft
Ke	0.50		Entrance Loss	0.80	ft
nlet Control Properties					_
inlet Control HW Elev	807.84	ft	Flow Control	Submerged	
nlet Type 18 to 33.7 ° wingwall t	lare, d=0.0830		Area Full	28.0	ft2
K.	0.48600		HDS 5 Chart	9	
M	0.66700		HDS 5 Scale	2	
C	0.02490		Equation Form	2	
Y	0.83000				

Culvert Calculator Report Culvert D - 100 Year

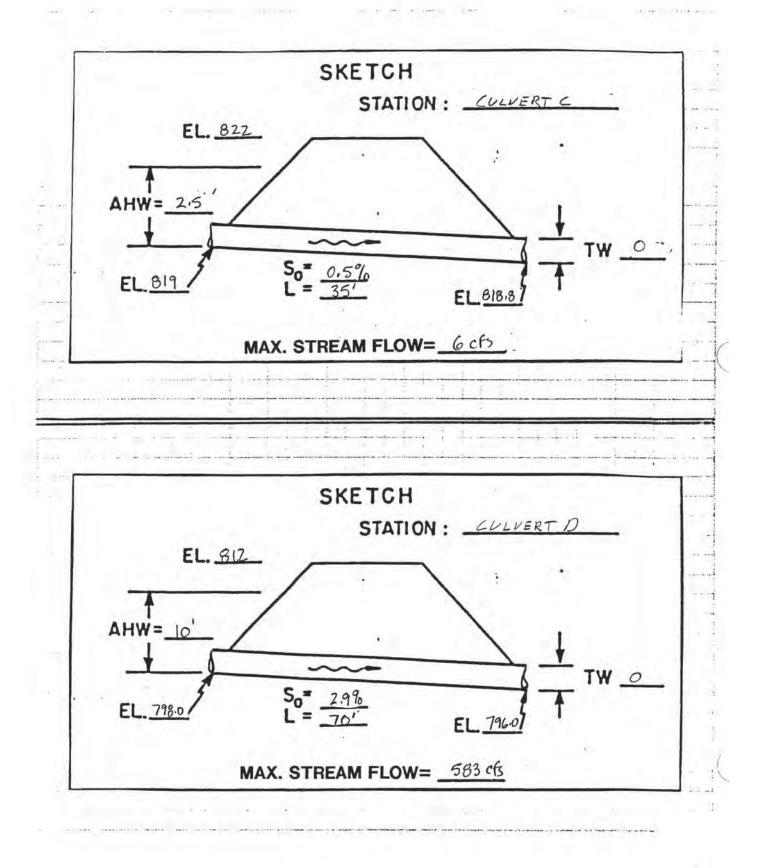
olve For: Headwater Elevation

Culvert Summary					
Allowable HW Elevation	809.00	10	Headwater Depth/ Height	1.96	
Computed Headwater Elevation	810.85	ft	Discharge	360.00	cfs
Inlet Control HW Elev	810.30	ft	Tailwater Elevation	802.00	ft
Outlet Control HW Elev	810.85	ft	Control Type	Entrance Control	<u>.</u>
Grades					
Upstream Invert	803.00	ft	Downstream Invert	800.00	ft
Length	45.00	ft	Constructed Slope	0.066667	ft/ft
Hydraulic Profile				1.000	
Profile	S2		Depth, Downstream	2.52	ft
Slope Type	Steep		Normal Depth	1.63	ft
Flow Regime	Supercritical		Critical Depth	4.00	ft
Velocity Downstream	20.38	ft/s	Critical Slope	0.009174	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.013	<u>e</u> ~1
Section Material	Concrete		Span	7.00	ft
Section Size	7 x 4 ft		Rise	4.00	ft
Number Sections	1	-			
)		_			
Jutlet Control Properties		-			
Outlet Control HW Elev	810.85	ft	Upstream Velocity Head	2.57	ft
Ke	0.50	-	Entrance Loss	1.28	ft
nlet Control Properties					
Inlet Control HW Elev	810.30	ft	Flow Control	Submerged	1.7
nlet Type 18 to 33.7 ° wingwall	flare, d=0.0830		Area Full	28.0	ft ²
K	0.48600		HDS 5 Chart	9	
M	0.66700		HDS 5 Scale	2	
C	0.02490		Equation Form	2	
Y	0.83000				

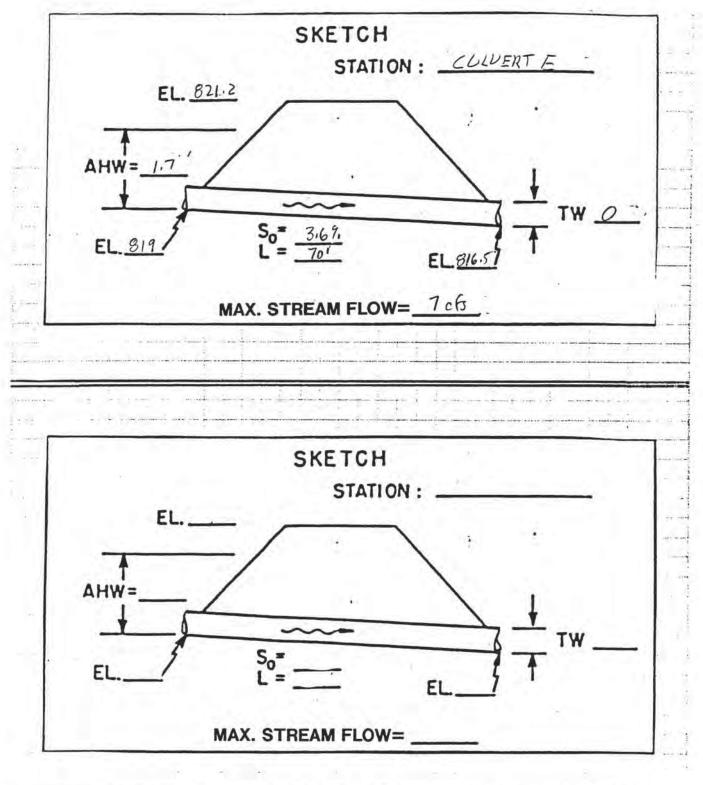
Culvert Calculator Report Flume MH


Solve For: Headwater Elevation

(


Culvert Summary		1	≥ 827.5, adjacent pipe in	rlet	
Allowable HW Elevation	8.00		Headwater Depth/ Height	1.98	
Computed Headwater Elev	ation 825.18	ft	Discharge	73.00	cfs
Inlet Control HW Elev	825.18	ft	Tailwater Elevation	780.67	ft
Outlet Control HW Elev	824.72	ft	Control Type	Inlet Control	
Grades				-	
Upstream Invert	819.25	ft	Downstream Invert	779.00	ft
Length	185.00	ft	Constructed Slope	0.217568	ft/ft
Hydraulic Profile		-	2		
Profile	S2		Depth, Downstream	0.91	ft
Slope Type	Steep		Normal Depth	0.86	ft
Flow Regime	Supercritical		Critical Depth	2.70	ft
Velocity Downstream	40.57	ft/s	Critical Slope	0.006248	ft/ft
Section			A		
Section Shape	Circular	-	Mannings Coefficient	0.010	
Section Material	PVC		Span	3.00	ft
Section Size	36 inch		Rise	3.00	ft
Number Sections	1				
1					
Outlet Control Properties					
Outlet Control HW Elev	824.72	ft	Upstream Velocity Head	1.85	ft
Ke	0.50		Entrance Loss	0.92	ft
Inlet Control Properties					
Inlet Control HW Elev	825.18	ft	Flow Control	Submerged	14
Inlet Type So	quare edge w/headwall		Area Full	7.1	ft²
к	0.00980		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale		
С	0.03980		Equation Form		
Y	0.67000				

I WIRKER JUPPLY LARRY WOOD 262 -255- 3030 lid and 500 5/27/03 5 GEVEN 7 VF BARREL PLATE I" 2200 - 2,500 (inch. \$500 for lid) ER TO PLAN SHEET 6) 3.75' 400 SERIES POINT SEE PLAN SHEETS 5 & 6 SE 500 SERIES POINT V 825.19 1% SLOPE 824.0 SEE PLAN SHEETS 5 & 6 ELEVATION VARIES MIN. 82275 320,7 N MIN. (GCL) LEACHATE GEOTEXTILE CUSHION COLLECTION/ 319.25 60 MIL HDPE GEOMEMBRANE -SYSTEM 2' MIN SEE DETAIL (COMPACTED SELECT LOW PERMEABILITY SOIL


RAN					UMPUI	AITUN SHEET
744 Heartland Trail	P.O. Box 8923	Madison, WI 53708-8923	(608) 831-444	4 FAX: (608)	- SHEET	OF
PROJECT / PROP		PERATION	PREP By: SAL		CHECKED	PROJECT/PROPOSAL NO. 3CE/,40

LANDI "NC.		UNIPUTA	ATION SHEET
744 Heartland Trail P.O. Box 8923 Madison, WI 53708-8923 (60	08) 831-4444 FAX: (608) 8	SHEET	OF
DPC-PLAN OF OBERATION	By: Date:	CHECKED By: Date:	PROJECT/PROPOSAL NO.

RAN	LAND .				JIVIF	014	ATION	SHEEI
744 Heartland Trail	P.O. Box 8923	Madison, WI 53708-8923	(608) 831-4444	FAX: (608) 83	HEET			_ OF
PROJECT / PROP	and the second se	OPERATION	PREPAR By: AA		CHECKED By:	Date:	PROJECT/P 3081,1	PROPOSAL NO.

DESIGNER: UAA	ETCH			Counterro	-	OK	Xo	RECOMMENDED	 	OK
ESIGNE	CH CH		1 3	11100	AE1 00					
	SKETCH	5	STREAM VELOCITY =			5	6			
	0	5 19	So" L"	AM V	MH		ss.e	1.1		9
		IN			LSo		-	0.1		2.0
			MEAN	MAX. STREAM ATION HW=H + h ₀ -LS ₀	04 1.7		54.1	1.6		<u>7</u>
		#MHY	3	151 1	2			0	-	0
		AL .	ω.	1012E	1.7		Shil	1.6		5-1
	N			- 181	141		1.4	6.1		0.0
	ATIC	F	1-	HEADWATER OUTLET	1		1.6	0.8	1	4.0
	ORM	1	0100	HEAD	0.9		0:0	6.0		Fio
	INF	TW ₁ = 1	025 050 0R	INLET CONT.	3.3		m	2.0	1.2	2
.T	ANNEL INFORMATION		E , SAY	INLET	51.1		e	1.0	100	SNOIL
100		TCHES	SCHARG	SIZE	1th C	+	1,81	24"	24"	
5	C ANE	SEE SKETCHES	ESIGN DI	a	14		7	-	0	OMME
PROJECT: 201 C	HYDROLOGIC AND CH	01 = <u>564</u>	(Q1 = DESIGN DISCHARGE , SAY Q25 Q2 = CHECK DISCHARGE , SAY Q50 OR Q100	CULVERT DESCRIPTION ENTRANCE TYPE)	CULVERT A CIND-PROTECTINE		CONVETE CONCRETE	CULVERTB CMP	CULVERT C	REC

<u>,</u> 1

Figure 7

÷

4

DESIGNER: J3AA	DATE: 9/39/00 TCH STATION: SEE SKETCHES				COMMENTS	ok					
L.	9/9-	1	EL		COST	1			-	-	
ESIGNI	DATE: TCH TATION		, , ,	"	ELOCIT.	^			1		-
ā	DATI SKE TCH STATIC	5	LIDCII	VELOCITY=	M H M	1.4			1		
	S	$\langle B $	MEAN STREAM VELOCITY =	AM VE	HW			is			
			STRE	STREAM	$\frac{HW=H+h_0-LS_0}{W}$	215		and			
5.9	E.	116	EAN	ATION	+ H = 04	トニ		1,2			
		MHA .		5	F	0		16413			
		AH -	ц	COMPUTATION	H dc dc+D	1:1		cue			-
	z	£.		- 12	que la	0.8					-
	INFORMATION	1	1~	HEADWATER	H	0.4		PERMARNI	1	1	-
	ORM		0100	HEAD	×	6.0		PER		T	
	INF	TW, =	25 50 OR	INLET CONT	MH	1.4		U 15			1
<u>,</u>	NEL	11	SAY Q	TET	No	1.0	1	Few	+	+	
100	HAN	S	ARGE	14			-	SAME	+	+	VIION
1	ND C	TCH	DISCH	3/12		24"	1		-		VEND
CPC -	IC A	XX	DESIGN	0		7		583			COMN
PROJECT: LIPC	HYDROLOGIC AND CHANNEL	01 = <u>SEE SKE</u> TCHES	(Q1 = DESIGN DISCHARGE , SAY Q25 (Q2 = CHECK DISCHARGE , SAY Q50 OR 0100	CULVERT DESCRIPTION	LULVERTE	Chip-pile JECTINK		CULVERT D 7'XY'BOX			SUMMARY & RECOMMENDATIONS

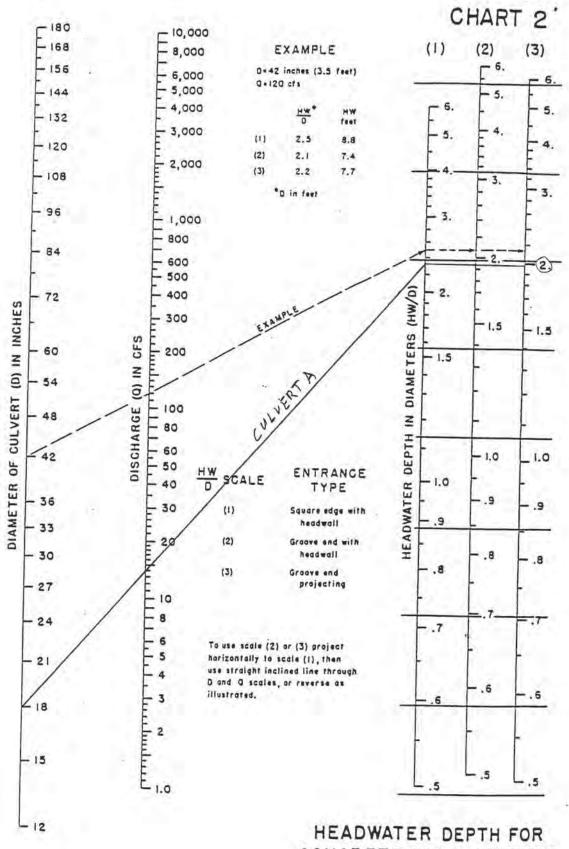
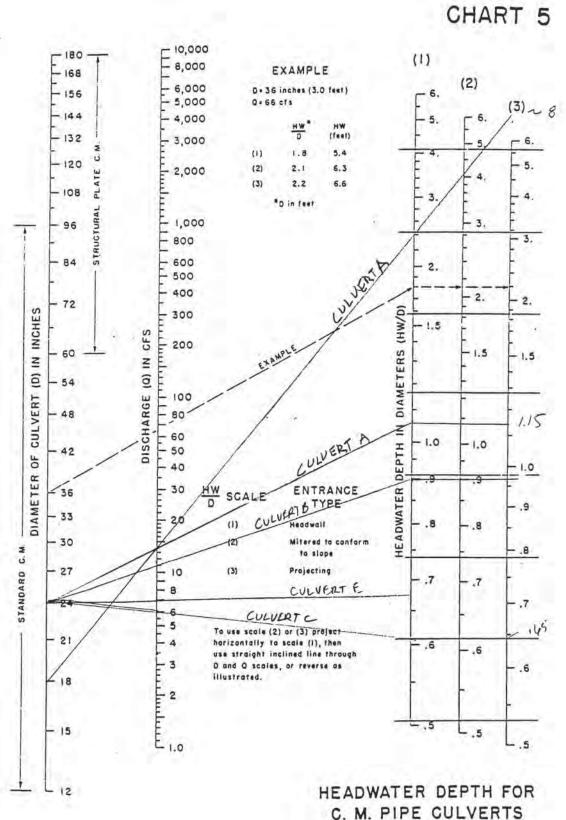

8

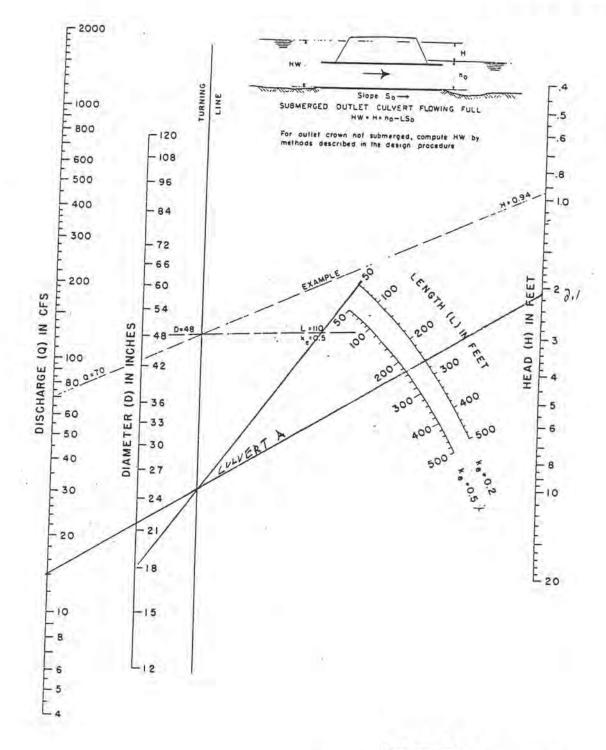
Figure 7

ŝ


.

-

0.770


CONCRETE PIPE CULVERTS WITH INLET CONTROL

.

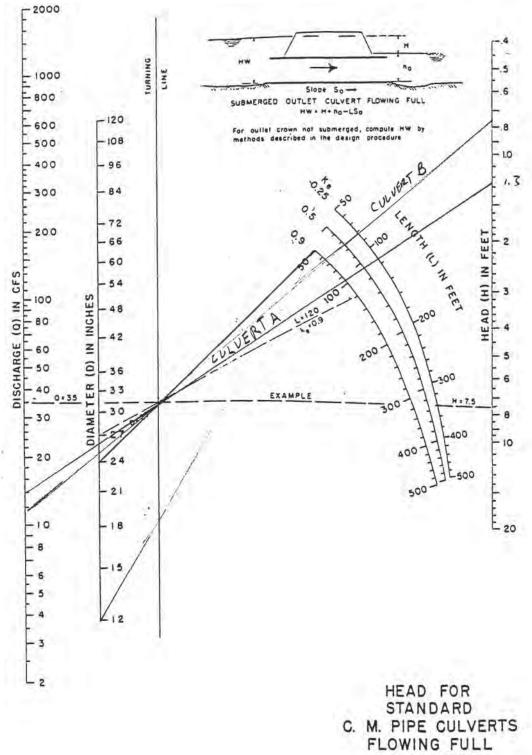

WITH INLET CONTROL

CHART 9

HEAD FOR CONCRETE PIPE CULVERTS FLOWING FULL n=0.012

CHART H

n=0.024

4.0 1.4 3.0 de CANNOT EXCEED TOP OF PIPE 0.0 O'DIA. CULVERTA" C/E 10 DISCHARGE-Q-CFS CULVERT B + CRITICAL DEPTH-d_FEET CRITICAL DEPTH-dc-FEET de CANNOT EXCEED TOP OF PIPE +7 6' 5' 4'DIA DISCHARGE -Q - CFS T de CANNOT EXCEED TOP OF PIPE 43' 9' DIA 10.00 DISCHARGE - Q - CFS

CRITICAL DEPTH CIRCULAR PIPE

CHART I'6

TABLE 1 - ENTRANCE LOSS COEFFICIENTS

Outlet Control, Full or Partly Full

Entrance head loss $H_e = k_e \frac{v^2}{2g}$

Type of Structure and Design of Entrance

Coefficient ke

٩.

Pipe, Concrete

4 . 10

New York

. th

24

8

1. A. A.

1.

Projecting from fill, socket end (groove-end)				0.2
Projecting from fill, sq. cut end	4		÷ .	0.51
Headwall or headwall and vingwalls Socket end of pipe (groove-end)	1			0.2
Square-edge			1997 - M	0.5
Rounded (radius = 1/12D)	÷	•	• •	0.2
Mitered to conform to fill slope *End-Section conforming to fill slope				0.7
Beveled edges, 33.7° or 45° bevels				0.5
Side-or slope-tapered inlet				0.2
	1.20	1	2	

Pipe, or Pipe-Arch, Corrugated Metal

Projecting from fill (no headwall)	0.9
Headwall or headwall and wingwalls square-edge	0:5
Mitered to conform to fill slope, paved or unpaved	
• slope	0.7
*End-Section conforming to fill slope	0.5
Beveled edges, 33.7° or 45° bevels	0.2
Side-or slope-tapered inlet	0.2

Box, Reinforced Concrete

Headwall parallel to embankment (no wingwalls)	
Square-edged on 3 edges	0.5
dimension, or beveled edges on 3 sides	0.2
Wingvalls at 30° to 75° to barrel	
Square-edged at crown	0.4
Crown edge rounded to radius of 1/12 barrel	
dimension, or beveled top edge	0.2
Wingwall at 10° to 25° to barrel	
Square-edged at crown	0.5
Wingwalls parallel (extension of sides)	0.9
Square-edged at crown	07
Side of class to and the	0.7
Side-or slope-tapered inlet	0.2

*Note: "End Section conforming to fill slope," made of either metal or concrete, are the sections commonly available from manufacturers. From limited hydraulic tests they are equivalent in operation to a headwall in both inlet and outlet control. Some end sections, incorporating a closed taper in their design have a superior hydraulic performance." These latter sections can be designed using the information given for the beveled inlet, p. 5-13.

Vegetation Information

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024

\madison-vfp\Records\-\WPMSN\PJT2\525154\0000\R5251540000-004_Control Plan.docx

1016198

***************************************	**********	
	ER.IV - SLOPE PROTECTION - ENGLISH ANENT PROTECTION RESULTS	
**********	*********	
	<i></i>	
PROJECT NAME: Dairyland Power Coop. COMPUTED BY: BJK	PROJECT NO.: 3081.33	
SLOPE DESCRIPTION: 2:1 Slopes	DATE: 10-06-1998	
/		
Slope Gradient: 2.00:1	Slope Length: 50 feet	
Soil Type: Clay Loam (K= 0.21) -	Annual R Factor: 125.0	
Slope Reach Material Type Densit feet	ty LS C	
	1	
0 - 30 Est.Veg. Mix 75-95% 30 - 50 P300 Mix 75-95%		
50 - 50 F500 MIX 75-954	£ 7.35 .002	
Slope Reach Material Type Densit	y ASLbare ASLmat SLT Sf Recommend	
feet	inch inch inch	
0 - 30 Est. Veg. Mix 75-95%	0.641 0.013 0.03 2.3 STABLE	For slope's 0'-30' Use Mix No. 20 Vegetation
30 - 50 P300 Mix 75-95%		NO. 20 Vegetation
0 - 50 Composite	0.844 0.009	For slopes > 30', use permanant
	0.844 0.009	Prosing matters on batton
Vegetation Density=Percentage of soil c	overage provided by vegetation	erosion matting on bottom Portion of slope (below 30')
C=Cover material performance factor (Fr	action of soil loss of unprotected)	
ASLbare=Average Soil Loss potential of		And No. 20 Vesetation on
ASLmat=Average Soil Loss potential w/ma	terial (uniform inches)	upper portion

SLT=Soil Loss Tolerance for slope segment (uniform inches) Sf=Safety Factor

Composite=Average soil loss from total slope length (uniform inches)

- See Attached For Vegetation Types

65	ercent	. No. No. 60 70			e				12	15	151	12 5	30		35	4	4			80	25	nber 1. or mixtures ss otherwise oam, heavy
	ixture Proportions, Percent	No. No. 40 50	35	20	20	+	+	-		+	-	-	_				_		100			ar Septen mixture ind unle.
	re Propo	No. N 30	10	30 2	25 22	+	10	+	+	-	+	+	-	2	3	-	+	+	-	-		arted afte he seed gineer, a vhere a
sadois	Mjxtu	No. 20	0		24	40		+	+	\vdash	+	-	30			+	+	-	9	-	\square	tings sta ion of t the eng the fo ojects v
Ditches	╢╛	No. 10	40	25				s					20		+	+	+	10	-	-	$\left \right $	all plan selecti oval of ce with on pro
	Germi-	nation min.%	80	85	85	85	85	85	90	PLS*	PLS*	PLS*	8	85	8	8	8	90	80	85	8	uls oats in fa Used. The h the appro- accordance ed for use
	Purity		85	6	67	88	88	92	98				67	96	67	67	98	95	95	67	98	eat for annu urre to be 1 Il meet wit shall be in is intender ninate. is intender
		Species	Kentucky Bluegrass	Red Fescue	Hard Fescue	Tall Fescue	Salt Grass	Redtop	Timothy	Little Bluestem	Sideoats Grama	Canada Wild Rye	Perennial Ryegrass	Improved Fine Perennial Ryegrass	Annual Ryegrass	Alsike Clover	Red Clover	White Clover	Birdsfoot Trefoil	Japenese Millet	Annual Oats*	 Substitute winter wheat for annual oats in fall plantings started after September 1. 630.2.1.5.1.1.2 Mixture to be Used. The selection of the seed mixture or mixtures for use on the project shall meet with the approval of the engineer, and unless otherwise provided in the contract, shall be in accordance with the following: Seed Mixture No. 10 is intended for use on projects where average loam, heavy edg or moist soils predominate.
			1	1	1	1	ł	1	1	1	1	1	1			1				-		Proving Clay C
Accentable	Varieties	Creeping		Immoved turf tone	Fult's										1 I					-		for us Provi
Species		Kentucky Bluegrass Poa pratensis Red Fescue Festuca rubra Creeping	Hard Fescue Festuca ovina Improved	var. duruscula Tall Fescue	Salt Grass	RedtopAgrostis alba	Little Bluestem*	Sideoats Grama* Bouteloua curtipendula	Canada Wild Rye*	Perennial Ryegrass Lolium perenne	Annual Ryegrass	Alsike Clover	White Clover Trifolium repens	Birdsfoot Trefoil Lotus corniculatus	var. frumentacea Annual OatsAnnual Oats	Alfalfa Medicago sativa	Bromegrass			Winter Wheat		

630

			¥.	<u>v </u>
STATE OF WISCONSIN DEPARTMENT OF TRANSPORTATION	DARD	JR	HIGHWAY AND STRUCTURE DNSTRUCTION	LIBRARY BG-00019.27 TTD 0 3 100
STATE OF V DEPARTMENT OF	STANDARD SPECIFICATIONS	FOR	HIGHWAY AND STRUCTURE CONSTRUCTION	NOIL LING OF THE NOIL THE THE PARTINE
	×			*
	in L			

****** VEGETATION SELECTION ***** ***** North American Green *****

Region Number: 1

Predominant Soil Type: Clay - Clay Loam

Moisture Regime Conditions: Normal Moisture

Planned Maintenance: Medium - High Maintenance

		Growth	Seed	Rate	
	Longevity	Habit	lb/ac	kg/ha	
Grasses					
Tall Fescue (Festuca arundinacea)	Р	в	200	224	(NO. 20)
Chewings Fescue (Festuca rubra, commutata)	, P	в	120	134	(No.10)
Kentucky Bluegrass (Poa pratensis)	Р	s	80	90	(NO 10, NO. 20)
Perennial Ryegrass (Lolium perenne)	Р	в	160	179	(NO. 10, NO 20)
Annual Ryegrass (Lolium multiflorum)	Α	в	160	179	000.10,100 201
Orchardgrass (Dactylis glomerata)	Р	в	40	45	
Timothy (Phleum pratense)	P	в	80	90	
Creeping Red Fescue (Festuca rubra)	Ρ	s	120	134	
Legumes					
Alsike Clover (Trifolium hybridum)	Р		15	17	
White Dutch Clover (Trifolium repens)	P		5	6	
White Sweet Clover (Melilotus alba)	Ρ		15	17	

1 8.

Appendix B: Surface Water Run-Off Control System Calculations

- Leachate Storage Capacity for the 25-Year 24-Hour Storm Event
- References

Leachate Storage Capacity for the 25-Year 24-Hour Storm Event

708 Heartland Trail, Suite 3000, Madison, WI 53717 • www.TRCsolutions.com

PROJECT / LOCATION: DPC: Alma Offsite Disposal Facility, Phase IV Landfi	PROJECT / PROPOSAL NO.				
SUBJECT: Active Area Leachate Disposal Capacity			421717.0000		
PREPARED BY: B. Kahnk	DATE: 4/27/2021	FINAL	Х		
CHECKED BY: J. Hotstream	DATE: 4/29/2021	REVISION	X		

<u>Purpose</u>: Determine the leachate storage capacity from a 25 year, 24-hour storm event during the critical leachate generation scenario.

Assumptions:

1. Critical leachate generation scenario occurs during the current condition with approximately 12.7 acres are operational (Portions of Cell 2 and the entirety of Cell 3) and approximately 7.6 acres have final cover. (See Figure 1 for this scenario).

2. The 25 year, 24-hour storm event is 5.40 inches (refer to attached sheet).

3. No portion of the leachate drainage layer within the open area is saturated.

4. The leachate drainage sand has a porosity of 30 percent. The bottom ash has a porosity of 25 percent.

5. The minimum thickness of the drainage layer is 1.0 foot.

6. A minimum of 1 foot of bottom ash was installed above the drainage layer in Cell 2A over an area of approximately 2.3 acres.

7.A minimum of 4 feet of bottom ash was installed above the drainage layer during the Cell 3A construction. Using a maximum elevation of 820 feet, this bottom ash covers an area of approximately 2.75 acres.

Method:

1. Determine the volume of rain collected in the open areas during the critical condition from a 25 year, 24-hour storm event.

2. Calculate the available storage volume for leachate in the drainage layer. Due to the slope of the landfill perimeter berm, the capacity of the drainage layer is based on the area of the drainage layer at or below an elevation of 820 feet. Elevation 820 represents the lowest top of berm base grade elevation documented during construction of Cell 3A (refer to attached base grades sheet).

3. The available storage volume within the pipe trenches, transfer piping, and leachate collection tank is ignored.

4. Calculate the available storage volume for leachate in the 4 feet of bottom ash placed above the drainage layer during Cell 3A construction and 1 foot of bottom ash placed above the drainage layer during Cell 2A construction.

5. Calculate the volume of storage required for the 25 year, 24-hour storm event.

708 Heartland Trail, Suite 3000, Madison, WI	53717 • www.TRCsolutions.	com	SHEE	ET 2 OF 3
PROJECT / LOCATION: DPC: Alma Offsite Disposal Facility, Phase IV Land	ndfill		PROJECT / PROPOSAL NO.	
SUBJECT: Active Area Leachate Disposal Capacity			421717.0000	
PREPARED BY: B. Kahnk	FINAL	X		
CHECKED BY: J. Hotstream	DATE: 4/29/2021	REVISION		

Step 1. Determine volume of run-off collected during the 25 year, 24-hour storm event

Area: 12.7 acres - Area open (portions of Cell 2 and the entirety of Cell 3)

Rain Event: 5.43 inches

 $Runoff Volume(ft^{3}): Rain Event (inches) \times \frac{1ft}{12 inches} \times Area (acres) \times \frac{43,560 ft^{2}}{1 acre}$

Runoff Volume: 250,328 cubic feet

Step 2. Calculate the available storage volume for leachate in the drainage layer.

Area:	9.2 acres - see attached base grades plan
Thickness:	1 foot
Porosity:	0.3
C $(C)^{3}$	$43,560 ft^2$

Storage Capacity(ft^3): Area (acres) $\times \frac{43,500 ft^2}{1 \text{ acre}} \times Thickness (foot) \times Porosity$

Storage Capacity: 120,226 cubic feet

Step 3. Ignore storage in pipe trenches, transfer piping and leachate collection tank

Step 4. Calculate the available storage volume in the bottom ash placed above the drainage layer

Cell 2A:		Cell 3A:	
Area:	2.3 acre(s)	Area:	2.75 acre(s)
Thickness:	1 feet	Thickness:	4 feet
Porosity:	0.25	Porosity:	0.25
Storage Capacity(ft Cell 2A:	³): Area (acres) $\times \frac{43,5}{1}$	$\frac{560 ft^2}{acre} \times Thickness (f$	foot) × Porosity
Storage Capacity:	25,047 cubic feet	Storage Capacity:	119,790 cubic feet

Total Storage Capacity (Cell 2A + Cell 3A): 144,837 cubic feet

708 Heartland Trail, Suite 3000, Madison, WI 53717 • www.TRCsolutions.com					
PROJECT / LOCATION: DPC: Alma Offsite Disposal Facility, Phase IV Landfill			PROJECT / PROPOSAL NO.		
SUBJECT: Active Area Leachate Disposal Capacity			421717.0000		
PREPARED BY: B. Kahnk	DATE: 4/27/2021	FINAL	Х		
CHECKED BY: J. Hotstream	DATE: 4/29/2021	REVISION			

Step 5. Calculate the storage required for the 25 year, 24-hour storm event.

Required Storage:

Required Storage = Run Off Volume – Drainage Layer Capacity – Bottom Ash Capacity

Run-Off Volume:	250,328	cubic feet from Step 1
Drainage Layer:	120,226	cubic feet, from Step 2
Bottom Ash:	144,837	cubic feet from Step 4

Required Storage: -14,734 cubic feet

The negative required storage calculated above indicates that there is sufficient storage capacity in the leachate collection drainage layer and the bottom ash that was placed in the cells above the drainage layer to contain the runoff from a 25 year, 24-hour storm event.

References

Dairyland Power Cooperative Run-On and Run-Off Control System Plan Alma Offsite Disposal Facility, Phase IV Landfill – Alma, Wisconsin Final October 2016 Revised January 2024

\madison-vfp\Records\-\WPMSN\PJT2\525154\0000\R5251540000-004_Control Plan.docx

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 8, Version 2 Location name: Alma, Wisconsin, US* Latitude: 44.3657°, Longitude: -91.9171° Elevation: 1074 ft* * source: Google Maps

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_& aerials

PDS-	based poi	nt precipi	tation free					nce inter	vals (in ir	iches) ¹
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	0.366 (0.300-0.455)	0.436 (0.357-0.543)	0.555 (0.453-0.692)	0.657 (0.532-0.822)	0.801 (0.626-1.03)	0.915 (0.697-1.20)	1.03 (0.757-1.38)	1.16 (0.809-1.58)	1.32 (0.887-1.85)	1.45 (0.946-2.0
10-min	0.536 (0.439-0.666)	0.639 (0.523-0.795)	0.813 (0.663-1.01)	0.962 (0.779-1.20)	1.17 (0.917-1.52)	1.34 (1.02-1.75)	1.51 (1.11-2.02)	1.69 (1.19-2.31)	1.94 (1.30-2.71)	2.13 (1.39-3.0
15-min	0.653 (0.535-0.812)	0.779 (0.638-0.969)	0.991 (0.809-1.24)	1.17 (0.950-1.47)	1.43 (1.12-1.85)	1.64 (1.25-2.14)	1.84 (1.35-2.46)	2.06 (1.45-2.82)	2.36 (1.58-3.31)	2.59 (1.69-3.6
30-min	0.908 (0.744-1.13)	1.09 (0.894-1.36)	1.40 (1.14-1.74)	1.66 (1.34-2.08)	2.03 (1.58-2.62)	2.32 (1.76-3.03)	2.62 (1.92-3.49)	2.92 (2.05-4.00)	3.34 (2.24-4.68)	3.66 (2.39-5.1
60-min	1.19 (0.978-1.48)	1.42 (1.16-1.77)	1.82 (1.48-2.27)	2.17 (1.76-2.72)	2.69 (2.12-3.51)	3.13 (2.39-4.11)	3.58 (2.63-4.81)	4.07 (2.86-5.60)	4.76 (3.20-6.70)	5.31 (3.46-7.5
2-hr	1.48 (1.22-1.82)	1.75 (1.44-2.15)	2.23 (1.84-2.76)	2.68 (2.19-3.33)	3.36 (2.67-4.37)	3.94 (3.04-5.15)	4.55 (3.38-6.09)	5.22 (3.70-7.15)	6.18 (4.20-8.66)	6.96 (4.57-9.8
3-hr	1.67 (1.38-2.04)	1.95 (1.62-2.39)	2.48 (2.05-3.05)	2.99 (2.46-3.69)	3.79 (3.04-4.93)	4.48 (3.48-5.86)	5.24 (3.92-7.00)	6.07 (4.33-8.31)	7.28 (4.97-10.2)	8.28 (5.46-11.
6-hr	1.96 (1.64-2.38)	2.28 (1.91-2.77)	2.90 (2.41-3.53)	3.50 (2.90-4.28)	4.47 (3.63-5.79)	5.32 (4.18-6.93)	6.27 (4.73-8.33)	7.32 (5.27-9.96)	8.86 (6.11-12.3)	10.1 (6.74-14.
12-hr	2.23 (1.88-2.68)	2.59 (2.18-3.12)	3.29 (2.76-3.96)	3.96 (3.30-4.79)	5.02	5.96 (4.71-7.68)	6.99 (5.31-9.21)	8.13 (5.90-11.0)	9.80 (6.81-13.5)	11.2 (7.49-15.
24-hr	2.53 (2.15-3.01)	2.91 (2.47-3.46)	3.63 (3.07-4.33)	4.33 (3.64-5.(9)	5.43 (4.47-6.89)	6.40	7.46 (5.72-9.75)	8.65 (6.33-11.6)	10.4 (7.26-14.2)	11.8 (7.97-16.
2-day	2.94 (2.52-3.46)	3.29 (2.81-3.87)	3.97 (3.39-4.69)	4.65 (3.94-5.53)	(4.79-7.25)	6.75 (5.44-8.56)	7.86 (6.08-10.2)	9.10 (6.72-12.1)	10.9 (7.72-14.9)	12.5 (8.48-17.
3-day	3.23 (2.79-3.79)	3.58 (3.08-4.19)	4.26 (3.65-5.01)	4.95 (4.21-5.84)	6.07 (5.07-7.59)	7.07 (5.72-8.91)	8.19 (6.37-10.6)	9.45 (7.01-12.5)	11.3 (8.02-15.3)	12.8 (8.79-17.
4-day	3.48 (3.00-4.05)	3.85 (3.32-4.49)	4.57 (3.93-5.35)	5.28 (4.51-6.21)	6.42 (5.37-7.98)	7.43 (6.03-9.31)	8.55 (6.67-11.0)	9.81 (7.30-12.9)	11.6 (8.29-15.7)	13.2 (9.04-17.
7-day	4.09 (3.56-4.73)	4.59 (3.99-5.31)	5.48 (4.75-6.37)	6.30 (5.42-7.35)	7.54 (6.31-9.20)	8.58 (6.97-10.6)	9.70 (7.58-12.3)	10.9 (8.15-14.2)	12.6 (9.03-16.9)	14.0 (9.70-19.
10-day	4.64 (4.05-5.34)	5.24 (4.57-6.03)	6.27 (5.45-7.24)	7.17 (6.20-8.32)	8.50 (7.11-10.3)	9.58 (7.80-11.7)	10.7 (8.39-13.4)	11.9 (8.91-15.4)	13.6 (9.73-18.1)	14.9 (10.4-20.
20-day	6.27 (5.53-7.14)	7.04 (6.19-8.02)	8.32 (7.29-9.51)	9.40 (8.19-10.8)	10.9 (9.19-13.0)	12.1 (9.95-14.7)	13.4 (10.6-16.6)	14.7 (11.0-18.7)	16.4 (11.8-21.6)	17.7

T

7.70

(6.82 - 8.72)

9.58

(8.53 - 10.8)

11.2

(10.0-12.6)

30-day

45-day

60-day

8.60

(7.61 - 9.75)

10.7

(9.51 - 12.1)

12.6

(11.2-14.1)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

11.3

(9.91 - 12.9)

13.9

(12.3-15.8)

16.3

(14.4-18.5)

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

13.0

(11.0-15.3)

15.9

(13.4 - 18.5)

18.5

(15.7-21.4)

143

(11.8 - 17.2)

17.3

(14.3-20.6)

20.1

(16.6-23.7)

15.7

(12.4 - 19.3)

18.8

(14.9-22.9)

21.5

(17.1-26.1)

17.0

(12.9 - 21.6)

20.2

(15.3-25.3)

22.9

(17.4-28.7)

18.8

(13.6-24.6)

21.9

(15.9 - 28.5)

24.7

(18.0-31.8)

20.2

(14.2 - 26.9)

23.3

(16.4-30.8)

25.9

(18.4-34.2)

Back to Top

10.1

(8.89-11.5)

12.5

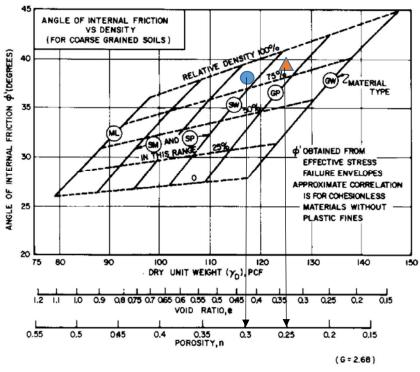
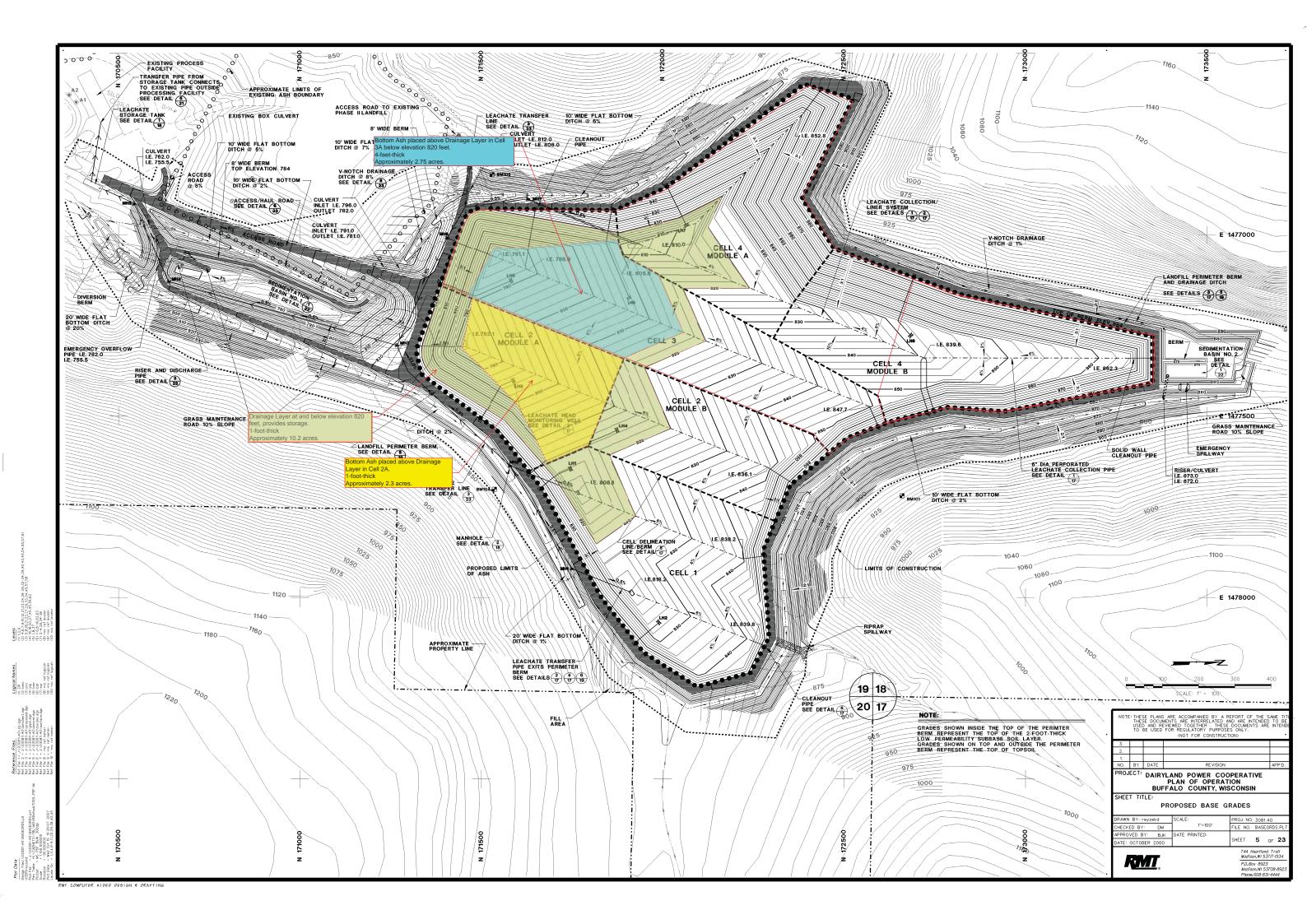
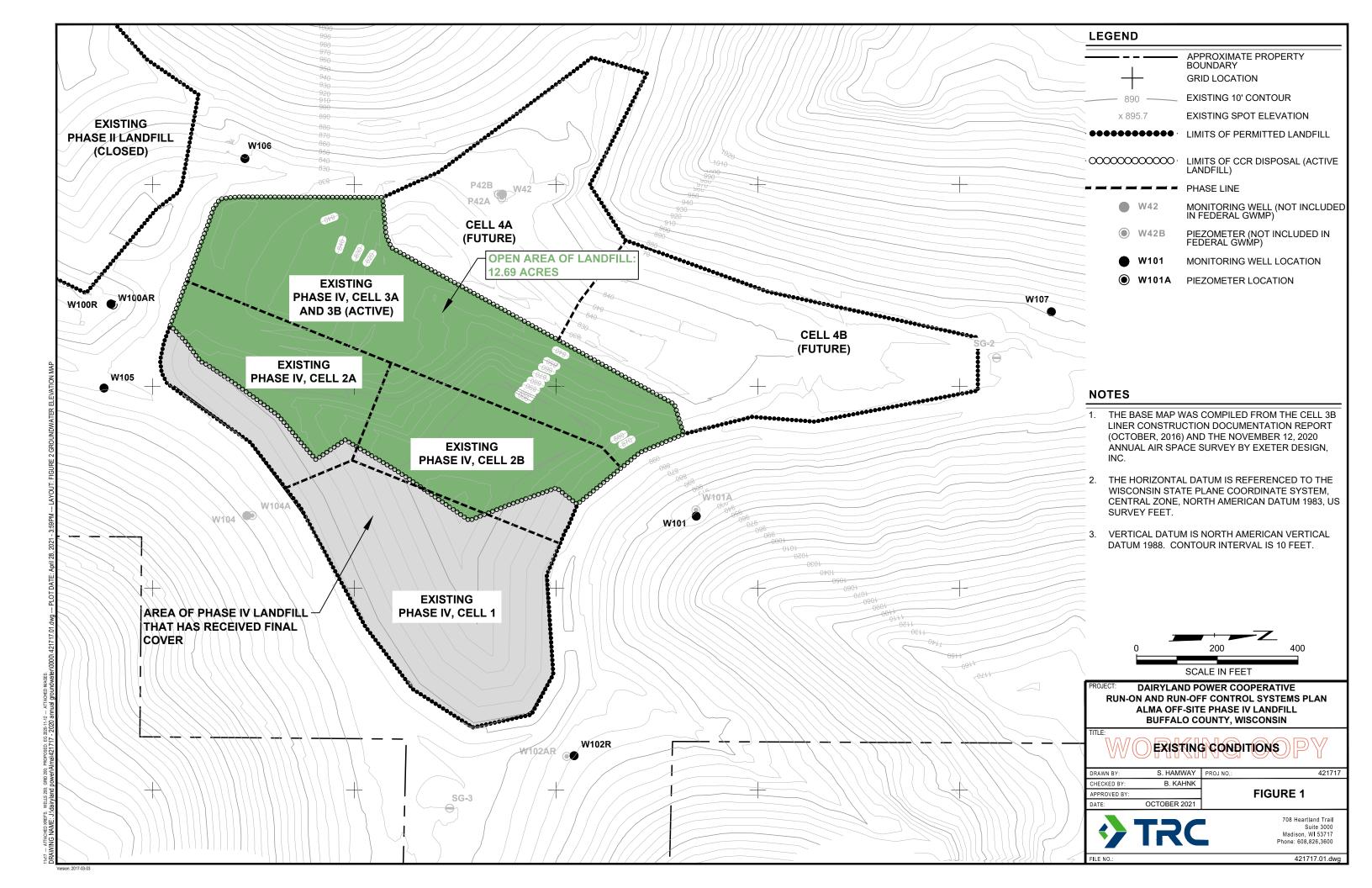
(11.1 - 14.1)

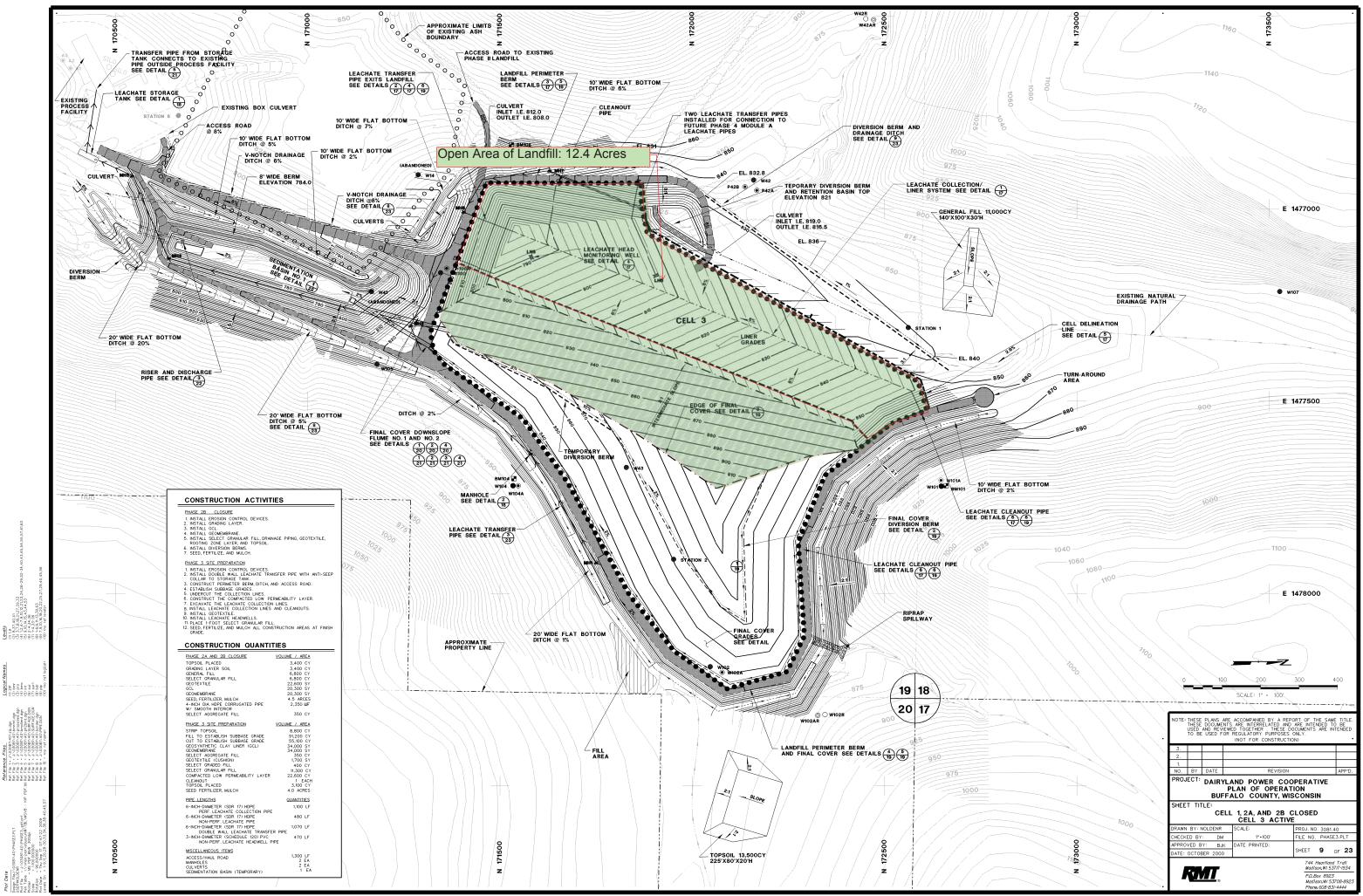
14.7

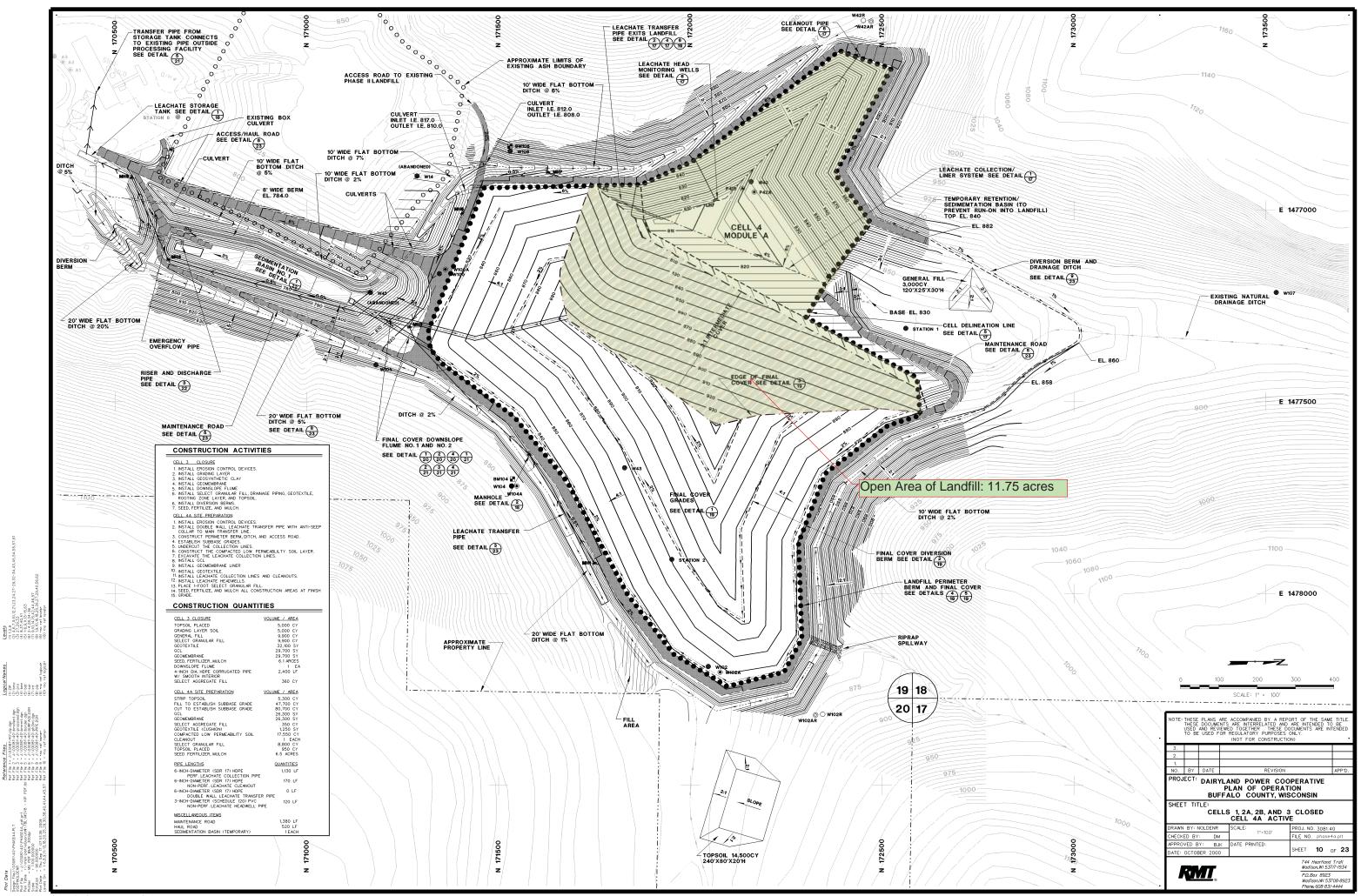
(13.0-16.5)

708 Heartland Trail, Suite 3000, Madison, WI 53717 • www.TRCsolutions.com SHEET 1					
PROJECT / LOCATION: DPC: Alma Offsite Disposal Facility, Phase IV Landfill			PROJECT / PROPOSAL NO.		
SUBJECT: Active Area Leachate Disposal Capacity			243332.0002		
PREPARED BY: J. Hots	tream	DATE: 8/31/2016	FINAL		
CHECKED BY:		DATE:	REVISION		

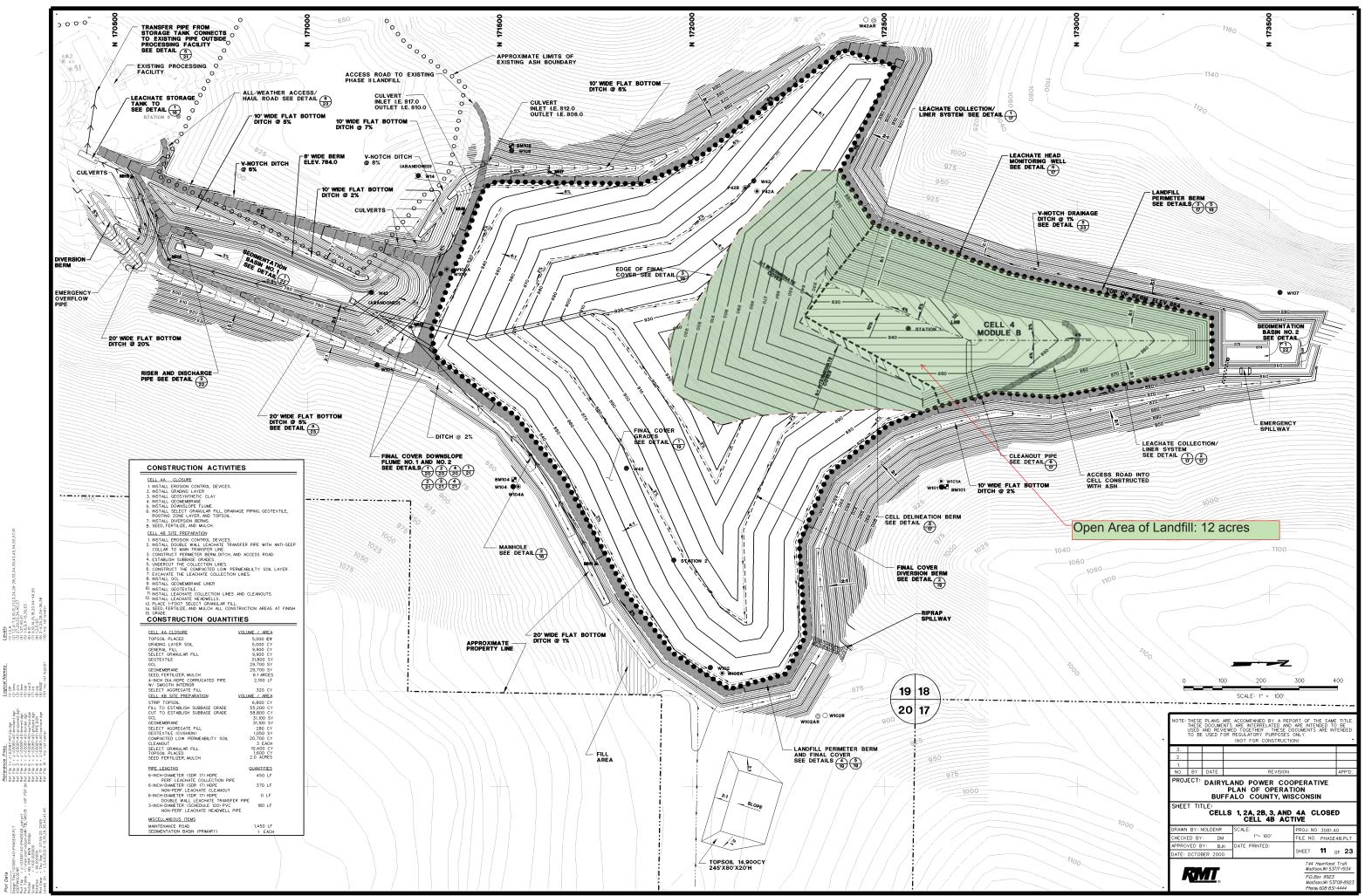
Volume Relationships of Sand

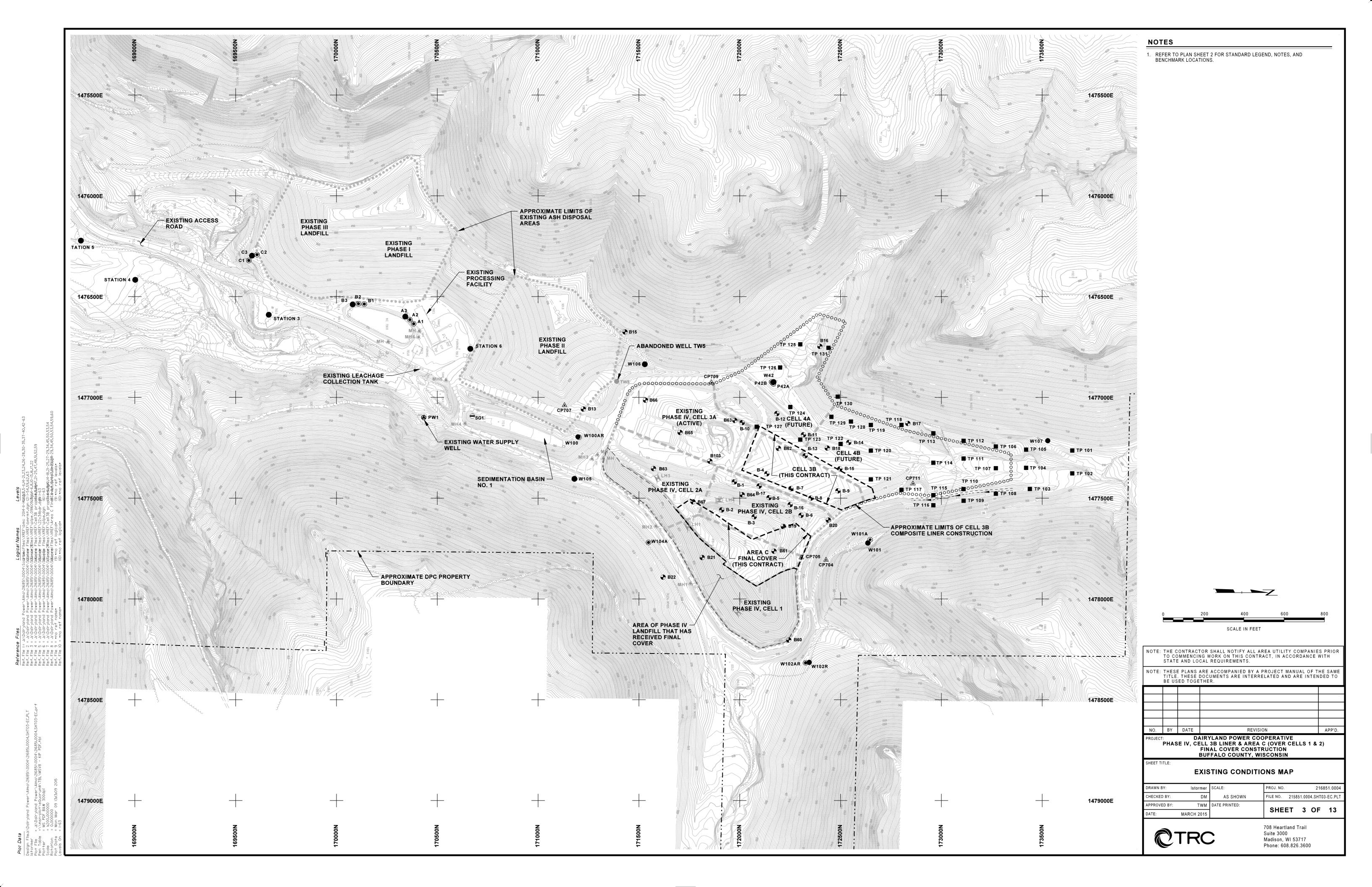




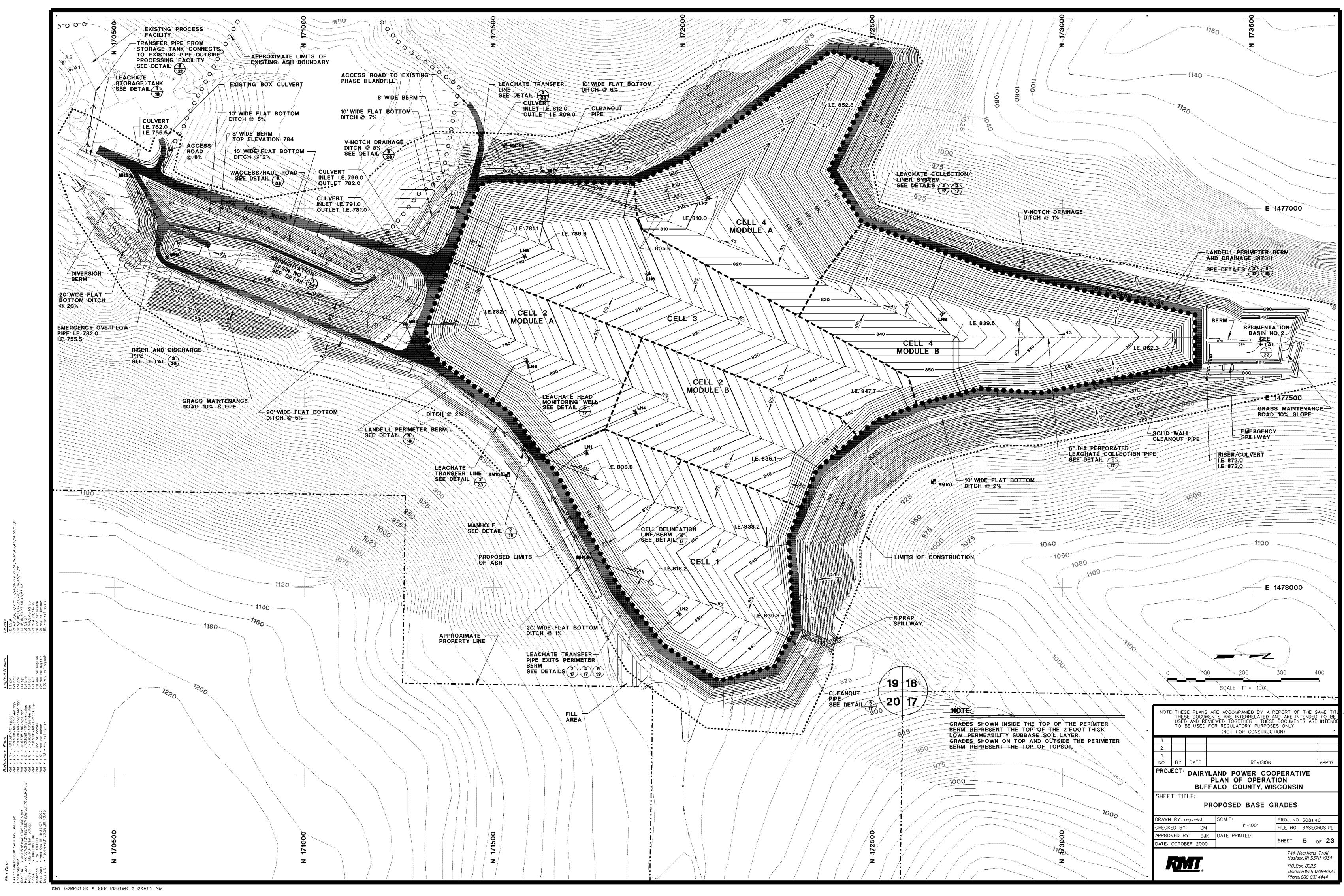

Figure from NavFac DM 7.1 (1986)

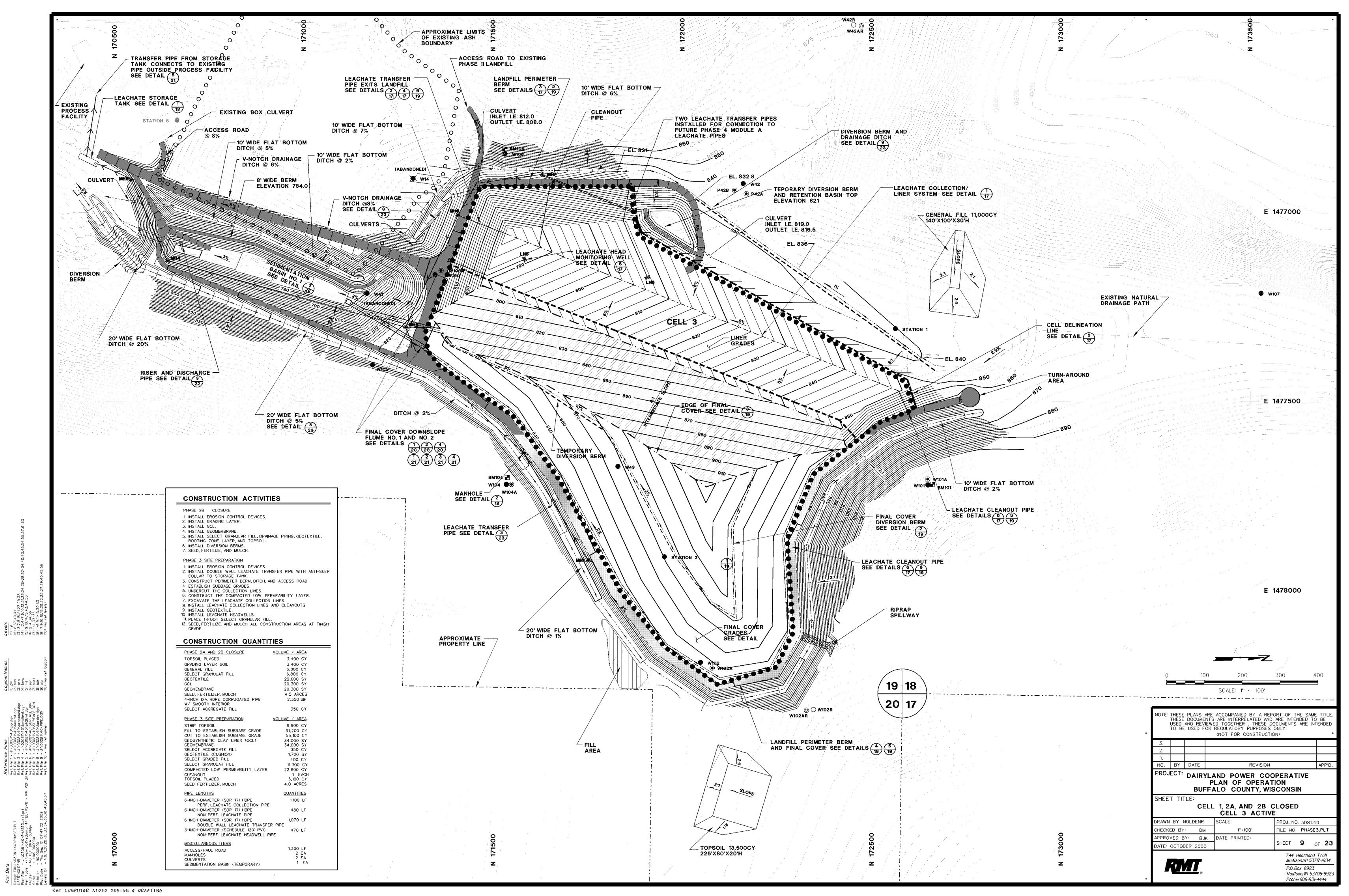

Drainage Layer Sand - Poorly Graded Sand (SP)

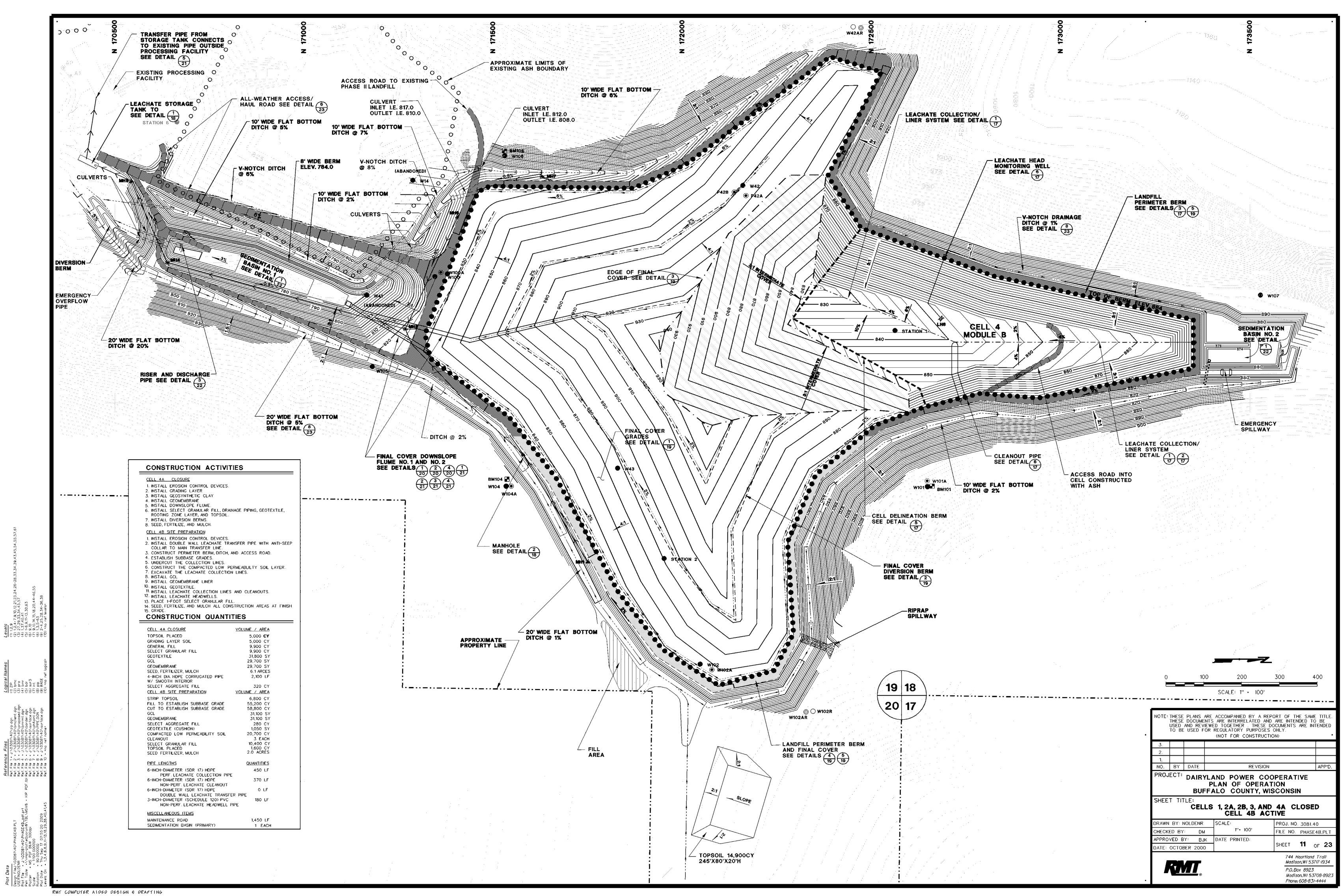
Bottom Ash - Poorly Graded Sand (SP) to Poorly Graded Gravel (GP)

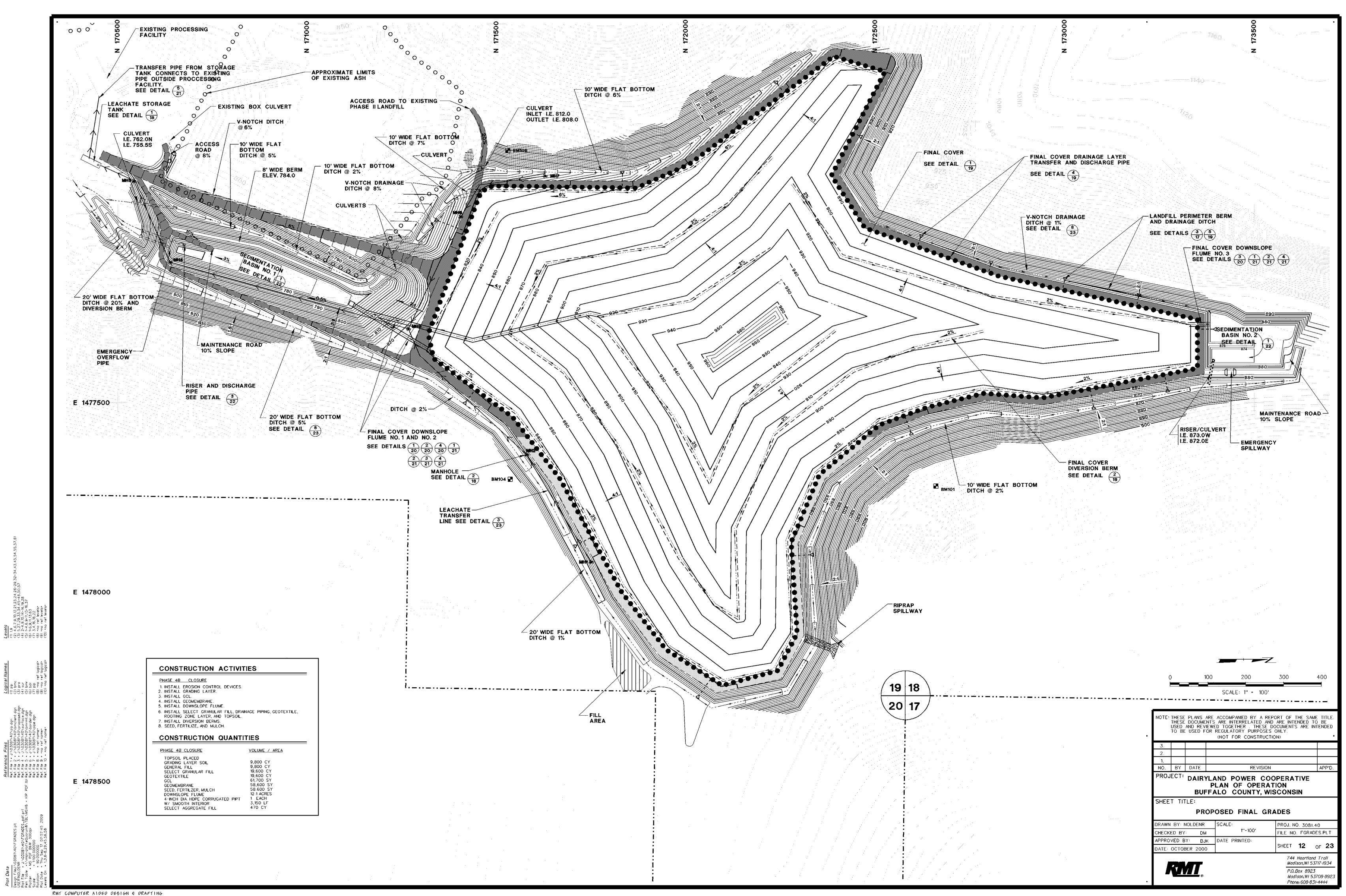


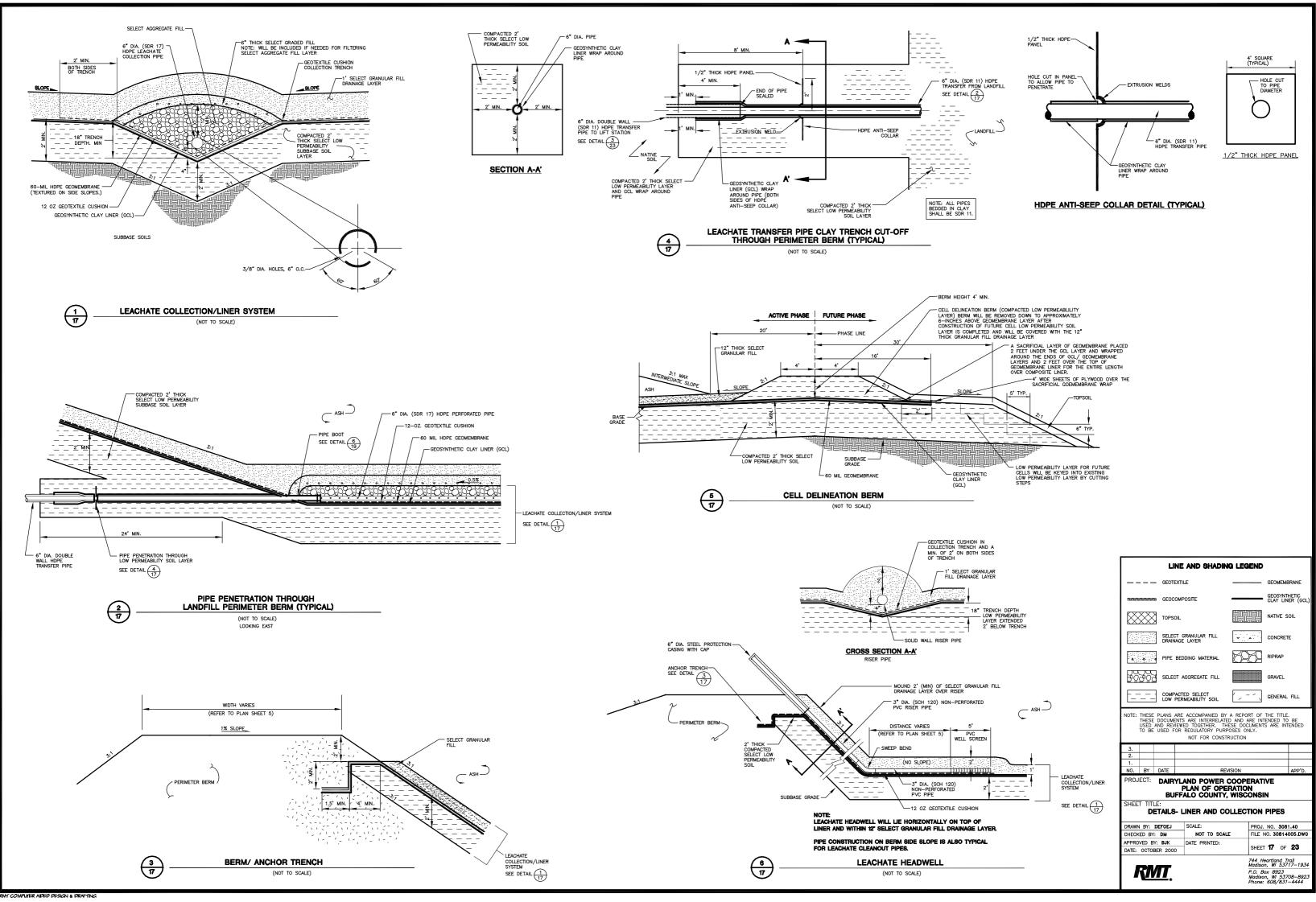

RMT COMPUTER AIDED DESIGN € DRAFTING

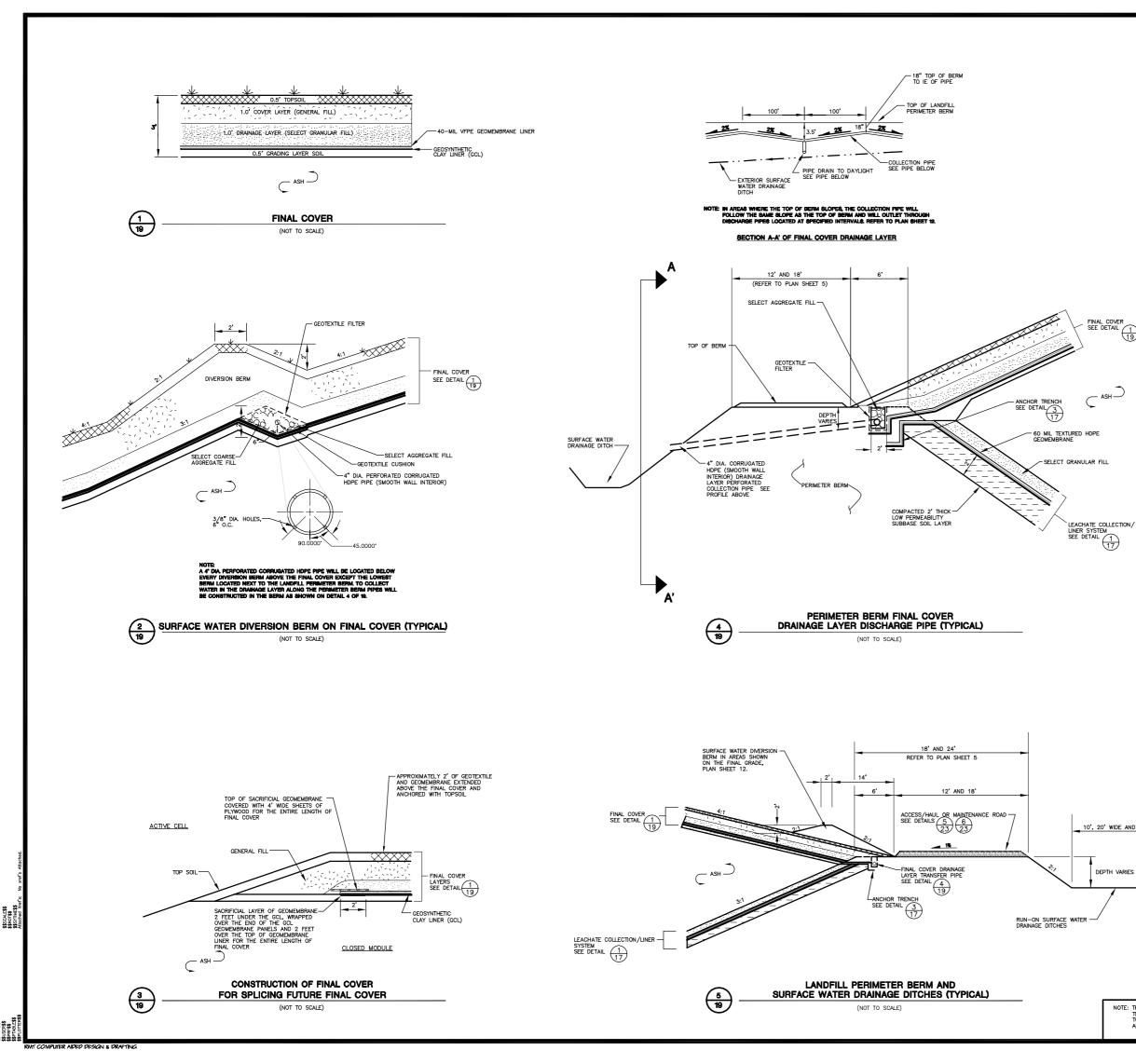


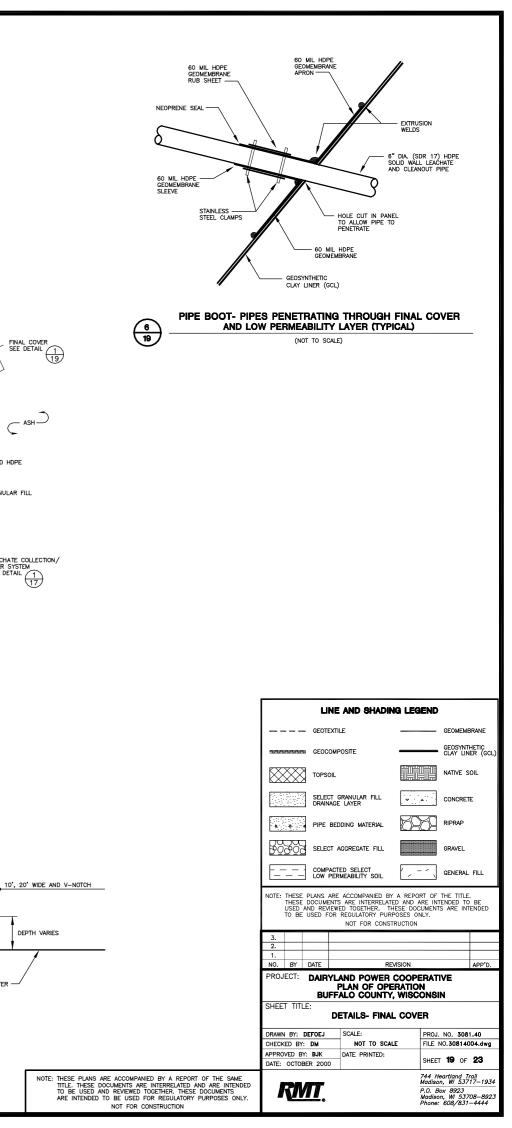


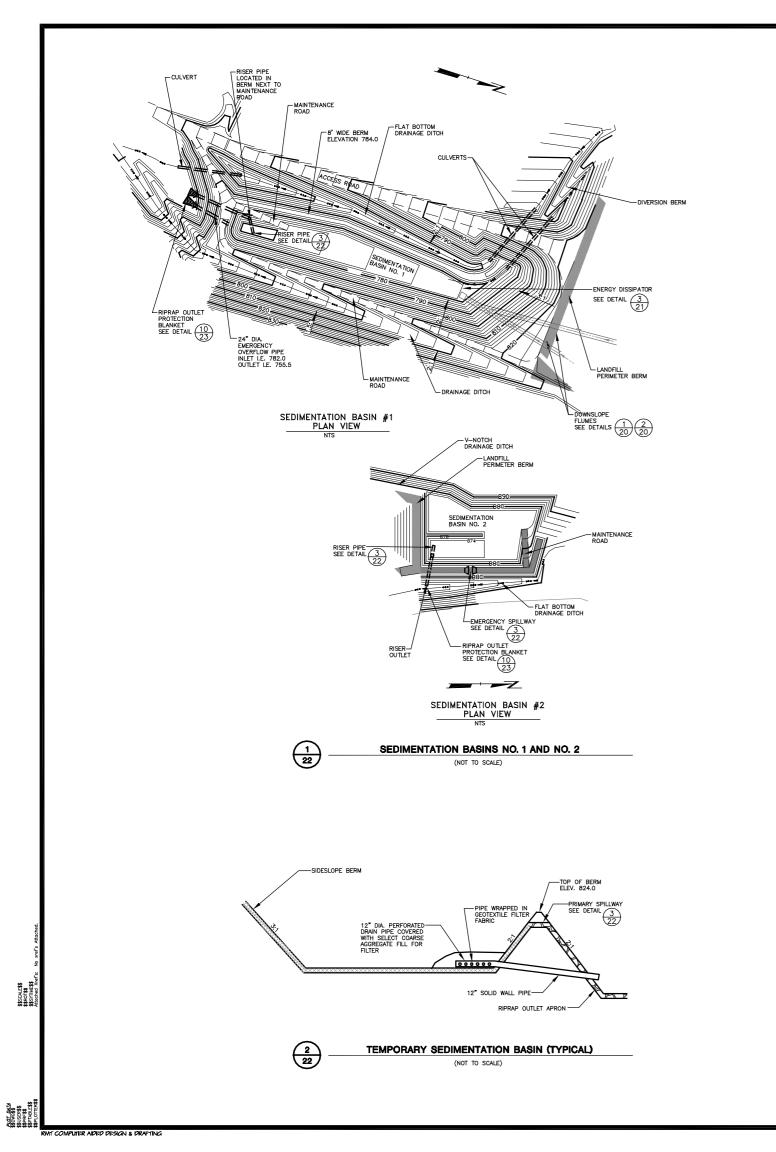

Appendix C: Relevant October 2000 POO Plan Sheets

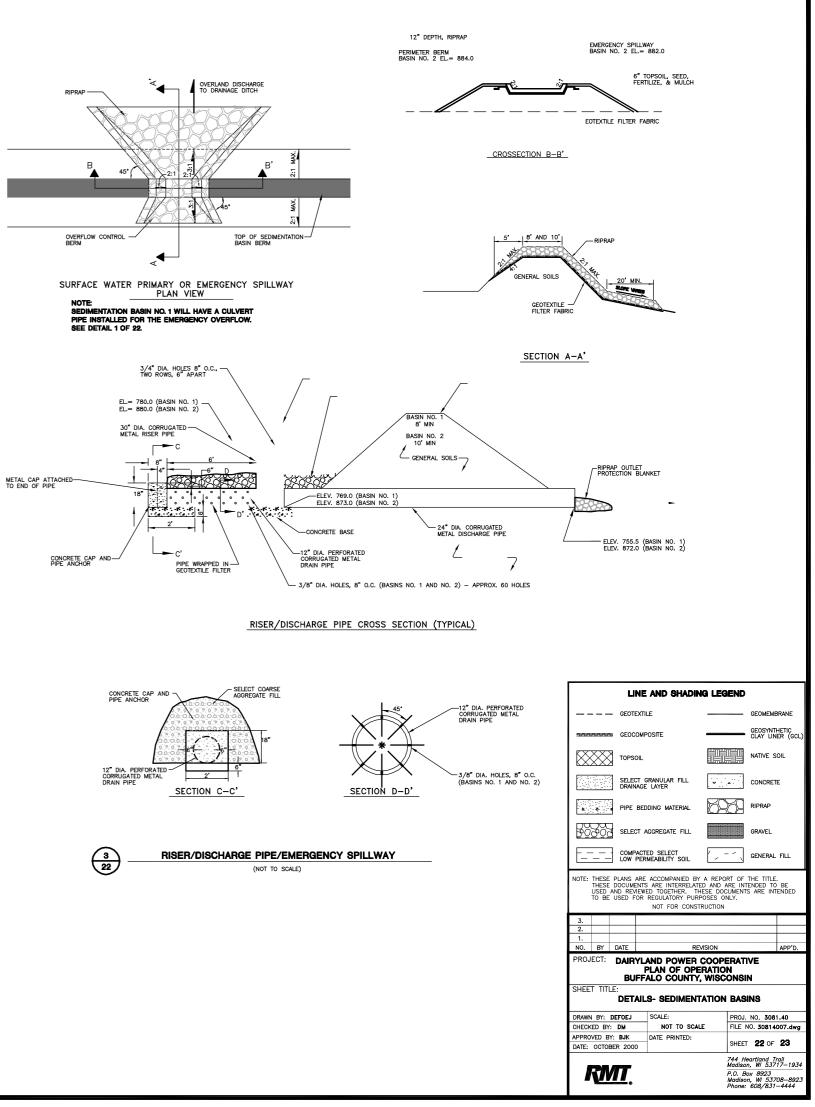

- Sheet 3 Existing Conditions Map Phase IV, Cell 3B Liner & Area C (Over Cells 1 & 2) Final Cover Construction
- Sheet 5 Proposed Base Grades
- Sheet 9 Phasing Plan Cell 1, 2A, and 2B Closed; Cell 3 Active
- Sheet 11 Phasing Plan Cell 1, 2A, 2B, 3, and 4A Closed; Cell 4B Active
- Sheet 12 Proposed Final Grades
- Sheet 17 Details Liner and Collection Pipes
- Sheet 19 Details Final Cover
- Sheet 22 Details Sedimentation Basins
- Sheet 23 Details Miscellaneous

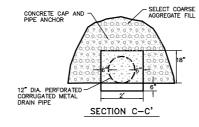


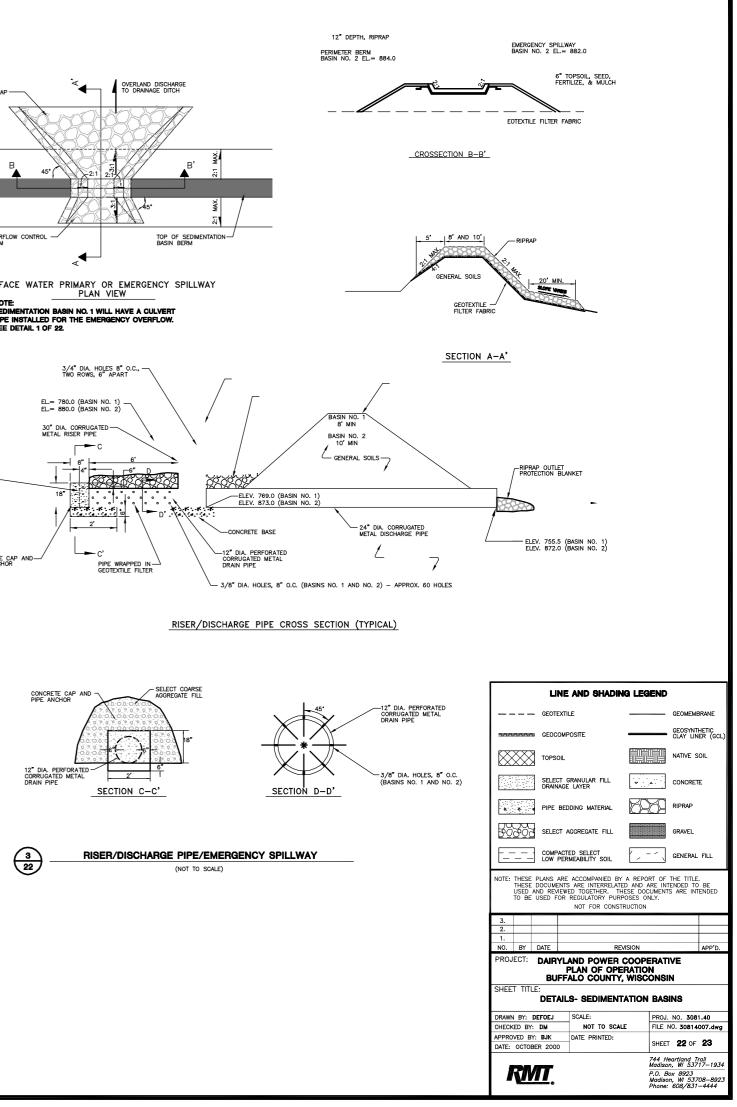


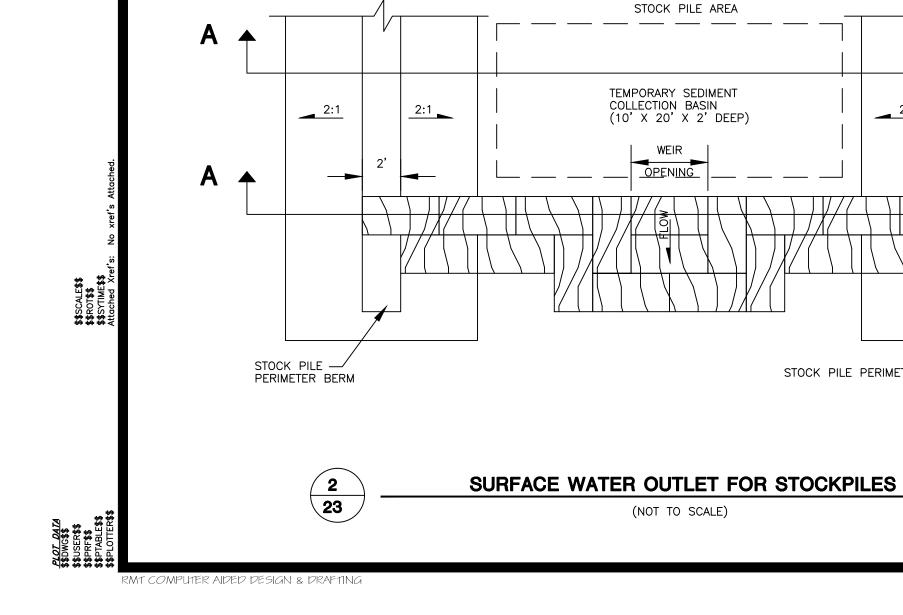


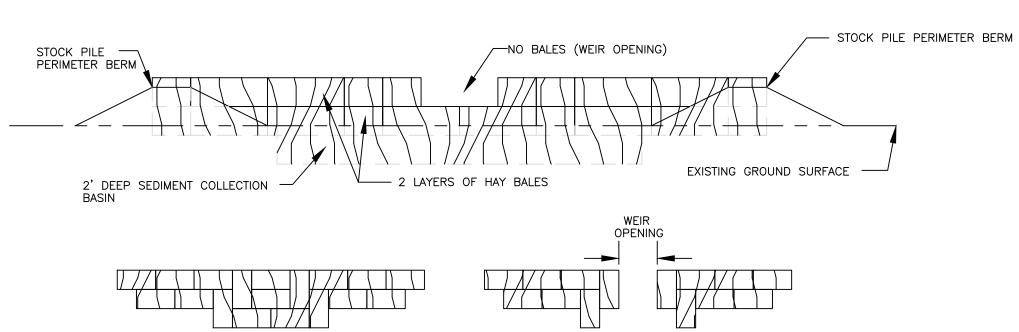

PLOT DATA SSDWGSS SSDWGSS SSPRFSS SSPRFSS SSPRFSS


\$\$SCALE\$\$ \$\$ROT\$\$ \$\$SYTIME\$\$




PLOT DATA 150WGSS 100WGSS 150WGSS 150W



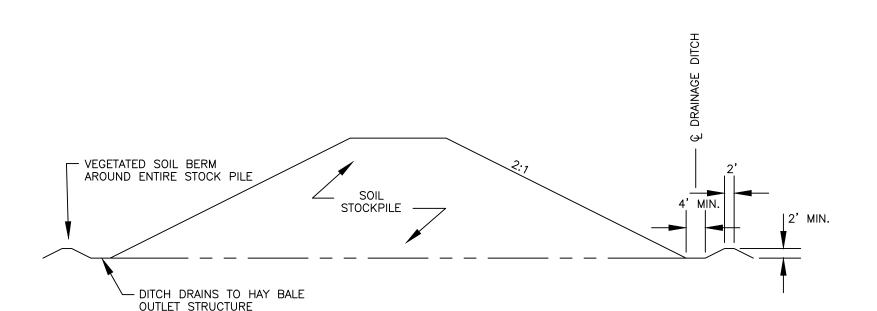


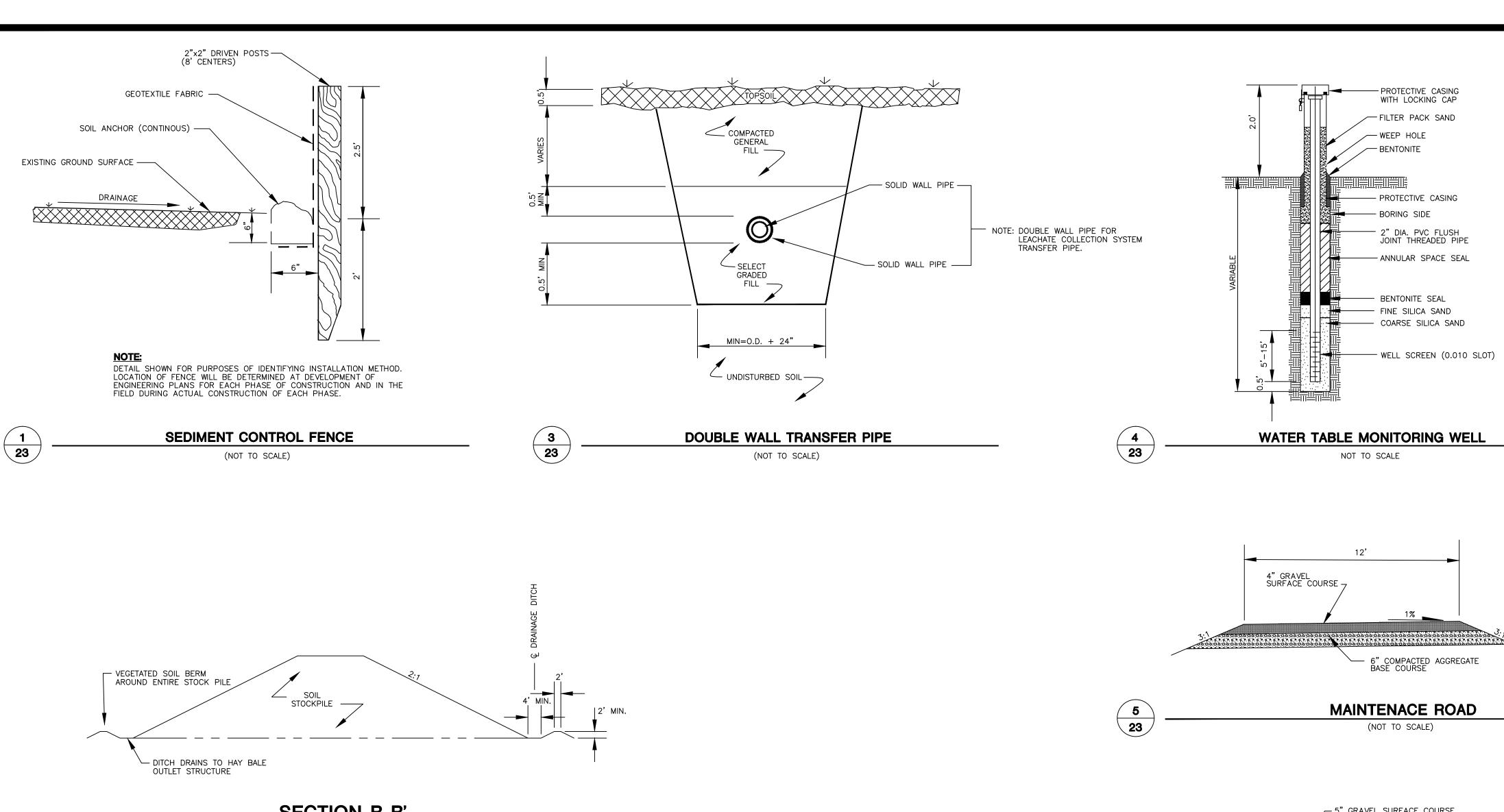
FIRST LAYER OF BALES

TOP VIEW

SECTION A-A

SECOND LAYER OF BALES

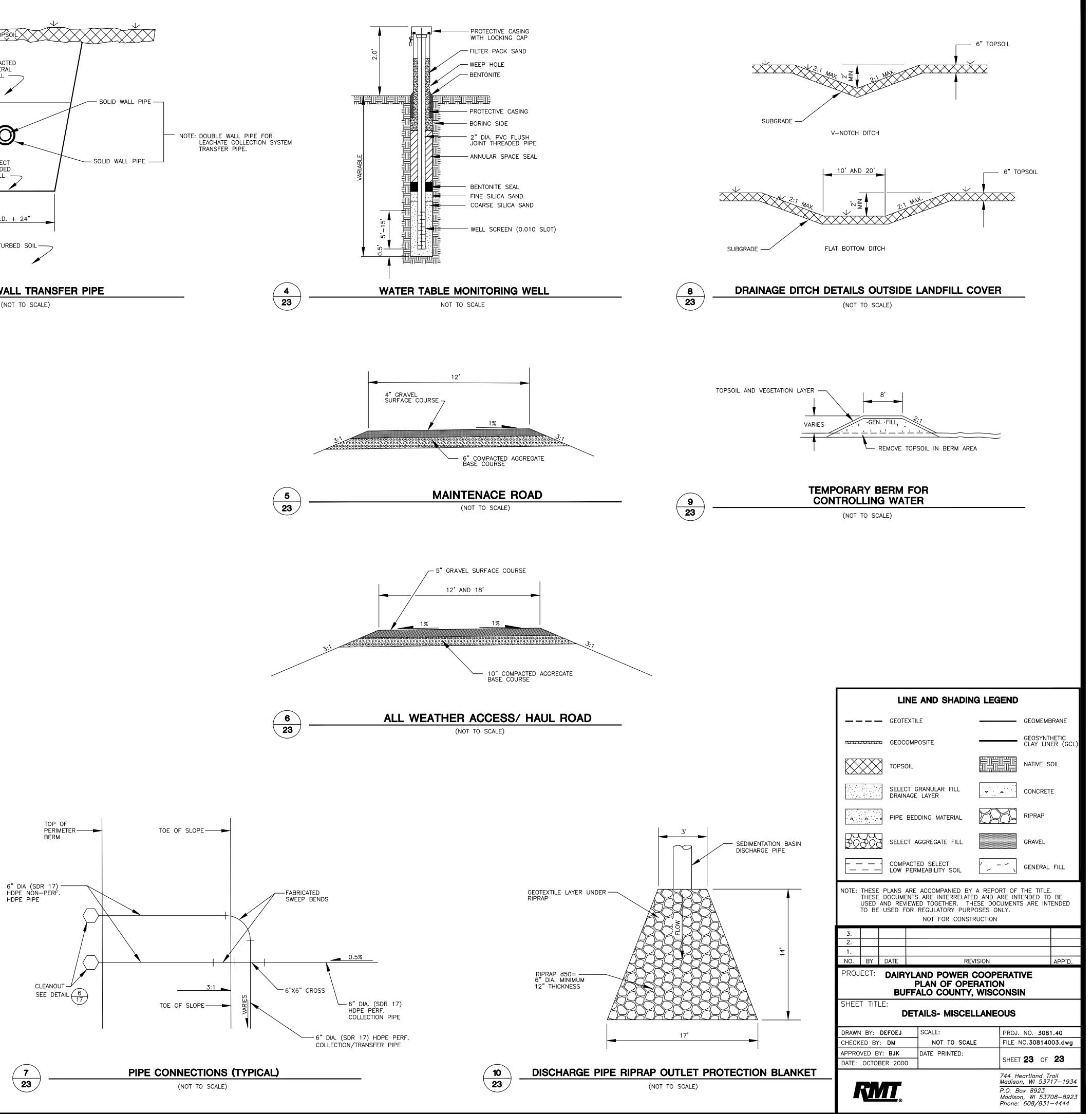

TOP VIEW


2:1

STOCK PILE PERIMETER BERM

2:1

SECTION B-B'



B

B

(NOT TO SCALE)

