APPENDIX A – PSD APPLICATION

Prevention of Significant Deterioration Air Construction Permit Application

South Shore Energy, LLC, Dairyland Power Cooperative Nemadji River Generation, LLC

Nemadji Trail Energy Center Project No. 101798

Docket Number: 9698-CE-100 Revision 0 December 2021

Prevention of Significant Deterioration Air Construction Permit Application

prepared for

South Shore Energy, LLC, Dairyland Power Cooperative Nemadji River Generation, LLC Nemadji Trail Energy Center Superior, Wisconsin

Project No. 101798

Revision 0 December 2021

prepared by

Burns & McDonnell Engineering Company, Inc. Kansas City, Missouri

TABLE OF CONTENTS

Page No.

1.0	EXE		SUMMARY	1-1
	1.1	Project]	Equipment	
	1.2		Emissions	
	1.3	5		
	1.4		lity Analysis	
	1.5		nal Impacts Analysis	
2.0	PRO	JECT DE	SCRIPTION	2-1
	2.1	Turbine	(P01) and Emission Controls	
	2.2	Auxilia	y Boiler (B02)	
	2.3	Sulfur H	Iexafluoride (SF ₆) Containing Equipment (F03)	
	2.4		Gas Heaters (P04 and P05)	
	2.5	Emerger	ncy Diesel Fire Pump (P06)	
	2.6	Emerger	ncy Diesel Generator (P07)	
	2.7	Diesel S	torage Tanks (T01, T02, and T03)	
	2.8		ad Traffic Fugitives (F01)	
	2.9		Gas and Fuel Oil Fugitives (F02)	
3.0	EMIS	SIONS E	STIMATES	3-1
	3.1	Combus	tion Turbine (P01)	
		3.1.1	Combustion Turbine Hours of Operation	
		3.1.2	Combustion Turbine Operation Emissions	
		3.1.3	Combustion Turbine Start-Up and Shutdown Emissions	
			Calculation Method	
	3.2	HAP Er	nissions	
	3.3	Auxilia	y Boiler Emissions (B02)	
	3.4		taining Equipment (F03)	
	3.5	Natural	Gas Heaters Emissions (P04 and P05)	
	3.6	Emerger	ncy Diesel Fire Pump Emissions (P06)	
	3.7		ncy Diesel Generator Emissions (P07)	
	3.8	0	torage Tanks Calculation Method (T01, T02, and T03)	
	3.9		ad Traffic Fugitives Calculation Method (F01)	
	3.10	Natural	Gas and Fuel Oil Fugitives Calculation Method (F02)	
4.0	REG	ULATOR	Y REVIEW	4-1
	4.1	PSD Re	gulations	
	4.2	New So	urce Performance Standards	
		4.2.1	Subpart Db – Not Applicable	
		4.2.2	Subpart Dc	
		4.2.3	Subpart GG - Not Applicable	

	4 0 4		
	4.2.4	Subpart Kb - Not Applicable	
	4.2.5	Subpart IIII	
	4.2.6	Subpart KKKK	
	4.2.7	Subpart TTTT	. 4-7
4.3		al Emission Standards for Hazardous Air Pollutants and Maximum	
		able Control Technology	
	4.3.1	Subpart YYYY - Not Applicable	
	4.3.2	Subpart ZZZZ	
	4.3.3	Subpart JJJJJJ – Not applicable	
4.4		sin Air Quality Standards and Regulations	
	4.4.1	s. NR 404 Ambient Air Quality	
	4.4.2	s. NR 405 - PSD Review	
	4.4.3	s. NR 406 – Construction Permits	4-10
	4.4.4	s. NR 407 – Operation Permits	4-10
	4.4.5	s. NR 410 – Air Permit, Emission, and Inspection Fees	4-10
	4.4.6	s. NR 415 – Control of Particulate Emissions	4-10
	4.4.7	s. NR 417 – Control of Sulfur Emissions	4-11
	4.4.8	s. NR 419 – Control of Organic Compound Emissions	4-11
	4.4.9	s. NR 420 – Control of Organic Compound Emissions from	
		Petroleum and Gasoline Sources	4-11
	4.4.10	s. NR 426 – Control of Carbon Monoxide Emissions	4-11
	4.4.11	s. NR 427 – Control of Lead Emissions	4-11
	4.4.12	s. NR 428 – Control of Nitrogen Compound Emissions	4-12
	4.4.13	s. NR 429 – Malodorous Emissions and Open Burning	4-12
	4.4.14	s. NR 431 – Control of Visible Emissions	4-12
	4.4.15	s. NR 432 – Allocation of Clean Air Interstate Rule NO _x	
		Allowances	4-12
	4.4.16	s. NR 436 - Emission Prohibition, Exceptions, Delayed	
		Compliance Orders and Variances	4-12
	4.4.17	s. NR 438 - Air Contaminant Emission Inventory Reporting	
		Requirements	4-12
	4.4.18	s. NR 439 - Reporting, Recordkeeping, Testing, Inspection and	
		Determination of Compliance Requirements	4-13
	4.4.19	s. NR 440 - Standards of Performance for New Stationary Sources	
	4.4.20	s. NR 445 - Control of Hazardous Pollutants	
4.5		cal Accident Prevention	
1.0	chenne		
DEOT	T A\/AII		- 4
		ABLE CONTROL TECHNOLOGY ANALYSIS	
5.1		for Nitrogen Oxides – Combined-Cycle Combustion Turbine (P01)	
	5.1.1	Step 1. Identify All Potential Control Strategies	
	5.1.2	Step 2. Identify Technically Feasible Control Technologies	
	5.1.3	Step 3. Rank the Technically Feasible Control Technologies	
	5.1.4	Step 4. Evaluate the Most Effective Controls	
F A	5.1.5	Step 5. Proposed NO _x BACT Determination	
5.2		for Carbon Monoxide – Combined-Cycle Combustion Turbine (P01)	
	5.2.1	Step 1. Identify Potential Control Strategies	5-18

5.0

	5.2.2	Step 2. Identify Technically Feasible Control Technologies	5-18
	5.2.3	Step 3. Rank the Technically Feasible Control Technologies	
	5.2.4	Step 4. Evaluate the Most Effective Control Technologies	
	5.2.5	Step 5. Proposed CO BACT Determination	
5.3		or Particulate Matter – Combined-Cycle Combustion Turbine (P01)	
	5.3.1	Step 1. Identify Potential Control Strategies	
	5.3.2	Step 2. Identify Technically Feasible Control Technologies	5-23
	5.3.3	Step 3. Rank the Technically Feasible Control Technologies	
	5.3.4	Step 4. Evaluate the Most Effective Control Technologies	
	5.3.5	Step 5. Proposed PM/PM ₁₀ /PM _{2.5} BACT Determination	5-24
5.4	BACT f	or Volatile Organic Compounds – Combined-Cycle Combustion Tu	ırbine
	5.4.1	Step 1. Identify Potential Control Strategies	
	5.4.2	Step 2. Identify Technically Feasible Control Technologies	
	5.4.3	Step 3. Rank the Technically Feasible Control Technologies	
	5.4.4	Step 4. Evaluate the Most Effective Control Technologies	
	5.4.5	Step 5. Proposed VOC BACT Determination	
5.5		or Sulfuric Acid Mist – Combined-Cycle Combustion Turbine	
	5.5.1	Step 1. Identify Potential Control Strategies	
	5.5.2	Step 2. Identify Technically Feasible Control Technologies	
	5.5.3	Step 3. Rank the Technically Feasible Control Technologies	
	5.5.4	Step 4. Evaluate the Most Effective Control Technologies	
	5.5.5	Step 5. Proposed H ₂ SO ₄ Mist BACT Determination	
5.6		or Greenhouse Gases – Combined-Cycle Combustion Turbine (P01	,
	5.6.1	Step 1. Identify All Potential Control Strategies	
	5.6.2	Step 2. Identify Technically Feasible Control Technologies	
	5.6.3	Step 3. Rank the Technically Feasible Control Technologies	
	5.6.4	Step 4. Evaluate the Most Effective Control Technologies	
	5.6.5	Step 5. Proposed Greenhouse Gas BACT Determination	
5.7		or Start-Up and Shutdown Emissions – Combined-Cycle Combusti	
		(P01)	
	5.7.1	Step 1. Identify Potential Control Strategies	
	5.7.2	Step 2. Identify Technically Feasible Control Technologies	
	5.7.3	Step 3. Rank the Technically Feasible Control Technologies	
	5.7.4	Step 4. Evaluate the Most Effective Control Technologies	
	5.7.5	Step 5. Proposed Start-up and Shutdown BACT Determination	
5.8		or Opacity – Combined-Cycle Combustion Turbine (P01)	
	5.8.1	Step 1. Identify Potential Control Strategies	
	5.8.2	Step 2. Identify Technically Feasible Control Technologies	
	5.8.3	Step 3. Rank the Technically Feasible Control Technologies	
	5.8.4	Step 4. Evaluate the Most Effective Control Technologies	
5.0	5.8.5	Step 5. Proposed Opacity BACT Determination	
5.9		or Auxiliary Boiler (B02)	
	5.9.1	BACT for Nitrogen Oxides - Auxiliary Boiler	
	5.9.2	BACT for Carbon Monoxide - Auxiliary Boiler	
	5.9.3	BACT for Particulate Matter - Auxiliary Boiler	5-51

	5.9.4	BACT for Volatile Organic Compounds - Auxiliary Boiler	5-52
	5.9.5	BACT for Sulfuric Acid Mist – Auxiliary Boiler	5-54
	5.9.6	BACT for Greenhouse Gases - Auxiliary Boiler (Steps 1-5)	5-54
	5.9.7	BACT for Opacity - Auxiliary Boiler	
5.10		or Greenhouse Gases (GHG) – SF ₆ -Containing Circuit Breakers (F0	3)5-
	55	Stan 1 and Stan 2. Identify Potential Control Strategies and	
	5.10.1	Step 1 and Step 2. Identify Potential Control Strategies and Eliminate Technologically Infeasible Options	5 56
	5.10.2	Step 3. Rank the Technically Feasible Control Technologies	
	5.10.2	Step 5. Kank the reclinicary reasible Control Technologies	
	5.10.3	Step 5. GHG BACT Emission Limitation	
	5.10.4	Compliance with GHG BACT for Circuit Breakers	
5.11		or Natural Gas Heaters (P04 and P05)	
5.11	5.11.1	BACT for Nitrogen Oxides – Gas Heaters	
	5.11.1	BACT for Carbon Monoxide – Gas Heaters	
	5.11.2	BACT for Particulate Matter – Gas Heaters	
	5.11.3	BACT for Volatile Organic Compounds – Gas Heaters	
	5.11.4	BACT for Sulfuric Acid Mist – Gas Heaters	
	5.11.6	BACT for Greenhouse Gases – Gas Heaters (Steps 1-5)	
	5.11.7	BACT for Opacity - Gas Heaters	
5.12		Analysis for Emergency Diesel Fire Pump (P06)	
5.12	5.12.1	BACT for Nitrogen Oxides – Emergency Diesel Fire Pump	
	5.12.2	BACT for Carbon Monoxide – Emergency Diesel Fire Pump	
	5.12.3	BACT for Particulate Matter – Emergency Diesel Fire Pump	
	5.12.4	BACT for Volatile Organic Compounds – Emergency Diesel Fire	
	5.12.1	Pump	5-75
	5.12.5	BACT for Sulfuric Acid Mist – Emergency Diesel Fire Pump	
	5.12.6	BACT for Greenhouse Gases – Emergency Diesel Fire Pump	
		(Steps 1-5)	
	5.12.7	BACT for Opacity – Emergency Diesel Fire Pump	
5.13		Analysis for Emergency Diesel Generator (P07)	
	5.13.1	BACT for Nitrogen Oxides – Emergency Diesel Generator	
	5.13.2	BACT for Carbon Monoxide – Emergency Diesel Generator	
	5.13.3	BACT for Particulate Matter – Emergency Diesel Generator	
	5.13.4	BACT for Volatile Organic Compounds – Emergency Diesel	
		Generator	5-85
	5.13.5	BACT for Sulfuric Acid Mist – Emergency Diesel Generator	5-87
	5.13.6	BACT for Greenhouse Gases – Emergency Diesel Generator	
		(Steps 1-5)	5-87
	5.13.7	BACT for Opacity – Emergency Diesel Generator	5-88
5.14	BACT for	or Volatile Organic Compounds – Fuel Oil Storage Tanks (T01, T02	2, and
	T03)		
	5.14.1	Steps 1, 2, and 3. Identify Potential Feasible Control Strategies and	L
		Rank Control Strategies	5-89
	5.14.2	Steps 4 and 5. Evaluate the Most Effective Control Technologies	
		and Proposed BACT for VOC Emissions	5-89

	5.15	BACT	for Particulate Matter (PM/PM ₁₀ /PM _{2.5}) – Haul Road Fugitives (F01)	·
		5.15.1	Step 1: Identify Potential Control Strategies	
		5.15.2	Step 2: Identify Technically Feasible Control Technologies	5-90
		5.15.3	Step 3: Rank the Technically Feasible Control Technologies	5-90
		5.15.4	Step 4: Evaluate Most Effective Control Technologies	5-91
		5.15.5	Step 5: Select BACT	5-91
	5.16	BACT	for Greenhouse Gases (GHG) and VOCs – Natural Gas and Fuel Oil	
			es (F02)	
		5.16.1	Step 1: Identify Potential Control Strategies	
		5.16.2	Step 2: Identify Technically Feasible Control Technologies	
		5.16.3	Step 3: Rank the Technically Feasible Control Technologies	
		5.16.4	Step 4: Evaluate Most Effective Control Technologies	
		5.16.5	Step 5: Select BACT	
• •				• •
6.0		_	SION MODELING	-
	6.1		persion Model	
	6.2		Parameters	
	6.3		oads	
	6.4		ng Methodology	
		6.4.1	Intermittent Emissions	
		6.4.2	Emission Factors	
		6.4.3	Rain Caps and Horizontal Stacks	
		6.4.4	Good Engineering Practice Stack Height	
		6.4.5	Receptor Grid	6-7
		6.4.6	Meteorological Data	
		6.4.7	Land Use Parameters	
		6.4.8	Modeling Thresholds	
		6.4.9	PM _{2.5} Significant Impact Level Justification	6-10
		6.4.10	Ambient Monitoring	
		6.4.11	NAAQS and PSD Class II Increment Analysis	6-11
		6.4.12	Background Air Quality	6-11
		6.4.13	NO ₂ Modeling – Multi-Tiered Screening Approach	6-12
	6.5	Signific	cance Model Results	6-12
		6.5.1	NO ₂ Significance Results	6-13
		6.5.2	CO Significance Results	6-13
		6.5.3	PM ₁₀ /PM _{2.5} Significance Results	6-14
	6.6	PSD Cl	ass II Increment Modeling	6-14
	6.7	NAAQ	S Modeling	6-15
	6.8	PSD Cl	ass I Increment Screening Analysis	6-15
	6.9	Second	ary Formation Analysis	6-17
		6.9.1	Secondary PM _{2.5} Formation Analysis	6-17
		6.9.2	Secondary Ozone Formation Analysis	
	6.10	Dispers	ion Modeling Conclusion	6-24
		_		
7.0			- IMPACTS ANALYSIS	
	7.1	Constru	action Impacts	/-1

7.2	Vegeta	ation Impacts	
	7.2.1	Carbon Monoxide	
	7.2.2	Carbon Dioxide	
	7.2.3	Nitrogen Oxides	
	7.2.4	Particulate Matter	
	7.2.5	Synergistic Effects of Pollutants	
	7.2.6	Sulfuric Acid Mist	7-4
	7.2.7	Volatile Organic Compounds	
7.3	Soil In	npacts	
7.4		rial, Residential, and Commercial Growth Impacts	
7.5	Visibil	lity and Deposition Analysis	
	7.5.1	Class I Area Analysis	
	7.5.2	Class II Area Analysis	
7.6	Conclu	usion	

8.0	REFERENCES	8-'	1
-----	------------	-----	---

APPENDIX A – FORMS
APPENDIX B – FIGURES
APPENDIX C – CALCULATIONS
APPENDIX D – RBLC TABLES
APPENDIX E – ECONOMIC ANALYSIS
APPENDIX F – SUPPLEMENTAL INFORMATION

LIST OF TABLES

Page No.

Table 1-1:	Project Potential Emissions and PSD Significance Levels	1-3
Table 1-2:	Summary of BACT Results – Combustion Turbine	
Table 2-1:	Project Description References	
Table 3-1:	Emissions Estimates References	
Table 3-2:	Combustion Turbine Operating Cases for Maximum Potential Annual	
	Emissions	3-2
Table 3-3:	Maximum Expected Hourly Combustion Turbine Emission Rates	3-3
Table 3-4:	Potential Natural Gas Turbine Start-up and Shutdown Emissions	3-4
Table 3-5:	Potential Fuel Oil Turbine Start-up and Shutdown Emissions	
Table 4-1:	Regulatory Review References	
Table 4-2:	NR 445 Air Dispersion Modeling Results for 24-hour Ammonia	
	Concentration	4-14
Table 5-1:	Summary of BACT Results: Combined-Cycle Operation	5-2
Table 5-2:	Summary of BACT Results: Auxiliary Equipment	5-3
Table 5-3:	RBLC Query Information	5-7
Table 5-4:	Combustion Turbine Nitrogen Oxides BACT Analysis References	5-9
Table 5-5:	Summary of Technically Feasible NO _x Control Technologies for	
	Combined-Cycle Combustion Turbines	5-14
Table 5-6:	Ranking of Technically Feasible NO _x Control Technologies for	
	Combined-Cycle Combustion Turbines	5-15
Table 5-7:	Combustion Turbine Carbon Monoxide BACT Analysis References	5-17
Table 5-8:	Summary of Technically Feasible CO Control Technologies for	
	Combined-Cycle Combustion Turbines	5-20
Table 5-9:	Ranking of Technically Feasible CO Control Technologies for Combined-	
	Cycle Combustion Turbines	
Table 5-10:	Combustion Turbine Particulate Matter BACT Analysis References	5-22
Table 5-11:	Ranking of Technically Feasible PM/PM ₁₀ /PM _{2.5} Control Technologies	
	for Combined-Cycle Combustion Turbine	
Table 5-12:	Combustion Turbine Sulfuric Acid Mist BACT Analysis References	5-25
Table 5-13:	Summary of Technically Feasible VOC Control Technologies for	
	Combined-Cycle Combustion Turbines	5-27
Table 5-14:		
	Combined-Cycle Combustion Turbines	
Table 5-15:	Combustion Turbine Sulfuric Acid Mist BACT Analysis References	5-29
Table 5-16:	Ranking of Technically Feasible H ₂ SO ₄ Control Technologies for	
	Combined-Cycle Combustion Turbines	
Table 5-17:	Combustion Turbine Greenhouse Gases BACT Analysis References	
Table 5-18:		5-33
Table 5-19:	Summary of Technically Feasible Greenhouse Gas Control Technologies	
	for Combustion Turbine	5-40
Table 5-20:	Greenhouse Gas Control Technology Ranking for the Combustion	
	Turbine	5-41

Table 5-21:	Combustion Turbine Start-Up and Shutdown BACT Analysis References	. 5-42
Table 5-22:	Combined-Cycle Combustion Turbine Natural Gas Start-up and	
	Shutdown Emissions	. 5-44
Table 5-23:	Combined-Cycle Combustion Turbine Fuel Oil Start-up and Shutdown	
	Emissions	. 5-44
Table 5-24:	Combustion Turbine Opacity BACT Analysis References	. 5-45
Table 5-25:	Auxiliary Boiler BACT Analysis References	
Table 5-26.	Ranking of NO _x Control Technologies for the Auxiliary Boiler	. 5-48
Table 5-27:	Ranking of CO Control Technologies for the Auxiliary Boiler	. 5-50
Table 5-28:	Ranking of VOC Control Technologies for the Auxiliary Boiler	. 5-53
Table 5-29:	SF6-Containing Circuit Breakers BACT Analysis References	. 5-56
Table 5-30.	Summary of Potential GHG Control Technologies	. 5-58
Table 5-31.	GHG Technology Rankings for Circuit Breaker Equipment Leaks	
Table 5-32:	Natural Gas Heaters BACT Analysis References	
Table 5-33:	Ranking of NO _x Control Technologies for the Gas Heaters	
Table 5-34:	Ranking of CO Control Technologies for the Gas Heaters	
Table 5-35:	Ranking of VOC Control Technologies for the Gas Heaters	
Table 5-36:	Emergency Diesel Fire Pump BACT Analysis References	
Table 5-37:	Ranking of NO _x Control Technologies for the Emergency Diesel Fire	
14010000	Pump	.5-71
Table 5-38:	Ranking of CO Control Technologies for the Emergency Diesel Fire	
	Pump	5-73
Table 5-39:	Ranking of PM/PM ₁₀ /PM _{2.5} Control Technologies for the Emergency	
1401000000	Diesel Fire Pump	5-75
Table 5-40:	Ranking of VOC Control Technologies for the Emergency Diesel Fire	
14010 0 101	Pump	5-76
Table 5-41:	Emergency Diesel Generator BACT Analysis References	
Table 5-42:	Ranking of NO_x Control Technologies for the Emergency Diesel	
14010 5 12.	Generator	5-81
Table 5-43:	Ranking of CO Control Technologies for the Emergency Diesel Generator	
Table 5-44:	Ranking of $PM/PM_{10}/PM_{2.5}$ Control Technologies for the Emergency	
14010 5 111	Diesel Generator	5-85
Table 5-45.	Ranking of VOC Control Technologies for the Emergency Diesel	. 5 05
1000 5 15.	Generator	5-86
Table 5-46:	Fuel Oil BACT Analysis References	
	Haul Road Fugitives BACT Analysis References	
	Efficiency Ranking of Particulate Control Technologies for Haul Roads	
	Natural Gas and Fuel Oil Fugitives BACT Analysis References	
Table 5-50.	GHG and VOC Technology Rankings for Natural Gas and Fuel Oil	. 5-72
Table 3-30.	Fugitives	5 0/
Table 5 51.	Cost Effectiveness of LDAR Programs	
		. 3-94
Table 6-1:	Combustion Turbine Emissions and Modeling Parameters – Natural Gas	67
Table 6 2.	Operation	0-3
Table 6-2:	Combustion Turbine Emissions and Modeling Parameters – Fuel Oil	C A
T-1-1 C 2	Operation	
Table 6-3:	Auxiliary Equipment Emissions and Modeling Parameters	6-4

Table 6-4:	Receptor Spacing from Fence Line Boundary	6-7
Table 6-5:	NAAQS, Monitoring and Monitoring Significance Levels, and PSD Class	
	II Increment	6-9
Table 6-6:	Modeled Highs	6-9
Table 6-7:	Duluth PM _{2.5} Monitor (AQS ID: 27-137-7554)	6-10
Table 6-8:	Background Concentrations	6-12
Table 6-9:	Maximum Modeled Concentrations for Significance Modeling	6-13
Table 6-10:	Maximum Modeled Concentrations for Increment Modeling	6-14
Table 6-11:	Maximum Modeled Concentrations for NAAQS Modeling	6-15
Table 6-12:	Class I Modeled Screening Impacts and Class I Significant Impact Level	6-16
Table 6-13:	NAAQS and Modeling Significance Levels	6-17
Table 6-14:	Hypothetical Source Review	6-20
Table 6-15:	Hypothetical St. Louis County Source Table Values	6-21
Table 6-16:	Hypothetical Source St. Louis County Values	6-23
Table 7-1:	Additional Impacts Section References	7-1
Table 7-2:	Class I Screening Analysis	7-7
Table 8-1:	References	8-1

LIST OF ABBREVIATIONS

Abbreviation	Term/Phrase/Name
$(NH_4)_2SO_4$	ammonium sulfate
°F	degrees Fahrenheit
$\mu g/m^3$	micrograms per cubic meter
%	percent
AERMAP	AERMOD terrain pre-processor
AERMOD	AMS/EPA Regulatory Model
AMS	American Meteorological Society
AQRV	Air Quality Related Value
AQS	Air Quality System
ARM2	Ambient Ratio Method
AVO	audio/visual/olfactory
BACT	Best Available Control Technology
BPIP-PRIME	Building Profile Input Program - Plume Rise Model Enhancements
CAA	Clean Air Act
CAAA	Clean Air Act Amendments
CAIR	Clean Air Interstate Rule
CAQT	critical air quality threshold
CEM	continuous emission monitor
CFR	Code of Federal Regulations
CH ₄	methane
CI	compression ignition

Abbreviation	Term/Phrase/Name
СО	carbon monoxide
CO ₂	carbon dioxide
CO ₂ e	carbon dioxide equivalent
EMISFACT	emission factor
EOR	enhanced oil recovery
EPA	U.S. Environmental Protection Agency
ESP	electrostatic precipitator
FDCP	Fugitive Dust Control Plan
FGR	flue gas recirculation
FLAG	Federal Land Managers' Air Quality Related Values Work Group
FLM	Federal Land Managers
ft/s	feet per second
g/hp-hr	gram per horsepower hour
g/kW-hr	gram per kilowatt hour
g/m ²	grams per square meter
GCP	good combustion practices
GEP	Good Engineering Practice
GHG	greenhouse gas
GWP	global warming potential
H ₂ O	water
H_2SO_4	sulfuric acid
НАР	Hazardous Air Pollutant

Revision 0

Abbreviation	Term/Phrase/Name
hp	horsepower
HRSG	heat recovery steam generator
ICE	internal combustion engine
IEC	International Electrotechnical Commission
kg/GJ	kilograms per gigajoule
kPa	kilopascal
kV	kilovolt
kW	kilowatt
LAER	Lowest Achievable Emission Rate
lb/hr	pounds per hour
lb/lb-mol	pound per pound-mole
lb/MMBtu	pounds per million British thermal units
lb/MW-hr	pound per megawatt hour
lb/VMT	pounds per vehicle mile traveled
lb/yr	pounds per year
LDAR	leak detection and repair
LNB	low-NO _x burner
МАСТ	Maximum Achievable Control Technology
MECL	minimum emissions compliance load
MERP	Modeled Emission Rates for Precursors
mg/L	milligrams per liter
mg/m ³	milligrams per cubic meter

iii

Abbreviation	Term/Phrase/Name
MMBtu/hr	million British thermal units per hour
MW	megawatt
N ₂ O	nitrogen oxide
NAAQS	National Ambient Air Quality Standards
NAD 83	North American Datum of 1983
NAICS	North American Industrial Classification System
NED	National Elevation Dataset
NESHAP	National Emission Standards for Hazardous Air Pollutants
ng/J	nanogram per Joule
NH ₃	ammonia
NH4HSO4	ammonium bisulfate
NMHC	non-methane hydrocarbon
NO ₂	nitrogen dioxide
NO _x	nitrogen oxides
NPS	National Park Service
NSPS	New Source Performance Standards
NSR	New Source Review
NSRP-3	National Atmospheric Deposition Program
NTEC	Nemadji Trail Energy Center
O ₂	oxygen
OLM	Ozone Limiting Method
PBL	Planetary Boundary Layers

Revision 0

Abbreviation	Term/Phrase/Name
PM	particulate matter
PM ₁₀	particulate matter less than 10 microns in diameter
PM _{2.5}	particulate matter less than 2.5 microns in diameter
ppb	parts per billion
ppm	parts per million
PRIME	Plume Rise Model Enhancements algorithm
PSD	Prevention of Significant Deterioration
psia	pounds per square inch
PVMRM	Plume Volume Molar Ratio Method
Q/D	emissions (Q) divided by distance (D) screening procedure for Class I areas
RACT	Reasonable Available Control Technology
RBLC	RACT/BACT/LAER Clearinghouse
RICE	Reciprocating Internal Combustion Engines
RMP	Risk Management Plan
SCR	selective catalytic reduction
SF_6	sulfur hexafluoride
SIC	Standard Industrial Classification
SNCR	selective non-catalytic reduction
SO_2	sulfur dioxide
SO ₃	sulfur trioxide
TCEQ	Texas Commission on Environmental Quality
tpy	tons per year

Revision 0

Abbreviation	<u>Term/Phrase/Name</u>
USFS	U.S. Forest Service
USFWS	U.S. Fish and Wildlife Service
USGS	U.S. Geological Survey
UTM	Universal Transverse Mercator
VOC	volatile organic compound
VMT	vehicle miles traveled
WAC	Wisconsin Administrative Code
WDNR	Wisconsin Department of Natural Resources

1.0 EXECUTIVE SUMMARY

Pursuant to the requirements specified in the Wisconsin Administrative Code (WAC) Chapter NR 405, South Shore Energy, LLC, a subsidiary of ALLETE, Inc., Dairyland Power Cooperative, and Nemadji River Generation, LLC, a subsidiary of Basin Electric Power Cooperative, (collectively the Owners), are submitting this Prevention of Significant Deterioration (PSD) air construction permit application for the proposed construction of a combined-cycle combustion turbine and associated support equipment at the Nemadji Trail Energy Center (NTEC) (Project) (FID 816127840). The Project, approximately 625megawatts (MW), will be a greenfield site located east of the existing Enbridge Energy Superior Terminal Facility on the banks of the Nemadji River in the City of Superior in Douglas County, Wisconsin.

The Owners have two current Air Pollution Control Construction Permits for this facility. Permit 18-MMC-168 is for the installation of a combined-cycle facility and permit 21-MMC-011 is for the installation of fugitive emissions of air contaminants from piping components and haul road traffic fugitive emissions. The Owners wish to extend the construction permit expiration date so that construction can commence in 2023. As requested by Wisconsin Department of Natural Resources (WDNR), a new comprehensive permit application that includes all previously submitted permit application materials is being submitted to accomplish this permit action. As part of this submittal the Best Available Control Technology (BACT) and air dispersion modeling analysis are being updated to current standards.

This construction permit application is divided into the following sections:

- Part 1 Executive Summary
- Part 2 Project Description
- Part 3 Emissions Estimates (This section provides estimates of emissions associated with the Project.)
- Part 4 Regulatory Review (This section identifies applicable State and Federal air quality regulations.)
- Part 5 –BACT Analysis
- Part 6 Air Dispersion Modeling (This section provides model descriptions and data requirements for the air quality impact assessment as well as interpretation, analysis, and comparison of the modeling results with applicable air quality regulations.)
- Part 7 Additional Impact Analysis (This section addresses other potential air quality-related impacts (i.e., growth, soil, vegetation, and visibility).)

Construction permit application forms required by the WDNR are included in Appendix A of this application.

1.1 **Project Equipment**

The Project will consist of one H-Class combustion turbine with a heat recovery steam generator (HRSG) with duct burner and one steam turbine in a combined-cycle configuration along with associated support equipment. The Project is expected to be approximately 625 MW. The combustion turbine will be designed to utilize pipeline-quality natural gas and combust fuel oil (ultra-low sulfur diesel) as back-up fuel. In addition to the combustion turbine, an auxiliary boiler, circuit breakers, two natural gas-fired gas heaters (natural gas heater), an emergency diesel fire pump, an emergency diesel generator, fuel oil storage tanks, haul roads, and natural gas and fuel oil piping components will be included as part of the Project.

1.2 **Project Emissions**

As required pursuant to WAC Chapter NR 405, this permit application contains the following analyses/assessments regarding emissions of regulated pollutants associated with the construction and operation of the Project:

- Evaluation of ambient air quality in the area for each regulated pollutant for which the Project will result in a PSD significant net emissions increase
- Demonstration that emissions increases resulting from the Project will not cause or contribute to an increase in ambient concentrations of pollutants exceeding the remaining available PSD increment and the National Ambient Air Quality Standards (NAAQS)
- Assessment of any adverse impacts on soils, vegetation, visibility, and growth in the area
- A BACT analysis for each PSD-regulated pollutant for which the Project will result in a significant net emissions increase

Potential emissions from the Project are shown in Table 1-1 which includes start-up and shutdown emissions for the combustion turbine and auxiliary equipment emissions. A full description of equipment associated with the Project is provided in Part 2.0 of this application.

Pollutant	Project Potential Emissionsª (tons per year)	PSD Significance Level ¹ (tons per year)
NO _x	269	40
СО	2,003	100
PM	167	25
PM_{10}^{b}	167	15
PM _{2.5} ^b	167	10
SO ₂	29	40
VOC	250	40
H ₂ SO ₄ mist	43	7
Lead	0.01	0.6
CO ₂ e	2,739,294	75,000 ²

Source:

(1) 40 CFR 52.21(b)(23)(i)

(2) 40 CFR 52.21(b)(49)(iv)(a)

(a) Numbers in **bold** indicate the PSD significance level is exceeded

(b) Filterable plus condensable

The Project is an area (minor) source of Hazardous Air Pollutants (HAPs) (less than 25 tons per year of total HAPs and less than 10 tons per year of any single HAP).

1.3 BACT

The updated BACT analysis shows that the BACT determination in the original applications and PSD permit remain valid. The controls and emission limitations have not changed since the permit issuance date.

A "top-down" BACT analysis was performed for each of the pollutants in Table 1-1 that was above its corresponding PSD significance level: nitrogen oxides (NO_x), carbon monoxide (CO), particulate matter (PM)/ particulate matter of 10 microns in diameter or smaller (PM₁₀)/ particulate matter of 2.5 microns in diameter or smaller (PM_{2.5}), volatile organic compounds (VOC), sulfuric acid (H₂SO₄) mist, and greenhouse gases (CO₂e). In addition, WDNR also requires a BACT analysis for opacity.

State-of-the-art pollution control equipment has been selected as BACT for the Project. Emissions of NO_x from the combustion turbine will be controlled by low-NO_x burners. Emissions of NO_x from both the combustion turbine and the duct burner will be controlled with selective catalytic reduction (SCR). Emissions of CO and VOC will be controlled by good combustion practices as well as an oxidation catalyst (also referred to as a CO catalyst). Use of clean fuels and good combustion practices will control

emissions of H_2SO_4 mist and PM/PM₁₀/PM_{2.5}. Greenhouse gas emissions will be controlled with the use of natural gas fuel, monitoring and control of excess air, and efficient turbine design. To minimize the near-stack opacity, the combustion turbine will be controlled through the use clean fuels and good combustion practices. Table 1-2 displays the BACT results.

Pollutant	Fuel	Control	BACT Emissions ^{a,b}	Average	
NO _x Natural gas Fuel oil		Selective catalytic reduction (SCR) and low-NO _x burners	2 ppm (with or without duct firing)	24-hour rolling	
		SCR and water injection	6 ppm (with or without duct firing)	24-hour rolling	
СО	Natural gas	Good combustion practices, oxidation catalyst	1.5 ppm (with or without duct firing) ^c	168-hour rolling	
	Fuel oil	Good combustion practices, oxidation catalyst	1.5 ppm (with or without duct firing) ^c	168-hour rolling	
PM/PM ₁₀ /	Natural gas	Combustion controls and low ash fuels	36.3 lb/hr (with duct firing) 21.8 lb/hr (without duct firing)	NA	
PM _{2.5}	Fuel oil	Combustion controls and low ash fuels	54.5 lb/hr (with duct firing) 39.4 lb/hr (without duct firing)	NA	
VOC	Natural gas	Good combustion practices, oxidation catalyst	2.7 ppm (with duct firing) 0.6 ppm (without duct firing)	168-hour rolling	
Fuel oil		Good combustion practices, oxidation catalyst	3.3 ppm (with duct firing) 0.6 ppm (without duct firing)	168-hour rolling	
H ₂ SO ₄ mist	Natural gas	Combustion controls and low sulfur fuels	9.9 lb/hr (with duct firing) 7.8 lb/hr (without duct firing)	NA	
112504 mist	Fuel oil Combustion contr low sulfur fue		9.3 lb/hr (with duct firing) 7.0 lb/hr (without duct firing)	NA	
Natural gas		Use of natural gas as a fuel, monitoring and control of excess air, efficient turbine design, and oxidation catalyst	850 lb CO ₂ /MW-hr, gross	12-month rolling	
Greenhouse gases F	Fuel oil	Use of ultra-low sulfur diesel as a fuel, monitoring and control of excess air, efficient turbine design, and oxidation catalyst	1,180 lb CO ₂ /MW-hr, gross	12-month rolling	
Opacity	Both	Low-NO _x burners, SCR, combustion controls, low ash fuels	N/A	N/A	

Table 1-2: Summary of BACT Results – Combustion Turbin
--

Source: Construction permit no.: 18-MMC-168

(a) ppm = parts per million; lb/hr = pounds per hour; lb/MW-hr = pound per megawatt hour

(b) Concentration at 15 percent oxygen while operating at MECL and greater under steady state conditions, unless otherwise noted

(c) Natural gas limit valid for 100% load with duct firing down to MECL. Fuel oil limit valid for 100% load with duct firing down to 75% load.

1.4 Air Quality Analysis

The existing air quality in the Douglas County area is designated as attainment or unclassifiable in regard to the NAAQS for all criteria pollutants. An air dispersion modeling analysis was performed for the pollutants subject to PSD to assess potential ambient air quality impacts associated with the Project. The modeling was performed in accordance with approved WDNR and U.S. Environmental Protection Agency (EPA) modeling guidance.

The modeling analysis (included in Part 6.0 of this application) demonstrates that operation of the Project will not cause or contribute to a violation of the NAAQS or PSD increments, as applicable.

1.5 Additional Impacts Analysis

The potential impacts of the proposed Project on visibility, soils, vegetation, and growth are discussed in Part 7.0 of this application. As indicated by the analysis, the addition of the Project will not have a significant impact on visibility, soils, growth, or vegetation in the surrounding area.

2.0 **PROJECT DESCRIPTION**

Section 2.0 overview: The references to the most current project descriptions for the permitted units are presented in Table 2-1. A 12-cell cooling tower was initially permitted as part of the Project and was removed as part of a permit modification request dated June 5, 2020.

Unit ID	Description	Previous Application Reference	December 2021 Submittal Location
P01	Combined-Cycle Turbine	2.0 Project Description December 2018 Submittal	2.0 Project Description
B02	Auxiliary boiler	2.0 Project Description December 2018 Submittal	2.0 Project Description
F03	Circuit breakers	1.0 Introduction June 2020 Submittal	2.0 Project Description
P04	Natural gas-fired heater	2.0 Project Description December 2018 Submittal	2.0 Project Description
P05	Natural gas-fired heater	2.0 Project Description December 2018 Submittal	2.0 Project Description
P06	Emergency diesel fire pump	2.0 Project Description December 2018 Submittal	2.0 Project Description
P07	Emergency diesel generator	2.0 Project Description December 2018 Submittal	2.0 Project Description
T01	Diesel fuel day tank	2.0 Project Description December 2018 Submittal	2.0 Project Description
T02	Diesel fuel generator tank	2.0 Project Description December 2018 Submittal	2.0 Project Description
T03	Diesel fuel fire pump tank	2.0 Project Description December 2018 Submittal	2.0 Project Description
F01	Haul roads	2.0 Project Description January 2021 Submittal	2.0 Project Description
F02	Natural gas and fuel oil piping components	2.0 Project Description January 2021 Submittal	2.0 Project Description
	Project location	Appendix B – Figure B-1 January 2021 Submittal	Appendix B – Figure B-1
	Site plot plan	Appendix B – Figure B-2 January 2021 Submittal	Appendix B – Figure B-2

Table 2-1: Project Description References

The Project will be located east of the existing Enbridge Energy Superior Terminal Facility on the banks of the Nemadji River in the City of Superior in Douglas County, Wisconsin. The Project location and site plot plan are shown in Figures B-1 and B-2 (Appendix B). Douglas County is currently designated as an attainment/unclassified area for all criteria pollutants in 40 Code of Federal Regulations (CFR) Part 81.

2.1 Turbine (P01) and Emission Controls

The Project will use H-Class combined-cycle turbine technology to generate electricity. The duct burner will combust natural gas and heat the exhaust gas from the combustion turbine within the HRSG. The combustion turbine is proposed to be permitted to operate year-round with no hourly restrictions in combined-cycle mode when combusting natural gas.

The combustion turbine will combust fuel oil when natural gas is unavailable due to limited availability and/or curtailment. Fuel oil, when combusted, will be limited to 11.0 million gallons per year of fuel oil.

To control emissions of NO_x , the combustion turbine will be equipped with low- NO_x burners. In addition, SCR will be added in the HRSG to further reduce NO_x emissions. To minimize emissions of sulfur dioxide (SO₂), H₂SO₄ mist, and PM/PM₁₀/PM_{2.5}, the combustion turbine will be controlled by using clean fuels and good combustion practices. Emissions of CO and VOC will be controlled by using an oxidation catalyst and good combustion practices. Greenhouse gas emissions will be controlled with the use of natural gas or ultra-low sulfur diesel fuel, monitoring, control of excess air, efficient turbine design, and use of an oxidation catalyst.

2.2 Auxiliary Boiler (B02)

A 100 million British thermal units per hour (MMBtu/hr) natural gas-fired auxiliary boiler will be constructed to support the operations of the Project and will be permitted for 8,760 hours of operation per year. The auxiliary boiler will be designed with ultra-low NO_x burners, flue gas recirculation (FGR), and oxidation catalyst.

2.3 Sulfur Hexafluoride (SF₆) Containing Equipment (F03)

The following SF₆-containing circuit breaker equipment is proposed:

- Three 345-kilovolt (kV) circuit breakers are proposed for the substation.
- Two 19-kV (estimate) low-side generator circuit breakers will be located in the plant before the step-up transformers that feed the onsite switchyard.

Note that the Project will include six disconnect switches at each substation site; however, the switches are open air type switches and do not contain SF₆.

2.4 Natural Gas Heaters (P04 and P05)

Two natural gas-fired heaters will be used to heat the natural gas prior to combustion in the turbine. Both heaters will be permitted for unlimited operation. The gas heaters will be designed with low-NO_x burners.

2.5 Emergency Diesel Fire Pump (P06)

An emergency diesel fire pump will be built to support the Project in case of a fire. The emergency diesel fire pump will have a maximum power output of 282 horsepower (hp) and will be fired solely by ultralow sulfur diesel. The Owners propose to operate the emergency diesel fire pump for up to 500 hours annually for testing and maintenance purposes, and therefore supports a limit on routine hours of operation of the emergency diesel fire pump.

2.6 Emergency Diesel Generator (P07)

An emergency diesel generator will be built to support the Project's combustion turbine in case of a power interruption. The emergency diesel generator will have a maximum power output of 1,490 hp (1,112 kilowatt [kW]) and will be fired solely by ultra-low sulfur diesel. The Owners propose to operate the emergency diesel generator for up to 500 hours annually for testing and maintenance purposes, and therefore supports a limit on routine hours of operation of the emergency diesel generator.

2.7 Diesel Storage Tanks (T01, T02, and T03)

The project will include three diesel storage tanks: one 180,000-gallon tank, one 1,700-gallon tank, and one 350-gallon tank. These tanks will store diesel fuel for the combustion turbine, emergency diesel generator, and emergency diesel fire pump.

2.8 Haul Road Traffic Fugitives (F01)

Miscellaneous supplies associated with facility operation will be transported to and from the site via trucks. Up to 520 trucks per year are expected for delivery or removal. Some examples of activities associated with facility operation are as follows, but not limited to, aqueous ammonia for emissions control and water treatment and fuel oil for emergency equipment.

To mitigate onsite road emissions from these deliveries, NTEC will pave the primary facility roads. Both fuel oil and natural gas to the combustion turbine and duct burner will be delivered to the site via pipeline and not by truck delivery.

2.9 Natural Gas and Fuel Oil Fugitives (F02)

The proposed project will include natural gas piping components from the natural gas line that will enter the project site to provide gas for the combustion turbine, duct burner, natural gas heaters and auxiliary boiler. These natural gas piping components are potential sources of methane and VOC emissions due to emissions from valves, flanges, sampling connections and relief valves. The proposed project will also include fuel oil piping components from the fuel oil line that will enter the project site to provide fuel oil for the combustion turbine and duct burner, as well as the emergency diesel fire pump and emergency diesel generator. These fuel oil piping components are potential sources of methane and VOC emissions due to emissions from valves, flanges, sampling connections and relief valves.

3.0 EMISSIONS ESTIMATES

Section 3.0 overview: The references to the most current emissions estimates write-up sections for the permitted units are presented in Table 3-1. Overall potential emissions from the Project are shown in Table 1-1 of this application. The emissions calculations for each permitted unit are presented in Appendix C and capture all project updates that have occurred throughout the permitting process. Updates to the previously submitted emissions calculations in Appendix C and in Table 3-4 and Table 3-5 in this section are the result of project updates and post application submittal actions.

Unit ID	Description	Previous Application Reference	December 2021 Submittal Location
P01	Combined-Cycle Turbine	3.0 Emissions Estimates December 2018 Submittal	3.0 Emissions Estimates
B02	Auxiliary boiler	3.0 Emissions Estimates December 2018 Submittal	3.0 Emissions Estimates
F03	Circuit breakers	1.0 Introduction June 2020 Submittal	3.0 Emissions Estimates
P04	Natural gas-fired heater	3.0 Emissions Estimates December 2018 Submittal	3.0 Emissions Estimates
P05	Natural gas-fired heater	3.0 Emissions Estimates December 2018 Submittal	3.0 Emissions Estimates
P06	Emergency diesel fire pump	3.0 Emissions Estimates December 2018 Submittal	3.0 Emissions Estimates
P07	Emergency diesel generator	3.0 Emissions Estimates December 2018 Submittal	3.0 Emissions Estimates
T01	Diesel fuel day tank	3.0 Emissions Estimates December 2018 Submittal	3.0 Emissions Estimates
T02	Diesel fuel generator tank	3.0 Emissions Estimates December 2018 Submittal	3.0 Emissions Estimates
T03	Diesel fuel fire pump tank	3.0 Emissions Estimates December 2018 Submittal	3.0 Emissions Estimates
F01	Haul roads	3.0 Emissions Estimates January 2021 Submittal	3.0 Emissions Estimates
F02	Natural gas and fuel oil piping components	3.0 Emissions Estimates January 2021 Submittal	3.0 Emissions Estimates

Table 3-1: Emissions Estimates References

Emissions of air contaminants will result from the combustion of natural gas and fuel oil in the combustion turbine and natural gas in the duct burner. There will also be emissions of air contaminants generated from the auxiliary equipment: an auxiliary boiler, circuit breakers, two natural gas heaters, an emergency diesel fire pump, an emergency diesel generator, fuel oil storage tanks, haul roads, and natural gas and fuel oil piping components.

Process flow diagrams for the combustion turbine process and auxiliary equipment are located in Appendix A. Each emission point's control device descriptions, control efficiencies, and procedures for estimating emissions is discussed in detail in the sections below. Tables summarizing the emissions estimates are included in Appendix C.

3.1 Combustion Turbine (P01)

The following sections summarize the combustion turbine hours of operation, emissions estimates for various operating loads when combusting natural gas and fuel oil, and start-up/shutdown operation.

3.1.1 Combustion Turbine Hours of Operation

The following conservative assumptions were applied to seven combustion turbine operating scenarios to determine maximum potential annual emissions as shown in Table 3-2.

	Scenario						
Type of Operation	1	2	3	4	5	6	7
Natural gas with duct firing	Х	Х	X			X	Х
Natural gas (normal operation)				Х	Х		
Natural gas start-up/shutdown		Х	X	Х	Х		Х
Fuel oil with duct firing ^a						X	Х
Fuel oil (normal operation) ^a			X		Х		
Fuel oil start-up/shutdown ^a			X		Х	X	Х

Table 3-2: Combustion Turbine Operating Cases for Maximum Potential Annual Emissions

(a) Fuel oil, when combusted, will be limited to 11.0 million gallons per year of fuel oil.

Start-up and shutdown emissions were based on the start-up and shutdown profiles for the combinedcycle combustion turbine and the number of start-up and shutdown events per year for each fuel. The Owners are requesting the following start-up and shutdown limits:

- An hours per year limit on start-up and shutdown (1,525 hours per year for start-up and shutdown, combined) for natural gas operation
- 42 start-ups and 42 shutdowns per year for fuel oil operation.

3.1.2 Combustion Turbine Operation Emissions

Emissions from the combustion turbine are dependent on ambient temperature conditions and the turbine's operating load, which can vary from 33 to 100 percent. To account for representative seasonal climatic variations, potential emissions from the proposed combustion turbine were analyzed at the

minimum emissions compliance load (MECL) (designated as "low"), 75, and 100 percent load conditions for ambient temperatures ranging from negative (-)34.3 degrees Fahrenheit (°F) to 95.5°F. The projected emissions were based on data provided by the combustion turbine manufacturer and/or from AP-42 emission factors. Detailed calculations of the combustion turbine's emissions are provided in Appendix C of this application.

For purposes of emission calculations and modeling, the MECL ranges from 33 to 50 percent load, depending on ambient conditions, and was grouped as "low" load. When grouping, the worst-case parameters were chosen (highest emission rate, lowest temperature, lowest flow rate).

Based on the above assumptions, the maximum expected hourly emission rates for normal operation (excluding start-up and shutdown) for the combustion turbine are shown in Table 3-3.

	Natural Gas with Duct Firing	Natural Gas 100% Load	Fuel Oil with Duct Firing	Fuel Oil 100% Load
Pollutant	pounds per hour			
NO _x	33.5	26.5	72.7	51.6
СО	15.3	12.1	11.1	7.8
PM/PM ₁₀ /PM _{2.5}	36.3	21.8	54.5	39.4
SO_2	6.4	5.1	6.1	4.6
VOC	15.5	2.8	14.1	1.8
H ₂ SO ₄ mist	9.9	7.8	9.3	7.0
Lead			0.04	0.04
CO ₂ e	592,127	469,787	947,846	819,965

 Table 3-3:
 Maximum Expected Hourly Combustion Turbine Emission Rates

3.1.3 Combustion Turbine Start-Up and Shutdown Emissions Calculation Method

The combustion turbine emissions are based on 1,525 hours per year for start-up and shutdown, combined, for natural gas operation. Potential start-up and shutdown emissions were based on a start-up profile and conservatively assumed that there will be a combination of cold starts, warm starts, hot-fast starts, and shutdown on natural gas. There will also be up to 42 start-ups and 42 shutdown events per year on fuel oil. One start-up/shutdown event is equivalent to one start-up plus one shutdown.

Potential start-up and shutdown emissions for natural gas and fuel oil combustion are shown in Table 3-4 and Table 3-5, respectively. Detailed calculations of the potential start-up and shutdown emissions are provided in Appendix C.

Pollutant	Start-up Emissions			Shutdown Emissions	Start-up and Shutdown Emissionsª
	lb/cold start	lb/warm start	lb/hot-fast start	lb/shutdown	tons per year
NO _x	335.0	233.0	111.0	59.0	108.3
СО	11,066	6,495	779.0	463.0	1,369
$PM/PM_{10}\!/PM_{2.5}$	43.6	29.1	16.3	10.9	16.6
SO_2	10.2	6.8	3.8	2.6	3.9
VOC	950.0	558.0	67.0	40.0	117.8
H ₂ SO ₄ mist	15.6	10.4	5.9	3.9	6.0
Lead	0.0	0.0	0.0	0.0	0.0
CO ₂ e	939,573	626,382	352,340	234,893	358,212

 Table 3-4:
 Potential Natural Gas Turbine Start-up and Shutdown Emissions

(a) Emissions are based on 1,525 hours per year for start-up and shutdown, combined, for natural gas operation.

 Table 3-5:
 Potential Fuel Oil Turbine Start-up and Shutdown Emissions

Pollutant	Start-up Emissions	Shutdown Emissions	Start-up and Shutdown Emissionsª
	lb/start	lb/shutdown	tons per year
NO _x	860.0	108.0	20.3
СО	25,846	1,227	568.5
PM/PM ₁₀ /PM _{2.5}	78.9	19.7	2.1
SO_2	9.2	2.3	0.2
VOC	2,951	122.0	64.5
H ₂ SO ₄ mist	14.0	3.5	0.4
Lead	0.08	0.02	0.002
CO ₂ e	1,639,929	409,982	43,048

(a) Emissions are based on 42 start-ups and 42 shutdowns

3.2 HAP Emissions

The Project is an area source of HAPs (*i.e.*, less than 25 tons per year of total HAPs and less than 10 tons per year of any single HAP). HAP emission calculations and a summary of HAP emissions are included in Appendix C.

3.3 Auxiliary Boiler Emissions (B02)

One 100 MMBtu/hr auxiliary boiler will be installed at the facility to be used while the combustion turbine is operating. The boiler will be fired with natural gas. The auxiliary boiler will be limited to annual operations of 8,760 hours. Emissions for this unit were estimated based on AP-42 emission factors and vendor data. Greenhouse gas emissions were estimated based on the emission factors in 40 CFR Part 98. Detailed calculations are provided in Appendix C.

3.4 SF₆ Containing Equipment (F03)

Annual potential to emit emissions of SF_6 from the circuit breakers were based on maximum leakage rate of 0.5 percent per year, the amount of SF_6 in each size of circuit breaker, and the global warming potential (GWP). Project potential emissions of CO₂e leakage from all proposed circuit breakers combined are estimated to be 120 tons per year. A detailed report of the SF_6 emissions is provided in Appendix C of this application.

3.5 Natural Gas Heaters Emissions (P04 and P05)

Two 10.0 MMBtu/hr natural gas-fired heaters will be installed at the facility to heat the natural gas prior to being combusted in the combustion turbine. As a worst-case estimate, it is assumed that annual operations will be 8,760 hours per year for each heater. Emissions for the gas heaters were estimated based on AP-42 emission factors. Greenhouse gas emissions were estimated based on the emission factors in 40 CFR Part 98. Detailed calculations are provided in Appendix C.

3.6 Emergency Diesel Fire Pump Emissions (P06)

One 282-hp diesel fire pump will be installed for emergency power use at the facility. The fire pump will be fired with ultra-low sulfur diesel. Emissions for the emergency diesel fire pump were estimated assuming an annual testing and maintenance schedule of 500 hours. Emissions for this unit were estimated based on New Source Performance Standards (NSPS) limits and AP-42 emission factors. Greenhouse gas emissions were estimated based on the emission factors in 40 CFR Part 98. Detailed calculations of diesel fire pump emissions are provided in Appendix C.

3.7 Emergency Diesel Generator Emissions (P07)

One 1,490 hp (1,112 kW) diesel generator will be installed for emergency power use at the facility; the generator will be fired with ultra-low sulfur diesel. Emissions for the emergency diesel generator were estimated assuming an annual testing and maintenance schedule of 500 hours. Emissions for this unit were estimated based on NSPS limits and AP-42 emission factors. Greenhouse gas emissions were

estimated based on the emission factors in 40 CFR Part 98. Detailed calculations of diesel generator emissions are provided in Appendix C.

3.8 Diesel Storage Tanks Calculation Method (T01, T02, and T03)

The project will include three diesel storage tanks: one 180,000-gallon tank, one 1,700-gallon tank, and one 350-gallon tank. Emissions from loading and breathing losses were estimated for the storage tanks using the EPA TANKS emission software. A detailed report of the fuel oil storage tank emissions is provided in Appendix C.

3.9 Haul Road Traffic Fugitives Calculation Method (F01)

Emissions from haul roads due to traffic were estimated using the paved roads, size-specific emission calculation equation below:

$$E = k * (sL)^{0.91} 0.91 * (W)^{1.02}$$

Where:

E = pounds per vehicle miles traveled (lb/VMT)

sL = silt loading grams per square meter $(g/m^2) = 2.4 g/m^2$

W = mean vehicle weight (tons)

k = constant (AP-42 Table 13.2-1.1)

The mean vehicle weight is calculated by averaging the loaded and unloaded vehicle weights. The "ubiquitous baseline" of 0.6 g/m^2 was selected from the less than 500 average daily traffic category in AP-42 Table 13.2.1-2; and the ubiquitous winter baseline multiplier during months with frozen precipitation (x4) was applied to this value to obtain a silt loading value of 2.4 g/m² for all paved roads.

For paved roads, vehicle miles traveled (VMT) is calculated as follows:

VMT = length of path haul road vehicle travels * maximum trips (hourly or annual)

Whether a vehicle travels the haul road twice (back and forth) or once (when traveling in a loop) was accounted for when calculating the miles traveled for each haul road route. Detailed calculations of haul road emissions are provided in Appendix C.

3.10 Natural Gas and Fuel Oil Fugitives Calculation Method (F02)

Fugitive emissions will come from small leaks in equipment connections throughout the facility. The estimated number of connectors, flanges, open ended lines, pump seals and valves were determined from engineering plans for the facility. The emissions were then estimated using the 1995 Protocol for

Equipment Leak Emission Estimates- EPA-453/R-95-017. The emissions estimates for fuel oil fugitives is "total organics" which includes non-VOCs such as methane and ethane and is assumed to be VOCs for the purposes of this application. The emissions estimates for natural gas VOC fugitive emissions was calculated using the minimum methane content. Further, to determine natural gas CO₂e fugitive emissions the maximum methane content was used. Detailed calculations of natural gas and fuel oil fugitives are provided in Appendix C.

4.0 **REGULATORY REVIEW**

Overview: The references to the most current regulatory review sections for the permitted units are presented in Table 4-1. Specific post-application regulatory updates are also referenced.

Unit ID	Description	Previous Application Reference	December 2021 Submittal Location
P01	Combined-Cycle Turbine	4.0 Regulatory Review December 2018 Submittal	4.0 Regulatory Review
B02	Auxiliary boiler	4.0 Regulatory Review December 2018 Submittal	4.0 Regulatory Review
F03	Circuit breakers	Appendix A - Form 4530-132 June 2020 Submittal	4.0 Regulatory Review
P04	Natural gas-fired heater	4.0 Regulatory Review December 2018 Submittal	4.0 Regulatory Review
P05	Natural gas-fired heater	4.0 Regulatory Review December 2018 Submittal	4.0 Regulatory Review
P06	Emergency diesel fire pump	4.0 Regulatory Review December 2018 Submittal	4.0 Regulatory Review
P07	Emergency diesel generator	4.0 Regulatory Review December 2018 Submittal	4.0 Regulatory Review
T01	Diesel fuel day tank	4.0 Regulatory Review December 2018 Submittal	4.0 Regulatory Review
T02	Diesel fuel generator tank	4.0 Regulatory Review December 2018 Submittal	4.0 Regulatory Review
Т03	Diesel fuel fire pump tank	4.0 Regulatory Review December 2018 Submittal	4.0 Regulatory Review
F01	Haul roads	4.0 Regulatory Review January 2021 Submittal	4.0 Regulatory Review
F02	Natural gas and fuel oil piping components	4.0 Regulatory Review January 2021 Submittal	4.0 Regulatory Review
All units	Chapter NR 445 Analysis	Data request response letter to WDNR February 23, 2021	Section 4.4.20
P06 and P07	Subpart IIII	Post application NTEC Response #01	Additional language incorporated into Section 4.2.5
HRSG	Subpart KKKK	Post application NTEC Response #09	Additional language incorporated into Section 4.2.6

Table 4-1: Regulatory Review References

The Project is subject to various Federal and State air regulations. Part 4 contains a discussion of applicable Federal and WAC provisions. Where applicable, reference to general limitations is provided when there is no specific requirement that applies to an emission source.

In certain instances, there may be multiple applicable regulatory requirements that identify differing levels of emission limitations. For instance, where a BACT emission limitation is established for a specific pollutant and a NSPS regulation is also applicable, the BACT limitation may be more stringent than an applicable NSPS emission limitation for the same pollutant. In these situations, it is understood that compliance with the most restrictive requirement would demonstrate compliance with other less stringent requirements.

4.1 **PSD Regulations**

PSD review applies to a physical change of a major stationary source located in an area designated as attainment or unclassified that would result in a significant emissions increase of a regulated New Source Review (NSR) pollutant and a significant net emissions increase of that pollutant pursuant to WAC Chapter NR 405. PSD review consists of the following:

- A BACT analysis
- An air quality analysis
- An analysis of additional impacts on visibility, soils, vegetation, and growth

Three criteria were evaluated to determine PSD applicability to the Project (EPA, 1990):

- Whether the Project is sufficiently large (in terms of its emissions) to be a "major stationary source" or "major modification"
- Whether the source is in an area designated as "attainment" or "unclassified"
- Whether the Project would result in a "significant emissions increase" or a "significant net emissions increase" of a "regulated NSR pollutant" as defined by s. NR 405.02(27)(a)

Regulated NSR pollutants in Wisconsin include NO_x, SO₂, CO, PM, PM₁₀, PM_{2.5}, VOC, CO₂e, hydrogen sulfide, H₂SO₄ mist, fluorides, and lead. The definition of a "major stationary source" is given in s. NR 405. The Project is included in the 26 source categories specified in the PSD regulations as major stationary sources if the potential emissions of a regulated NSR pollutant exceed 100 tons per year (because the HRSG generates steam). The Project has the potential to emit regulated NSR pollutants in excess of 100 tons per year; therefore, the Project meets the "major stationary source" classification for a number of regulated NSR pollutants. Thus, the Project meets the first criterion for PSD applicability.

The Project is in an attainment/unclassified area for all criteria pollutants; thus, it meets the second criterion for PSD applicability.

The maximum potential emissions from the Project are listed in Table 1-1, which include start-up and shutdown emissions from the combustion turbine. The Project would result in a "significant emission increase" for the following regulated NSR pollutants: NO_x, CO, VOC, PM/PM₁₀/PM_{2.5}, H₂SO₄ mist, and CO₂e. Thus, the Project meets the third and final criterion for PSD applicability.

The PSD regulations in s. NR 405 require the following issues be addressed:

- Determination of BACT on a case-by-case basis, taking into account costs as well as energy, environmental, and economic impacts;
- Demonstration that the increase in emissions would not cause or contribute to an exceedance of the NAAQS or PSD increment;
- Analysis of the impairment, if any, to visibility, soils, vegetation, and growth.

Section 5.0 contains the BACT analyses for the regulated NSR pollutants.

4.2 New Source Performance Standards

Per 40 CFR Part 60 and s. NR 440 WAC, the Project is subject to NSPS. Relevant NSPS standards are listed below, and if applicable, a description of how the Owners plan to meet the standards.

4.2.1 Subpart Db – Not Applicable

HRSGs and duct burners regulated under Subpart KKKK are exempt from the requirements of 40 CFR Part 60 Subparts Da, Db, and Dc.

4.2.2 Subpart Dc

NSPS 40 CFR Part 60, Subpart Dc applies to Small Industrial-Commercial-Institutional Steam Generating Units between the sizes of 10 MMBtu/hr and 100 MMBtu/hr. This rule applies to the auxiliary boiler (100 MMBtu/hr) and the two gas heaters (10 MMBtu/hr, each). Since the auxiliary boiler and gas heaters combust natural gas, the Owners will keep records of the sulfur content of the natural gas as certified by the supplier or test data and record the daily usage of natural gas in the auxiliary boiler and natural gas heaters. For gas-fired units of this size, there are no emissions limits provided in the rule. The Owners will comply with the record keeping and reporting requirements of the rule.

4.2.3 Subpart GG - Not Applicable

Stationary combustion turbines constructed after February 18, 2005, that are subject to NSPS 40 CFR Part 60, Subpart KKKK are exempt from the requirements of Subpart GG. Section 4.2.6, below, covers Subpart KKKK.

4.2.4 Subpart Kb - Not Applicable

NSPS 40 CFR Part 60, Subpart Kb applies to each storage vessel with a capacity greater than or equal to 75 cubic meters used to store volatile organic liquids for which construction, reconstruction, or modification is commenced after July 23, 1984. Two of the diesel storage tanks will have a capacity less than 75 cubic meters; therefore, the 1,700-gallon and 350-gallon storage tanks will not be subject to Subpart Kb.

This subpart applies to storage vessels with a capacity greater than or equal to 151 cubic meters (39,890 gallons) storing a liquid with a maximum true vapor pressure greater than 3.5 kilopascals (kPa) (0.5 pounds per square inch [psia]). The 180,000-gallon tank diesel storage tank that will be installed as part of the Project is greater than 151 cubic meters (39,890 gallons); however, the tank will not be subject to Subpart Kb as its vapor pressure is less than 3.5 kPa.

4.2.5 Subpart IIII

NSPS 40 CFR Part 60, Subpart IIII applies to stationary compression ignition (CI) internal combustion engines (ICE) and the manufacturers or owners and operators of these engines as follows:

- 1. **Manufacturers** of stationary CI ICE with a displacement of less than 30 liters per cylinder where the model year is 2007 or later for non-fire pump engines and the model year listed or later model years for fire pump engines (2008 or 2011)
- 2. **Owners and operators** of stationary CI ICE that commenced construction after July 11, 2005, where the CI ICE are manufactured after April 1, 2006 (non-fire pump engines), or manufactured as a National Fire Protection Agency fire pump engine after July 1, 2006

For purposes of this application, Subpart IIII is assumed to be applicable to the emergency fire pump and the emergency diesel generator. Both engines will meet the definition of "emergency stationary internal combustion engine" under this subpart as follows:

- There is no time limit on the use of emergency stationary ICE in emergency situations.
- The engine may be operated for a maximum of 100 hours per calendar year for testing and maintenance, except as indicated, below.
- 50 hours of the 100 hours per calendar year allocated may be used for non-emergency situations.

Further, both engines will be 2009 model year or later.

Based on the size (horsepower) and use (emergency) and assuming the Owners purchase a certified model year 2009 or later CI ICE with a displacement that will less than 10 liters per cylinder, the emergency fire pump will be certified in accordance with the limits in 40 CFR 60.4202(d). As the emergency fire pump will be between 175 and 300 hp, the limits are as follows:

- 4.0 gram per kilowatt hour (g/kW-hr) (3.0 gram per horsepower hour [g/hp-hr]) for non-methane hydrocarbons (NMHC) plus NO_x
- 3.5 g/kW-hr (2.6 g/hp-hr) for CO
- 0.20 g/kW-hr (0.15 g/hp-hr) for PM

Based on the size (horsepower) and use (emergency) and assuming the Owners purchase a certified model year 2007 or later CI ICE with a displacement that will less than 10 liters per cylinder, the emergency generator will be certified in accordance with the limits in 40 CFR 60.4202(a)(2), which refer to the limits in 40 CFR 89.112. As the emergency generator will be greater than 560 kW and manufactured after 2006, Table 1 of 40 CFR 60.89.112(a) indicates the following applicable emission standards [subject to the same being included in a family emission limit in an averaging, banking, and trading program for which the emission standards in Table 2 of 40 CFR 89.112(d) are applicable]:

- 6.4 g/kW-hr (4.8 g/hp-hr) for NMHC plus NO_x
- 3.5 g/kW-hr (2.6 g/hp-hr) for CO
- 0.20 g/kW-hr (0.15 g/hp-hr) for PM

The emergency generator will also be subject to the exhaust opacity limits in 40 CFR 89.113, with singlecylinder engines, propulsion marine diesel engines, and constant speed engines being exempt from these limits:

- 20 percent during the acceleration mode
- 15 percent during the lugging mode
- 50 percent during the peaks in either the acceleration or lugging modes

Compliance with this subpart will be shown by purchasing an engine certified to meet the applicable emission standards for the model year and maximum engine power depending on the date of purchase. The Owners will install emergency diesel engines that are certified to meet the applicable emission standards based on the date that the unit will be installed. Pursuant to 40 CFR 60.4207(b), owners and operators of CI ICE subject to Subpart IIII with a displacement of less than 10 liters per cylinder that use diesel fuel must purchase diesel fuel that meets the requirements of 40 CFR 80.510(b) for non-road diesel fuel. This rule will be applicable to the emergency diesel engine, since the proposed emergency diesel engine will have a displacement of less than 10 liters per cylinder. As stated in 40 CFR 80.510(b), non-road diesel fuel must be limited to 15 parts per million (ppm) maximum sulfur content. The cetane index is limited to a minimum of 40 and the maximum aromatic content is limited to 35 volume percent.

The Owners will be subject to the applicable requirements of this rule for the emergency fire pump and emergency generator. The Owners intend to limit maintenance and readiness testing to 100 hours to meet the definition of emergency for 40 CFR 60, Subpart IIII. The emergency equipment potential to emit emissions were calculated using 500 hours per year per EPA guidance. The EPA believes that 500 hours per year is an appropriate default assumption for estimating the number of hours that emergency equipment could be expected to operate under worst-case conditions.

4.2.6 Subpart KKKK

NSPS 40 CFR Part 60, Subpart KKKK is applicable to all stationary combustion turbines that commenced construction, modification, or reconstruction after February 18, 2005, and have a heat input equal to or greater than 10.7 gigajoules per hour (10 MMBtu/hr), based on the higher heating value of fuel.

Per 40 CFR 40b(i), if the combustion turbine is subject to Subpart KKKK, then the associated HRSG is exempt from the requirements of 40 CFR Part 60 Subparts Da, Db, and Dc. Per 40 CFR 60.4305(a), since the combustion turbine is greater than 10 MMBtu/hr and will be constructed after February 18, 2005, the combustion turbine is subject to Subpart KKKK. The HRSG associated with the turbine meets the applicability requirements of 40 CFR 60, Subpart KKKK.

Pursuant to 40 CFR Section 60.4320(a) and Table 1 to Subpart KKKK, the NSPS NO_x applicable combustion turbine limit for natural gas combustion, is 15 ppm at 15 percent oxygen or 54 nanogram per Joule (ng/J) of useful output (0.43 pound per megawatt hour [lb/MW-hr]), when burning more than 50 percent natural gas (60.4325).

When combusting more than 50 percent fuel oil, the limit for NO_x is 42 ppm at 15 percent oxygen or 160 ng/J of useful output (1.3 lb/MW-hr).

During operations when ambient temperatures are less than 0 °F or when the turbine is operating at less than 75 percent load, the NO_x emission standard is 96 ppm at 15 percent oxygen or 590 ng/J of useful output (4.7 lb/MWh). This applies when combusting either natural gas or fuel oil. All MW readings are in gross MW. The higher emission standard applies for the hour if at any point in the hour the unit was subject to the higher standard.

In accordance with Subpart KKKK, the Owners would demonstrate compliance with the NO_x emission limit by conducting performance testing pursuant to Section 60.4340(a), or alternatively, by installing, calibrating, maintaining, and operating a continuous monitoring system (i.e., continuous emission monitor (CEM) or continuous parameter monitor) in accordance with Section 60.4340(b).

For operating periods during which multiple emissions standards apply, the applicable standard is the average of the applicable standards during each hour per §60.4380(b)(3). For combined cycle units, the limits are calculated from hourly average emission rates to assess excess emissions on a 30-unit operating day rolling average basis, as described in § 60.4380(b)(1).

The Owners expect to have a NO_x emission rate of 2 ppm at 15 percent oxygen for natural gas combustion and 6 ppm for fuel oil combustion with the use of SCR.

The NSPS SO₂ limit for the turbine is 0.90 lb/MW-hr gross output, **or** the facility must limit fuel so that any fuel combusted contains total potential sulfur emissions equal to or less than 0.060 lb SO₂/MMBtu heat input. Emissions of SO₂ will be well below 0.90 lb/MW-hr for both fuel oil and natural gas operation; therefore, per 40 CFR Section 60.4365(a), the Owners will keep on record the fuel quality characteristics of the natural gas and fuel oil from the suppliers and fuel analysis records.

4.2.7 Subpart TTTT

NSPS 40 CFR Part 60, Subpart TTTT, Standards of Performance for Greenhouse Gas Emissions for Electric Utility Generating Units regulates carbon dioxide (CO₂) emissions from electric generating units under the NSPS (Clean Air Act 111b regulations). The standards apply to any steam generating unit, integrated gasification combined-cycle, or combustion turbine that commenced construction after January 18, 2014, or reconstruction or modification after June 18, 2014, that has a base load rating greater than 250 MMBtu/hr of fossil fuel and serves a generator capable of selling greater than 25 MW of electricity to a utility power distribution system.

The combustion turbine will be subject to NSPS Subpart TTTT. The standard provides a limit for natural gas-fired combined-cycle combustion turbines. A natural gas-fired combined-cycle turbine is limited to

450 kilograms of CO₂ per megawatt-hour of gross energy output (1,000 pounds CO₂ per MW-hour [lb CO₂/MW-hr]) on a 12-operating month rolling average basis. An alternative to meeting the gross energy output the Owners can petition to comply with the alternate net energy output standard, 470 kilograms of CO₂ per megawatt-hour of net energy output (1,030 lb/MW-hr) on a 12-operating month rolling average basis. These limits are based on an assumed operation of 90 percent natural gas in a 12-month period. The combined-cycle combustion turbine will comply with the limit in NSPS Subpart TTTT.

If the turbine combusts 90 percent or less natural gas, in accordance with Table 2 of Subpart TTTT, the limit becomes 50 kilograms CO₂ per gigajoule (kg/GJ) to 69 kg/GJ of heat input (120 to 160 pounds per million British thermal units [lb/MMBtu]) as determined by the procedures in 40 CFR Section 60.5525.

4.3 National Emission Standards for Hazardous Air Pollutants and Maximum Achievable Control Technology

National Emission Standards for Hazardous Air Pollutants (NESHAP) are contained in 40 CFR Part 63 (adopted by reference in s. NR 445). NESHAP are emissions standards set by the EPA for specific source categories. The NESHAP require the maximum degree of emission reduction of certain HAP emissions that the EPA determines to be achievable, which is known as the maximum achievable control technology (MACT) standards.

The following MACT standards are relevant to the Project.

4.3.1 Subpart YYYY - Not Applicable

EPA promulgated MACT standards for new stationary combustion turbines on March 5, 2004. These standards apply to stationary combustion turbines for which construction commenced after January 14, 2003. On April 7, 2004, however, EPA proposed to remove gas-fired units from the combustion turbine source category regulated by NSPS 40 CFR 63, Subpart YYYY. In the interim, EPA has stayed the applicability of Subpart YYYY requirements for gas-fired combustion turbines.

This regulation applies only to combustion turbines at facilities that are major sources of HAPs. The Project will be an area source of HAPs; therefore, the Project is not subject to this regulation.

4.3.2 Subpart ZZZZ

The Reciprocating Internal Combustion Engines (RICE) MACT (40 Part 63, Subpart ZZZZ) is applicable to stationary RICE located at major or area sources of HAP emissions. Both the emergency generator and emergency fire pump will be a new source located at an area source per 40 CFR 63.6590(c)(1). Therefore, the emergency generator will comply with the requirements of Subpart ZZZZ by meeting the

requirements of 40 CFR Part 60 Subpart IIII pursuant to 40 CFR 63.6590(c)(1) and the fire pump will comply with the requirements of Subpart ZZZZ by meeting the requirements of NSPS Subpart IIII pursuant to 40 CFR 63.6590(c)(1).

4.3.3 Subpart JJJJJJ – Not applicable

40 CFR Part 60, Subpart JJJJJJ applies to industrial, commercial, or institutional boilers and process heaters located at an area source of HAPs. According to the subpart definitions, the two gas-fired heaters and auxiliary boiler fall under the definition of gas-fired boiler. Per 63.11195(e), gas-fired boilers are not subject to Subpart JJJJJJ.

4.4 Wisconsin Air Quality Standards and Regulations

This section describes the regulations which apply to the Project, according to the WAC.

4.4.1 s. NR 404 Ambient Air Quality

Ambient air quality standards applicable to the entire state are listed in s. NR 404. The Owners will comply with all applicable state standards.

4.4.2 s. NR 405 - PSD Review

Under the 1977 Clean Air Act Amendments (CAAA), BACT and other PSD requirements apply both to emissions of criteria pollutants and to emissions of certain non-criteria pollutants that are regulated under Section 111 (NSPS) and Section 112 (NESHAP) of the Act. However, in Section 112(b)(6) of the 1990 CAAA, Congress specifically excluded the HAPs listed in Section 112(b)(1) from the PSD requirements. EPA clarified this exclusion in a March 11, 1991 memo by stating that:

...the following pollutants, which have been regulated under PSD, are now exempt from federal PSD applicability:

- arsenic
 beryllium
 radionuclides (including radon
- asbestos hydrogen sulfide and polonium)
- benzene mercury vinyl chloride

However, Wisconsin still includes hydrogen sulfide as a PSD pollutant listed in Table A of s. NR 405.02 (27)(a). As such, PSD review of this pollutant is a state-only requirement. This Project will be subject to PSD for several pollutants. Part 5 of this application contains the BACT analyses. Part 6 contains the air dispersion modeling analyses and Part 7 contains the additional impacts analysis.

4.4.3 s. NR 406 – Construction Permits

The purpose of this section is 1) to establish permit and permit review requirements and permit duration for construction permits and 2) to define types of stationary sources that are exempt from the requirement to obtain a construction permit. This permit application is intended to satisfy the construction permit application requirements to obtain a permit.

4.4.4 s. NR 407 – Operation Permits

For new sources that require a construction permit, the initial filing date is the date that the construction permit is filed (NR 407.04(1)(b)). However, because of the nature of this project, and because multiple vendor selections have yet to be made, there is not enough data to complete the operation permit application at this time. The Project will complete the application for a Title V operating permit after start-up of the facility.

4.4.5 s. NR 410 – Air Permit, Emission, and Inspection Fees

This section describes the fees necessary for submitting a permit to WDNR for processing. The Project has included the necessary permit fees as indicated in s. NR 410.03.

4.4.6 s. NR 415 – Control of Particulate Emissions

This section applies to all air contaminant sources which emit particulate matter and to their owners and operators. The general limitations (s. NR 415.03) contained in this regulation state, "No person may cause, allow or permit particulate matter to be emitted into the ambient air which substantially contributes to exceeding of an air standard, or creates air pollution."

NR 415.04 addresses fugitive dust and states, "No person may cause, allow or permit any materials to be handled, transported or stored without taking precautions to prevent particulate matter from becoming airborne. Nor may a person allow a structure, a parking lot, or a road to be used, constructed, altered, repaired, sand blasted or demolished without taking such precautions...Such precautions shall include, but not be limited to...[t]he paving or maintenance of roadway areas so as not to create air pollution."

All roads will be paved, thus meeting the requirements of this rule.

Section NR 415.05 more specifically provides: "No person may cause, allow or permit the emission of particulate matter to the ambient air from any indirect heat exchanger, power or heating plant, fuelburning installation or pulp recovery furnace with maximum heat input more than one million Btu per hour in excess of one of the listed limitations." The limits applicable to the Project are as follows:

- The auxiliary boiler, two gas heaters, fire pump, and diesel generator are all limited to 0.15 lb PM/MMBtu per NR 415.06(2)(a)
- The combustion turbine is limited to 0.10 lb PM/MMBtu per NR 415.06(2)(c)

4.4.7 s. NR 417 – Control of Sulfur Emissions

This chapter applies to all air contaminant sources which emit SO_2 or other sulfur compounds and to their owners and operators. Section NR 417.03 provides: "No person may cause, allow or permit emission of sulfur or sulfur compounds into the ambient air which substantially contribute to the exceeding of an air standard or cause air pollution." However, there are no specific limits for natural gas-fired and ultra-low sulfur fuel oil-fired equipment.

4.4.8 s. NR 419 – Control of Organic Compound Emissions

This chapter applies to all air contaminant sources which emit organic compounds and to their owners and operators. "No person may cause, allow or permit organic compound emissions into the ambient air which substantially contribute to the exceeding of an air standard or cause air pollution," s. NR 419.03(1). However, there are no specific limits for any new equipment for this Project.

4.4.9 s. NR 420 – Control of Organic Compound Emissions from Petroleum and Gasoline Sources

This regulation lists the storage, recordkeeping, and maintenance requirements for organic compound storage tanks larger than 40,000 gallons. However, the 180,000-gallon storage tank at the facility will be exempt from the rules in this section under NR 420.03(1)(a) – exemption for storage vessels being used for number 2 through number 6 fuel oils.

4.4.10 s. NR 426 – Control of Carbon Monoxide Emissions

This regulation restricts any source from emitting CO in quantities or amounts that cause or contribute to an exceedance of air quality standards or cause air pollution. The air dispersion modeling performed as part of this application and detailed in Part 6 of this report demonstrates that this facility will not cause or contribute to a violation of any CO air quality standards.

4.4.11 s. NR 427 – Control of Lead Emissions

This chapter applies to all air contaminant sources which emit lead and to their owners and operators. However, no specific limits apply to the equipment for this Project.

4.4.12 s. NR 428 – Control of Nitrogen Compound Emissions

This chapter applies to all air contaminant sources which emit nitrogen compounds and to their owners and operators. However, no specific limits apply to the equipment for this Project.

4.4.13 s. NR 429 – Malodorous Emissions and Open Burning

This regulation is intended to restrict offensive odors in the ambient air and the burning of refuse, except under certain conditions, and would apply to the facility.

4.4.14 s. NR 431 – Control of Visible Emissions

No person may cause, allow, or permit emissions into the ambient air from any direct or portable source in excess of one of the limits specified in this chapter. The combustion turbine, auxiliary boiler, two gas heaters, fire pump, and diesel generator are limited to 20 percent opacity. Where the presence of uncombined water is the only reason for failure to meet the requirements of this chapter, such failure is not a violation of this chapter.

4.4.15 s. NR 432 – Allocation of Clean Air Interstate Rule NO_x Allowances.

This rule adopts the federal Clean Air Interstate Rule (CAIR) into the state rules. To address interstate transport of pollutants, it contains state regulations regarding NO_x reductions from major electric generating units in Wisconsin. Please note, this rule has been replaced by the Cross-State Air Pollution Rule.

4.4.16 s. NR 436 - Emission Prohibition, Exceptions, Delayed Compliance Orders and Variances

This requirement prohibits emissions into the ambient air in excess of limitations set under s. NR 400 through 499. As indicated within this application, emission limits for the Project will be at least as stringent as those established under ss. NR 400 through 499. However, the WDNR may grant exceptions to the emission limits pursuant to WDNR-approved plans.

4.4.17 s. NR 438 - Air Contaminant Emission Inventory Reporting Requirements

The WDNR has established specific requirements applicable to all air contaminant sources to demonstrate compliance with permit requirements. This application incorporates these requirements, and the Project will be subject to these requirements as they are included in the construction and operating permits. The Owners would submit an Emissions Inventory Report annually to the WDNR, along with necessary emission fees.

4.4.18 s. NR 439 - Reporting, Recordkeeping, Testing, Inspection and Determination of Compliance Requirements

The WDNR has established specific requirements applicable to emission sources to demonstrate compliance with permit requirements. This application incorporates these requirements, and the Project will be subject to these requirements as they are included in the construction and operating permits.

4.4.19 s. NR 440 - Standards of Performance for New Stationary Sources

Wisconsin has incorporated some of the NSPS listed in 40 CFR Part 60 into the state regulations. This is a review of those regulations with respect to the Project. Although the State of Wisconsin has adopted the federal NSPS, the Wisconsin rules may not be updated as soon as the federal rules. Where this is the case, the more restrictive federal standards apply. Applicable NSPS are addressed above in Section 4.2.

4.4.20 s. NR 445 - Control of Hazardous Pollutants

Sources that combust a group 1 virgin fossil fuel are exempt from NR 445 requirements per 445.07(5)(a). Accordingly, no NR 445.07 analysis is included for the following Project emission sources:

- EU01 Combustion Turbine (Stack S01)
- EU02 Auxiliary Boiler (Stack S02)
- EU04 Natural Gas Heater #1 (Stack S04)
- EU05 Natural Gas Heater #2 (Stack S05)
- EU06 Emergency Diesel Fire Pump (Stack S06)
- EU07 Emergency Diesel Generator (Stack S07)

The following emission units do not emit any pollutants that are regulated under NR 445:

- F03 SF6 Circuit Breakers
- F01 Haul Road Fugitives

The following emission units emit pollutants that are regulated under NR 445:

- Process P01, Stack S01, Control C01a SCR
- EU08 Diesel Tank (Stack S08)
- EU09 Diesel Generator Tank (Stack S09)
- EU10 Diesel Fire Pump Tank (Stack S10)
- F02 Natural Gas and Fuel Oil Piping Components

The total non-exempt potential emissions of HAPs from the Project are summarized in Appendix C for the most significant state HAPs emitted from the Project.

The exhausts from the tanks are considered to be obstructed for the purposes of NR 445 because the breathing vents for these storage tanks are not powered exhausts. As such, the potential HAP emissions resulting from these emission units have been multiplied by a factor of 4. For conservativeness, each non-exempt HAP was assumed to be equal to the full estimated breathing and loading VOC losses from the EPA TANKS emission software (emissions were not speciated).

The natural gas and fuel oil piping components are considered fugitive emissions and have been multiplied by a factor of 4.

The total non-exempt potential emissions of HAPs from the Project are summarized in Appendix C. The table also lists the thresholds for each HAP for each stack height category. When comparing the total non-exempt potential emission rate for each HAP to the corresponding NR 445 threshold values, the threshold values will not be exceeded for any of the listed HAPs, except for the ammonia 24-hour average.

The SCR will have a maximum ammonia slip level of 10 ppm which yields an emission rate of 62.0 pounds per hour (lb/hr) (543,120 pounds per year [lb/yr]). The NR 445 threshold for a stack greater than 75 feet in height is 28.2 lb/hr and 612,587 lb/yr; therefore, dispersion modeling is required for the 24-hr average. The 24-hour ambient air standard in NR 445 for ammonia is 418 micrograms per cubic meter $(\mu g/m^3)$. The resultant modeled concentrations are shown in Table 4-2 and show compliance with the ambient air standard.

 Table 4-2:
 NR 445 Air Dispersion Modeling Results for 24-hour Ammonia Concentration

	Maximum Modeled NR 445 Air Impact Quality Standa	
Pollutant	micrograms per cubic meter (µg/m³)	
Ammonia	16.5	418

Based upon this analysis, the Project will be in compliance with the requirements of NR 445.

4.5 Chemical Accident Prevention

40 CFR Part 68, Accidental Release Prevention Provisions, under Clean Air Act (CAA) Section 112(r), Prevention of Accidental Releases, establishes a general duty for owners and operators of stationary sources who produce, process, handle, or store any of a number of regulated substances, to prevent and mitigate accidental releases of these substances by preparing detailed risk assessments and implementing a number of safety procedures through the preparation of a risk management plan (RMP).

The specific requirements of the RMP for affected facilities are established in 40 CFR Part 68, Accidental Release Prevention Provisions. These regulations require the owner or operator of an affected source to prepare and implement an RMP to detect and prevent or minimize accidental releases of regulated substances, and to provide a prompt emergency response to any such release to protect human health and the environment.

Affected facilities are those stationary sources that store, use, or handle any of the 140 listed hazardous chemicals or flammable/explosive substances in amounts greater than the listed threshold quantities. This list of regulated substances includes commonly stored liquid phases of gases such as ammonia, which the Project may store at quantities near or above the threshold levels for use in conjunction with the SCR for NO_x control on the combustion turbine. If a facility stores aqueous ammonia of concentrations of 20 percent or greater an RMP is required for the facility's storage, use, and handling of ammonia.

Aqueous ammonia (19 percent solution) will be delivered to the site via a truck with an unloading pump then stored in a bulk 35,000-gallon storage tank. The Project's SCR would use 19 percent concentration aqueous ammonia, therefore, an RMP is **not required** for the facility's storage, use, and handling of ammonia.

5.0 BEST AVAILABLE CONTROL TECHNOLOGY ANALYSIS

S. NR 405, WAC requires the application of BACT for each regulated NSR pollutant for which a significant net emissions increase will be realized as a result of the Project. As indicated in Part 1, the Project will result in significant emission increases of NO_x, CO, PM₁₀, PM_{2.5}, VOC, H₂SO₄ mist, and CO₂e for combined-cycle operation. These pollutants will be subject to PSD review. Additionally, WDNR requires a BACT for opacity. Therefore, a BACT analysis was performed for each of these regulated NSR pollutants.

The Project will consist of one H-Class combustion turbine with a HRSG and one steam turbine in a combined-cycle configuration and associated support equipment. The combustion turbine will be designed to utilize pipeline-quality natural gas and combust fuel oil (ultra-low sulfur diesel) as back-up fuel. In addition to the combustion turbine, an auxiliary boiler, circuit breakers, two natural gas-fired gas heaters (natural gas heater), an emergency diesel fire pump, an emergency diesel generator, fuel oil storage tanks, haul roads, and natural gas and fuel oil piping components will be included as part of the Project. This Part describes the BACT analysis for all new equipment proposed for the Project.

The BACT analysis was performed using the "top-down" approach, which is described in this Part. A summary of the BACT emission limits and the associated control technologies for the combined-cycle combustion turbine are shown in Table 5-1. BACT emission limits and associated control technologies for the auxiliary equipment are listed in Table 5-2.

Pollutant	Fuel	Control	BACT Emissions ^{a,b}	Average
Natural gas		Selective catalytic reduction (SCR) and low-NO _x burners	2 ppm (with or without duct firing)	24-hour rolling
	Fuel oil	SCR and water injection	6 ppm (with or without duct firing)	24-hour rolling
СО	Natural gas	Good combustion practices, oxidation catalyst	1.5 ppm (with or without duct firing) ^c	168-hour rolling
0	Fuel oil	Good combustion practices, oxidation catalyst	1.5 ppm (with or without duct firing) ^c	168-hour rolling
PM/PM ₁₀ /	Natural gas	Combustion controls and low ash fuels	36.3 lb/hr (with duct firing) 21.8 lb/hr (without duct firing)	NA
PM _{2.5}	Fuel oil	Combustion controls and low ash fuels	54.5 lb/hr (with duct firing) 39.4 lb/hr (without duct firing)	NA
Natural gas		Good combustion practices, oxidation catalyst	2.7 ppm (with duct firing) 0.6 ppm (without duct firing)	168-hour rolling
VOC	Fuel oil	Good combustion practices, oxidation catalyst	3.3 ppm (with duct firing) 0.6 ppm (without duct firing)	168-hour rolling
H ₂ SO ₄ mist	Natural gas	Combustion controls and low sulfur fuels	9.9 lb/hr (with duct firing) 7.8 lb/hr (without duct firing)	NA
H_2SO_4 IIISt	Fuel oil	Combustion controls and low sulfur fuels	9.3 lb/hr (with duct firing) 7.0 lb/hr (without duct firing)	NA
	Natural gas	Use of natural gas as a fuel, monitoring and control of excess air, efficient turbine design, and oxidation catalyst	850 lb CO ₂ /MW-hr, gross	12-month rolling
Greenhouse gases	Fuel oil	Use of ultra-low sulfur diesel as a fuel, monitoring and control of excess air, efficient turbine design, and oxidation catalyst	1,180 lb CO ₂ /MW-hr, gross	12-month rolling
		Low-NO _x burners, SCR,		

Table 5-1:	Summary of BACT	Results: Combined-Cycle Op	eration
------------	-----------------	----------------------------	---------

Revision 0

Source: Construction permit no.: 18-MMC-168

Both

Opacity

(a) ppm = parts per million; lb/hr = pounds per hour; lb/MW-hr = pound per megawatt hour

combustion controls, low ash

fuels

(b) Concentration at 15 percent oxygen while operating at MECL and greater under steady state conditions, unless otherwise noted

(c) Natural gas limit valid for 100% load with duct firing down to MECL. Fuel oil limit valid for 100% load with duct firing down to 75% load.

N/A

N/A

5-2

Equipment	Pollutant	Control ^a	BACT Emission Rate ^a	
	NO _x	Ultra-LNB/GCP/clean fuels/FGR	0.011 lb/MMBtu	
	СО	Oxidation Catalyst/GCP/clean fuels	0.0037 lb/MMBtu	
	PM/PM ₁₀ /PM _{2.5}	GCP/clean fuels	0.01 lb/MMBtu	
Auxiliary boiler - B02	VOC	Oxidation Catalyst/GCP/clean fuels	0.0027 lb/MMBtu	
	H ₂ SO ₄ mist	GCP/clean fuels	0.01 lb/hr	
	Greenhouse gases (CO ₂ e)	GCP/clean fuels	160 lb/MMBtu	
	Opacity	GCP/clean fuels	N/A	
Circuit Breaker – F03	SF_6	Leak monitoring	<0.5% loss rate	
	NO _x	LNB/GCP/clean fuels	0.049 lb/MMBtu	
	СО	GCP/clean fuels	0.08 lb/MMBtu	
Network and head and DOA and	PM/PM ₁₀ /PM _{2.5}	GCP/clean fuels	0.01 lb/MMBtu	
Natural gas heaters -P04 and P05 (each)	VOC	GCP/clean fuels	0.005 lb/MMBtu	
105 (each)	H ₂ SO ₄ mist	GCP/clean fuels	NA	
	Greenhouse gases (CO ₂ e)	GCP/clean fuels	NA	
	Opacity	GCP/clean fuels	N/A	
	NO _x	GCP/clean fuels	3.0 g/hp-hr	
	СО	GCP/clean fuels	2.6 g/hp-hr	
Emergen en diesel fine munn	PM/PM ₁₀ /PM _{2.5}	GCP/clean fuels	0.15 g/hp-hr	
Emergency diesel fire pump – P06	VOC	GCP/clean fuels	1.1 g/hp-hr	
-100	H ₂ SO ₄ mist	GCP/clean fuels	NA	
	Greenhouse gases (CO ₂ e)	GCP/clean fuels	NA	
	Opacity	GCP/clean fuels	N/A	
	NO _x	GCP/clean fuels	4.8 g/hp-hr	
	СО	GCP/clean fuels	2.6 g/hp-hr	
	PM/PM ₁₀ /PM _{2.5}	GCP/clean fuels	0.15 g/hp-hr	
Emergency diesel generator – P07	VOC	GCP/clean fuels	0.32 g/hp-hr	
	H ₂ SO ₄ mist	GCP/clean fuels	NA	
	Greenhouse gases (CO ₂ e)	GCP/clean fuels	NA	
	Opacity	GCP/clean fuels	NA	
Diesel tanks – T01, T02, T03	VOC	Fixed roof tank	NA	
Haul Roads – F01	PM/PM ₁₀ /PM _{2.5}	Haul roads	Fugitive Dust Control Plan	
Natural gas and fuel oil	GHG	Fuel Piping	LDAR program - instrument	
piping components - F02	VOC	Fuel Piping	monitoring	

Table 5-2:	Summary of BACT Results: Auxiliary Equipment
------------	--

Source: Construction permit no.: 18-MMC-168 and 21-MMC-011

(a) FGR = flue gas recirculation; $LNB = low-NO_x$ burners; GCP = good combustion practices; lb/MMBtu = pound per million British thermal units; tpy = tons per year; g/hp-hr = gram per horsepower hour

BACT is an emission limitation based on the maximum degree of reduction which the WDNR determines is achievable, on a case-by-case basis, taking into account energy, environmental, and economic impacts and other costs.

The WDNR has directed by policy that the BACT be determined using a "top-down" process. The "topdown" process was outlined in a December 1, 1987, memorandum from the EPA Assistant Administrator for Air and Radiation.

While there is no legal requirement to perform the BACT analysis utilizing a specific criteria or process, the WDNR follows the EPA-developed guidance that establishes a five-step "top-down" BACT process/methodology (EPA, 1990).

For purposes of this PSD application, the Owners have prepared this BACT analysis consistent with EPA's top down approach, which consists of the following steps:

Step 1 – Identify all potential control technologies
Step 2 – Determine technical feasibility (of potential technologies)
Step 3 – Rank control technologies by control effectiveness
Step 4 – Evaluate most effective controls and document results
Step 5 – Select BACT

Each of these steps is discussed in further detail below.

<u>Step 1 – Identify all potential control technologies</u>. The first step in a "top-down" analysis is to identify, for all applicable emission units, all "available" control options. Available control options are defined as those air pollution control technologies or techniques that have a practical potential for application to the emissions unit and the regulated pollutant under evaluation and have been demonstrated in practice. Air pollution control technologies and techniques include the application of production processes or available methods, systems, and techniques, including innovative fuel combustion techniques and add-on controls.

<u>Step 2 – Determine technical feasibility (of potential options)</u>. In the second step, the technical feasibility of the control options identified in Step 1 is evaluated with respect to source-specific factors. A demonstration of technical infeasibility should be documented and should show, based on physical, chemical, and engineering principles, that technical difficulties would preclude the successful use of the control option on the emissions unit under review. Technically infeasible control options are then eliminated from further consideration in the BACT analysis.

<u>Step 3 – Rank control technologies by control effectiveness</u>. All remaining control alternatives not eliminated in Step 2 are ranked and then listed in order of overall control effectiveness for the pollutant under review, with the most effective control alternative at the top. A list should be prepared for each pollutant and for each emissions unit (or grouping of similar units) subject to a BACT analysis.

<u>Step 4 – Evaluate most effective controls and document results</u>. After the identification of available and technically feasible control technology options, the energy, environmental, and economic impacts are taken into account, in this Step. For each control option an objective evaluation of each impact is presented. Both beneficial and adverse impacts should be discussed and, where possible, quantified. If the Owners accept the top alternative in the listing as BACT, the Owners proceed to consider whether impacts of unregulated air pollutants or impacts in other media would justify selection of an alternative control option. If there are no outstanding issues regarding collateral environmental impacts, the analysis ends, and the results proposed as BACT. If the top candidate is shown to be inappropriate, due to energy, environmental, or economic impacts, the rationale for this finding is documented and the next level of control is analyzed.

<u>Step 5 – Select BACT</u>. The final BACT determination is presented in this Step.

Greenhouse Gas BACT Process

Based on EPA Greenhouse Gas Guidance (EPA, 2011), the Greenhouse BACT process is similar to the five Steps summarized above. Steps 1 and 2 identify potential control strategies and then eliminate technologically infeasible options. Step 3 ranks the remaining technically feasible control technologies. Step 4 evaluates the most effective control technologies from an environmental, energy, and economic perspective. And finally, Step 5 selects the most appropriate BACT.

The BACT analysis for the Project is also based on the following concepts:

- Emission limits are defined on a "case-by-case" analysis that considers site specific factors
- Emission limits must be "achievable" on a long-term, day in and day out, basis
- The technology must be available and feasible for a specific project
- BACT does not redefine the facility as proposed (including fuels)

There is no prescriptive approach to performing a case-by-case control technology and emission limit analysis. PSD permitting authorities determine emission limits on a case-by-case basis. These case-bycase determinations must consider source-specific and site-specific characteristics. This is not a "cookiecutter" approach and there is no single right answer to determining the appropriate emission limits for a specific source or for a specific pollutant.

The WDNR is not required to set any emission limit at the most stringent level that has been demonstrated by a facility using similar emissions control technology. Similarly, an emission limit does not need to be set at the most stringent emission limit found in another permit. Rather, the WDNR has the authority and is required to evaluate and determine the correct emissions limits and control technologies for a project based on project-specific factors, including location. The case-by-case process does not require that each subsequent determination identify emission limitations that are equal to or more stringent than the previous determination.

Further, in establishing the emission limits, the BACT must confirm that emission limits are achievable by the specific facility that is subject to the emission limits: (1) over the life of the facility; and (2) during all operating conditions, not just ideal conditions. The use of a safety factor or margin is well-established in the air permitting context to appropriately account for the uncertainty and operational variability that will occur over the life of a facility. This safety factor must be sufficient to allow permit holders to comply on a continuous basis. Emission limits should not be based on the lowest emissions rate or highest control efficiency ever documented by a similar facility for a short-term period. The emission limits must account for a full range of operating conditions and the inherent variability of complex fuel combustion and air pollution control systems.

To be considered in the permitting process, a control technology must be commercially available (i.e., it must be offered for sale on a commercial scale through commercial channels). Permittees are not required to explore research and development projects to determine whether a specific technology is suitable. In addition, to be considered feasible technology for purposes of inclusion in an analysis, a particular technology must have been previously demonstrated, on a long-term basis, at commercial scale. In fact, even 2-3 years of operating history on a commercial scale has been determined to be insufficient to demonstrate that a particular technology is feasible.

The air permit process cannot redefine the source. The Owners have defined the "proposed facility," including the goals, objectives, purpose and basic design. Requiring alteration as to the type of power generating unit and/or range of fuels to be used would redefine the source.

Fuels can be an inherent part of a project design. In such cases, the air permitting process cannot be used to require a fuel other than the fuels proposed by the Owners. As Congress explained, "the Administrator may consider the use of clean fuels to meet BACT requirements <u>if a permit applicant proposes</u> to meet

such requirements by using clean fuel. In no case is the Administrator compelled to require the mandatory use of clean fuels by a permit applicant." (emphasis added). S. Rep. No. 101-228 at 338 (1989).

The first step in the "top-down" BACT process is the identification of potentially available control technologies. One of the ways to identify available control technologies is to review previous BACT determinations for similar sources. EPA's RACT/BACT/LAER Clearinghouse (RBLC) database was reviewed to identify recent BACT determinations for similar projects. This database is maintained on EPA's Technology Transfer Network website at www.epa.gov/ttn/catc. Advanced queries of the database were conducted to identify control technology determinations for sources similar to the proposed combined-cycle combustion turbine and applicable auxiliary equipment. The queries are summarized in Table 5-3, below. The results of the RBLC query can be found in Appendix D.

Equipment	Process Type Lookup Code	Initial Look-up Dates	Addendum Look Up Dates
Combined-Cycle Combustion	15.210 – Natural gas combustion	October 2008 to	November 2018
Turbine P01	15.220 – Fuel oil combustion	October 2018	to October 2021
Auxiliary Boiler	13.310 – Natural Gas	October 2008 to	November 2018
P02		October 2018	to October 2021
Circuit Breakers	99.999 – Other Miscellaneous	January 2010 to	February 2020
F03	Sources	January 2020	to October 2021
Natural gas heaters	13.310 – Natural Gas	October 2008 to	November 2018
P04 and P05		October 2018	to October 2021
Emergency diesel fire pump	17.210 – Fuel Oil	October 2008 to	November 2018
P06		October 2018	to October 2021
Emergency diesel generator	17.110 – Fuel Oil	October 2008 to	November 2018
P07		October 2018	to October 2021
Haul Roads	99.410 – Paved Roads	January 2010 to	February 2020
F01		January 2020	to October 2021
Natural gas and fuel oil	64.002 – Equipment Leaks		
piping component F02	50.007 – Petroleum Refining Equipment Leaks/Fugitive Emissions	January 2010 to January 2020	February 2020 to October 2021

Table 5-3:	RBLC Query	Information
------------	------------	-------------

To identify previous control technology determinations for comparable sources, queries were run using the "standard search" in which the RBLC database was searched using the following parameters:

- Draft Determinations and RBLC Permits issued during or after the dates presented in Table 5-3
- Standard Industrial Classification (SIC) code of 4911 for electrical generation plants

- North American Industrial Classification System (NAICS) code for a combustion turbine electrical generation plant 221112 which includes all types of fossil fuel electrical generation plants.
- SIC codes for auxiliary equipment, as applicable

The NAICS and SIC codes are the most appropriate codes to search in the advanced search option of the RBLC. The SIC and NAICS are systems of source classification developed for the purpose of differentiating industrial types. The SIC and the NAICS systems are used in many EPA documents to differentiate types of industries. It is appropriate to use these codes as the match criteria in queries of the RBLC database since other facilities that use similar turbines will likely have similar characteristics. After the NAICS and SIC codes were identified and queries run, combustion turbines that were not similar (e.g., digester gas-fired, fuel oil-fired, cogeneration units, boilers, etc.) were eliminated from the search. Information on turbine emissions was sorted from the remaining combustion turbine listing. A discussion of control options identified in the RBLC database is included in each subsection. When the combustion turbine results were found in a search, results for the various auxiliary equipment were also available in the search results as well. Therefore, complete RBLC searches were done for all BACT-eligible equipment.

In some cases, the RBLC listings are not clearly categorized and cover both simple- and combined-cycle installations. Also, it should be noted that all RBLC listings in California represent Lowest Achievable Emission Rate (LAER); although they are often listed as BACT, BACT and LAER are essentially the same in California. LAER is a much more stringent requirement than BACT and involves application of control technology regardless of cost. This is not the case for the proposed Project, which is subject only to BACT.

5.1 BACT for Nitrogen Oxides – Combined-Cycle Combustion Turbine (P01)

Previously submitted BACT Sections and updated references to the nitrogen oxides BACT section for the combined-cycle combustion turbine are presented in Table 5-4. The updated combined-cycle combustion turbine nitrogen oxides BACT analysis shows that the BACT determination in the original application and PSD permit remain valid.

Description	Previous Application Reference	December 2021 Submittal Location
BACT Analysis Steps 1 to 5	5.0 BACT December 2018 Submittal	5.0 BACT
	Table D-1a (natural gas),	Table D-1a (natural gas),
	Table D-1b (fuel oil)	Table D-1b (fuel oil)
RBLC	Appendix D, December 2018 Submittal	Appendix D
NDLC		Table D-1a Addendum (natural gas
		Table D-1b Addendum (fuel oil)
		Appendix D

Table 5-4: Combustion Turbine Nitrogen Oxides BACT Analysis References

The following sections outline the top-down steps for NO_x emissions from the combustion turbine.

5.1.1 Step 1. Identify All Potential Control Strategies

NO_x is primarily formed in combustion processes in two ways:

- 1. The combination of elemental nitrogen with oxygen in the combustion air within the high temperature environment of the combustor (thermal NO_x)
- 2. The oxidation of nitrogen contained in the fuel (fuel NO_x)

Natural gas contains negligible amounts of fuel-bound nitrogen, although some molecular nitrogen is present. Therefore, it is assumed that essentially all NO_x emissions from the combustion turbine will originate as thermal NO_x . The rate of formation of thermal NO_x is a function of residence time and free oxygen and is exponential with peak flame temperature.

The combustion turbine will be subject to NO_x limits per NSPS Subpart KKKK and thus the BACT determination and resulting emission limits must be at least as stringent as the NSPS. During combined-cycle operation, the duct burners in the HRSGs will contribute to NO_x emissions. Part 4 identifies the applicable Subpart KKKK limits for the combustion turbine and duct burners.

Control of NO_x emissions from combustion turbines is generally aimed at either the prevention of NO_x formation or the capture and oxidation of post-combustion NO_x. Since the rate of formation of thermal NO_x is a function of residence time and free oxygen, and is exponential with peak flame temperature, "front-end" control techniques are aimed at controlling one or more of these variables. These controls include the XONONTM system and low-NO_x burners. The XONONTM system uses a catalyst to keep the system temperatures lower while low-NO_x burners offer a staged combustion process, resulting in a lower

peak flame temperature. Water injection reduces the combustion temperature, thereby reducing the formation of NO_x .

Other control methods utilize add-on control equipment to remove NO_x from the exhaust gas stream after its formation. The most common control techniques involve the injection of ammonia into the gas stream to reduce the NO_x to molecular nitrogen and water. Ammonia can either be injected into the system without the use of a catalyst (selective non-catalytic reduction [SNCR]) or with the use of a catalyst (SCR). Finally, EM_xTM (formerly SCONO_xTM), a multi-pollutant control technology, relies upon a catalyst similar to SCR to reduce NO_x emissions but does so without injecting ammonia into the exhaust gas stream.

The output from the RBLC search provided in Appendix D shows that a variety of emission limits and control technologies have been applied to combustion turbines for natural gas and fuel oil combustion. The most stringent limits found during a review of EPA's database were for facilities located in ozone non-attainment areas. These facilities were required to meet such low emission limits since they were subject to LAER requirements.

Typical BACT determinations for combined-cycle units that are located in attainment areas were in the 2 to 15 ppm range using low-NO_x burners, water injection, SCR, or a combination of these technologies. The lower emission rates listed utilize SCR.

5.1.2 Step 2. Identify Technically Feasible Control Technologies

The primary methods for controlling NO_x emissions are evaluated for technical feasibility in the following sections.

5.1.2.1 XONON[™] System

The XONONTM system controls NO_x emissions by preventing their formation. The key to the XONONTM system is the utilization of a chemical process versus a flame to combust fuel, thus limiting temperature and NO_x formation. The XONONTM system is an integral part of the combustor. The fuel and air that are supplied to the combustor are thoroughly mixed before entering the catalyst. The catalyst is responsible for combusting the fuel to release its energy. Due to the low catalyst operating temperatures, the nitrogen molecules are not involved in the reaction chemistry; they pass through the catalyst unchanged, thereby eliminating NO_x formation. The XONONTM system does have the same high outlet temperature, and some NO_x is formed in the post-combustion process. However, use of the technology has limited NO_x emissions to less than 2.5 ppm.

Currently, the XONONTM system has not had wide-scale application. It has been demonstrated on a 1.5-MW unit in California, with the unit operating in a base load capacity (24 hours a day, 7 days a week). Tests are underway to apply this technology to other types and sizes of turbines; however, testing data is currently unavailable. As the combustion turbine is expected to experience repeated start-ups and shutdowns, it is unclear how the changing load conditions would affect the XONONTM system. As this is a large combined-cycle project, and the XONONTM system has yet to demonstrate applicability for such units, **the XONONTM system has been deemed technically infeasible for this Project.**

5.1.2.2 EM_x[™] System (formerly SCONO_x[™])

The EM_x^{TM} system (formerly $SCONO_x^{TM}$) uses a single catalyst to remove NO_x emissions from combustion exhaust gas by oxidizing nitric oxide to nitrogen dioxide (NO₂) and then absorbing the NO₂ onto a catalytic surface using a potassium carbonate absorber coating. The potassium carbonate coating reacts with NO₂ to form potassium nitrites and nitrates, which are deposited onto the catalyst surface. The optimal temperature window for operation of the EM_x^{TM} catalyst ranges from 300 °F to 700 °F. EM_x^{TM} does not use ammonia. Therefore, there are no ammonia emissions from this technology.

When all of the potassium carbonate absorber coating has been converted to nitrogen compounds, NO_x can no longer be absorbed and the catalyst must be regenerated. Regeneration is accomplished by passing a dilute hydrogen reducing gas across the surface of the catalyst in the absence of oxygen. Hydrogen in the gas reacts with the nitrites and nitrates to form water and nitrogen. CO_2 in the gas reacts with the potassium nitrite and nitrates to form potassium carbonate, which is the absorbing surface coating on the catalyst. The regeneration gas is produced by reacting natural gas with a carrier gas (such as steam) over a steam-reforming catalyst.

The demonstrated application for EM_x^{TM} is currently limited to combined-cycle combustion turbines under approximately 50 MW in size. The EM_x^{TM} system has not been demonstrated on any type of combustion source other than a combustion turbine. There are technical differences between the proposed combustion turbine versus those few sources where this technology has been demonstrated in practice. In addition, this is a large combined-cycle project, and the EM_x system has yet to demonstrate applicability for such units. Therefore, the EM_x system has not been demonstrated to function efficiently on large combined-cycle combustion turbines and is not technically feasible. (Environmental Resource Management, 2014).

Therefore, EM_xTM is technically infeasible for this Project.

5.1.2.3 Selective Non-Catalytic Reduction

SNCR is a post-combustion NO_x control technology in which a reagent (ammonia or urea) is injected into the exhaust gases to react chemically with NO_x , forming nitrogen and water. The success of this process in reducing NO_x emissions is highly dependent on the ability to uniformly mix the reagent into the flue gas at a zone in the exhaust stream at which the flue gas temperature is within a narrow range, typically from 1,700°F to 2,000°F. To achieve the necessary mixing and reaction, the residence time of the flue gas within this temperature window should be at least 0.5 to 1.0 seconds. The consequences of operating outside the optimum temperature range are severe. Outside the upper end of the temperature range, the reagent will be converted to NO_x. Below the lower end of the temperature range, the reagent will not react with the NO_x and the ammonia slip concentrations (ammonia discharge from the stack) will be very high. The flue gases from the HRSG have an exhaust temperature of approximately 200°F. Even strategically placing the ammonia injection further upstream would probably result only in peak temperatures of around 1,300°F. Such a low temperature would require that additional fuel be combusted at some point in order to raise the temperature to the levels that SNCR will operate. Combustion of the additional fuel would not only increase the NO_x emissions, but also all other criteria pollutants, especially CO. In addition, the added fuel used to raise the exhaust gas temperature will increase the annual operating costs for the facility.

SNCR has not been applied to any combustion turbines according to the RBLC database. Because of the comparatively low exhaust temperatures, fuel and energy requirements, environmental implications and economic considerations; **SNCR is considered to be technically infeasible for the combustion turbine and duct burner under consideration for this Project.**

5.1.2.4 Selective Catalytic Reduction

SCR is a post-combustion technology that employs ammonia in the presence of a catalyst to convert NO_x to nitrogen and water. The function of the catalyst is to lower the activation energy of the NO_x decomposition reaction. Technical factors related to this technology include the catalyst reactor design, optimum operating temperature, sulfur content of the fuel, de-activation due to aging, ammonia slip emissions, and the design of the ammonia injection system.

SCR represents state-of-the-art control for combined-cycle back end gas turbine NO_x removal. SCR technology is being permitted as LAER and BACT for combined-cycle turbines at 2 to 5 ppm NO_x. Conventional SCR uses a metal honeycomb or "foil" catalyst support structure and requires an HRSG to drop flue gas temperatures to less than 600°F.

The Project's turbine will operate with the exhaust gases reaching temperatures over $1,100^{\circ}$ F prior to entering the HRSG. Duct burner firing and passage of the flue gasses through the HRSG will lower the temperature of the gas stream to approximately 200°F. By placing the catalyst bed at the correct strategic point within the HRSG, an SCR could effectively operate and reduce NO_x emissions. A disadvantage of this system is that particles from the catalyst may become entrained in the exhaust stream and contribute to increased particulate matter emissions. In addition, ammonia slip reacts with the sulfur in the fuel creating ammonia bisulfates that become particulate matter. **SCR can be applied to the combined-cycle turbine and duct burner and is considered technically feasible.**

5.1.2.5 Low-NO_x Burners

Lean premixed combustors are currently available from most turbine manufacturers. This technology seeks to reduce combustion temperatures, thereby reducing NO_x formation. In a conventional combustor, the air and fuel are introduced at an approximately stoichiometric ratio and air/fuel mixing occurs at the flame-front where diffusion of fuel and air reaches the combustible limit. A lean premixed combustor design premixes the fuel and air prior to combustion. Premixing results in a homogenous air/fuel mixture, which minimizes localized fuel-rich pockets that produce elevated combustion temperatures and higher NO_x emissions. A lean air-to-fuel ratio approaching the lean flammability limit is maintained, and the excess air serves as a heat sink to lower combustion temperatures, which lowers NO_x formation. A pilot flame is used to maintain combustion stability in this fuel-lean environment.

Controlled NO_x emission guarantees using low-NO_x burners range from 5 to 25 ppm for turbines 20 MW or greater but vary considerably from vendor to vendor without duct firing. With duct firing, these values vary depending on the size of the duct burners. Low-NO_x burners are currently available for these turbines and duct burners and are a technically feasible control option for this Project for natural gas combustion.

5.1.2.6 Water or Steam Injection

Steam and water injection work to increase the thermal mass by dilution and thereby reduce peak temperatures in the flame zone. With water injection, there is an additional benefit of absorbing the latent heat of vaporization from the flame zone. Water or steam is typically injected at a water-to-fuel ratio of less than one.

Water or steam injection is usually accompanied by an efficiency penalty (typically 2 to 3 percent), but there is an increase in power output (typically 5 to 6 percent) due to the increased mass flow required to maintain turbine inlet temperature at manufacturer's specifications. Both CO and VOC emissions are

increased by water injection depending on the amount of water that is injected. Water injection is generally used for fuel oil combustion because it is difficult to aerosolize the fuel oil for air/fuel mixing or is used on aeroderivative combustion turbines. Water/steam injection is available for the combinedcycle turbine and duct burner under consideration for this Project and is therefore considered technically feasible for fuel oil combustion.

5.1.2.7 Summary of the Technically Feasible Control Options

Technically feasible NO_x control options for the combined-cycle combustion turbine are summarized in Table 5-5. The expected performance has been determined considering the performance of existing systems, vendor guarantees, permitted emission limits, and the design requirements for the combustion turbine.

Cor	trol System	Expected Performance (ppm)	Technical Feasibility	Comments
Combustion controls	Low-NO _x burners	35 (natural gas)	Feasible	Standard on combustion turbines for natural gas operation.
	Water injection	42 (fuel oil)	Feasible	Used only during fuel oil operation.
	XONON TM	N/A	Not feasible	Testing is still underway. Only used on a 1.5 MW unit not operating continuously.
Post	EM_{x}^{TM}	N/A	Not feasible	For units less than 50 MW in size
combustion controls	Selective non- catalytic reduction	N/A	Not feasible	Exhaust temperature is too low.
	Selective catalytic reduction	 2 (natural gas with or without duct firing) 6 (fuel oil with or without duct firing) 	Feasible	2 ppm is the lowest achievable emission rate with SCR on natural gas. Catalyst will be fouled on fuel oil.

Table 5-5:	Summary of Technically Feasible NO _x Control
Technolog	ies for Combined-Cycle Combustion Turbines

5.1.3 Step 3. Rank the Technically Feasible Control Technologies

Add-on controls may be used for natural gas and fuel oil combustion in the turbine. The combustion turbines under consideration come with low-NO_x burners and water injection as part of their standard packages; therefore, low-NO_x burners and water injection are used as the baseline for the proposed combustion turbine.

The technically feasible NO_x control technologies for the combustion turbine are ranked by control effectiveness in Table 5-6.

Control Technology	Reduction (%)	Controlled Emission Level (ppm)ª
Selective catalytic reduction	94-85%	2 ppm (natural gas) 6 ppm (fuel oil)
Low-NO _x burners	N/A (baseline for natural gas)	35 ppm
Water injection	N/A (baseline for fuel oil)	42 ppm

 Table 5-6:
 Ranking of Technically Feasible NO_x Control

 Technologies for Combined-Cycle Combustion Turbines

(a) Emission rate for 100% load to MECL with and without duct firing.

5.1.4 Step 4. Evaluate the Most Effective Controls

Recent BACT determinations have indicated a level of 2 to 15 ppm for NO_x emissions from combinedcycle units that are fired with natural gas (Appendix D). The combustion turbines under consideration are able to achieve 2 ppm while combusting natural gas and 6 ppm while combusting fuel oil on a long-term basis with SCR.

The Project's combined-cycle unit will have an SCR system located in the HRSG, along with low-NO_x burners and water injection which are standard on duel-fuel combustion turbines. The SCR vendors have indicated that 2 ppm is the lowest emission rate achievable with or without the duct burners operating for natural gas combustion. The SCR system will therefore be able to meet 2 ppm for all loads down to MECL, including when duct firing while combusting natural gas and 6 ppm while combusting fuel oil with and without duct firing. Because SCR represents the most effective control and has been selected as BACT, an economic feasibility determination is not required, per 40 CFR 52.21. The energy and environmental considerations for the selected BACT are discussed below for informational purposes.

SCR is selected as BACT for control of NO_x emissions from the proposed combined-cycle combustion turbine, along with low-NO_x burners (natural gas combustion) and water injection (fuel oil combustion).

5.1.4.1 Selective Catalytic Reduction

Energy Impacts

An SCR system results in a loss of energy due to the pressure drop across the SCR catalyst. To compensate for the energy loss in the SCR system, additional natural gas combustion is required to maintain the net energy output, which also results in additional air pollutant emissions.

Environmental Impacts

SCR systems consist of an ammonia injection system and a catalytic reactor. Urea can be decomposed in an external reactor to form ammonia for use in a SCR. Unreacted ammonia may escape through to the exhaust gas. This is commonly called "ammonia slip." It is estimated that ammonia slip from an SCR on a unit this size could be 10 ppm and may be considered to be an environmental impact. The ammonia that is released may also react with other pollutants in the exhaust stream to create fine particulates in the form of ammonium salts. In addition, the storing of the ammonia on-site is another environmental and safety concern. SCR catalysts must also be replaced on a routine basis. In some cases, these catalysts may be classified as a hazardous waste. This typically requires either returning the material to the manufacturer for recycling and reuse or disposal in designated landfills.

5.1.4.2 Low-NO_x Burners

Energy Impacts

Low-NO_x burners are usually accompanied by an efficiency penalty (typically 2 to 3 percent) and an increase in power output (typically 5 to 6 percent). The increase in power output results from the increase in mass flow required to maintain turbine inlet temperature at manufacturer's specifications. Because there is a power increase, no energy impacts are associated with low-NO_x burners.

Environmental Impacts

The low-NO_x burner system may increase CO and VOC emissions on a lb/hr basis; however, the potential increase in CO and VOC emissions does not outweigh the advantages of decreased NO_x emissions to reduce health effects.

Economic Impacts

The turbine manufacturer currently installs low-NO_x burners as standard equipment on natural gas-fired combustion turbines. With the low-NO_x burners, these turbines may achieve NO_x emission rates of 35

ppm at full load. Since the low- NO_x burners are considered standard equipment on the turbine, there is no annualized cost of the control.

5.1.4.3 Water Injection

Energy Impacts

Water injection, used during fuel oil operation only, is also usually accompanied by an efficiency penalty (typically 2 to 3 percent) and an increase in power output (typically 5 to 6 percent). No huge energy impacts are associated with water injection.

Environmental Impacts

Water injection does use water, a natural resource, to control NO_x emissions. However, at the very few operating hours that are requested in this permit, the water use should be very minimal.

5.1.5 Step 5. Proposed NO_x BACT Determination

The BACT recommended for control of NO_x emissions from the combined-cycle combustion turbine is low-NO_x burners and water injection with SCR. These controls will meet a NO_x emission limit of 2 ppm at 15 percent oxygen during steady state conditions for all loads down to MECL with and without duct firing for natural gas combustion and 6 ppm at 15 percent oxygen during steady state conditions for all loads down to MECL with and without duct firing for fuel oil combustion. Compliance will be determined with NO_x CEMs on a 24-hour rolling average, excluding start-up and shutdown.

5.2 BACT for Carbon Monoxide – Combined-Cycle Combustion Turbine (P01)

Previously submitted BACT Sections and updated references to the carbon monoxide BACT section for the combined-cycle combustion turbine is presented in Table 5-7. The updated combined-cycle combustion turbine carbon monoxide BACT analysis shows that the BACT determination in the original application and PSD permit remain valid.

Description	Previous Application Reference	December 2021 Submittal Location
BACT Analysis Steps 1 to 5	5.0 BACT December 2018 Submittal	5.0 BACT
RBLC	Table D-1a (natural gas),	Table D-1a (natural gas),
	Table D-1b (fuel oil)	Table D-1b (fuel oil)
	Appendix D, December 2018 Submittal	Appendix D
		Table D-1a Addendum (natural gas),
		Table D-1b Addendum (fuel oil)
		Appendix D

Table 5-7: Combustion Turbine Carbon Monoxide BACT Analysis References
--

The following sections outline the top-down steps for CO emissions from combustion turbines.

5.2.1 Step 1. Identify Potential Control Strategies

CO is a product resulting from incomplete combustion. Control of CO is typically accomplished by providing adequate fuel residence time and a high temperature in the combustion zone to complete combustion. These control factors, however, also tend to result in increased emissions of NO_x. Conversely, a lower NO_x emission rate achieved through flame temperature control (by water injection or dry lean pre-mix) can result in higher levels of CO emissions. A compromise is usually established where the flame temperature reduction is set to achieve the lowest NO_x emission rate possible while keeping CO emissions to an acceptable level.

CO emissions from combustion turbines are a function of oxygen availability (excess air), flame temperature, residence time at flame temperature, combustion zone design, and turbulence. Postcombustion control involves the use of catalytic oxidation; front-end control involves controlling the combustion process to suppress CO formation.

The technologies identified for reducing CO emissions from the Project's turbine are the EM_x^{TM} system, an oxidation catalyst, and combustion controls. The standard technology for reducing CO emissions is to maintain "good combustion" through proper control and monitoring of the combustion process.

A survey of the RBLC database (Appendix D) indicated that most new combined-cycle turbines in attainment areas have been required to install add-on controls to control CO emissions from combined-cycle turbines. CO emissions from natural gas-fired combined-cycle turbines ranged from 0.9 to 25 ppm. H-class combustion turbines in combined-cycle mode have been permitted from 0.9 ppm to 5 ppm in most cases, based on the information that is available in the RBLC and from other sources that describe the class of turbines installed at the various locations. The lowest Siemens H-class permitted unit is 2.0 ppm.

5.2.2 Step 2. Identify Technically Feasible Control Technologies

The primary methods for controlling CO emissions are evaluated for technical feasibility in the following sections.

5.2.2.1 EM_x[™] System

The EM_x^{TM} system was described in the BACT analysis for NO_x . The EM_x^{TM} system simultaneously oxidizes CO to CO_2 , NO to NO_2 , and then absorbs NO_2 onto the surface of a catalyst using a potassium carbonate absorber coating. VOCs are also removed by the catalyst system. The system does not use

ammonia and operates most effectively at temperatures ranging from 300°F to 700°F. Operation of EM_x^{TM} requires natural gas, water, steam, electricity, and ambient air. Steam and reformed natural gas are used periodically to regenerate the catalyst bed and are an integral part of the process. Because EM_x^{TM} does not use ammonia there are no ammonia emissions from this technology.

Regeneration of the catalyst is accomplished by passing a dilute hydrogen reducing gas across the surface of the catalyst in the absence of oxygen. Hydrogen in the gas reacts with the nitrites and nitrates to form water and nitrogen. CO_2 in the gas reacts with the potassium nitrite and nitrates to form potassium carbonate, which is the absorbing surface coating on the catalyst. The regeneration gas is produced by reacting natural gas with a carrier gas (such as steam) over a steam-reforming catalyst.

The demonstrated application for EM_x^{TM} is currently limited to combined-cycle combustion turbines under approximately 50 MW in size. The EM_x^{TM} system has not been demonstrated on any type of combustion source other than a combustion turbine. There are technical differences between the proposed combustion turbine versus those few sources where this technology has been demonstrated in practice. These significant technical differences preclude a determination that the EM_x^{TM} system has been demonstrated to function efficiently on sources that are similar to the proposed furnaces and boilers (Environmental Resource Management, 2014).

Therefore, the EM_x^{TM} system is considered a technically infeasible method of controlling CO emissions from the proposed combined-cycle combustion turbine and duct burner.

5.2.2.2 Oxidation Catalyst

Oxidation catalysts are a post-combustion technology which does not rely on the introduction of additional chemicals, such as ammonia with SCR, for a reaction to occur. The oxidation of CO to CO₂ utilizes excess air present in the turbine exhaust; the activation energy required for the reaction to proceed is lowered in the presence of a catalyst. Products of combustion are introduced into a catalytic bed, with the optimum temperature range for these systems being between 700°F and 1,100°F. At higher temperatures, catalyst sintering may occur, potentially causing permanent damage to the catalyst. The addition of a catalyst bed onto the turbine exhaust will create a pressure drop, resulting in back pressure to the turbine. This has the effect of reducing the efficiency of the turbine and the power generating capabilities. It is expected that the catalyst will be placed in the exhaust train (HRSG) where the temperature will be optimal for the catalytic reaction.

The use of an oxidation catalyst is considered to be a technically feasible method of controlling CO emissions from the proposed combined-cycle combustion turbine and duct burner.

5.2.2.3 Combustion Control

"Good combustion practices" include operational and incinerator design elements to control the amount and distribution of excess air in the flue gas to confirm that there is enough oxygen present for complete combustion. Such control practices applied to the proposed turbine can achieve CO emission levels of 4 ppm for the combustion turbine at 100 percent load.

Good combustion practices are considered to be a technically feasible method of controlling CO emissions from the proposed combined-cycle combustion turbine and duct burner.

5.2.2.4 Summary of the Technically Feasible Control Options

The technical feasibility of the CO control options for the proposed combined-cycle combustion turbine is summarized in Table 5-8. The expected performance has been determined considering the performance of existing systems, vendor guarantees, permitted emission limits, and the design requirements for the turbines.

Control System		Expected Performance (ppm) ^a	Technical Feasibility	Comments
Combustion controls		4 (natural gas) 10 (fuel oil)	Feasible	Standard on turbines. Not an add- on control
Post combustion controls	Oxidation catalyst	1.5 (natural gas) 1.5 (fuel oil)	Feasible	Produces CO ₂ emissions
	EM_{x}^{TM}	N/A	Not feasible	For units less than 50 MW in size

 Table 5-8:
 Summary of Technically Feasible CO Control

 Technologies for Combined-Cycle Combustion Turbines

(a) Natural gas limit valid for 100% load with duct firing down to MECL. Fuel oil limit valid for 100% load with duct firing down to 75% load.

5.2.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible CO control technologies for the combustion turbine are ranked by control effectiveness in Table 5-9.

Control Technology	Reduction (%)	Controlled Emission Level (ppm)ª
Oxidation catalyst	50-80%	1.5 (natural gas) 1.5 (fuel oil)
Combustion control	Not applicable (baseline)	4 (natural gas) 10 (fuel oil)

 Table 5-9:
 Ranking of Technically Feasible CO Control

 Technologies for Combined-Cycle Combustion Turbines

(a) Natural gas limit valid for 100% load with duct firing down to MECL. Fuel oil limit valid for 100% load with duct firing down to 75% load.

5.2.4 Step 4. Evaluate the Most Effective Control Technologies

Operating the proposed combined-cycle combustion turbine with good combustion practices will achieve 1.5 ppm at 15 percent oxygen on a long-term basis for 100 percent load with duct firing down to MECL for natural gas combustion and 1.5 ppm at 15 percent oxygen for 100 percent load with duct firing down to 75 percent load for fuel oil combustion. The next step is to review each of the technically feasible control options for environmental, energy, and economic impacts.

5.2.4.1 Oxidation Catalyst

Energy Impacts

The addition of a catalyst bed onto the turbine exhaust for the oxidation catalyst will create a pressure drop, resulting in back pressure to the turbine. This has the effect of reducing the efficiency of the turbine and the power generating capabilities.

Environmental Impacts

The oxidation catalyst oxidizes CO to CO_2 which is released to the atmosphere. CO_2 is a greenhouse gas that may be contributing to global warming and is now a regulated pollutant. Increasing CO_2 emissions could have a negative impact on the atmosphere. However, the oxidation catalyst will also reduce the amount of methane (CH₄) (also a greenhouse gas). Considering both greenhouse gases, the net effect is an overall decrease in greenhouse gas emissions on a CO_2 basis.

As with all controls that utilize catalysts for removal of pollutants, the catalyst must be disposed of after it is spent. The catalyst may be considered hazardous waste and require special treatment or disposal; even if it is not hazardous, it adds to the already full landfills.

Economic Impacts

The Owners have selected the highest control available for CO emissions; therefore, no economic analysis is necessary.

The impacts listed above do not outweigh the health benefits of controlling CO emissions with the use of an oxidation catalyst.

An oxidation catalyst along with good combustion practices was selected as BACT for control of CO emissions from the combined-cycle combustion turbine.

5.2.5 Step 5. Proposed CO BACT Determination

The BACT recommended for control of CO emissions from the proposed combustion turbine is good combustion practices and the use of an oxidation catalyst. These controls will meet a CO emission limit of 1.5 ppm at 15 percent oxygen during steady state conditions for all loads down to MECL with and without duct firing for natural gas combustion and 1.5 ppm at 15 percent oxygen for 75 percent to 100 percent load with and without duct firing for fuel oil combustion. These proposed limits are on a 168-hour rolling average.

5.3 BACT for Particulate Matter – Combined-Cycle Combustion Turbine (P01)

Previously submitted BACT Sections and updated references to the particulate matter BACT section for the combined-cycle combustion turbine is presented in Table 5-10. The updated combined-cycle combustion turbine particulate matter BACT analysis shows that the BACT determination in the original application and PSD permit remain valid.

Description	Previous Application Reference	December 2021 Submittal Location
BACT Analysis Steps 1 to 5	5.0 BACT December 2018 Submittal	5.0 BACT
	Table D-1a (natural gas), Table D-1b (fuel oil) Appendix D, December 2018 Submittal	Table D-1a (natural gas), Table D-1b (fuel oil) Appendix D
RBLC		Table D-1a Addendum (natural gas), Table D-1b Addendum (fuel oil) Appendix D

Table 5-10: Combustion Turbine Particulate Matter BACT Analysis References

The following sections outline the top-down steps for particulate matter emissions from combustion turbines.

5.3.1 Step 1. Identify Potential Control Strategies

Particulate (PM/PM₁₀/PM_{2.5}) emissions from natural gas combustion sources consist of inert contaminants in natural gas, of sulfates from fuel sulfur or mercaptans used as odorants, of dust drawn in from the

ambient air, and particles of carbon and hydrocarbons resulting from incomplete combustion. Therefore, units firing fuels with low ash content and high combustion efficiency exhibit correspondingly low particulate emissions.

A contributor to $PM/PM_{10}/PM_{2.5}$ emissions in combined-cycle turbines with SCR is the ammonium sulfates that are produced when NO₂ and ammonia react with sulfur in the fuel. Sulfur is present in all fuels, including natural gas and fuel oil proposed for this Project. Because of the sulfur, ammonium sulfates can form, as illustrated by the following equations:

 $2NH_3 + SO_3 + H_2O \rightarrow (NH_4)_2 HSO_4$

$$NH_3 + SO_3 + H_2O \rightarrow NH_4 \ HSO_4$$

Ammonium sulfates are also formed when the ammonia content of the flue gas exceeds that of the sulfur trioxide (SO₃); the amount of ammonium bisulfate then can increase as the ammonia slip increases. Other variables are velocity/temperature profiles, oxygen levels, water content, cycling, presence of an oxidation catalyst or duct burner, ammonia/SO₃ ratios, etc. Therefore, it is expected that combustion turbines with SCR will have higher particulate emissions than those without SCR.

Post-combustion controls, such as electrostatic precipitators (ESPs) or baghouses, have never been applied to commercial gas-fired turbines. Available control strategies include the use of low ash fuel, such as natural gas, and combustion controls. BACT emission rates vary in the RBLC database with rates being listed as 0.0012 to 0.044 lb/MMBtu and 4.4 to 43 lb/hr for natural gas and 0.0168 to 0.0368 lb/MMBtu and 34.3 to 72 lb/hr for fuel oil. As stated previously, these emission rates vary due to many reasons.

5.3.2 Step 2. Identify Technically Feasible Control Technologies

Particulate control devices are not typically installed on gas turbines. Post-combustion controls, such as ESPs or baghouses, have never been applied to commercial gas-fired turbines. Therefore, the use of ESPs and baghouse filters are both considered technically infeasible, and do not represent an available control technology.

In the absence of add-on controls, the most effective control method demonstrated for combustion turbines is the use of low ash fuel, such as natural gas, and combustion controls. This was confirmed by a survey of the RBLC database (Appendix D) which showed no add-on PM/PM₁₀/PM_{2.5} control

technologies for combined-cycle combustion turbine units. Proper combustion control and the firing of fuels with negligible or zero ash content (such as natural gas) is the predominant control method listed.

5.3.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible $PM/PM_{10}/PM_{2.5}$ control technologies for the combustion turbine are ranked by control effectiveness in Table 5-11.

Table 5-11: Ranking of Technically Feasible PM/PM₁₀/PM_{2.5} Control Technologies for Combined-Cycle Combustion Turbine

Control	Reduction	Controlled Emission Level
Technology	(%)	(lb/hr)ª
Low ash fuel and combustion control	Not applicable (baseline)	 36.3 lb/hr (natural gas with duct firing) 21.8 lb/hr (natural gas) 54.5 lb/hr (fuel oil with duct firing) 39.4 lb/hr (fuel oil)

(a) Emission rate for 100% load to MECL with and without duct firing.

5.3.4 Step 4. Evaluate the Most Effective Control Technologies

No energy, environmental, or economic impacts are associated with combustion controls; the use of low ash fuel is not an add-on control device.

5.3.5 Step 5. Proposed PM/PM₁₀/PM_{2.5} BACT Determination

The use of low ash fuels and good combustion control represents BACT for $PM/PM_{10}/PM_{2.5}$ control in the proposed combined-cycle combustion turbine. These operational controls will limit $PM/PM_{10}/PM_{2.5}$ emissions, including duct burner emissions, to the levels shown in Table 5-11, above, depending on fuel and operating condition for combined-cycle operation.

This limit includes front and back half $PM/PM_{10}/PM_{2.5}$ emissions, takes into account emissions from the ammonium sulfate produced from sulfur and ammonia slip that could be emitted as $PM/PM_{10}/PM_{2.5}$, and includes the duct burner emissions that will be emitted out of the turbine stack.

5.4 BACT for Volatile Organic Compounds – Combined-Cycle Combustion Turbine

Previously submitted BACT Sections and updated references to the VOC BACT section for the combinedcycle combustion turbine is presented in Table 5-12. The updated combined-cycle combustion turbine VOC BACT analysis shows that the BACT determination in the original application and PSD permit remain valid.

Description	Previous Application Reference	December 2021 Submittal Location
BACT Analysis Steps 1 to 5 5.0 BACT December 2018 Submittal		5.0 BACT
	Table D-1a (natural gas), Table D-1b (fuel oil) Appendix D, December 2018 Submittal	Table D-1a (natural gas), Table D-1b (fuel oil) Appendix D
RBLC		Table D-1a Addendum (natural gas), Table D-1b Addendum (fuel oil) Appendix D

Table 5-12: Combustion Turbine Sulfuric Acid Mist BACT Analysis References

The following sections outline the top-down steps for VOC emissions from combustion turbines.

5.4.1 Step 1. Identify Potential Control Strategies

Like CO, VOC is a product resulting from incomplete combustion. VOC emissions occur when a portion of the natural gas fuel remains unburned or is only partially burned during the combustion process. With natural gas, some organics are unreacted trace constituents of the gas, while others may be products of the heavier hydrocarbon constituents. Partially burned hydrocarbons result from poor air-to-fuel mixing prior to, or during, combustion or incorrect air-to-fuel ratios in the combustion turbine.

The technologies identified for reducing VOC emissions from combined-cycle combustion turbines are the same as identified for CO control: the multi-pollutant control system, an oxidation catalyst (also referred to as a CO catalyst), and combustion controls. The standard technology for reducing VOC emissions is to maintain "good combustion" through proper control and monitoring of the combustion process through the air-to-fuel ratio. In addition, since most of the BACT determinations for CO for combined-cycle combustion turbines also include an oxidation catalyst, determinations for VOC emissions often include an oxidation catalyst along with good combustion practices. A survey of the RBLC database (Appendix D) indicates that combustion controls is the most prevalent BACT control along with oxidation catalysts listed as LAER and BACT for VOC. VOC emissions from the permitted facilities ranged from 0.3 ppm to 5 ppm for natural gas-fired combustion turbines and 2 ppm to 3.6 ppm for fuel-oil combustion.

5.4.2 Step 2. Identify Technically Feasible Control Technologies

The primary methods for controlling VOC emissions are evaluated for technical feasibility in the following sections.

5.4.2.1 EM_x[™] System

The EM_x^{TM} system was described in the BACT analysis for NO_x (Section 5.1.2.2). It is also applicable for controlling VOC and can reduce emissions by up to 20 percent. The system does not use ammonia and operates most effectively at temperatures ranging from 300°F to 700°F. Operation of EM_x^{TM} requires natural gas, water, steam, electricity, and ambient air. Steam and reformed natural gas are used periodically to regenerate the catalyst bed and are an integral part of the process. Because EM_x^{TM} does not use ammonia, there are no ammonia emissions from this technology.

Regeneration of the catalyst is accomplished by passing a dilute hydrogen reducing gas across the surface of the catalyst in the absence of oxygen. Hydrogen in the gas reacts with the nitrites and nitrates to form water and nitrogen. CO_2 in the gas reacts with the potassium nitrite and nitrates to form potassium carbonate, which is the absorbing surface coating on the catalyst. The regeneration gas is produced by reacting natural gas with a carrier gas (such as steam) over a steam-reforming catalyst.

The demonstrated application for EM_x^{TM} is currently limited to combined-cycle combustion turbines under approximately 50 MW in size. The EM_x^{TM} system has not been demonstrated on any type of combustion source other than a combustion turbine. There are technical differences between the proposed combustion turbine versus those few sources where this technology has been demonstrated in practice. These significant technical differences preclude a determination that the EM_x^{TM} system has been demonstrated to function efficiently on sources that are similar to the proposed furnaces and boilers (Environmental Resource Management, 2014).

Therefore, the EM_xTM system is considered a technically infeasible method of controlling VOC emissions from the proposed combined-cycle combustion turbines and duct burners.

5.4.2.2 Oxidation Catalyst

As discussed in Section 5.2.2.2, oxidation catalysts are a post-combustion technology that do not rely on the introduction of additional chemicals, such as ammonia or urea with SCR, for a reaction to occur. The catalyst beds that reduce CO also promote the oxidation of VOC, thereby reducing the VOC emissions out the stack. Such systems typically achieve a maximum of 35 to 40 percent removal of VOC, as opposed to the much higher efficiencies achieved for CO reduction.

The use of an oxidation catalyst for VOC control is considered to be technically feasible for the combined-cycle combustion turbine.

5.4.2.3 Combustion Control

"Good combustion practices" include operational and design elements to control the amount and distribution of excess air in the flue gas to confirm that there is enough oxygen present for complete combustion (controlling the air-to-fuel ratio). Such control practices applied to the proposed turbine can achieve VOC emission levels of approximately 1 ppm when combusting natural gas or fuel oil without an oxidation catalyst for all loads down to MECL.

Good combustion practices are a technically feasible method of controlling VOC emissions from the proposed combustion turbine.

5.4.2.4 Summary of the Technically Feasible Control Options

The technical feasibility of the VOC control options for the proposed combustion turbine is summarized in Table 5-13. The expected performance has been determined considering the performance of existing systems, vendor guarantees, permitted emission limits, and the design requirements for the turbine.

Control System		Expected Performance (ppm)	Technical Feasibility	Comments
Combustion controls		1 ppm (natural gas without duct firing) 1 ppm (fuel oil without duct firing)	Feasible	Standard on the proposed combustion turbine. Not an add-on control
Post combustion			Feasible	Produces CO ₂ emissions.
controls	EM_{x}^{TM}	N/A	Not feasible	For units less than 50 MW in size

 Table 5-13: Summary of Technically Feasible VOC Control

 Technologies for Combined-Cycle Combustion Turbines

5.4.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible VOC control technologies for the proposed combined-cycle combustion turbine are ranked by control effectiveness in Table 5-14.

Control Technology	Reduction (%)	Controlled Emission Level (ppm)ª
Oxidation catalyst	35-40%	2.7 ppm (natural gas with duct firing)0.6 ppm (natural gas)3.3 ppm (fuel oil with duct firing)0.6 ppm (fuel oil)
Combustion control	Not applicable (baseline)	4.1 ppm (natural gas with duct firing)1 ppm (natural gas)5.6 ppm (fuel oil with duct firing)1 ppm (fuel oil)

Table 5-14: Ranking of Technically Feasible VOCControl Technologies for Combined-Cycle Combustion Turbines

(a) Emission rate for 100% load to MECL with and without duct firing.

5.4.4 Step 4. Evaluate the Most Effective Control Technologies

The next step is to review each of the technically feasible control options for environmental, energy, and economic impacts.

5.4.4.1 Oxidation Catalyst

Energy Impacts

The addition of a catalyst bed onto the turbine exhaust for the oxidation catalyst will create additional pressure drop, resulting in increased back pressure to the turbine. This has the effect of reducing the efficiency of the turbine and the power generating capabilities.

Environmental Impacts

The oxidation catalyst oxidizes CO and VOC to CO_2 which is released to the atmosphere. CO_2 is a greenhouse gas that may be contributing to global warming. Increasing CO_2 emissions could have a negative impact on the atmosphere.

In addition, as with all controls that utilize catalysts for pollutant removal, the catalyst must be disposed of after it is spent. The catalyst may be considered hazardous waste and require special treatment or disposal; even if it is not hazardous, it adds to the existing landfills.

Economic Impacts

The Owners have selected the highest control available for VOC emissions; therefore, no economic analysis is necessary.

5.4.4.2 Combustion Control

No energy, environmental, or economic impacts are associated with combustion controls.

5.4.5 Step 5. Proposed VOC BACT Determination

The BACT recommended for control of VOC emissions from the proposed combustion turbine is the use of good combustion practices with the added control of an oxidation catalyst. These controls will meet a VOC natural gas combustion emission limit of 2.7 ppm at 15 percent oxygen and 0.6 ppm at 15 percent oxygen with and without duct firing, respectively for all steady state loads down to MECL. The controls will also meet a VOC fuel oil limit of 3.3 ppm at 15 percent oxygen and 0.6 ppm at 15 percent oxygen, with and without duct firing, respectively for all steady state loads down to MECL. These emission rates represent the lowest emission rate achievable for VOC emissions with an oxidation catalyst for this turbine. Compliance will be determined on a 168-hour rolling average.

An oxidation catalyst along with good combustion practices was selected as BACT for VOC emissions from the proposed combined-cycle combustion turbine for both fuel oil and natural gas combustion.

5.5 BACT for Sulfuric Acid Mist – Combined-Cycle Combustion Turbine

Previously submitted BACT Sections and updated references to the sulfuric acid mist BACT section for the combined-cycle combustion turbine is presented in Table 5-15. The updated combined-cycle combustion turbine sulfuric acid mist BACT analysis shows that the BACT determination in the original application and PSD permit remain valid.

Description	Previous Application Reference	December 2021 Submittal Location	
BACT Analysis Steps 1 to 5	5.0 BACT December 2018 Submittal	5.0 BACT	
	Table D-1a (natural gas), Table D-1b (fuel oil) Appendix D, December 2018 Submittal	Table D-1a (natural gas), Table D-1b (fuel oil) Appendix D	
RBLC		Table D-1a Addendum (natural gas), Table D-1b Addendum (fuel oil) Appendix D	

Table 5-15: Combustion Turbine Sulfuric Acid Mist BACT Analysis References

The following sections outline the top-down steps for H₂SO₄ mist emissions from combustion turbines.

5.5.1 Step 1. Identify Potential Control Strategies

The majority of the fuel sulfur combusted in the combustion turbine leaves the boiler as SO_2 . During combustion, a small percentage of the fuel sulfur is further oxidized from SO_2 to SO_3 . As the temperature of the flue gas decreases as it passes through the HRSG and pollution control systems, this SO_3 may combine with water vapor present in the exhaust gas path to form sulfuric acid vapor.

When the flue gas temperature drops below the acid dew point, sulfuric acid vapor further condenses into an aerosol, forming H_2SO_4 mist. H_2SO_4 mist may also be a component of condensable particulate matter, with particle sizes in the sub-micron size.

Very limited data is available on the quantity of SO₂ that will be converted to SO₃ through the entire combustion turbine/HRSG/SCR/oxidation catalyst. Vanadium is the component in SCR catalyst and is believed to catalyze the oxidation of SO₂ to SO₃ in the exhaust train when present in the fuel. No information on the amount of SO₂ that is oxidizes to SO₃ is available for oxidation catalyst. Therefore, the H_2SO_4 emission estimate assumes 100 percent conversion of SO₂ to SO₃ and 100 percent conversion of SO₃ to H_2SO_4 , since no guarantees exist, and very little data is available for this combustion turbine with back-end controls. The combustion turbine will combust natural gas with sulfur content up to 0.5 grains per standard cubic foot on a 12-month rolling average, and fuel oil that will be less than or equal to 15 ppm sulfur (ultra-low sulfur fuel oil).

5.5.2 Step 2. Identify Technically Feasible Control Technologies

As with SO₂, there are no add-on controls available for H_2SO_4 mist from combustion turbines. In the absence of add-on controls, the most effective control method demonstrated for combustion turbines is the use of low sulfur fuel, such as natural gas and ultra-low sulfur fuel oil, and combustion controls. Proper combustion control and the firing of fuels with very low sulfur content is the only known control method available. This was confirmed by a survey of the RBLC database (Appendix D).

5.5.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible H_2SO_4 mist control technologies for the combustion turbine are ranked by control effectiveness in Table 5-16.

Control Technology	Reduction (%)	Controlled Emission Level (lb/hr)ª
Low sulfur fuel and combustion control	Not applicable (baseline)	9.9 lb/hr (natural gas with duct firing)7.8 lb/hr (natural gas)9.3 lb/hr (fuel oil with duct firing)7.0 lb/hr (fuel oil)

Table 5-16: Ranking of Technically Feasible H₂SO₄ Control Technologies for Combined-Cycle Combustion Turbines

(a) Emission rate for 100% load to MECL with and without duct firing.

5.5.4 Step 4. Evaluate the Most Effective Control Technologies

There are no energy, environmental, or economic impacts associated with combustion controls; the use of low sulfur fuel and combustion control is not an add-on control device.

5.5.5 Step 5. Proposed H₂SO₄ Mist BACT Determination

The use of low sulfur fuel and good combustion control represents BACT for H_2SO_4 mist control in the proposed combined-cycle combustion turbine. These operational controls will limit H_2SO_4 mist emissions, including duct burner emissions, to the levels shown in Table 5-16, above, depending on fuel and operating condition for combined-cycle operation.

5.6 BACT for Greenhouse Gases – Combined-Cycle Combustion Turbine (P01)

Previously submitted BACT Sections and updated references to the greenhouse gases BACT section for the combined-cycle combustion turbine is presented in Table 5-17. The updated combined cycle combustion turbine greenhouse gas BACT analysis shows that the BACT determination in the original application and PSD permit remain valid.

Description	Previous Application Reference	December 2021 Submittal Location
BACT Analysis Steps 1 to 5	5.0 BACT December 2018 Submittal	5.0 BACT
RBLC	Table D-1a (natural gas), Table D-1b (fuel oil) Appendix D December 2018 Submittal	Table D-1a (natural gas), Table D-1b (fuel oil) Appendix D
		Table D-1a Addendum (natural gas), Table D-1b Addendum (fuel oil) Appendix D

Table 5-17: Combustion Turbine Greenhouse Gases BACT Analysis References

The following sections outline the top-down steps for greenhouse gas (GHG) emissions from combustion turbines.

5.6.1 Step 1. Identify All Potential Control Strategies

For the proposed combined-cycle combustion turbine, the CO_2e emissions are due to CO_2 , CH_4 , and nitrogen oxide (N₂O) emissions. The GWP of CH_4 and N₂O emissions are normalized to the warming potential of carbon dioxide (as CO_2e) by multiplying the CH_4 emissions by 25 and the N₂O emissions by 298. Despite the higher warming potentials of CH_4 and N₂O compared to CO_2 , it is expected that CO_2 emissions will still account for over 99 percent of the CO_2e GWP for this unit, based on published emission factors for natural gas-fired turbines.

There are two broad strategies for reducing CO_2 emissions from stationary combustion processes such as combustion turbines. The first is to minimize the production of CO_2 through the use of low-carbon fuels and through aggressive energy-efficient design. The use of gaseous fuels, such as natural gas, reduces the production of CO_2 during the combustion process relative to burning solid fuels (e.g., coal or coke) and liquid fuels (e.g., distillate or residual oils). Additionally, a highly efficient operation requires less fuel for process heat, which directly impacts the amount of CO_2 produced. Establishing an aggressive basis for energy recovery and facility efficiency will reduce CO_2 production and the costs to recover it.

The second strategy for CO_2 emission reduction is carbon capture and sequestration. The inherent design of the combustion turbines produces a dilute CO_2 stream for potential capture.

The CO_2 emissions from combustion turbines can theoretically be captured through pre-combustion methods or through post-combustion methods. In the pre-combustion approach, oxygen instead of air is used to combust the fuel and a concentrated CO_2 exhaust gas is generated. This approach significantly reduces the capital and energy cost of removing CO_2 from conventional combustion processes using air as an oxygen source, but it incurs significant capital and energy costs associated with separating oxygen from the air.

Post-combustion methods are applied to conventional combustion techniques using air and carboncontaining fuels in order to isolate CO_2 from the combustion exhaust gases. Because the air used for combustion contains nearly 80 percent nitrogen, the CO_2 concentration in the exhaust gases is only 5 to 20 percent depending on the amount of excess air and the carbon content of the fuel.

5.6.2 Step 2. Identify Technically Feasible Control Technologies

The primary methods for controlling GHG emissions are evaluated for technical feasibility in the following sections.

5.6.2.1 Fuel Selection

Fuel selection has a significant impact on GHG formation.

5.6.2.1.1 Low-Carbon Fuels

Numerous fuels are available for use. As Table 5-18 shows, combustion of natural gas yields 40 to 50 percent less CO_2 than does combustion of coal and petroleum coke and approximately 30 percent less CO_2 than does combustion of residual oil. Accordingly, the preferential burning of a low-carbon gaseous fuel in the proposed combustion turbine is an extremely effective CO_2 control technique. This control technique is technically feasible for the combustion turbine and duct burner and is an inherent part of the Project's design.

Fuel	kilograms CO ₂ per MMBtu
Petroleum coke	113.67
Coal (anthracite)	103.69
Distillate fuel oil No. 2	73.96
Natural gas	53.06

Table 5-18: CO₂ Emission Factors

Source: Title 40 CFR Part 98: Table C-1 to Subpart C of Part 98 – Default CO₂ Emission Factors and Types of Fuel

5.6.2.1.2 Combustion of Biogenic Sources

The proposed combustion turbine has not been designed to accommodate fibrous biomass, such as woody biomass, which is the most likely biomass available in sufficient quantities for the unit from the surrounding area. For both regulatory and technical feasibility issues, **biogenic sources are not a feasible option since they are not part of the original design**.

5.6.2.2 Energy Efficiency

The evaluation of energy efficiency, continuous excess air monitoring and control and the selection of efficient turbine design, are discussed below.

5.6.2.2.1 Continuous Excess Air Monitoring and Control

Excessive amounts of combustion air in turbines results in energy-inefficient operation because more fuel combustion is required in order to heat the excess air to combustion temperatures. This inefficiency can be alleviated using state-of-the-art instrumentation for monitoring and controlling the excess air levels in the combustion process, which reduces the heat input by minimizing the amount of combustion air needed for safe and efficient combustion. Additionally, lowering excess air levels, while maintaining good combustion, reduces not only CO_2 emissions but also NO_x emissions. The combustion turbine will be equipped with oxygen monitors as part of the CEM system.

5.6.2.2.2 Selection of Efficient Turbine Design

Energy efficiency reduces CO_2 emissions by maximizing the operation of the combustion turbine, thereby reducing the amount of fuel burned per megawatt-hr produced.

Combustion control optimization and energy efficient equipment is a main control strategy for emissions of greenhouse gases. The combustion turbine design that is under consideration for this Project is highly efficient. Energy efficiency is technically and economically feasible. Potential options that may increase efficiency include the following:

- Airfoil-shaped compressor rotor blades designed to increase compressor efficiency
- 13 stage high efficiency compressor design with modulating inlet guide vanes and inter-stage air extraction for cooling and sealing air
- Fuel gas heating via HRSG feedwater to improve turbine efficiency while maintaining constant firing temperature
- Inlet air filtration system utilizing high efficiency media filters to remove combustion air contaminants
- On and off-line compressor water wash capability to remove deposits and other contaminants from compressor blades to maintain and improve compressor efficiency
- Low-NO_x combustor for improved performance, enhanced operability, and lower emissions
- Extended turndown for increased spinning reserve capability and lower fuel costs
- Advanced hot gas path components with 3D airfoil shapes, improved materials, improved sealing, more effective cooling to achieve increased turbine efficiency
- Higher firing temperatures to increase turbine performance and overall turbine efficiency

5.6.2.3 Add-on Control Devices

Another method of GHG control is an add-on control device.

5.6.2.3.1 Catalytic Oxidation

 N_2O emissions are reduced by passing the combustion gases over a catalyst, converting N_2O to nitrogen plus oxygen. Similarly, VOC emissions, such as CH_4 , may be converted from CH_4 to CO_2 plus water. For the same reasons given above in the discussion for CO BACT controls, **catalytic oxidation is technically feasible for the control of GHG emissions from the proposed combined-cycle combustion turbine.**

5.6.2.3.2 Thermal Oxidation

Several types of thermal oxidation technology are available. All these technologies oxidize CH_4 to CO_2 and water, by raising the temperature of the treated gas stream to approximately 1,600°F for approximately one to two seconds. Given sufficient mixing, this residence time and temperature is capable of achieving at least a 98 percent reduction in CH_4 emissions for these processes.

Secondary pollutants, however, are produced by thermal oxidation, including NO_x and CO from the combustion of natural gas used to heat the process stream. Thermal oxidation technologies also may employ some form of heat recovery, either recuperative or regenerative, to reduce economic, environmental and energy costs. In the case of a combustion turbine, it is expected that approximately 20 lb/hr of CH₄ will be produced at full load (with an exhaust flow rate of approximately 1,000,000 million standard cubic feet per minute). The exhaust gas stream is thus both high volume and very dilute in CH₄, so it would need to be concentrated to the point that the CH₄ would be capable of combustion. Also, additional CO₂ would be produced due to the need for combusting natural gas to heat the CH₄ to the oxidation point. This would reduce the overall effectiveness in reducing CO₂e emissions due to CH₄ because additional CO₂ would be produced as a result of combusting the CH₄. **Therefore, thermal oxidation is technically infeasible for the control of GHG emissions from the proposed combined-cycle combustion turbine.**

5.6.2.4 Carbon Capture and Sequestration

Carbon capture and sequestration is a general term which is used for approaches that capture and separate CO_2 from an exhaust stream, and then store it in a place which will keep it from the atmosphere for a long time. The two general categories of CO_2 capture are: pre-combustion CO_2 capture and post-combustion CO_2 capture.

5.6.2.4.1 Pre-Combustion CO₂ Capture

Pre-combustion CO_2 capture is used in gasification plants, where the CO_2 is captured from the syngas prior to combustion in the turbine, where it is relatively concentrated in the gas stream. This facility is not

a gasification plant; therefore, **pre-combustion capture is technically infeasible for the control of CO₂ emissions from the proposed combined-cycle combustion turbine**.

5.6.2.4.2 Post-Combustion CO₂ Capture

Post-combustion CO_2 capture is used for units such as pulverized coal plants. In these units, the flue gas concentration of CO_2 runs between 10-15 percent by volume and is released at atmospheric pressure. This results in a high actual volume of gas to be treated. Trace impurities in the airflow tend to reduce the effectiveness of the CO₂-adsorbing process and compressing the captured CO₂ from atmospheric pressure to pipeline pressure represents a large parasitic load. The currently available process is costly and energy intensive, so research is being done on ways to increase the solvent capture efficiency and reduce the cost. These approaches include investigating the use of alternative solvents, solid sorbents or membranes. Of these potentially more efficient approaches, most are currently at laboratory/bench scale, so are not technically feasible. Pilot scale processes are starting to be placed in service, such as a 48 MW slipstream project at Brindisi, Italy, started in March 2011, which is limited to capturing less than 10,000 tons of CO_2 per year. A larger 235-MW slipstream project for the 1,300 MW Mountaineer Power Plant near New Haven, West Virginia was built with technology that used chilled ammonia to trap CO₂. The pilot project removed up to 300,000 metric tons of CO₂; however, the project was abandoned due to diminishing Federal and State support for clean coal technology. No commercially available post-combustion CO₂ capture systems are known to have been installed at large power plant other than pilot-scale demonstration projects. Therefore, post-combustion capture is technically infeasible for the control of CO₂ emissions from the proposed combined-cycle combustion turbine.

5.6.2.5 CO₂ Sequestration

 CO_2 sequestration involves transporting CO_2 to a suitable geologic location where it can be injected as a supercritical fluid into deep, underground rock formations for permanent storage. Identifying a suitable site within an economically-viable distance from the Project site will require site-specific quantitative risk assessment. Four trapping methods are known: mineral trapping, physical adsorption, hydrodynamic trapping, and solubility trapping.

5.6.2.5.1 Mineral Trapping

The mineral trapping method traps CO_2 by undergoing a chemical reaction with various minerals, resulting in the formation of a carbonate mineral. This process can be rapid or very slow, depending on the chemistry of the rock and water at the site. Mineral trapping is expected to result in the most stable, permanent form of geological CO_2 sequestration. Experiments have shown that basalt formations can rapidly transform injected CO_2 into carbonate minerals, beginning precipitation in a few months' time and completing conversion within 100 years or less, depending on depth of injection. Sandstone formations low in carbonates may also be suitable candidates, depending on the mineral contents of the formations. These methods have been demonstrated only on a laboratory scale; therefore, mineral trapping is **not technically feasible for the proposed combined-cycle combustion turbine**.

5.6.2.5.2 Physical Adsorption

The physical adsorption process traps CO_2 molecules are trapped in micropore wall surfaces of coal organic matter or organic rich shales. The hydrostatic pressure in the formation controls the adsorption process. The injection of CO_2 can also result in driving off CH_4 for collection by other wells, helping the economics. Wisconsin has coal beds in the mid-northeast part of the state (Northeast Wisconsin Shelf and Arkoma Basin). There is a commercial coal belt that contains coal beds greater than or equal to 10 inches thick. The coal beds that are greater than or equal to 14 inches thick are mineable by underground methods. Coal mining in Wisconsin has been steadily decreasing since 1981. Some coal beds in the US are being tested for CO_2 storage/ CH_4 recovery, but this is currently at a pilot phase. Defining the depths and lateral distribution of coal strata that might be suitable for this approach has not been done, due to the significant depths required for CO_2 sequestration. Significant research and exploration efforts would be required to determine whether such coal beds even actually occur at the required depths beneath western Wisconsin. Use of coal beds in Wisconsin would require much further study to locate a suitable site for sequestration, and since the results of pilot phase testing of this technique are not known, these factors combined render the use of coal beds **not technically feasible for the proposed combined-cycle combustion turbine.**

5.6.2.5.3 Hydrodynamic Trapping

With hydrodynamic trapping, the pore space of a salt-water aquifer takes the injected CO₂, in a geologic setting where the aquifer is capped by an impermeable rock layer to trap the CO₂ well below the nearsurface environment. For storage purposes, the aquifer should be saline enough to be non-potable, and deep enough (over 2,700 feet) to confirm that the pressure is sufficient to keep the compressed CO₂ in a supercritical liquid phase. Since the sedimentary bedrock strata in the site vicinity are over 10,000 feet thick, the possibility exists that geologically suitable strata exist somewhere within these layered rock formations. However, in the absence of oil and gas exploratory test holes, the locations, depths, and character of such strata are not known, and would have to be discovered and defined by extensive exploratory drilling and testing. As the state of Wisconsin is unlikely to apply for primacy for the Class VI regulations (governing injection wells), EPA rules that require a minimum of 10,000 milligrams per liter (mg/L) total dissolved solids to qualify as saline enough to be suitable for injection will probably apply. Discovering locations which exceed 10,000 mg/L would require significant exploration and test wells to characterize the site and determine the aquifer suitability. At these depths, defining suitable geologic would be rendered costly and problematic. Multiple oil and gas fields exist in the region, but a serious limitation to feasibility in an existing oil or gas field is the great likelihood of significant numbers of "penetrations" (old, either documented or undocumented wells and test holes that may or may not be adequately plugged and abandoned). Also, the additional surface infrastructure that would be needed to inject CO_2 would be massive, problematic, and likely infeasible. Pilot-scale projects injecting CO_2 into saline aquifers are underway in Illinois and Texas at depths of over 6,000 feet and these are the closest known sites that have been initially characterized for potential long-term sequestration, but the studies are in their early stages. Therefore, hydrodynamic trapping is **technically infeasible for the control of CO_2 emissions from the proposed combined-cycle combustion turbine at this time.**

5.6.2.5.4 Solubility Trapping

With solubility trapping, the CO₂ dissolves in the water or forms carbonic acid, becoming slightly heavier and, theoretically, sinking to the bottom of the aquifer. Solubility trapping also occurs during CO_2 flooding for enhanced oil recovery (EOR). In this case, the CO₂ dissolves into the oil, and is trapped by the immobile, non-recoverable oil. CO_2 flooding has been used for years for EOR, resulting in some existing injection infrastructure at oil fields (using both solubility trapping and hydrodynamic trapping), although the sequestration effects were not originally monitored, and the volumes injected for such operations are minuscule. However, oil fields have stored crude oil and natural gas for millions of years, and the geologic conditions that trap oil and gas are also the conditions suitable for CO_2 storage. If the CO_2 is used for EOR, the cost of transporting it to the oil field may be partially offset. Since the sedimentary bedrock strata in the site vicinity are over 10,000 feet thick, the possibility exists that oil and gas fields involving geologically suitable strata exist somewhere within these layered rock formations within the region. However, defining suitable geologic conditions in an existing oil or gas field, including the locations, depths, and character of such strata would have to be defined by extensive exploratory drilling and testing. Multiple oil and gas fields exist in the region, however, as was the case with hydrodynamic trapping, there is a likelihood of undocumented penetrations. Also, additional surface infrastructure that would be needed to inject CO_2 would be massive, problematic, and likely infeasible. Therefore, solubility trapping is technically infeasible for the control of CO₂ emissions from the proposed combined-cycle combustion turbine at this time.

5.6.2.5.5 Summary of CO₂ Sequestration

To summarize, existing CO_2 capture technologies have not been applied at large power plants, as the economic costs are prohibitive, and while more efficient approaches are being investigated, none have currently been developed past the pilot-stage. A published cost estimate for a 235-MW slipstream pilot

project in West Virginia is \$668 million, so scaling that linearly to a size capable of handling the approximate 625-net MW capacity of this project would be over \$1.8 billion. Potential carbon sequestration sites may exist in Wisconsin, but the technologies to use them are mostly still in the pilotscale phase of development, and the Owners would need to do much more investigation in order to discover where the sites are, if any, and characterize them enough to demonstrate the long-term viability of the locations. Defining suitable geologic conditions in an existing oil or gas field, including the locations, depths, and character of suitable strata, and defining penetrations (potentially leaky wells and test holes, some of which are likely to exist but are undocumented) into the geological traps comprising existing oil and gas fields, would have to be defined by extensive exploratory drilling and testing. One of the closest known existing sites for sequestration is the Williston Basin in the Dakotas, approximately 350 miles from the plant. The cost to construct a pipeline as determined from a similar project (Iowa Power & Light Ottumwa – Iowa Department of Natural Resources project 11-219) to this project's site would be approximately \$1.4 million/mile of pipeline, or about \$700 million. The capital cost estimated for this comparable project was nearly \$2.1 billion for capture equipment and pipeline construction alone prior to any costs for gas compression, additional injection and monitoring wells necessary to handle the volume of CO₂ produced, pipeline right-of-way, operation and maintenance costs, etc. As can be seen from the above discussion, the qualitative cost estimate of capture and sequestration is quite high, the technological effectiveness for the capture equipment for a unit of this size has not been demonstrated in practice yet, and there is uncertainty as to whether locations capable of storing the large amounts of CO_2 that would be produced per year exist within a closer radius of the plant. These considerations are sufficient to eliminate this option without requiring a more detailed site-specific technological or economic analysis.

5.6.2.6 Summary of Technically Feasible Control Technologies

The technical feasibility of the greenhouse gas control options for the proposed combustion turbine is summarized in Table 5-19. The expected performance has been determined considering the performance of existing systems, vendor guarantees, permitted emission limits, and the design requirements for the turbine.

	Control System	Technical Feasibility	Comments
Fuel Selection	Low Carbon Fuels	Feasible	Natural gas has been selected as the primary fuel for this project
	Combustion of Biogenic Sources	Not Feasible	
Energy	Continuous Excess Air Monitoring and Control	Feasible	Standard for the turbines under consideration
Efficiency	Efficient Turbine Design	Feasible	Standard for the turbines under consideration
Post Combustion	Catalytic Oxidation	Feasible	Will reduce CH ₄ emissions but create CO ₂
Controls	Thermal Oxidation	Not Feasible	
Carbon	Pre-combustion CO ₂ capture	Not Feasible	
Capture	Post-combustion CO ₂ capture	Not Feasible	
	Mineral Trapping	Not Feasible	
Carbon	Physical Adsorption	Not Feasible	
Sequestration	Hydrodynamic Trapping	Not Feasible	
	Solubility Trapping	Not Feasible	

 Table 5-19: Summary of Technically Feasible Greenhouse Gas Control

 Technologies for Combustion Turbine

5.6.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible control technologies are low-carbon fuel (natural gas), monitoring and control of excess air, efficient turbine design, and catalytic oxidation. The use of low-carbon fuels and aggressive energy-efficient design to reduce CO_2 emissions is inherent in the design of the proposed combustion turbine under consideration and is considered the baseline condition. Table 5-20 presents the ranking of the greenhouse gas technologies deemed feasible for the Project. While these four technologies are "ranked" in order of their presentation, they are more appropriately considered as a suite of measures that would be implemented to allow the Project to generate and consume power in the most efficient manner and thereby achieve BACT for greenhouse gases.

Technology	Ranking	Applied to Project
Combined – Cycle Combustion Turbine (employing efficient, state-of-the-art design)	1	Yes
Clean Fuel – Natural Gas	2	Yes
Catalytic Oxidation	3	Yes
Operational Design – Control of Excess Air	4	Yes

Table 5-20: Greenhouse Gas Control TechnologyRanking for the Combustion Turbine

5.6.4 Step 4. Evaluate the Most Effective Control Technologies

The next step is to review each of the technically feasible control options for environmental, energy, and economic impacts.

5.6.4.1 Environmental, Energy, and Economic Feasibility of Control Options

Because the Owners are proposing to utilize all four of the feasible technologies for reducing greenhouse gases from the proposed combustion turbine, no detailed analysis is provided to compare the available control technologies' relative environmental, energy and economic impacts.

5.6.4.2 Oxidation Catalyst

An oxidation catalyst works to reduce CH₄ emissions according the following equation:

$$CH_4 + 2O_2 = CO_2 + 2H_2O$$

Substituting in the molecular weights of CH_4 (16.043 pound per pound mol [lb/lb-mol]) and CO_2 (44.0096 lb/lb-mol), the removal of 1 pound of CH_4 results in the release of 2.7 pounds of CO_2 . However, CH_4 has a GWP of 25, whereas the GWP of CO_2 is 1. Substituting in the GWPs, the removal of 1 pound of CH_4 results in a net reduction of 22.3 lb CO_2 as CO_2e .

It is also important to note the increase in CO_2e emissions from the oxidation of CO to CO_2 in accordance with the following reaction:

$$2\mathrm{CO} + \mathrm{O}_2 = 2\mathrm{CO}_2$$

 CO_2 will be emitted at a rate of approximately 1.5 pounds per pound of CO. Therefore, it is expected that there will still be a net decrease in CO_2e , even with the additional CO_2 that is produced from the oxidation catalyst with the oxidation of CO and CH₄.

There are no additional negative environmental impacts from the use of an oxidation catalyst, other than those mentioned in Step 4 of the combustion turbine CO BACT.

5.6.5 Step 5. Proposed Greenhouse Gas BACT Determination

BACT for greenhouse gas emissions from the combustion turbine is determined to be the use of natural gas as a fuel, monitoring and control of excess air, efficient turbine design, and an oxidation catalyst. These design options will allow the combustion turbine to not exceed 850 lb CO₂/MW-hr (gross) on a 12-month rolling average basis while combusting natural gas and 1,180 lb CO₂/MW-hr (gross) on 12-month rolling average basis while combusting fuel oil.

5.7 BACT for Start-Up and Shutdown Emissions – Combined-Cycle Combustion Turbine (P01)

Previously submitted BACT Sections and updated references to the BACT analysis sections for the startup and shutdown emissions for the combined-cycle combustion turbine are presented in Table 5-21. The updated combined cycle combustion turbine start-up and shutdown BACT analysis shows that the BACT determination in the original application and PSD permit remain valid.

Description	Previous Application Reference	December 2021 Submittal Location
BACT Analysis Steps 1 to 5	5.0 BACT December 2018 Submittal	5.0 BACT
	Table D-1c (startup/shutdown) Appendix D, December 2018 Submittal	Table D-1c (startup/shutdown) Appendix D
RBLC		Table D-1c Addendum (startup/shutdown) Appendix D

Table 5-21: Combustion Turbine Start-Up and Shutdown BACT Analysis References

The following sections outline the top-down BACT steps for start-up and shutdown emissions from the combustion turbine.

5.7.1 Step 1. Identify Potential Control Strategies

Criteria pollutants will be emitted during start-up and shutdown of the combustion turbine. Start-up emissions are generally higher for CO, NO_x, and VOC than for normal operation because the SCR and oxidation catalyst cannot fully operate to their full potentials until the exhaust gases reaches the appropriate operating temperature.

The Owners are requesting an hours per year limit on start-up and shutdown (1,525 hours per year for start-up and shutdown, combined) for natural gas operation and 42 start-ups and 42 shutdowns per year for fuel oil operation. Start-up is defined as 0 percent load to MECL and shutdown is defined as MECL to 0 percent load.

5.7.2 Step 2. Identify Technically Feasible Control Technologies

Controls that may be used during normal operation are not available to control start-up and shutdown emissions. SCR and oxidation catalysts require a minimum operating temperature to control emissions (for the catalytic reactions to occur for removal of NO_x and CO). This temperature is not reached until approximately 600 to 650° F. Although this temperature is reached in the HRSG before MECL, the CO and NO_x curves show that these emissions are unstable until around MECL. In addition, the manufacturer will only guarantee emissions down to MECL, indicating that this is where stability in these emissions is reached. To minimize emissions, however, start-up and shutdown shall be limited to 2 hours for start-up and 30 minutes for shutdown.

Therefore, no technically feasible control technologies for start-up and shutdown emissions from the combustion turbine have been identified.

5.7.3 Step 3. Rank the Technically Feasible Control Technologies

Since no technically feasible control technologies for start-up and shutdown emissions have been identified, ranking of such control technologies is not applicable.

5.7.4 Step 4. Evaluate the Most Effective Control Technologies

Since no technically feasible control options for start-up and shutdown emissions have been identified, evaluation of environmental, energy or economic impacts of such control technologies is not applicable.

5.7.5 Step 5. Proposed Start-up and Shutdown BACT Determination

BACT will include limiting combined-cycle operation to 1,525 hours per year for start-up and shutdown, combined, for natural gas operation and 42 start-ups and 42 shutdowns per year for fuel oil operation. Table 5-22 and Table 5-23 displays the BACT emission rates for start-up and shutdown emissions for the combustion turbine for natural gas and fuel oil operation, respectively.

Pollutant	Sta	art-up Emissio	ons	Shutdown Emissions	Start-up and Shutdown Emissions ^a
	lb/cold start	lb/warm lb/hot-fast start start l		lb/shutdown	tons per year
NO _x	335.0	233.0	111.0	59.0	108.3
СО	11,066	6,495	779.0	463.0	1,369
$PM/PM_{10}/PM_{2.5}$	43.6	29.1	16.3	10.9	16.6
VOC	950.0	558.0	67.0	40.0	117.8
H ₂ SO ₄ mist	15.6	10.4	5.9	3.9	6.0
CO ₂ e	939,573	626,382	352,340	234,893	358,212

Table 5-22: Combined-Cycle Combustion Turbine Natur	ral Gas Start-up and Shutdown Emissions
---	---

(a) Emissions are based on 1,525 hours per year for start-up and shutdown, combined, for natural gas operation.

Pollutant	Start-up Emissions	Shutdown Emissions	Start-up and Shutdown Emissions ^a
	lb/start	lb/shutdown	tons per year
NO _x	860.0	108.0	20.3
CO	25,846	1,227	568.5
PM/PM ₁₀ /PM _{2.5}	78.9	19.7	2.1
VOC	2,951	122.0	64.5
H ₂ SO ₄ mist	14.0	3.5	0.4
CO ₂ e	1,639,929	409,982	43,048

(a) Emissions are based on 42 start-ups and 42 shutdowns per year.

5.8 BACT for Opacity – Combined-Cycle Combustion Turbine (P01)

Previously submitted BACT Sections and updated references to the opacity BACT analysis sections for the combined cycle combustion turbine are presented in Table 5-24. The updated combined cycle combustion turbine opacity BACT analysis shows that the BACT determination in the original application and PSD permit remain valid.

Description	Previous Application Reference	December 2021 Submittal Location
BACT Analysis Steps 1 to 5	5.0 BACT December 2018 Submittal	5.0 BACT
RBLC	Table D-1a (natural gas),	Table D-1a (natural gas),
	Table D-1b (fuel oil)	Table D-1b (fuel oil)
	Appendix D, December 2018 Submittal	Appendix D
		Table D-1a Addendum (natural gas)
		Table D-1b Addendum (fuel oil)
		Appendix D

Table 5-24: Combustion Turbine Opacity BACT Analysis References

The following sections outline the top-down BACT steps for opacity emissions from the combustion turbine.

5.8.1 Step 1. Identify Potential Control Strategies

Opacity is not a discrete pollutant and cannot be measured using mass emissions rate criteria (e.g., lb/hr). Therefore, a typical top-down BACT economic analysis that evaluated effectiveness on a \$/ton basis cannot be conducted on opacity. Rather, the opacity BACT determination should focus on pollutants in the flue gas that contribute to opacity. These pollutants include PM, NO_x, SO₂, and H₂SO₄. BACT determinations have been performed for PM, NO_x, and H₂SO₄ for this combined-cycle combustion turbine. Units firing fuels with low ash content and high combustion efficiency exhibit correspondingly low exhaust opacity.

5.8.2 Step 2. Identify Technically Feasible Control Technologies

The Owners have prepared a detailed BACT evaluation for pollutants that potentially contribute to opacity. Based on these BACT evaluations, the Owners have identified the following control technologies as technically feasible: SCR and combustion control for NO_x control; low ash fuel and combustion control for PM control; and low sulfur and good combustion practices for H₂SO₄ mist. These technologies represent BACT for the criteria pollutants and will also minimize opacity.

5.8.3 Step 3. Rank the Technically Feasible Control Technologies

Based on these BACT evaluations, the Owners have ranked the following feasible control technologies for opacity: (1) combustion control, (2) clean fuels. The Owners have determined that the use of low ash fuel and combustion control combine to rank as the top option for opacity control.

5.8.4 Step 4. Evaluate the Most Effective Control Technologies

The energy, environmental, and economic impacts of the feasible control technologies are described in their respective BACT analysis.

5.8.5 Step 5. Proposed Opacity BACT Determination

BACT for exhaust opacity will include the use of combustion control for NO_x control, the use of low ash fuel and combustion control for PM control and the use of low sulfur fuel for H_2SO_4 mist control. The combination of these control technologies represents BACT for opacity.

5.9 BACT for Auxiliary Boiler (B02)

Previously submitted BACT Sections and updated references to the BACT analysis sections for the auxiliary boiler are presented in Table 5-25. Further analysis of the oxidation catalyst performed by the WDNR determined that an oxidation catalyst is economically feasible; therefore, the application text has been updated to reflect this update. The updated auxiliary boiler BACT analysis shows that the BACT determination in the PSD permit remain valid.

Description	Previous Application Reference	December 2021 Submittal Location
	5.0 BACT December 2018 Submittal	5.0 BACT
BACT Analysis Steps 1 to 5		Incorporated
	Post application NTEC Response #3	throughout Sections
		5.9.2 and 5.9.4
	Table D-2, Appendix D	Table D-2,
RBLC	December 2018 Submittal	Appendix D
		Table D-2 Addendum,
		Appendix D
	Tables E-1a, E-1b, E-2a,	
Economic Tables	E-2b, E-3a, and E-3b,	Appendix E
	Appendix E, December 2018 Submittal	

Table 5-25: Auxiliary Boiler BACT Analysis References

The auxiliary boiler is rated at 100 MMBtu/hr and is proposed to operate 8,760 hours per year. The RBLC has limited information on BACT conclusions for the auxiliary boiler (Appendix D). The RBLC tables also show high variability for emission rates for each pollutant. For all pollutants, no add-on controls were listed because auxiliary boilers are so small.

5.9.1 BACT for Nitrogen Oxides - Auxiliary Boiler

The following sections outline the top-down steps for NO_x emissions from the auxiliary boiler.

5.9.1.1 Step 1. Identify Potential Control Strategies

SCR, low-NO_x burners, combustion controls, and FGR are listed as BACT in the RBLC for auxiliary boilers. NO_x emissions listed in the RBLC range from 0.0085 to 0.36 lb/MMBtu for similar-sized auxiliary boilers utilizing low-NO_x burners and combustion controls. The RBLC listings for units with SCR range from 0.0032 to 0.015 lb/MMBtu.

5.9.1.2 Step 2. Identify Technically Feasible Control Technologies

The primary methods for controlling NO_x emissions are evaluated for technical feasibility in the following sections.

5.9.1.2.1 SCR

The RBLC listed one unit with SCR as BACT for a similarly sized auxiliary boiler (approximately 100 MMBtu/hr). An SCR vendor said that they could provide an SCR for this size boiler. The vendor's removal efficiency for this size unit is 90 percent control of NO_x.

As a result, an SCR system is technically feasible for the auxiliary boiler.

5.9.1.2.2 Low-NO_x Burners

Low-NO_x burners are currently available from most auxiliary boiler manufacturers. This technology seeks to reduce combustion temperatures, thereby reducing NO_x. In a conventional combustor, the air and fuel are introduced at an approximately stoichiometric ratio, and air/fuel mixing occurs at the flame front where diffusion of fuel and air reaches the combustible limit. A lean premixed combustor design premixes the fuel and air prior to combustion. Premixing results in a homogenous air/fuel mixture, which minimizes localized fuel-rich pockets that produce elevated combustion temperatures and higher NO_x emissions. A lean air-to-fuel ratio approaching the lean flammability limit is maintained, and the excess air serves as a heat sink to lower combustion temperatures, which lowers NO_x formation. A pilot flame is used to maintain combustion stability in this fuel-lean environment.

Low-NO_x burners are available on auxiliary boilers and are considered both baseline and technically feasible for the auxiliary boiler.

5.9.1.2.3 Ultra-Low NO_x Burners

Ultra-low NO_x burners are available for purchase on most auxiliary boilers of this size. The ultra-low NO_x burners provide additional control of NO_x emissions through the burning process.

Ultra-low NO_x burners are available on auxiliary boilers and is technically feasible for the auxiliary boiler.

5.9.1.2.4 Combustion Control

"Good combustion practices" include operational and design elements to control the amount and distribution of excess air in the flue gas to confirm that there is enough oxygen present for complete combustion. FGR is included as combustion control for this auxiliary boiler.

As a result, combustion control is considered baseline for the auxiliary boiler and is technically feasible.

5.9.1.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible NO_x control technologies for the 100 MMBtu/hr auxiliary boiler are ranked by control effectiveness in Table 5-26.

Control Technology	Reduction (%)	Controlled Emission Level (Ib/MMBtu)
SCR	90	0.0036
Ultra-low NO _x burners	50	0.011
Low-NO _x burners, FGR, and combustion control	Not applicable (baseline)	0.036

Table 5-26. Ranking of NO_x Control Technologies for the Auxiliary Boiler

Source: Based on vendor data

5.9.1.4 Step 4. Evaluate the Most Effective Control Technologies

Each technically feasible control technology was evaluated for energy, environmental, and economic impacts. These impacts are discussed below for each control technology.

5.9.1.4.1 SCR

Energy and Environmental Impacts

Energy and environmental impacts for an SCR system are discussed in Section 5.1.4.1.

Economic Impacts

The capital costs and annualized costs associated with an SCR system for the auxiliary boiler are shown in Appendix E. The total capital investment of installing an SCR system on the auxiliary boiler is approximately \$659,550. On an annual basis, the SCR system would cost almost \$228,620 which results in a cost per ton of NO_x removed of approximately \$15,264 while removing only 14.2 tons of NO_x per year. Therefore, this cost is considered not economically feasible for the auxiliary boiler.

An SCR is not considered economically feasible and is not proposed as BACT for the auxiliary boiler.

5.9.1.4.2 Ultra-Low-NO_x Burners

Energy and Environmental Impacts

Ultra-low-NO_x burners may decrease efficiency slightly on the auxiliary boiler, however these impacts are not significant.

Economic Impacts

The capital costs and annualized costs associated with installing ultra-low-NO_x burners on the auxiliary boiler are shown in Appendix E. The total capital investment of installing ultra-low-NO_x burners on the auxiliary boiler is approximately \$150,765. On an annual basis, the ultra-low-NO_x burners would cost \$66,868 which results in a cost per ton of NO_x removed of approximately \$5,895 while removing 11.3 tons of NO_x per year. The cost to install ultra-low-NO_x burners is considered economically feasible by the Owners and is therefore considered BACT for the auxiliary boiler.

5.9.1.5 Low-NO_x Burners, FGR, and Combustion Control

Because the low-NO_x burners come standard on most auxiliary boilers and combustion control is accomplished through operation of the auxiliary boiler, there are no incremental energy, environmental, or economic impacts associated with these controls.

5.9.1.6 Steps 5. Proposed BACT for NO_x

Since ultra-low NO_x burners, FGR, and combustion control are considered economically feasible, and SCR is not economically feasible, ultra-low NO_x burners and FGR was selected as BACT for NO_x from the auxiliary boiler at an emission rate of 0.011 lb/MMBtu.

5.9.2 BACT for Carbon Monoxide - Auxiliary Boiler

The following sections outline the top-down steps for CO emissions from the auxiliary boiler.

5.9.2.1 Step 1. Identify Potential Control Strategies

The RBLC does not list add-on controls in the BACT determinations for control of CO emissions from auxiliary boiler. As with the turbine, good combustion control will help control emissions of CO from the auxiliary boiler. An oxidation catalyst system may be available to control CO emissions from the

auxiliary boiler, with one instance of an oxidation catalyst selected as BACT as listed in the RBLC database. Emission limits range from 0.0075 lb/MMBtu to 0.0842 lb/MMBtu.

5.9.2.2 Step 2. Identify Technically Feasible Control Technologies

The primary methods for controlling CO emissions are evaluated for technical feasibility in the following sections.

5.9.2.2.1 Oxidation Catalyst System

One control vendor has indicated that an oxidation catalyst system may be used on an auxiliary boiler this size. The oxidation catalyst system is an add-on control that converts CO and VOC to CO_2 by use of a catalyst. Section 5.2.2.2 describes the oxidation catalyst system for gas-fired units. Due to the size of the auxiliary boiler, the exhaust gases do not need to be heated before going to the catalyst.

An oxidation catalyst system is considered technically feasible for the auxiliary boiler; one vendor has provided a quote for this system.

5.9.2.2.2 Combustion Control

"Good combustion practices" include operational and design elements to control the amount and distribution of excess air in the flue gas to confirm that there is enough oxygen present for complete combustion.

Good combustion practices are a technically feasible method of controlling CO emissions from the auxiliary boiler.

5.9.2.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible CO control technologies for the 100 MMBtu/hr auxiliary boiler are ranked by control effectiveness in Table 5-27.

Control Technology	Reduction (%)	Controlled Emission Level (Ib/MMBtu)
Oxidation catalyst	90ª	0.0037
Combustion control	Not applicable (baseline)	0.037

Table 5-27: Ranking of CO Control Technologies for the Auxiliary Boiler

Source: Based on AP-42

(a) Control efficiencies were obtained from a vendor based on preliminary design and is consistent with other project oxidation catalyst control efficiencies. See Appendix F for vendor information.

5.9.2.4 Step 4. Evaluate the Most Effective Control Technologies

Technically feasible control technology was evaluated for energy, environmental, and economic impacts.

5.9.2.4.1 Oxidation Catalyst

Energy and Environmental Impacts

Energy and environmental impacts of an oxidation catalyst are discussed in Section 5.2.4.1.

Economic Impacts

The control cost analysis for an oxidation catalyst system for the auxiliary boiler is displayed Appendix E. An oxidation catalyst system for this size unit would require a total capital investment of \$147,225. The annual costs of operating this oxidation catalyst system would be \$80,801. On an annual basis, only 14.6 tons per year of CO along with 1.2 tons per year of VOC would be removed at a cost of \$5,125 per ton of pollutants removed, based on unlimited operation (8,760 hours per year).

The cost is considered economically feasible for an oxidation catalyst system; therefore, an oxidation catalyst for control of CO emissions from the auxiliary boiler is considered as BACT.

5.9.2.5 Step 5. Proposed BACT for CO

Since add-on controls are economically feasible for CO, an oxidation catalyst and combustion control was selected as BACT for CO from the auxiliary boiler at an emission rate of 0.0037 lb/MMBtu.

BACT for CO emissions from the auxiliary boiler is an oxidation catalyst and good combustion practices.

5.9.3 BACT for Particulate Matter - Auxiliary Boiler

The following sections outline the top-down steps for $PM/PM_{10}/PM_{2.5}$ emissions from the auxiliary boiler.

5.9.3.1 Step 1. Identify Potential Control Strategies

The RBLC does not list any control strategies other than good combustion practices and low ash fuel (natural gas). No add-on controls were identified for significant removal of these pollutants from the auxiliary boiler exhaust. The RBLC lists emission rates of 0.005 lb/MMBtu for similar sized auxiliary boilers (approximately 100 MMBtu/hr) up to 0.020 lb/MMBtu.

5.9.3.2 Step 2. Identify Technically Feasible Control Technologies

The only technically feasible control option is combustion control for $PM/PM_{10}/PM_{2.5}$.

5.9.3.3 Step 3. Rank the Technically Feasible Control Technologies

The only technically feasible control option is combustion control for $PM/PM_{10}/PM_{2.5}$.

5.9.3.4 Steps 4 and 5. Evaluate the Most Effective Control Technologies and Proposed BACT for PM/PM₁₀/PM_{2.5}

Since add-on controls are not feasible on such a small gas-fired unit, combustion control was selected as BACT for PM/PM₁₀/PM_{2.5} from the auxiliary boiler at an emission rate of 0.01 lb/MMBtu.

5.9.4 BACT for Volatile Organic Compounds - Auxiliary Boiler

The following sections outline the top-down steps for VOC emissions from the auxiliary boiler.

5.9.4.1 Step 1. Identify Potential Control Strategies

The RBLC does not list add-on controls in the BACT determinations for control of VOC emissions from auxiliary boiler. As with the turbine, good combustion control will help control emissions of VOC from the auxiliary boiler. An oxidation catalyst system may be available to control VOC and CO emissions from the auxiliary boiler, with two VOC entries listed as BACT for VOC emissions. Emission rates vary from the various sized auxiliary boiler, but at 100 MMBtu/hr approximate size, the lowest emission limit is 0.005 lb/MMBtu, with good combustion practices.

5.9.4.2 Step 2. Identify Technically Feasible Control Technologies

The primary methods for controlling VOC emissions are evaluated for technical feasibility in the following sections.

5.9.4.2.1 Oxidation Catalyst System

One control vendor has indicated that an oxidation catalyst system may be used on an auxiliary boiler this size. The oxidation catalyst system is an add-on control that converts CO and VOC to CO_2 by use of a catalyst. Section 5.4.2.2 describes the oxidation catalyst system for gas-fired units. Due to the size of the auxiliary boiler, the exhaust gases do not need to be heated before going to the catalyst.

An oxidation catalyst system is considered technically feasible for the auxiliary boiler; one vendor has provided a quote for this system.

5.9.4.2.2 Combustion Control

"Good combustion practices" include operational and design elements to control the amount and distribution of excess air in the flue gas to confirm that there is enough oxygen present for complete combustion.

Good combustion practices are a technically feasible method of controlling VOC emissions from the proposed auxiliary boiler.

5.9.4.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible VOC control technologies for the 100 MMBtu/hr auxiliary boiler are ranked by control effectiveness in Table 5-28.

Control Technology	Reduction (%)	Controlled Emission Level (Ib/MMBtu)
Oxidation catalyst	50ª	0.0027
Combustion control	Not applicable (baseline)	0.005

Table 5-28: Ranking of VOC Control Technologies for the Auxiliary Boiler

Source: Based on AP-42

(a) Control efficiencies were obtained from a vendor based on preliminary design and is consistent with other project oxidation catalyst control efficiencies. See Appendix F for vendor information.

5.9.4.4 Step 4. Evaluate the Most Effective Control Technologies

Technically feasible control technology was evaluated for energy, environmental, and economic impacts.

5.9.4.4.1 Oxidation Catalyst

Energy and Environmental Impacts

Energy and environmental impacts of an oxidation catalyst are discussed in Section 5.4.4.1.

Economic Impacts

The control cost analysis for an oxidation catalyst system for the auxiliary boiler is displayed in Appendix E and are the same as those provided for the CO BACT analysis. An oxidation catalyst system for this size unit would require a total capital investment of \$147,225. The annual costs of operating this oxidation catalyst system would be \$80,801. On an annual basis, only 14.6 tons per year of CO along with 1.2 tons per year of VOC would be removed at a cost of almost \$5,125 per ton of pollutants removed, based on unlimited operation (8,760 hours per year).

The cost is considered economically feasible for an oxidation catalyst system; therefore, an oxidation catalyst for control of VOC emissions from the auxiliary boiler is considered as BACT.

5.9.4.5 Step 5. Proposed BACT for VOC

Since add-on controls are economically feasible for VOC, an oxidation catalyst and combustion control was selected as BACT for VOC from the auxiliary boiler at an emission rate of 0.0027 lb/MMBtu.

BACT for VOC emissions from the auxiliary boiler is an oxidation catalyst and good combustion practices.

5.9.5 BACT for Sulfuric Acid Mist – Auxiliary Boiler

The following sections outline the top-down steps for H₂SO₄ emissions from the auxiliary boiler.

5.9.5.1 Step 1-5 Identify, Rank and Select BACT

There are no add-on control technologies for controlling H_2SO_4 emissions from an auxiliary boiler. As with the combustion turbine, using low sulfur fuel and controlling combustion is the only technologically feasible control option.

BACT is use of lower sulfur fuel and good combustion practices. This will achieve an emission rate of 0.01 pounds per hour of H_2SO_4 from the auxiliary boiler.

5.9.6 BACT for Greenhouse Gases - Auxiliary Boiler (Steps 1-5)

The auxiliary boiler will be fired exclusively on natural gas, is rated at 100 MMBtu/hr, and will be permitted to be fired a total of 8,760 hours per year. GHG emissions from this unit are estimated to be on the order of 51,289 tons CO₂e per year. The basic GHG BACT reasoning presented for the turbine essentially applies to this boiler as well. The Owners propose that GHG BACT for this boiler will be the following:

- Use of clean fuels (exclusive use of natural gas)
- Requiring the Owners to maintain the unit according to the manufacturer's specifications, and to operate the unit in the most efficient manner possible, i.e. good combustion practices.
- Tune the unit every two years according to the manufacturer's specifications.
- Record the annual hours of operation and annual fuel use and report the GHG emissions annually. The GHG emissions from this unit may be included in the facility-wide annual GHG limit.

5.9.7 BACT for Opacity - Auxiliary Boiler

The following sections outline the top-down steps for opacity emissions from the auxiliary boiler.

5.9.7.1 Step 1. Identify Potential Control Strategies

Opacity is not a discrete pollutant and cannot be measured using mass emissions rate criteria (e.g., lb/hr). Therefore, a typical top-down BACT economic analysis that evaluated effectiveness on a \$/ton basis cannot be conducted on opacity. Rather, the opacity BACT determination should focus on pollutants in the flue gas that contribute to opacity. These pollutants include PM, NO_x, SO₂, and H₂SO₄. BACT

determinations have been done for PM, NO_x and H_2SO_4 for this auxiliary boiler. Units firing fuels with low ash content and high combustion efficiency exhibit correspondingly low exhaust opacity.

5.9.7.2 Step 2. Identify Technically Feasible Control Technologies

The Owners have prepared a detailed BACT evaluation for pollutants that potentially contribute to opacity. Based on these BACT evaluations, the Owners have identified the following control technologies as technically feasible: SCR and combustion control for NO_x control; and low ash, low sulfur fuel and combustion control for PM and H₂SO₄ control. These technologies represent BACT for the criteria pollutants and will also minimize opacity.

5.9.7.3 Step 3. Rank the Technically Feasible Control Technologies

Based on these BACT evaluations, the Owners have ranked the following feasible control technologies for opacity: (1) combustion control, (2) clean fuels. The Owners have determined that the use of low ash, low sulfur fuel and combustion control combine to rank as the top option for opacity control.

5.9.7.4 Step 4. Evaluate the Most Effective Control Technologies

The energy, environmental, and economic impacts of the feasible control technologies are described in their respective BACT analysis.

5.9.7.5 Step 5. Proposed Opacity BACT Determination

BACT for exhaust opacity will include the use of combustion control for NO_x control and the use of low ash, low sulfur fuel and combustion control for PM and H_2SO_4 control. The combination of these control technologies represents BACT for opacity for the auxiliary boiler.

5.10 BACT for Greenhouse Gases (GHG) – SF₆-Containing Circuit Breakers (F03)

Previously submitted BACT Sections, post application submittals, and updated references to the BACT analysis sections for the SF₆-containing circuit breakers are presented in Table 5-29. The updated circuit breaker BACT analysis shows that the BACT determination in the original application and PSD permit remain valid.

Description	Previous Application Reference	December 2021 Submittal Location
BACT Analysis Steps 1 to 5	5.0 BACT December 2018 Submittal	5.0 BACT
RBLC	Table 2-4	Table D-7,
	December 2018 Submittal	Appendix D
		Table D-7 Addendum,
		Appendix D
Evaluation of leakage rate	September 1, 2020	Appendix F - Additional
	letter submittal to WDNR	Information

 SF_6 is a very potent GHG with a GWP of 22,800, which means that it is 22,800 times more potent as a GHG than CO₂. SF_6 is a gaseous dielectric used in circuit breakers. The Project is expected to have three 345-kV circuit breakers and two 19-kV circuit breakers that will all contain small amounts of SF_6 . Leakage is expected to be minimal and is expected to occur only as a result of circuit interruption and at extremely low temperatures.

Emissions of SF_6 from the circuit breakers are shown in Appendix C. Annual potential to emit emissions of SF_6 from the circuit breakers were based on maximum leakage rate of 0.5 percent per year, the amount of SF_6 in each size of circuit breaker, and the GWP. Project potential emissions of CO_2e leakage from all proposed circuit breakers combined are estimated to be 120 tons per year.

The following sections outline the top-down steps for GHG emissions from the SF₆-circuit breakers.

5.10.1 Step 1 and Step 2. Identify Potential Control Strategies and Eliminate Technologically Infeasible Options

The first steps in a top-down BACT analysis are to determine the potential control strategies and then determine if the control strategy is technically feasible for the Project. There are no add-on control technologies for SF_6 ; only inherent controls are available. The following control strategies have been identified and considered in determining BACT for SF_6 emissions from circuit breakers:

1. Use state-of-the-art SF₆ technology with leak detection systems to limit fugitive emissions.

The use of state-of-the-art gas-filled circuit breakers using SF_6 with leak detection to limit fugitive emissions is the proposed control option. Modern circuit breakers are designed as a totally enclosed-pressure system with far lower potential for SF_6 emissions than older circuit breakers. The current International Electrotechnical Commission (IEC) standards are that new equipment be built to low leakage limits (less than 0.5 percent per year) (Blackman, et al., 2019). The effectiveness of these leak-tight closed systems is further enhanced by equipping them with an alarm that provides a warning when SF_6 has leaked from the breaker. Therefore, this type of technology is available to limit emissions, is feasible for use, and is the baseline established for this BACT analysis.

2. Substitution of another, non-greenhouse-gas substance for SF₆ such as the use of a different dielectric oil or compressed air (air-blast) circuit breaker as the dielectric material in the breakers.

One alternative to SF_6 would be the use of a dielectric oil or compressed air (air-blast) circuit breakers, which historically were used in high-voltage installations prior to the development of SF_6 breakers. SF_6 has become the predominant insulator and arc quenching substance in circuit breakers today because of its superior capabilities over oil and air-blast circuit breakers. The main drawback to oil and air-blast breakers are that these types of breakers require significantly larger equipment to replicate the same insulating and arc-quenching capabilities of the SF_6 breakers and air-blast breakers can have significant noise impacts to nearby residences. This type of technology is not feasible for use here, however, because oil breakers are no longer available from vendors, other than as used equipment. According to vendors, air-blast breakers are available only for breakers below 69-kV currently, but were also not available for the very small 19-kV circuit breakers also proposed for this Project. Therefore, oil and air-blast breakers are not available control technology for circuit breakers proposed for the Project.

3. Use an emerging technology to replace SF₆ with a material that has similar dielectric and arc-quenching properties, but without the drawbacks of oil and air-blast breakers.

The availability of emerging technology alternatives to SF_6 was researched. According to the most recent report released by the EPA SF_6 Partnership, there is no clear alternative to SF_6 (EPA, 2015). Research and development efforts have been focused on finding substitutions for SF_6 that have comparable insulating and arc quenching properties in high-voltage applications (U.S. Climate Change Technology Program, 2003). Most studies have concluded "there is no replacement gas immediately available to use as an SF_6 substitute" for high-voltage applications (Siemens Industry, Inc., 2013). Therefore, the alternative to use an emerging technology to replace SF_6 is not an available control technology.

Table 5-30 displays the control options and feasibility for SF_6 .

GHG Technology	Evaluation Status
State-of-the-art SF ₆ technology with leak detection systems	Considered and applied
Oil/air-blast circuit breakers	Considered (Not Feasible)
Use of emerging technology to replace SF ₆	Considered (Not Feasible)

Table 5-30.	Summary	of Potential GHG Control Technologies
	- Cannar j	

5.10.2 Step 3. Rank the Technically Feasible Control Technologies

Table 5-31 presents the ranked technically feasible control options.

 Table 5-31.
 GHG Technology Rankings for Circuit Breaker Equipment Leaks

Control Technology	Emission Rate (short tons CO₂e/year)	Emissions Reduction (short tons CO₂e/year)
State-of-the-art SF ₆ technology with leak detection systems	120	N/A

5.10.3 Step 4. Evaluate the Most Effective Control Technologies

The next step is to review each of the technically feasible control options for environmental, energy, and economic impacts.

5.10.3.1 Environmental, Energy, and Economic Feasibility of Control Options

Purchasing leak detection systems for the circuit breakers will come with a cost: however, the costs are not considered not economically feasible for this Project.

Further information was provided to WDNR that confirms the circuit breakers selected are consistent with the best that is presently available and are 'state of the art' and addresses why a 0.1 percent leakage rate is not achievable. This additional information letter submitted to the WDNR on September 1, 2020 is included in Appendix F for reference.

5.10.4 Step 5. GHG BACT Emission Limitation

The proposed BACT for the circuit breakers consists of the following:

- State-of-the-art enclosed-pressure SF₆ circuit breakers with a guaranteed loss rate of 0.5 percent by weight or less by year; and
- Low-pressure detection system with alarm system

A review of the RBLC for circuit breakers containing SF_6 (most of them combined-cycle plants) have a similar or the same BACT determination. As shown in Appendix D, a leak detection rate of 0.5 percent from enclosed pressured design with leak detection alarms is BACT.

5.10.5 Compliance with GHG BACT for Circuit Breakers

Any SF_6 emissions from the circuit breakers will be fugitive emissions. Fugitive emissions are, by their nature, very difficult to monitor directly, as they are not emitted from a discrete emission point. Therefore, the Owners propose the following compliance demonstrations, recordkeeping and monitoring requirements:

- 1. Follow manufacturer recommendations for maintenance and repair of the affected breakers, with recovery and recycling of SF₆ removed during maintenance procedures.
- 2. Install a low-pressure detection system with an alarm system on each SF₆ circuit breaker to measure pressure changes.
- 3. Create alarms based on the pressure readings in the breakers, so that leaks can be detected before a substantial portion of SF₆ is lost.
- 4. Upon a detectable pressure drop that is 10 percent of the original pressure (accounting for ambient air conditions), perform maintenance on a breaker to fix seals within 20 days of the detection of the pressure drop.
- 5. Keep a log of all detected leaks and maintenance procedures potentially affecting SF₆ emissions from circuit breakers that are part of this Project.
- 6. For a period of at least 5 years, track and maintain records of annual SF₆ leakage amounts due to breakers that are part of this Project. The leakage amounts will be assumed equal to the inventory of SF₆ replaced in the breakers each calendar year.

These proposed work practices are consistent with the BACT determinations identified above.

5.11 BACT for Natural Gas Heaters (P04 and P05)

Previously submitted BACT Sections, post-application submittals, and updated references to the BACT analysis sections for the natural gas heaters are presented in Table 5-32. The updated natural gas heaters BACT analysis shows that the BACT determination in the original application and PSD permit remain valid.

Description	Previous Application Reference	December 2021 Submittal Location
	December 2018 Submittal	5.0 BACT
BACT Analysis Steps 1 to 5	Post application NTEC Response #15	Incorporated into Section 5.11.1
	Table D-4, Appendix D December 2018 Submittal	Table D-4, Appendix D
RBLC	Addendum update	Table D-4 Addendum Appendix D
Economia Tables	Tables E-3a, E-3b, E-4a, E-4b December 2018 Submittal	Appendix E
Economic Tables	Table 1a & Table 1b Post application NTEC Response #15	Appendix E

There are two natural gas heaters proposed as part of the Project. The heaters heat natural gas prior to entering the facility and are fired by natural gas, a clean-burning fuel. Each heater is rated at 10.0 MMBtu/hr and is proposed to operate 8,760 hours per year each. The RBLC has limited information on BACT conclusions for heaters (Appendix D). The RBLC tables also show high variability for emission rates for each pollutant. For all pollutants, no add-on controls were listed because gas heaters are so small.

5.11.1 BACT for Nitrogen Oxides – Gas Heaters

The following sections outline the top-down steps for NO_x emissions from the gas heaters.

5.11.1.1 Step 1. Identify Potential Control Strategies

There are no add-on NO_x control techniques available for units of this size. Ultra-low NO_x burners, low- NO_x burners, along with combustion controls, are listed as BACT in the RBLC for the gas heaters. NO_x emissions listed in the RBLC range from 0.013 to 0.2466 lb/MMBtu for similar sized gas heater utilizing low- NO_x burners and combustion controls.

In discussions with vendors, multiple vendors stated that they cannot meet the 0.013 NO_x emission rate with low-NO_x burners. It was determined that the emission rate of 0.013 lb/MMBtu is in line with vendor quotes for ultra-low-NO_x burners.

The natural gas heaters installed for the Project will be equipped with low NO_x burners. Since the vendor has not been selected yet, the natural gas heater NO_x emission factor listed in the application is based on the emission factor listed in AP-42 Section 1.4, Table 1.4-1 for small boilers (<100 MMBtu/hr) controlled

by low NO_x burners. This value is consistent with other BACT units with low NO_x burners listed in the RBLC.

Because there are lower emission limits presented in the RBLC, vendors were contacted to determine what NO_x control options were available for natural gas heaters of this size. Low NO_x burners are standard on these natural gas heaters; however, to achieve the lower NO_x levels reported in the RBLC, the vendors stated that this would require ultra-low NO_x burners. As such, the costs and emission guarantees for ultra-low NO_x burners were obtained from the vendors. As required by a top-down BACT analysis, evaluation of this additional control was completed.

5.11.1.2 Step 2. Identify Technically Feasible Control Technologies

The primary methods for controlling NO_x emissions are evaluated for technical feasibility in the following sections.

5.11.1.2.1 SCR

Although the RBLC did not list any add-on control devices as BACT for a gas heater, one SCR vendor said that they could provide an SCR for this size unit. The vendor's removal efficiency for this size unit is 90 percent control of NO_x.

As a result, an SCR system is technically feasible for the gas heaters.

5.11.1.2.2 Low-NO_x Burners

Low-NO_x burners are currently available from most gas heater manufacturers. This technology seeks to reduce combustion temperatures, thereby reducing NO_x. In a conventional combustor, the air and fuel are introduced at an approximately stoichiometric ratio, and air/fuel mixing occurs at the flame front where diffusion of fuel and air reaches the combustible limit. A lean premixed combustor design premixes the fuel and air prior to combustion. Premixing results in a homogenous air/fuel mixture, which minimizes localized fuel-rich pockets that produce elevated combustion temperatures and higher NO_x emissions. A lean air-to-fuel ratio approaching the lean flammability limit is maintained, and the excess air serves as a heat sink to lower combustion temperatures, which lowers NO_x formation. A pilot flame is used to maintain combustion stability in this fuel-lean environment.

Low-NO_x burners are available on the gas heaters and are considered both baseline and technically feasible.

5.11.1.2.3 Ultra-Low-NO_x Burners

Ultra-low-NO_x burners are available on the gas heaters and is considered technically feasible.

5.11.1.2.4 Combustion Control

"Good combustion practices" include operational and design elements to control the amount and distribution of excess air in the flue gas to confirm that there is enough oxygen present for complete combustion.

As a result, combustion control is considered baseline for the gas heaters and is technically feasible.

5.11.1.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible NO_x control technologies for the 10.0 MMBtu/hr gas heaters are ranked by control effectiveness in Table 5-33.

Control Technology	Reduction (%)	Controlled Emission Level (Ib/MMBtu)
SCR	90	0.0049
Ultra-low NO _x burners	73	0.013
Low-NO _x burners and combustion control	Not applicable (baseline)	0.049

Table 5-33: Ranking of NO_x Control Technologies for the Gas Heaters

5.11.1.4 Step 4. Evaluate the Most Effective Control Technologies

Each technically feasible control technology was evaluated for energy, environmental, and economic impacts. These impacts are discussed below for each control technology.

5.11.1.4.1 SCR

Energy and Environmental Impacts

Energy and environmental impacts for an SCR system are discussed in Section 5.1.4.1.

Economic Impacts

The capital costs and annualized costs associated with an SCR system for each gas heater was evaluated and the analysis is located in Appendix E. The total capital investment of installing an SCR system on the gas heater is approximately \$137,910. On an annual basis, the SCR system would cost approximately \$103,539, which results in a cost per ton of NO_x removed of almost \$53,604 while removing only 1.9 tons

of NO_x per year. Therefore, any control of NO_x by add-on controls would result in costs that would not be economical.

An SCR is not proposed as BACT for the gas heaters because it is not economically feasible.

5.11.1.4.2 Ultra-Low-NO_x Burners and Combustion Control

Energy and Environmental Impacts

Ultra-low NOx burners may decrease efficiency slightly on the natural gas heaters; however, these impacts are not significant.

Economic Impacts

The economic impacts of installing an ultra-low-NO_x burner on the natural gas heaters were evaluated. The capital costs and annualized costs associated with installing ultra-low-NO_x burners on the natural gas heaters are in Appendix E. The total capital investment of installing ultra-low-NO_x burners on each natural gas heater is approximately \$25,990. On an annual basis, the ultra-low-NO_x burners would cost \$22,526 which results in a cost per ton of NO_x removed of approximately \$13,187 while removing only an additional 1.7 tons of NO_x per year over the standard low-NO_x burners. Installing and operating ultra-low-NO_x burners results in costs that are economically infeasible.

5.11.1.4.3 Low-NO_x Burners and Combustion Control

Because the low- NO_x burners come standard on most gas heaters and combustion control is accomplished through operation of the gas heater, there are no incremental energy, environmental, or economic impacts associated with these controls.

5.11.1.5 Step 5. Proposed NO_x Gas Heaters BACT Determination

Low-NO_x burners and combustion control was selected as BACT for the gas heaters; add-on controls are not practical on this small unit since the economic impacts are high. The low-NO_x burners can achieve an emission rate of 0.049 lb/MMBtu during steady state operation.

5.11.2 BACT for Carbon Monoxide – Gas Heaters

The following sections outline the top-down steps for CO emissions from gas heaters.

5.11.2.1 Step 1. Identify Potential Control Strategies

The RBLC does not list add-on controls for gas heater in the BACT determinations for control of CO emissions from gas heaters; however, one control vendor has indicated that an oxidation catalyst system may be used on a gas heater this size. As with the combustion turbines, good combustion control will help

control emissions of CO from the gas heaters. CO emissions listed in the RBLC range from 0.0075 to 0.1108 lb/MMBtu for similar sized gas heater utilizing combustion controls and clean fuels. A majority of the gas heaters listed in the RBLC that are less than 0.08 lb/MMBtu are much larger than the proposed gas heaters for this Project.

5.11.2.2 Step 2. Identify Technically Feasible Control Technologies

The primary methods for controlling CO emissions are evaluated for technical feasibility in the following sections.

5.11.2.2.1 Oxidation Catalyst System

One control vendor has indicated that an oxidation catalyst system may be used on a gas heater this size. The oxidation catalyst system is an add-on control that converts CO and VOC to CO_2 by use of an oxidation catalyst. Section 5.2.2.2 describes the oxidation catalyst system for gas-fired units.

An oxidation catalyst system is considered technically feasible for the gas heaters; one vendor has provided a quote for this system.

5.11.2.2.2 Combustion Control

"Good combustion practices" include operational and design elements to control the amount and distribution of excess air in the flue gas to confirm that there is enough oxygen present for complete combustion.

Good combustion practices are a technically feasible method of controlling CO emissions from the gas heaters.

5.11.2.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible CO control technologies for the 10.0 MMBtu/hr gas heaters are ranked by control effectiveness in Table 5-34.

Control Technology	Reduction (%)	Controlled Emission Level (Ib/MMBtu)
Oxidation catalyst	90	0.008
Combustion control	Not applicable (baseline)	0.08

5.11.2.4 Step 4. Evaluate the Most Effective Control Technologies

Each technically feasible control technology was evaluated for energy, environmental, and economic impacts. These impacts are discussed below for each control technology.

5.11.2.4.1 Oxidation Catalyst

Energy and Environmental Impacts

Energy and environmental impacts of an oxidation catalyst are discussed in Section 5.2.4.1.

Economic Impacts

The control cost analysis for an oxidation catalyst system for the gas heater is displayed in Appendix E. An oxidation catalyst system for this size unit would require a total capital investment of \$33,582. The annual costs of operating this oxidation catalyst system would be \$34,849. On an annual basis, only 3.2 tons per year of CO along with 0.07 tons per year of VOC would be removed at a cost of almost \$10,550 per ton of pollutants removed.

The cost is considered economically infeasible; therefore, an oxidation catalyst for control of CO emissions from the gas heaters is not considered BACT.

5.11.2.5 Step 5. Proposed BACT for CO

Since add-on controls are not feasible on such a small gas-fired unit, combustion control was selected as BACT for CO from the gas heaters at an emission rate of 0.08 lb/MMBtu.

BACT for CO emissions from the gas heaters is good combustion practices.

5.11.3 BACT for Particulate Matter – Gas Heaters

The following sections outline the top-down steps for $PM/PM_{10}/PM_{2.5}$ emissions from gas heaters.

5.11.3.1 Step 1. Identify Potential Control Strategies

The RBLC does not list any control strategies other than good combustion practices and low ash fuel (natural gas). No add-on controls were identified for significant removal of these pollutants from the gas heater exhaust.

5.11.3.2 Step 2. Identify Technically Feasible Control Technologies

The only technically feasible control option is combustion control for PM/PM₁₀/PM_{2.5}.

5.11.3.3 Step 3. Rank the Technically Feasible Control Technologies

The only technically feasible control option is combustion control for $PM/PM_{10}/PM_{2.5}$.

5.11.3.4 Steps 4 and 5. Evaluate the Most Effective Control Technologies and Proposed BACT for PM/PM₁₀/PM_{2.5}

Since add-on controls are not feasible on such a small gas-fired unit, combustion control was selected as BACT for $PM/PM_{10}/PM_{2.5}$ from the gas heaters at an emission rate of 0.01 lb/MMBtu.

5.11.4 BACT for Volatile Organic Compounds – Gas Heaters

The following sections outline the top-down steps for VOC emissions from gas heaters.

5.11.4.1 Step 1. Identify Potential Control Strategies

The RBLC does not list add-on controls for gas heaters in the BACT determinations for control of VOC emissions; however, one control vendor has indicated that an oxidation catalyst system may be used on a gas heater this size. As with the combustion turbines, good combustion control will help control emissions of VOC from the gas heaters.

5.11.4.2 Step 2. Identify Technically Feasible Control Technologies

The primary methods for controlling VOC emissions are evaluated for technical feasibility in the following sections.

5.11.4.2.1 Oxidation Catalyst System

One control vendor has indicated that an oxidation catalyst system may be used on a gas heater this size. The oxidation catalyst system is an add-on control that converts CO and VOC to CO_2 by use of a catalyst. Section 5.4.2.2 describes the oxidation catalyst system for gas-fired units.

An oxidation catalyst system is considered technically feasible for the gas heaters; one vendor has provided a quote for this system.

5.11.4.2.2 Combustion Control

"Good combustion practices" include operational and design elements to control the amount and distribution of excess air in the flue gas to confirm that there is enough oxygen present for complete combustion.

Good combustion practices are a technically feasible method of controlling VOC emissions from the gas heaters.

5.11.4.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible VOC control technologies for the 10.0 MMBtu/hr gas heaters is ranked by control effectiveness in Table 5-35.

Control Technology	Reduction (%)	Controlled Emission Level (Ib/MMBtu)
Oxidation catalyst	30	0.0038
Combustion control	Not applicable (baseline)	0.005

Table 5-35: Ranking of VOC Control Technologies for the Gas Heaters

Each technically feasible control technology was evaluated for energy, environmental, and economic impacts. These impacts are discussed below for each control technology.

5.11.4.4 STEP 4. Evaluate the Most Effective Control Technologies

Each technically feasible control technology was evaluated for energy, environmental, and economic impacts. These impacts are discussed below for each control technology.

5.11.4.4.1 Oxidation Catalyst

Energy and Environmental Impacts

Energy and environmental impacts of an oxidation catalyst are discussed in Section 5.4.4.1.

Economic Impacts

The control cost analysis for an oxidation catalyst system for the gas heater is displayed in Appendix E. An oxidation catalyst system for this size unit would require a total capital investment of \$33,582. The annual costs of operating this oxidation catalyst system would be \$34,849. On an annual basis, only 3.2 tons per year of CO along with only 0.07 tons per year of VOC would be removed at a cost of almost \$10,550 per ton of pollutants removed.

The cost is considered economically infeasible; therefore, an oxidation catalyst for control of VOC emissions from the gas heaters is not considered BACT.

5.11.4.5 STEP 5. Proposed BACT for VOC

Since add-on controls are not feasible on such a small gas-fired unit, combustion control was selected as BACT for VOC from the gas heaters at an emission rate of 0.005 lb/MMBtu.

BACT for VOC emissions from the gas heaters is good combustion practices.

5.11.5 BACT for Sulfuric Acid Mist – Gas Heaters

The following sections outline the top-down steps for H₂SO₄ emissions from the gas heaters.

5.11.5.1 Step 1-5 Identify, Rank and Select BACT

There are no add-on control technologies for controlling H_2SO_4 emissions from a gas heater. As with the combustion turbines, using low sulfur fuel and controlling combustion is the only technologically feasible control option.

BACT is use of lower sulfur fuel and good combustion practices. This will achieve an emission rate of 3.9×10^{-3} tons per year of H₂SO₄ from each of the gas heaters.

5.11.6 BACT for Greenhouse Gases – Gas Heaters (Steps 1-5)

The gas heaters as proposed will be fired exclusively on natural gas and used to pre-heat natural gas fuel to facilitate start-up. The units are each rated at approximately 10.0 MMBtu/hr and will be permitted to be fired a total of 8,760 hours per year each. GHG emissions from this unit are estimated to be on the order of 5,129 tons CO₂e per year, each. These GHG emissions are also *de minimis*, when compared to the turbine GHG emissions or the facility total GHG emissions. The basic GHG BACT reasoning presented for the turbines essentially applies to this heater as well. The Owners propose that GHG BACT for these units will be the following:

- Use of clean fuels (exclusive use of natural gas)
- Requiring the Owners to maintain the unit according to the manufacturer's specifications, and to operate the unit in the most efficient manner possible, i.e. good combustion practices
- Tune the unit every two years according to the manufacturer's specifications
- Record the annual hours of operation and annual fuel use and report the GHG emissions annually. The GHG emissions from this unit may be included in the facility-wide annual GHG limit.

5.11.7 BACT for Opacity - Gas Heaters

The following sections outline the top-down steps for opacity emissions from gas heaters.

5.11.7.1 Step 1. Identify Potential Control Strategies

Opacity is not a discrete pollutant and cannot be measured using mass emissions rate criteria (e.g., lb/hr). Therefore, a typical top-down BACT economic analysis that evaluated effectiveness on a \$/ton basis cannot be conducted on opacity. Rather, the opacity BACT determination should focus on pollutants in the flue gas that contribute to opacity. These pollutants include PM, NO_x, SO₂, and H₂SO₄. BACT

determinations have been done for PM, NO_x and H_2SO_4 for the gas heaters. Units firing fuels with low ash content and high combustion efficiency exhibit correspondingly low exhaust opacity.

5.11.7.2 Step 2. Identify Technically Feasible Control Technologies

The Owners have prepared a detailed BACT evaluation for pollutants that potentially contribute to opacity. Based on these BACT evaluations, the Owners have identified the following control technologies as technically feasible: SCR and combustion control for NO_x control; and low ash, low sulfur fuel and combustion control for PM and H₂SO₄ control. These technologies represent BACT for the criteria pollutants and will also minimize opacity.

5.11.7.3 Step 3. Rank the Technically Feasible Control Technologies

Based on these BACT evaluations, the Owners have ranked the following feasible control technologies for opacity: (1) combustion control, (2) clean fuels. The Owners have determined that the use of low ash, low sulfur fuel and combustion control combine to rank as the top option for opacity control.

5.11.7.4 Step 4. Evaluate the Most Effective Control Technologies

The energy, environmental, and economic impacts of the feasible control technologies are described in their respective BACT analysis.

5.11.7.5 Step 5. Proposed Opacity BACT Determination

BACT for exhaust opacity will include the use of combustion control for NO_x control and the use of low ash, low sulfur fuel and combustion control for PM and H_2SO_4 control. The combination of these control technologies represents BACT for opacity for the gas heaters.

5.12 BACT Analysis for Emergency Diesel Fire Pump (P06)

Previously submitted BACT Sections, post application submittals, and updated references to the BACT analysis sections for the emergency diesel fire pump are presented in Table 5-36. The updated emergency diesel fire pump BACT analysis shows that the BACT determination in the original application and PSD permit remain valid.

Description	Previous Application Reference	December 2021 Submittal Location
DACT Analysis Stone 1 to 5	5.0 BACT December 2018 Submittal	5.0 BACT
BACT Analysis Steps 1 to 5	Post application NTEC Response #18	Incorporated into Section 5.12.3
RBLC	Appendix D, Table D-6 December 2018 Submittal	Appendix D, Table D-6
KBLU		Table D-6 Addendum, Appendix D
Economic Tables	Table 1 and Table 2 Post application NTEC Response #11	Appendix E

Table 5-36: Emergency Diesel Fire Pump BACT Analysis References

One 282-hp emergency diesel-fired fire pump will be installed for the Project. The emergency diesel fire pump will be limited to 500 hours per year (100 hours per year for testing and maintenance purposes) and will utilize ultra-low sulfur transportation-grade distillate fuel oil, with a sulfur content of no more than 0.0015 weight percent. The emergency diesel fire pump will comply with the applicable NSPS requirements. The RBLC has limited information on BACT conclusions for small engines such as the emergency diesel fire pump (Appendix D). The RBLC tables also show high variability for emission rates for each pollutant. For all pollutants, no add-on controls were listed because the add-on controls were determined to not be economically feasible due to engine size.

BACT can be no less stringent than the NSPS Subpart IIII limits, which are discussed in Section 4.2.5.

5.12.1 BACT for Nitrogen Oxides – Emergency Diesel Fire Pump

The following sections outline the top-down steps for NO_x emissions from the emergency diesel fire pump.

5.12.1.1 Step 1. Identify Potential Control Strategies

For an emergency diesel fire pump that only operates 500 hours per year, there are no controls that are available that would approach being cost effective. In addition, the fuel oil that is combusted would quickly poison and/or foul an SCR catalyst in a short amount of operating time. For the purposes of this BACT analysis, however, it is assumed that an SCR system may be technically feasible.

5.12.1.2 Step 2. Identify Technically Feasible Control Technologies

The primary methods for controlling NO_x emissions are evaluated for technical feasibility in the following sections.

5.12.1.2.1 SCR

The RBLC did not list any add-on control devices as BACT for the emergency diesel fire pump; however, an SCR may be available for this size of engine.

As a result, an SCR system is considered technically feasible for the emergency diesel fire pump.

5.12.1.2.2 Combustion Control and Clean Fuels

"Good combustion practices" include operational and design elements to control the amount and distribution of excess air in the flue gas to confirm that there is enough oxygen present for complete combustion.

As a result, combustion control and clean fuels are considered baseline for the emergency diesel fire pump and is technically feasible.

5.12.1.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible NO_x control technologies for the emergency diesel fire pump are ranked by control effectiveness in Table 5-37.

Control Technology	Reduction (%)	Controlled Emission Level (g/hp-hr)
SCR	90	0.30
Combustion Control and Clean Fuels	Not applicable (baseline)	3.0

Table 5-37: Ranking of NO_x Control Technologies for the Emergency Diesel Fire Pump

5.12.1.4 Step 4. Evaluate the Most Effective Control Technologies

Each technically feasible control technology was evaluated for energy, environmental, and economic impacts. These impacts are discussed below for each control technology.

5.12.1.4.1 SCR

Energy and Environmental Impacts

Energy and environmental impacts for an SCR system are discussed in Section 5.1.4.1.

Economic Impacts

Because this unit will only operate 500 hours per year, a cost analysis is not needed to show that the cost per ton of NO_x removed would be economically infeasible. The emergency diesel fire pump will only emit 0.47 tons per year of NO_x , based on the annual 500-operating hour limitation.

Therefore, an SCR is not proposed as BACT because it is not economically feasible for the emergency diesel fire pump.

5.12.1.4.2 Combustion Control and Clean Fuels

Combustion control is accomplished through operational control of the engines; therefore, there are no energy, environmental, or economic impacts associated with this control.

5.12.1.5 Step 5. Proposed NO_x Emergency Diesel Fire Pump BACT

Determination

Combustion control and clean fuels were selected as BACT for NO_x for the emergency diesel fire pump; add-on controls are not practical on a unit this size, with limited operation, and the economic impacts are high. The emergency diesel fire pump will be able to achieve 3.0 g/hp-hr of NO_x emissions on an on-going basis.

5.12.2 BACT for Carbon Monoxide – Emergency Diesel Fire Pump

The following sections outline the top-down steps for CO emissions from the emergency diesel fire pump.

5.12.2.1 Step 1. Identify Potential Control Strategies

For an engine that only operates 500 hours per year for testing and maintenance, there are no controls that are available that would even approach being cost effective. In addition, the fuel oil that is combusted would quickly poison and/or foul an oxidation catalyst in a short amount of operating time. For the purposes of this BACT analysis, however it is assumed that an oxidation catalyst may be technically feasible.

5.12.2.2 Step 2. Identify Technically Feasible Control Technologies

The primary methods for controlling CO emissions are evaluated for technical feasibility in the following sections.

5.12.2.2.1 Oxidation Catalyst

The RBLC did not list any add-on control devices as BACT for the emergency diesel fire pump; however, an oxidation catalyst may be available for this small engine size.

As a result, an oxidation catalyst system is considered technically feasible for the emergency diesel fire pump.

5.12.2.2.2 Combustion Control

"Good combustion practices" include operational and design elements to control the amount and distribution of excess air in the flue gas to confirm that there is enough oxygen present for complete combustion.

As a result, combustion control is considered baseline for the emergency diesel fire pump and is technically feasible.

5.12.2.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible CO control technologies for the emergency diesel fire pump are ranked by control effectiveness in Table 5-38.

Control Technology	Reduction (%)	Controlled Emission Level (g/hp-hr)
Oxidation Catalyst	90	0.26
Combustion Control	Not applicable (baseline)	2.6

Table 5-38: Ranking of CO Control Technologies for the Emergency Diesel Fire Pump

5.12.2.4 Step 4. Evaluate the Most Effective Control Technologies

Each technically feasible control technology was evaluated for energy, environmental, and economic impacts. These impacts are discussed below for each control technology.

5.12.2.4.1 Oxidation Catalyst

Energy and Environmental Impacts

Energy and environmental impacts for an oxidation catalyst are discussed in Section 5.2.4.1.

Economic Impacts

The control cost analysis for an oxidation catalyst system for the emergency fire pump is shown in Appendix E. An oxidation catalyst system for this size unit would require a total capital investment of \$23,660. The annual costs of operating this oxidation catalyst system would be \$5,838. On an annual basis, only 0.32 tons per year of CO and 0.09 tons per year of VOC would be removed at a total cost of \$14,326 per ton of both pollutants removed, based on limited operation of 500 hours per year.

Keep in mind that normal operation for this unit will be testing and maintenance for less than one hour per week and results costs for the add- on controls would be much, much higher. Even when considering emergency operation for up to 500 hours per year, the cost for adding an oxidation catalyst to the emergency fire pump is considered economically infeasible; therefore, an oxidation catalyst for control of CO and VOC emissions from the emergency fire pump is not considered BACT. Additionally, since the emergency fire pump will typically operate for less than one hour during routine maintenance and testing, the emissions will be uncontrolled since it takes time for the catalyst to warm-up to optimal operating temperature; therefore, an oxidation catalyst is not an effective control technology.

Therefore, an oxidation catalyst is not proposed as BACT because it is not economically feasible for the emergency diesel fire pump.

5.12.2.4.2 Combustion Control

Combustion control is accomplished through operational control of the engine, therefore, there are no energy, environmental, or economic impacts associated with this control.

5.12.2.5 Step 5. Proposed CO Emergency Diesel Fire Pump BACT Determination

Combustion control was selected as BACT for CO for the emergency diesel fire pump; add-on controls are not practical on this small unit with limited operation and economic impacts are high. The emergency diesel fire pump will be able to achieve 2.6 g/hp-hr of CO emissions on an on-going basis.

5.12.3 BACT for Particulate Matter – Emergency Diesel Fire Pump

The following sections outline the top-down steps for particulate matter emissions from the emergency diesel fire pump.

5.12.3.1 Step 1. Identify Potential Control Strategies

The RBLC does not list any control strategies other than good combustion practices and low ash fuel (natural gas) for the emergency diesel fire pump.

A diesel particulate filter was deemed technically infeasible for the fire pump as the National Fire Protection Association, Underwriters Laboratories and Factory Mutual will not allow a particulate filter to be installed on the exhaust stack of a fire pump. This is because it is possible for this filter to become clogged, rendering the diesel engine inoperable.

No add-on controls were identified for significant removal of these pollutants from the engine's exhaust.

5.12.3.2 Step 2. Identify Technically Feasible Control Technologies

The only technically feasible control option is combustion control for PM/PM₁₀/PM_{2.5}.

5.12.3.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible $PM/PM_{10}/PM_{2.5}$ control technologies for the emergency diesel fire pump are ranked by control effectiveness in Table 5-39.

Control Technology	Reduction (%)	Controlled Emission Level (g/hp-hr)
Combustion Control and Clean Fuels	Not applicable (baseline)	0.15

Table 5-39: Ranking of PM/PM₁₀/PM_{2.5} Control Technologies for the Emergency Diesel Fire Pump

5.12.3.4 Steps 4 and 5. Evaluate the Most Effective Control Technologies and Proposed BACT for PM/PM₁₀/PM_{2.5}

Since no add-on controls were identified, combustion control with low ash fuel was selected as BACT for $PM/PM_{10}/PM_{2.5}$ at an emission rate of 0.15 g/hp-hr for the emergency diesel fire pump.

5.12.4 BACT for Volatile Organic Compounds – Emergency Diesel Fire Pump

The following sections outline the top-down steps for VOC emissions from the emergency diesel fire pump.

5.12.4.1 Step 1. Identify Potential Control Strategies

For an engine that only operates 500 hours per year for testing and maintenance, there are no controls that are available that would even approach being cost effective. In addition, the fuel oil that is combusted would quickly poison and/or foul the oxidation catalyst in a short amount of operating time. For the purposes of this BACT analysis; however, it is assumed that an oxidation catalyst may be technically feasible.

5.12.4.2 Step 2. Identify Technically Feasible Control Technologies

The primary methods for controlling VOC emissions are evaluated for technical feasibility in the following sections.

5.12.4.2.1 Oxidation Catalyst

Although the RBLC did not list any add-on control devices as BACT for the emergency diesel fire pump, an oxidation catalyst may be available for this small engine.

As a result, an oxidation catalyst system is considered technically feasible for the emergency diesel fire pump.

5.12.4.2.2 Combustion Control

"Good combustion practices" include operational and design elements to control the amount and distribution of excess air in the flue gas to confirm that there is enough oxygen present for complete combustion.

As a result, combustion control is considered baseline for the emergency diesel fire pump and is technically feasible.

5.12.4.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible VOC control technologies for the emergency diesel fire pump are ranked by control effectiveness in Table 5-40.

Control Technology	Reduction (%)	Controlled Emission Level (g/hp-hr)
Oxidation Catalyst	20	0.91
Combustion Control	Not applicable (baseline)	1.1

Table 5-40: Ranking of VOC Control Technologies for the Emergency Diesel Fire Pump

5.12.4.4 Step 4. Evaluate the Most Effective Control Technologies

Each technically feasible control technology was evaluated for energy, environmental, and economic impacts. These impacts are discussed below for each control technology.

5.12.4.4.1 Oxidation Catalyst

Energy and Environmental Impacts

Energy and environmental impacts for an oxidation catalyst are discussed in Section 5.4.4.1.

Economic Impacts

The control cost analysis for an oxidation catalyst system for the emergency fire pump is shown in Appendix E. An oxidation catalyst system for this size unit would require a total capital investment of \$23,660. The annual costs of operating this oxidation catalyst system would be \$5,838. On an annual basis, only 0.32 tons per year of CO and 0.09 tons per year of VOC would be removed at a total cost of \$14,326 per ton of both pollutants removed, based on limited operation of 500 hours per year.

Keep in mind that normal operation for this unit will be testing and maintenance for less than one hour per week and results costs for the add- on controls would be much, much higher. Even when considering emergency operation for up to 500 hours per year, the cost for adding an oxidation catalyst to the emergency fire pump is considered economically infeasible; therefore, an oxidation catalyst for control of CO and VOC emissions from the emergency fire pump is not considered BACT. Additionally, since the emergency fire pump will typically operate for less than one hour during routine maintenance and testing, the emissions will be uncontrolled since it takes time for the catalyst to warm-up to optimal operating temperature; therefore, an oxidation catalyst is not an effective control technology.

Therefore, an oxidation catalyst is not proposed as BACT because it is not economically feasible for the emergency diesel fire pump.

5.12.4.4.2 Combustion Control

Combustion control is accomplished through operational control of the engines; therefore, there are no energy, environmental, or economic impacts associated with this control.

5.12.4.5 Step 5. Proposed VOC Emergency Diesel Fire Pump BACT

Determination

Combustion control was selected as BACT for VOC for the emergency diesel fire pump; add-on controls are not practical on these small units with limited operation and economic impacts are high. The emergency diesel fire pump will be able to achieve 1.1 g/hp-hr of VOC emissions on an on-going basis.

5.12.5 BACT for Sulfuric Acid Mist – Emergency Diesel Fire Pump

The following sections outline the top-down steps for H_2SO_4 emissions from the emergency diesel fire pump.

5.12.5.1 Step 1-5 Identify, Rank and Select BACT

There are no add-on control technologies for controlling H_2SO_4 emissions from a diesel fire pump. As with the combustion turbine, using low sulfur fuel and controlling combustion is the only technologically feasible control option.

BACT is use of lower sulfur fuel and good combustion practices. This will achieve an emission rate of 0.02 tons per year of H_2SO_4 from the fire pump.

5.12.6 BACT for Greenhouse Gases – Emergency Diesel Fire Pump (Steps 1-5)

The emergency diesel fire pump is proposed to be used for no more than 500 hours per year. The design of the engine is dictated by the manufacturer, not by the end-user. As such, the Project is limited to commercially available options, which include those engines meeting EPA Tier 3 requirements.

Consistent with its rationale for the BACT determination for greenhouse gas emissions from the combustion turbine, BACT for the emergency diesel fire pump involves selection of the most efficient stationary emergency engine that can meet the facility's needs. Total greenhouse gas emissions from the emergency diesel fire pump are estimated at 80 tons CO₂e per year. These greenhouse gas emissions are also *de minimis* when compared to the turbine greenhouse gas emissions.

A Tier 3-certified engine is the most fuel-efficient option for these purposes. Further, because emissions of greenhouse gases are directly correlated to operation of the unit, BACT requires that the engine shall only be operated for maintenance, readiness testing, and during emergencies and other periods authorized by the permitting agency and/or the permit.

Operation of the emergency diesel fire pump will be limited by permit conditions for reliability-and maintenance related activities and the Owners will be required to keep records of the operation of the emergency diesel fire pump and its fuel usage. Therefore, the Owners believe no additional conditions are required to enforce this greenhouse gas BACT determination.

5.12.7 BACT for Opacity – Emergency Diesel Fire Pump

The following sections outline the top-down steps for opacity emissions from the emergency diesel fire pump.

5.12.7.1 Step 1. Identify Potential Control Strategies

Opacity is not a discrete pollutant and cannot be measured using mass emissions rate criteria (e.g., lb/hr). Therefore, a typical top-down BACT economic analysis that evaluated effectiveness on a \$/ton basis cannot be conducted on opacity. Rather, the opacity BACT determination should focus on pollutants in the flue gas that contribute to opacity. These pollutants include PM, NO_x , SO_2 , and H_2SO_4 . BACT determinations have been done for PM, NO_x and H_2SO_4 for this emergency diesel fire pump. Units firing fuels with low ash content and high combustion efficiency exhibit correspondingly low exhaust opacity.

5.12.7.2 Step 2. Identify Technically Feasible Control Technologies

The Owners have prepared a detailed BACT evaluation for pollutants that potentially contribute to opacity. Based on these BACT evaluations, the Owners have identified the following control technologies as technically feasible: SCR and combustion control for NO_x control; and low ash, low sulfur fuel and combustion control for PM and H₂SO₄ control. These technologies represent BACT for the criteria pollutants and will also minimize opacity.

5.12.7.3 Step 3. Rank the Technically Feasible Control Technologies

Based on these BACT evaluations, the Owners have ranked the following feasible control technologies for opacity (1) combustion control, (2) clean fuels. The Owners have determined that the use of low ash, low sulfur fuel and combustion control combine to rank as the top option for opacity control.

5.12.7.4 Step 4. Evaluate the Most Effective Control Technologies

The energy, environmental, and economic impacts of the feasible control technologies are described in their respective BACT analysis.

5.12.7.5 Step 5. Proposed Opacity BACT Determination

BACT for exhaust opacity will include the use of combustion control for NO_x control and the use of low ash, low sulfur fuel and combustion control for PM and H_2SO_4 control. The combination of these control technologies represents BACT for opacity.

5.13 BACT Analysis for Emergency Diesel Generator (P07)

Previously submitted BACT Sections, post application submittals, and updated references to the BACT analysis sections for the emergency diesel generator are presented in Table 5-41. The updated emergency diesel generator BACT analysis shows that the BACT determination in the original application and PSD permit remain valid.

Description	Previous Application Reference	December 2021 Submittal Location
BACT Analysis Steps 1 to 5	5.0 BACT December 2018 Submittal	5.0 BACT

Table 5-41: Emergency Diesel Generator BACT Analysis References

	Post application NTEC Response #18	Incorporated into Section 5.13.3
	Appendix D, Table D-5 December 2018 Submittal	Table D-5 Appendix D
RBLC		Table D-5 Addendum Appendix D
Economic Tables	Table 3 and Table 4Post application NTEC Response #11	Appendix E
Economic Tables	Table 2a and Table 2bPost application NTEC Response #17	Appendix E

One 1,490 hp (1,112 kW) emergency diesel generator will be installed for the Project. The emergency diesel generator will be limited to 500 hours per year (100 hours per year for testing and maintenance purposes) and will utilize ultra-low sulfur transportation grade distillate fuel oil, with a sulfur content of no more than 0.0015 weight percent. The emergency diesel generator will comply with the applicable NSPS requirements. The RBLC has limited information on BACT conclusions for small engines such as the emergency diesel generator (Appendix D). The RBLC tables also show high variability for emission rates for each pollutant. For all pollutants, no add-on controls were listed because the add-on controls were determined to not be economically feasible due to engine size.

BACT can be no less stringent than the NSPS Subpart IIII limits, which are discussed in Section 4.2.5.

A cost difference between a Tier 2 and Tier 4 engine as well as the associated dollar per ton of controlled emissions was provided at the request of WDNR as part of the post application information requests. The analysis is provided in Appendix E.

5.13.1 BACT for Nitrogen Oxides – Emergency Diesel Generator

The following sections outline the top-down steps for NO_x emissions from the emergency diesel generator.

5.13.1.1 Step 1. Identify Potential Control Strategies

For an emergency diesel generator that only operates 500 hours per year for testing and maintenance, there are no controls that are available that would approach being cost effective. In addition, the fuel oil that is combusted would quickly poison and/or foul an SCR catalyst in a short amount of operating time. For the purposes of this BACT analysis, however it is assumed that an SCR system may be technically feasible.

5.13.1.2 Step 2. Identify Technically Feasible Control Technologies

The primary methods for controlling NO_x emissions are evaluated for technical feasibility in the following sections.

5.13.1.2.1 SCR

The RBLC did not list any add-on control devices as BACT for the emergency diesel generator; however, an SCR may be available for this size of engine.

As a result, an SCR system is considered technically feasible for the emergency diesel generator.

5.13.1.2.2 Combustion Control

"Good combustion practices" include operational and design elements to control the amount and distribution of excess air in the flue gas to confirm that there is enough oxygen present for complete combustion.

As a result, combustion control is considered baseline for the emergency diesel generator and is technically feasible.

5.13.1.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible NO_x control technologies for the emergency diesel generator are ranked by control effectiveness in Table 5-42.

Control Technology	Reduction (%)	Controlled Emission Level (g/hp-hr)
SCR	90	0.48
Combustion Control	Not applicable (baseline)	4.8

 Table 5-42: Ranking of NOx Control Technologies

 for the Emergency Diesel Generator

5.13.1.4 Step 4. Evaluate the Most Effective Control Technologies

Each technically feasible control technology was evaluated for energy, environmental, and economic impacts. These impacts are discussed below for each control technology.

5.13.1.4.1 SCR

Energy and Environmental Impacts

Energy and environmental impacts for an SCR system are discussed in Section 5.1.4.1.

Economic Impacts

The capital costs and annualized costs associated with an SCR system for the emergency diesel generator is shown in Appendix E. The total capital investment of installing an SCR system on the emergency diesel generator is approximately \$80,866. On an annual basis, the SCR system would cost approximately \$46,681, which results in a cost per ton of NO_x removed of almost \$14,592 while removing only 3.3 tons of NO_x per year, based on limited operation of 500 hours per year. Therefore, any control of NO_x by add-on controls would result in costs that would not be economical, even when considering a maximum emergency use of up to 500 hours per year. In reality, the cost per ton removed will be much less, knowing that this unit will only be tested for up to one hour per week. Additionally, since the emergency diesel generator will typically operate for less than one hour during routine maintenance and testing, the emissions will be uncontrolled since it takes time for the SCR to warm-up to optimal operating temperature; therefore, a SCR is not an effective control technology.

Therefore, an SCR is not proposed as BACT because it is not economically feasible for the emergency diesel generator.

5.13.1.4.2 Combustion Control

Combustion control is accomplished through operational control of the engines; therefore, there are no energy, environmental, or economic impacts associated with this control.

5.13.1.5 Step 5. Proposed NO_x Emergency Diesel Generator BACT

Determination

Combustion control was selected as BACT for NO_x for the emergency diesel generator; add-on controls are not practical on a unit this size, with limited operation, and the economic impacts are high. The emergency diesel generator will be able to achieve 4.8 g/hp-hr of NO_x emissions on an on-going basis.

5.13.2 BACT for Carbon Monoxide – Emergency Diesel Generator

The following sections outline the top-down steps for CO emissions from the emergency diesel generator.

5.13.2.1 Step 1. Identify Potential Control Strategies

For an engine that only operates 500 hours per year for testing and maintenance, there are no controls that are available that would even approach being cost effective. In addition, the fuel oil that is combusted would quickly poison and/or foul the oxidation catalyst in a short amount of operating time. For the

purposes of this BACT analysis, however it is assumed that an oxidation catalyst may be technically feasible.

5.13.2.2 Step 2. Identify Technically Feasible Control Technologies

The primary methods for controlling CO emissions are evaluated for technical feasibility in the following sections.

5.13.2.2.1 Oxidation Catalyst

The RBLC did not list any add-on control devices as BACT for the emergency diesel generator; however, an oxidation catalyst may be available for this small engine size.

As a result, an oxidation catalyst system is considered technically feasible for the emergency diesel generator.

5.13.2.2.2 Combustion Control

"Good combustion practices" include operational and design elements to control the amount and distribution of excess air in the flue gas to confirm that there is enough oxygen present for complete combustion.

As a result, combustion control is considered baseline for the emergency diesel generator and is technically feasible.

5.13.2.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible CO control technologies for the emergency diesel generator are ranked by control effectiveness in Table 5-43.

Control Technology	Reduction (%)	Controlled Emission Level (g/hp-hr)
Oxidation Catalyst	90	0.26
Combustion Control	Not applicable (baseline)	2.6

Table 5-43: Ranking of CO Control Technologies for the Emergency Diesel Generator

5.13.2.4 Step 4. Evaluate the Most Effective Control Technologies

Each technically feasible control technology was evaluated for energy, environmental, and economic impacts. These impacts are discussed below for each control technology.

5.13.2.4.1 Oxidation Catalyst

Energy and Environmental Impacts

Energy and environmental impacts for an oxidation catalyst are discussed in Section 5.2.4.1.

Economic Impacts

Because the emergency diesel generator only operates for 500 hours per year for testing and maintenance, a cost analysis is not needed to show that the cost per ton of CO removed would be economically infeasible. The emergency diesel generator will only emit 2.15 tons per year of CO, based on the annual 500 operating hour limitation.

Therefore, an oxidation catalyst is not proposed as BACT because it is not economically feasible for the emergency diesel generator.

5.13.2.4.2 Combustion Control

Combustion control is accomplished through operational control of the engine, therefore, there are no energy, environmental, or economic impacts associated with this control.

5.13.2.5 Step 5. Proposed CO Emergency Diesel generator BACT Determination

Combustion control was selected as BACT for CO for the emergency diesel generator; add-on controls are not practical on this small unit with limited operation and economic impacts are high. The emergency diesel generator will be able to achieve 2.6 g/hp-hr of CO emissions on an on-going basis.

5.13.3 BACT for Particulate Matter – Emergency Diesel Generator

The following sections outline the top-down steps for $PM/PM_{10}/PM_{2.5}$ emissions from the emergency diesel generator.

5.13.3.1 Step 1. Identify Potential Control Strategies

The RBLC does not list any control strategies other than good combustion practices and low ash fuel (natural gas) for the emergency diesel generator. Vendors have stated there is no precedent for a particulate filter on an emergency diesel generator; therefore, a diesel particulate filter is considered experimental control technology not viable for the diesel generator.

No add-on controls were identified for significant removal of these pollutants from the engine's exhaust.

5.13.3.2 Step 2. Identify Technically Feasible Control Technologies

The only technically feasible control option is combustion control for $PM/PM_{10}/PM_{2.5}$.

5.13.3.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible $PM/PM_{10}/PM_{2.5}$ control technologies for the emergency diesel generator are ranked by control effectiveness in Table 5-44.

Control Technology	Reduction (%)	Controlled Emission Level (g/hp-hr)
Combustion Control	Not applicable (baseline)	0.15

Table 5-44: Ranking of PM/PM₁₀/PM_{2.5} Control Technologies for the Emergency Diesel Generator

5.13.3.4 Steps 4 and 5. Evaluate the Most Effective Control Technologies and Proposed BACT for PM/PM₁₀/PM_{2.5}

Since no add-on controls were identified, combustion control with low ash fuel was selected as BACT for $PM/PM_{10}/PM_{2.5}$ at an emission rate of 0.15 g/hp-hr for the emergency diesel generator.

5.13.4 BACT for Volatile Organic Compounds – Emergency Diesel Generator

The following sections outline the top-down steps for VOC emissions from the emergency diesel generator.

5.13.4.1 Step 1. Identify Potential Control Strategies

For an engine that only operates 500 hours per year for testing and maintenance, there are no controls that are available that would even approach being cost effective. In addition, the fuel oil that is combusted would quickly poison and/or foul the oxidation catalyst in a short amount of operating time. For the purposes of this BACT analysis, however it is assumed that an oxidation catalyst may be technically feasible.

5.13.4.2 Step 2. Identify Technically Feasible Control Technologies

The primary methods for controlling VOC emissions are evaluated for technical feasibility in the following sections.

5.13.4.2.1 Oxidation Catalyst

Although the RBLC did not list any add-on control devices as BACT for the emergency diesel generator, an oxidation catalyst may be available for this small engine.

As a result, an oxidation catalyst system is considered technically feasible for the emergency diesel generator.

5.13.4.2.2 Combustion Control

"Good combustion practices" include operational and design elements to control the amount and distribution of excess air in the flue gas to confirm that there is enough oxygen present for complete combustion.

As a result, combustion control is considered baseline for the emergency diesel generator and is technically feasible.

5.13.4.3 Step 3. Rank the Technically Feasible Control Technologies

The technically feasible VOC control technologies for the emergency diesel generator are ranked by control effectiveness in Table 5-45.

Control Technology	Reduction (%)	Controlled Emission Level (g/hp-hr)
Oxidation Catalyst	20	0.26
Combustion Control	Not applicable (baseline)	0.32

Table 5-45: Ranking of VOC Control Technologies for the Emergency Diesel Generator

5.13.4.4 Step 4. Evaluate the Most Effective Control Technologies

Each technically feasible control technology was evaluated for energy, environmental, and economic impacts. These impacts are discussed below for each control technology.

5.13.4.4.1 Oxidation Catalyst

Energy and Environmental Impacts

Energy and environmental impacts for an oxidation catalyst are discussed in Section 5.4.4.1.

Economic Impacts

Because the emergency diesel generator will only operate 500 hours per year for testing and maintenance, a cost analysis is not needed to show that the cost per ton of VOC removed would not be economically feasible. The emergency diesel generator will only emit 0.26 tons per year of VOC, based on the annual 500 operating hour limitation.

Therefore, an oxidation catalyst is not proposed as BACT because it is not economically feasible for the emergency diesel generator.

5.13.4.4.2 Combustion Control

Combustion control is accomplished through operational control of the engines; therefore, there are no energy, environmental, or economic impacts associated with this control.

5.13.4.5 Step 5. Proposed VOC Emergency Diesel Generator BACT

Determination

Combustion control was selected as BACT for VOC for the emergency diesel generator; add-on controls are not practical on these small units with limited operation and economic impacts are high. The emergency diesel generator will be able to achieve 0.32 g/hp-hr of VOC emissions for the generator on an on-going basis.

5.13.5 BACT for Sulfuric Acid Mist – Emergency Diesel Generator

The following sections outline the top-down steps for H_2SO_4 emissions from the emergency diesel generator.

5.13.5.1 Step 1-5 Identify, Rank and Select BACT

There are no add-on control technologies for controlling H_2SO_4 emissions from a diesel generator. As with the combustion turbine, using low sulfur fuel and controlling combustion is the only technologically feasible control option.

BACT is use of lower sulfur fuel and good combustion practices. This will achieve an emission rate of 6.9×10^{-4} tons per year of H₂SO₄ from the emergency diesel generator.

5.13.6 BACT for Greenhouse Gases – Emergency Diesel Generator (Steps 1-5)

The emergency diesel generator is proposed to be used for no more than 500 hours per year. The design of the engine is dictated by the manufacturer, not by the end-user. As such, the Project is limited to commercially available options, which include those engines meeting EPA Tier 2 requirements.

Consistent with its rationale for the BACT determination for greenhouse gas emissions from the combustion turbine, BACT for the emergency diesel generator involves selection of the most efficient stationary emergency diesel generator that can meet the facility's needs. Total greenhouse gas emissions from the emergency diesel generator are estimated at 841 tons CO₂e per year. These greenhouse gas emissions are also *de minimis* when compared to the turbine greenhouse gas emissions.

A Tier 2-certified engine is the most fuel-efficient option for these purposes. Further, because emissions of greenhouse gases are directly correlated to operation of the unit, BACT requires that the engine shall

only be operated for maintenance, readiness testing, and during emergencies and other periods authorized by the permitting agency and/or the permit.

Because operation of the emergency diesel generator will be limited by permit conditions for reliabilityand maintenance related activities and the Owners will be required to keep records of the operation of the emergency diesel generator and its fuel usage. Therefore, the Owners believe no additional conditions are required to enforce this greenhouse gas BACT determination.

5.13.7 BACT for Opacity – Emergency Diesel Generator

The following sections outline the top-down steps for opacity emissions from the emergency diesel generator.

5.13.7.1 Step 1. Identify Potential Control Strategies

Opacity is not a discrete pollutant and cannot be measured using mass emissions rate criteria (e.g., lb/hr). Therefore, a typical top-down BACT economic analysis that evaluated effectiveness on a \$/ton basis cannot be conducted on opacity. Rather, the opacity BACT determination should focus on pollutants in the flue gas that contribute to opacity. These pollutants include PM, NO_x, SO₂, and H₂SO₄. BACT determinations have been done for PM, NO_x and H₂SO₄ for this emergency diesel generator. Units firing fuels with low ash content and high combustion efficiency exhibit correspondingly low exhaust opacity.

5.13.7.2 Step 2. Identify Technically Feasible Control Technologies

The Owners have prepared a detailed BACT evaluation for pollutants that potentially contribute to opacity. Based on these BACT evaluations, the Owners have identified the following control technologies as technically feasible: SCR and combustion control for NO_x control; and low ash, low sulfur fuel and combustion control for PM and H₂SO₄ control. These technologies represent BACT for the criteria pollutants and will also minimize opacity.

5.13.7.3 Step 3. Rank the Technically Feasible Control Technologies

Based on these BACT evaluations, the Owners have ranked the following feasible control technologies for NO_x : (1) combustion control, (2) clean fuels. The Owners have determined that the use of low ash, low sulfur fuel and combustion control combine to rank as the top option for opacity control.

5.13.7.4 Step 4. Evaluate the Most Effective Control Technologies

The energy, environmental, and economic impacts of the feasible control technologies are described in their respective BACT analysis.

5.13.7.5 Step 5. Proposed Opacity BACT Determination

BACT for exhaust opacity will include the use of combustion control for NO_x control and the use of low ash, low sulfur fuel and combustion control for PM and H_2SO_4 control. The combination of these control technologies represents BACT for opacity.

5.14 BACT for Volatile Organic Compounds – Fuel Oil Storage Tanks (T01, T02, and T03)

Previously submitted BACT Sections and updated references to the BACT analysis sections for the fuel oil storage tanks are presented in Table 5-46. The updated fuel oil storage tank BACT analysis shows that the BACT determination in the original application and PSD permit remain valid.

Description	Previous Application Reference	December 2021 Submittal Location
BACT Analysis Steps 1 to 5	5.0 BACT December 2018 Submittal	5.0 BACT

Table 5-46: Fuel Oil BACT Analysis References

The following sections outline the top-down BACT steps for emissions of VOC from the fuel oil storage tanks.

5.14.1 Steps 1, 2, and 3. Identify Potential Feasible Control Strategies and Rank Control Strategies

The Project will include three fuel oil (diesel) storage tanks: 180,000-gallon, 1,700-gallon, and 350gallon. Diesel fuel has a very low vapor pressure and as such, controls that may be used on high vapor pressure liquids, such as floating roofs, are not as effective at reducing emissions. Fixed roof tanks are proposed for control of emissions from the fuel oil storage tanks.

5.14.2 Steps 4 and 5. Evaluate the Most Effective Control Technologies and Proposed BACT for VOC Emissions

The proposed BACT for the fuel oil storage tanks is the use of fixed roof tanks. Because emissions are extremely low from these sources, this is the only feasible and reasonable control for these small emission sources. Emissions will be less than 0.04 tons per year.

5.15 BACT for Particulate Matter (PM/PM₁₀/PM_{2.5}) – Haul Road Fugitives (F01)

Previously submitted BACT Sections and updated references to the BACT analysis sections for the haul road fugitives are presented in Table 5-47. The updated haul road BACT analysis shows that the BACT determination in the original application and PSD permit remain valid.

Description	Previous Application Reference	December 2021 Submittal Location
BACT Analysis Steps 1 to 5	5.0 BACT January 2021 Submittal	5.0 BACT
	Appendix D, Table D-2 January 2021 Submittal	Table D-9, Appendix D
RBLC		Table D-9 Addendum, Appendix D

Haul roads will be located onsite and delivery truck traffic will travel on paved roads. Emissions of particulate matter will be filterable only and speciated into PM, PM₁₀, and PM_{2.5}. However, control technologies will control all sizes of particulate.

5.15.1 Step 1: Identify Potential Control Strategies

In a review of the RBLC, the following control technologies for particulate emissions from roads were identified:

- 1. Chemical dust suppression and surfactant application,
- 2. Watering, sweeping and vacuuming,
- 3. Paving, and
- 4. Traffic and speed restrictions

5.15.2 Step 2: Identify Technically Feasible Control Technologies

All of the options listed, except chemical dust suppression and surfactant application, are potentially applicable control technologies considered technically feasible for the Project. Chemical dust suppression and surfactant application are generally used for unpaved surface and are considered infeasible for this Project as the facility roads will be paved.

5.15.3 Step 3: Rank the Technically Feasible Control Technologies

The third step in the BACT analysis is to rank the remaining control technologies in order of control effectiveness. Table 5-48 provides a listing of PM/PM₁₀/PM_{2.5} control technologies by effectiveness.

Control Technology	Approximate Control Efficiency (percent)
Water flushing followed by sweeping of paved roads	up to 96
Water flushing of paved roads	up to 69
Vacuum sweeping of paved roads	up to 58
Paving	
Speed/traffic restrictions	

Table 5-48: Efficiency Ranking of Particulate	• Control Technologies for Haul Roads
---	---------------------------------------

Source: EPA Control of Open Fugitive Dust Sources

5.15.4 Step 4: Evaluate Most Effective Control Technologies

The fourth step in the BACT analysis is to evaluate the most effective control technology based on energy, environmental, and economic impacts. Based on a review of the RBLC, the implementation of a Fugitive Dust Control Plan (FDCP) is considered a control method accepted as BACT for particulate emissions from roads at similar facilities. No specific BACT emission limits associated with the previously mentioned control methods were obtained from the RBLC.

5.15.5 Step 5: Select BACT

The applicants propose to develop, maintain, and implement a FDCP as BACT for the paved roads.

5.16 BACT for Greenhouse Gases (GHG) and VOCs – Natural Gas and Fuel Oil Fugitives (F02)

Previously submitted BACT Sections, post application evaluations, and updated references to the BACT analysis sections for the natural gas and fuel oil fugitives are presented in Table 5-49. The updated natural gas and fuel oil fugitives BACT analysis shows that the BACT determination in the original application and PSD permit remain valid.

Description	Previous Application Reference	December 2021 Submittal Location
	5.0 BACT January 2021 Submittal	5.0 BACT
BACT Analysis Steps 1 to 5	Post application BACT evaluation on "leak-proof" piping components WDNR Memorandum dated July 8, 2021	Incorporated into Section 5.0 BACT
RBLC	Table D-1, Appendix D January 2021 Submittal	Table D-8, Appendix D
KBLC		Table D-8 Addendum, Appendix D
	Appendix E Cost Evaluations January 2021 Submittal	Appendix E
Economic Tables	Cost Analysis Post application BACT evaluation on "leak-proof" piping components	Appendix E

Table 5-49: Natural Gas and Fuel Oil Fugitives BACT Analysis References
Tuble o 40. Matara ous and 1 del on 1 agrittes BAOT Analysis References

The proposed project will include natural gas piping components from the natural gas line that will enter the Project site to provide gas for the combustion turbine, duct burner, natural gas heaters and auxiliary boiler. These natural gas piping components are potential sources of methane emissions due to emissions from valves, flanges, sampling connections and relief valves.

The proposed project will also include fuel oil piping components from the fuel oil line that will enter the Project site to provide fuel oil for the combustion turbine and duct burner. The emergency diesel fire pump and emergency diesel generator piping components will also have minimal fugitive emissions. These fuel oil piping components are potential sources of VOC emissions due to emissions from valves, flanges, sampling connections and relief valves.

Methane is not a VOC but is regulated as a GHG with a GWP of 25 when expressed as CO₂e. Evaporative emissions from fuel oil, such as xylene and benzene, are VOCs.

5.16.1 Step 1: Identify Potential Control Strategies

Greenhouse gas emissions (methane) and VOCs may leak out of certain components within the pipeline system, anywhere there is a connection, valve or flange. Per a review of the RBLC database (Appendix D), the following technologies were identified as potential control options for these piping fugitives:

- Implementation of leak detection and repair (LDAR) program Instrument monitoring: using a handheld analyzer to determine if leaks exist
- Implementation of LDAR Physical inspection: an audio/visual/olfactory (AVO) leak detection program
- Good operating processes
- Certified low-leaking valves

5.16.2 Step 2: Identify Technically Feasible Control Technologies

The use of instrument monitoring LDAR and remote sensing technologies are technically feasible for natural gas and fuel oil components. A LDAR program based on AVO monitoring is determined to be infeasible because the natural gas transmission pipeline that connects directly to the facility will not be odorized with mercaptan, the odorant typically added to distribution lines to allow for olfactory detection of any leaks without instrumentation. Since mercaptan is not present, inspections for gas leakage are accomplished by using leak detector equipment. These leak detection surveys with instrumentation are conducted at intervals as prescribed by applicable state and gas pipeline regulations. AVO inspections for fuel oil are technically feasible. Additionally, good operating practices and certified low-leaking values are also feasible for the natural gas and fuel oil fugitive emissions. Therefore, the instrument monitoring LDAR program, good operating practices, and certified low-leaking valves listed in Step 1 are technically feasible for fuel oil.

5.16.3 Step 3: Rank the Technically Feasible Control Technologies

LDAR programs are used to inspect fugitive components to identify leaks either by using instruments or by physical inspections. Leaks identified by the inspections are then repaired within a specified time period, thus reducing the emissions.

The top-ranked control strategy is a LDAR program that utilizes instrument leak detection. Based on available data piping components are generally assigned control efficiencies ranging from 30 to 97 percent for valves, relief valves, and sampling connections (TCEQ, 2018).

The second-ranked control option involves implementation of a AVO leak detection program. Per Texas Commission on Environmental Quality (TCEQ) documentation of a control efficiency of 97 percent is generally assigned for a AVO program.

Certified low-leaking values are a remaining control technology with 80 percent control of VOC and CO₂e.

Good operating processes are considered baseline for the purposes of this BACT analysis. Table 5-50 summarizes the control efficiencies for the various control technology options.

Rank	Control Technology	Percent Control
1	LDAR program – instrument monitoring	97%
2	LDAR program - AVO leak detection	97%
3	Certified low-leaking valves	80%
4	Good operating process	Not applicable (baseline)

Table 5-50.	GHG and VOC Te	chnology Rankings	for Natural Gas a	nd Fuel Oil Fugitives
-------------	----------------	-------------------	-------------------	-----------------------

Source: TCEQ, 2018

5.16.4 Step 4: Evaluate Most Effective Control Technologies

Since the uncontrolled VOC and CO₂e emissions from the natural gas and fuel oil piping represent less than 0.04 percent of the total site wide VOC emissions and less than 0.04 percent of the total site wide CO₂e emissions, any emission control techniques applied to the piping fugitives will provide minimal additional VOC and CO₂e emission reductions over the baseline.

The economic impacts of installing a LDAR program for instrument monitoring was evaluated. Based on EPA data the estimated cost effectiveness of LDAR programs is shown below in Table 5-51 (EPA, 1992).

Control	Annual Cost (\$/year)	Cost Effectiveness – Mass (\$/ton GHG)	Cost Effectiveness – CO ₂ e (\$/ton CO ₂ e)
LDAR program – instrument monitoring	\$76,389	\$3,258	\$130

Table 5-51: Cost Effectiveness of LDAR Programs

The economic impacts of installing low-leaking valves were also evaluated. For the valves that are included in the natural gas and fuel oil piping components emissions unit (F02), the department (WDNR) determined that certified low-leaking valves cost would be \$5,874 per ton of methane (\$234.95 per ton CO₂e) and \$29,826 per ton VOC removed. To provide a basis for determining economic feasibility for CO₂e, the cost of 1 ton of carbon credits in the California cap and trade program is approximately \$19 per ton of CO₂e for the May 2021 auction. Because the control costs are above the levels that the WDNR

considers to be economically feasible as BACT under PSD, certified low-leaking valves have been determined by the department to not be economically feasible

A detailed cost summary analysis is provided in Appendix E.

5.16.5 Step 5: Select BACT

Based on the top-down analysis for natural gas, an instrument monitoring LDAR program is BACT for natural gas components. Instrument monitoring LDAR program was also selected as BACT for fuel oil components.

Any GHG and VOC emissions from the piping components will be fugitive emissions. Fugitive emissions are, by their nature, very difficult to monitor directly, as they are not emitted from a discrete emission point. Therefore, the Owners propose the following compliance demonstrations, recordkeeping and monitoring requirements:

- 1. Conduct instrument monitoring inspections on piping components each calendar quarter to detect leaks of natural gas and fuel oil.
- 2. Keep a log of all the quarterly instrument monitoring inspections from piping components that are part of this Project.
- 3. Develop a Facility Leak Detection Plan

These proposed work practices are consistent with the BACT determinations identified above.

6.0 AIR DISPERSION MODELING

Summary: An updated air quality analysis was performed using WDNR's recently updated meteorological data and background concentrations. Section 6.0 replaces all previously submitted air dispersion modeling analyses. The SO₂ emission rates for modeling provided to WDNR as part of a data request response #7 is provided in Appendix F.

Since the Project is subject to PSD review, an air dispersion modeling analysis is required for each regulated NSR pollutant that exceeds its PSD significance level. According to the emission calculations for this Project, NO_x, CO, PM, PM₁₀, PM_{2.5}, VOC, and CO₂e are subject to PSD review; as a result, an air quality analysis was performed for NO_x, CO, PM₁₀, and PM_{2.5} using the EPA-approved American Meteorological Society (AMS)/EPA Regulatory Model (AERMOD). Consistent with WDNR and EPA guidance, AERMOD modeling of PM, VOC, and CO₂e were not conducted, since there are no modeling thresholds for these pollutants.

A summary of the models, the modeling techniques, and modeling results for the Project are discussed in the following sections.

6.1 Air Dispersion Model

Air dispersion modeling was performed using the latest version of the AERMOD model (Version 21112). The AERMOD model is an EPA-approved, steady-state Gaussian air dispersion model that is designed to estimate downwind ground-level concentrations from single or multiple sources using detailed meteorological data. AERMOD is a model currently approved for industrial sources and PSD permits.

The WDNR requested that the Owners demonstrate regulatory compliance through the use of AERMOD. Major features of the AERMOD model are as follows:

- Plume rise, in stable conditions, is calculated using Briggs equations that consider wind and temperature gradients at stack top and half the distance to plume rise; in unstable conditions, plume rise is superimposed on the displacements by random convective velocities, accounting for updrafts and downdrafts due to momentum and buoyancy as a function of downwind distance for stack emissions.
- Plume dispersion receives Gaussian treatment in horizontal and vertical directions for stable conditions and non-Gaussian probability density function in vertical direction for unstable conditions.

- AERMOD creates profiles of wind, temperature, and turbulence, using all available measurement levels and accounts for meteorological data throughout the plume depth.
- Surface characteristics, such as Bowen ratio, albedo, and surface roughness length, may be specified to better simulate the modeling domain.
- Planetary Boundary Layers (PBL) such as friction velocity, Monin-Obukhov length, convective velocity scale, mechanical and convective height, and sensible heat flux may be specified.
- AERMOD uses a convective (based upon hourly accumulation of sensible heat flux) and a mechanical mixed layer height.
- AERMOD's terrain pre-processor (AERMAP) provides information for the advanced critical dividing streamline height algorithms and uses National Elevation Dataset (NED) to obtain elevations.
- AERMOD uses vertical and horizontal turbulence-based plume growth (from measurements and/or PBL theory) that varies with height and uses continuous growth functions.
- AERMOD uses convective updrafts and downdrafts in a probability density function to predict plume interaction with the mixing lid in convective conditions while using a mechanically mixed layer near the ground.
- Plume reflection above the lid is considered.
- AERMOD models impacts that occur within the cavity regions of building downwash via the use of the plume rise model enhancements (PRIME) algorithm, and then uses the standard AERMOD algorithms for areas without downwash.

Details of the AERMOD modeling options may be found in the User's Guide for AERMOD (EPA, 2021). The regulatory default option was selected for this analysis since it met the EPA guideline requirements and WDNR modeling guidance requirements.

The following default model options were used:

- Elevated Terrain Algorithms
- Stack-tip Downwash
- Gradual Plume Rise
- Buoyancy-induced Dispersion
- Calms and Missing Data Processing Routine
- Calculate Wind Profiles
- Default Vertical Potential Temperature Gradient

Rural Dispersion

6.2 Model Parameters

Modeling runs were conducted at full load and partial loads of the combustion turbines to confirm that operation of the Project will not result in impacts greater than the NAAQS and PSD Class II Increments. The expected hourly emission rates and modeling parameters for the combustion turbine while combusting natural gas or fuel oil are shown in Table 6-1 and Table 6-2, respectively. These emission rates represent projected worst-case ambient conditions under various operating loads and include start-up and shutdown emissions. The annual emissions are based on worst-case annual emissions. Modeling of VOC and CO₂e will not be carried out because there are no modeling thresholds for these pollutants.

Pollutant	Unitsª	Duct firing 100% Load	100% Load	75% Load	MECL Load	Start-up/ Shutdown		
NO _x	lb/hr	33.46	26.55	20.56	12.44	200.00 ^b		
NO _x	tpy		255.61					
CO	lb/hr	15.28	12.12	9.39	5.68	7,190.00 ^b		
	lb/hr	36.31	21.80	16.81	12.94	21.80		
PM ₁₀ /PM _{2.5}	tpy	162.80						
Stack Param	neters							
Stack temper	Stack temperature (°F) ^a		167.12	164.93	164.93	166.94		
Exit velocity (ft/s) ^a		64.00	64.00 63.81 48.88 36.82 61.56					
Stack height (feet)		190.0						
Stack diame	eter (feet)	21.28						

Table 6-1: Combustion Turbine Emissions and Modeling Parameters – Natural Gas Operation

(a) lb/hr = pounds per hour, tpy = tons per year, °F = degrees Fahrenheit, ft/s = feet per second, MECL = minimum emissions compliance load

(b) Maximum 1-hour start-up emissions (worst-case combustion turbine emissions during start-up)

Pollutant	Unitsª	Duct firing 100% Load	100% Load	75% Load	MECL Load	Start-up/ Shutdown		
NO	lb/hr	72.68	51.55	41.04	31.10	510.00 ^b		
NO _x	tpy		255.61					
CO	lb/hr	11.06	7.85	6.25	15.78	16,860.00 ^b		
	lb/hr	54.51	39.45	37.50	35.68	39.45		
PM ₁₀ /PM _{2.5}	tpy	162.80						
Stack Param	neters							
Stack temper	rature (°F) ^a	176.63	176.63	169.24	165.01	175.66		
Exit velocity (ft/s) ^a		71.96 71.19 57.75 43.48 68.88						
Stack heig	ht (feet)	190.0						
Stack diam	eter (feet)	21.28						

Table 6-2: Combustion Turbine Emissions and Modeling Parameters – Fuel Oil Operation

(a) lb/hr = pounds per hour, tpy = tons per year, °F = degrees Fahrenheit, ft/s = feet per second, MECL = minimum emissions compliance load

(b) Maximum 1-hour start-up emissions (worst-case combustion turbine emissions during start-up)

The expected hourly emission rates and modeling parameters for the auxiliary equipment are shown in Table 6-3. Annual emissions for the auxiliary boiler and gas heaters were based on 8,760 hours of operation per year.

Pollutant	Unitsª	Auxiliary Boiler	Natural Gas Heater #1	Natural Gas Heater #2
NO	lb/hr	1.10	0.49	0.49
NO _x	tpy	4.82	2.15	2.15
CO	lb/hr	0.37	0.82	0.82
	lb/hr	0.75	0.07	0.07
PM ₁₀ /PM _{2.5}	tpy	3.26	0.33	0.33
Stack Param	neters			
Stack temperature (°F) ^a		290.00	750.00	750.00
Exit velocity (ft/s) ^a		48.00	25.00	25.00
Stack height (feet)		110.00	15.00	15.00
Stack diam	eter (feet)	3.50	1.67	1.67

Table 6-3: Auxiliary Equipment Emissions and Modeling Parameters

(a) lb/hr = pounds per hour, tpy = tons per year, °F = degrees Fahrenheit, ft/s = feet per second

6.3 Haul Roads

The haul roads included in the model were laid out using the guidance from the March 2, 2012, EPA memo on the *Haul Road Workgroup Final Report* (EPA, 2012). The following parameters were used:

• Vehicle height of 12 feet

- Road width of 20 feet
- Top of plume height = 1.7 x vehicle height = 20.40 feet or 6.22 meters
- Volume source release height = 0.5×10^{-10} x top of plume height = 10.20 feet or 3.11 meters
- Width of plume = road width + 6 meters for two lane roadways = 39.69 feet or 12.10 meters
- Initial sigma z = top of plume / 2.15 = 9.49 feet or 2.89 meters
- Initial sigma y = width of plume / 2.15 = 18.46 feet or 5.63 meters
- Adjacent volume source spacing = sigma y x 2.15 = 39.69 feet or 12.10 meters

The calculated road emissions are included in Appendix C.

6.4 Modeling Methodology

The modeling methodology used for this analysis is summarized in the sections below.

6.4.1 Intermittent Emissions

Per WDNR guidance, the Owners propose to only model sources with continuous operation. Emission units that do not have a set operating schedule, operate for short periods of time during the year, and do not contribute to the normal operation of the facility were not included in modeling analysis. Therefore, the emergency diesel fire pump and emergency diesel generator are considered intermittent sources and were not included in the modeling analysis.

6.4.2 Emission Factors

Emissions factor (EMISFACT) modeling options in AERMOD allow a user to model emissions only when certain criteria are met. EMISFACT was not used for any Project sources. EMISFACT was used for the inventory sources where WDNR indicated it was appropriate, specifically for inventory source "UW-16" which operates only from October to April.

6.4.3 Rain Caps and Horizontal Stacks

If horizontal stacks or rain caps are present at the site, the restriction of vertical flow is accounted for through the use of the POINTCAP or POINTHOR keywords within the AERMOD input file. The POINTCAP and POINTHOR keywords were not used for any Project sources. The POINTHOR keyword was used for the Husky Superior inventory sources where WDNR indicated it was appropriate.

6.4.4 Good Engineering Practice Stack Height

Sources are subject to Good Engineering Practice (GEP) stack height requirements outlined in 40 CFR Part 51, Sections 51.100 and 51.118. As defined by the regulations, for stacks in existence on January 12, 1979 and with appropriate permits under 40 CFR Parts 51 and 52, GEP height is calculated as:

$$GEP = 2.5*H$$

Where,

H = the building height

For all other stacks, GEP height is calculated as the greater of 65 meters (measured from the ground level elevation at the base of the stack) or the height resulting from the following formula:

$$GEP = H + 1.5L$$

Where,

H = the building height; and

L = the lesser of the building height or the greatest crosswind distance of the building - also known as maximum projected width.

To meet stack height requirements, the point sources were evaluated in terms of the proximity to nearby structures. The purpose of this evaluation is to determine if the discharge from each stack will become caught in the turbulent wake of a building or other structure, resulting in downwash of the plume. Downwash of the plume can result in elevated ground-level concentrations. In EPA's 1985 *Guideline for Determination of Good Engineering Practice Stack Height*, EPA provides guidance for determining whether building downwash will occur. The downwash analysis was performed consistent with the methods prescribed in this guidance document.

Calculations for determining the direction-specific downwash parameters were performed using the most current version of the EPA's Building Profile Input Program – Plume Rise Model Enhancements, otherwise referred to as the BPIP-PRIME downwash algorithm (Version 04274). The BPIP-PRIME files are included in the electronic file transfer to the WDNR. After running the BPIP-PRIME model, it was determined that the GEP stack heights do not exceed the greater of 65 meters or the calculated GEP stack height.

The buildings are included in the model per the following WDNR guidance:

• If a building has multiple tiers, the structure was modeled as a single building with multiple tiers (wedding cake methodology).

- Structures that are less than four feet in height were not modeled.
- All structures that present a solid face from the ground to the top of the structure and that have angled corners were included.
- Structures off the ground were not included.
- Average roof heights were used for peaked or sloped tiers.
- Single, individual silos that are taller than they are wide were not included.
- Groupings of silos and large, wide circular grain bins using the eave height were included.

6.4.5 Receptor Grid

The overall purpose of the modeling analysis is to demonstrate that operation of the Project will not result in, or contribute to, concentrations above the NAAQS or PSD Class II Increments. Modeling runs were conducted using the AERMOD model in simple and complex terrain mode within a 20- by 20-kilometer Cartesian grid to determine the significant impact area for each pollutant. Based on guidance from WDNR, the grid incorporated the receptor spacing specified in Table 6-4. Receptors were also placed along the fence line boundary at a spacing of 25 meters.

Distance from Fence Line (kilometers)	Receptor Spacing (meters)
0-0.5	25
0.5 – 1	50
1 – 2	100
2-5	250
5 – 10	500

 Table 6-4:
 Receptor Spacing from Fence Line Boundary

Source: WDNR, Wisconsin Air Dispersion Modeling Guidelines, 2018

A tight receptor grid provided by WDNR was included to incorporate the high terrain in Duluth as shown in Figure B-3, Appendix B.

Terrain elevations were incorporated into the model. The 1/3 arc second U.S. Geological Survey (USGS) NED data was used to obtain the necessary receptor elevations. North American Datum of 1983 (NAD 83) was used to develop the Universal Transverse Mercator (UTM) coordinates for this Project.

AERMOD has a terrain preprocessor (AERMAP) which uses gridded terrain data for the modeling domain to calculate not only a XYZ coordinate, but also a representative terrain-influence height associated with each receptor location selected. This terrain-influenced height is called the height scale

and is separate for each individual receptor. AERMAP (Version 18081) utilized the electronic NED data to populate the model with receptor elevations.

6.4.6 Meteorological Data

AERMOD requires a preprocessor called AERMET to process meteorological data for 5 years from offsite locations to estimate the boundary layer parameters for the dispersion calculations. AERMET requires the input of surface roughness length, albedo, and Bowen ratio to define land surface characteristics for its calculations. WDNR provides AERMOD-ready processed meteorological data sets; therefore, the site characteristics (Bowen ratio, albedo, surface roughness) were completed by WDNR.

Surface air meteorological data from Sky Harbor Airport, in Duluth, Minnesota (WBAN ID 04919) and upper air data from Minneapolis, Minnesota (WBAN ID 94983) was used in the analysis. The most recent 5-year data set available covers the period of 2015 to 2018 and 2020. A profile base elevation of 186 meters was used in the model. The meteorological data used to develop these data sets has been analyzed by WDNR for data completeness, and these data sets have good data quality.

6.4.7 Land Use Parameters

USGS land cover data was used to determine the rural and urban land use percentages for a 3-kilometer area surrounding the Project site (Figure B-4, Appendix B). Land use categories I1, I2, C1, R2, and R3 were classified as urban land use categories (EPA, 2017). Less than 12 percent of the area surrounding the Nemadji River Site is classified as urban. Since the 3-kilometer area surrounding the Project is more than 50 percent rural, the rural dispersion coefficients option in the AERMOD model were selected.

6.4.8 Modeling Thresholds

The NAAQS, modeling/monitoring significance levels, and PSD Class II Increment thresholds for the modeled pollutants are shown in Table 6-5.

	Averaging Period	Monitoring Significance Level	Modeling Significance Level	PSD Class II Increment	NAAQS
Pollutant		microgra	ims per cubic me	ter (µg/m³)	
NO	Annual	14	1	25	100
NO _x	1-hour	NA	7.5	NA	188
60	8-hour	575	500	NA	10,000
CO	1-hour	NA	2,000	NA	40,000
DM	Annual	NA	1	17	NA
\mathbf{PM}_{10}	24-hour	10	5	30	150
	Annual	NA	0.2 ^b	4	12
PM _{2.5}	24-hour	4 ^a	1.2 ^b	9	35

Source: WDNR Wisconsin Air Dispersion Modeling Guidelines, 2018

(a) The PM_{2.5} 24-hour significant monitoring concentration vacated by the United States Court of Appeals for the District of Columbia Circuit on January 22, 2013, is not considered valid in Wisconsin. However, representative local monitoring data is available for use.

(b) EPA Memorandum, 2018a, "Guidance on Significant Impact Levels for Ozone and Fine Particles in the Prevention of Significant Deterioration Permitting Program."

The modeled values were modeled using the appropriate form of the standard for each pollutant and averaging period. For significance modeling, all short-term and annual averaging periods were modeled with the impact shown in Table 6-6. For PSD Class II Increment, the short-term averaging periods were compared to the high second highest impacts, and the annual standards were compared to the first highest impacts. The NAAQS thresholds were modeled using the highs shown in Table 6-6 for each averaging period.

Pollutant	Averaging Period	Significant Impact Level High	NAAQS Modeled High
NO	Annual	1st highest	1st highest
NO ₂	1-hour	5-year average 1st high hour day	5-year average 8th high hour day
<u> </u>	8-hour	1st highest	High 2nd highest
СО	1-hour	1st highest	High 2nd highest
DM	Annual	1st highest	NA
PM_{10}	24-hour	1st highest	6th highest in 5 years
DM	Annual	5-year average year	5-year average year
PM _{2.5}	24-hour	5-year average 1st high day	5-year average 8th high day

Table 6-6: Modeled Highs

Source: WDNR, Wisconsin Air Dispersion Modeling Guidelines, 2018

6.4.9 PM_{2.5} Significant Impact Level Justification

The United States Court of Appeals for the District of Columbia Circuit on January 22, 2013, vacated and remanded portions of the EPA rule establishing significant impact levels for PM_{2.5}. An analysis was performed to determine whether the vacated PM_{2.5} significant impact levels are justified for this area.

The data that is collected by the monitors is available on the EPA website (http://www.epa.gov/airdata/). The most representative monitor for the 24-hour and annual $PM_{2.5}$ background concentrations is a monitor located at 720 North Central Avenue in Duluth, Minnesota (Air Quality System [AQS] ID: 27-137-7554). This is the closest operating $PM_{2.5}$ monitor and is most representative of the site. This monitor is located approximately 9 kilometers northwest from the Project site. The difference between the representative monitor value and the NAAQS standard (for both the 24-hour and annual standards) is sufficiently greater than the $PM_{2.5}$ significant impact level. Therefore, the use of $PM_{2.5}$ significant impact level is justified for this area, as demonstrated in Table 6-7.

Deremeter	PM _{2.5} 24-Hour Average	PM _{2.5} Annual Average	
Parameter	micrograms per cubic meter (µg/m³)		
2018-2020 design value ¹	16.0	5.3	
NAAQS ²	35.0	12.0	
Difference NAAQS minus design value	19.0	6.7	
PSD Class II significant impact level ³	1.2	0.2	

Table 6-7: Duluth PM_{2.5} Monitor (AQS ID: 27-137-7554)

Source:

(1) EPA, http://www.epa.gov/airdata/, accessed 2021

(2) Title 40 CFR Part 50

(3) EPA Memorandum, 2018a, "Guidance on Significant Impact Levels for Ozone and Fine Particles in the Prevention of Significant Deterioration Permitting Program."

6.4.10 Ambient Monitoring

The modeling analysis for emission sources for the Project will also address the pre-construction monitoring provision of the PSD regulations (EPA 1987). The regulations specify monitoring *de minimis* levels for each PSD pollutant that, if exceeded, trigger the requirement to perform 1 year of pre-construction ambient air monitoring. If any predicted concentrations reach or exceed the monitoring *de minimis* levels, the Owners will consult with the WDNR to determine if pre-construction ambient air monitoring will be required. If modeled values exceed their respective monitoring *de minimis* values, the Owners will request a waiver to use local ambient monitoring data to fulfill the pre-construction monitoring provisions of the PSD regulations or develop an acceptable monitoring plan at that time. For any impacts predicted to be below the monitoring *de minimis* levels, the Owners will request an

exemption from pre-construction ambient air monitoring, given that representative monitors in the area may be used for appropriate background concentrations.

6.4.11 NAAQS and PSD Class II Increment Analysis

When the maximum impacts exceed the significant impact level for any pollutant and averaging time, then a refined modeling analysis is required. The inventories of sources within the radius of impact were developed in accordance with applicable EPA guidance and obtained from the WDNR and Minnesota Pollution Control Agency. For the NAAQS and PSD Class II Increment analysis, all stationary sources identified by WDNR and Minnesota Pollution Control Agency that emit pollutants subject to this analysis and are located within the radius of impact were addressed.

Background air quality concentrations (as described in Section 6.4.12) were added to model-predicted concentrations for comparison to the NAAQS. If the refined analysis does not result in any concentrations above the NAAQS or PSD Class II Increments, no further modeling was conducted.

6.4.12 Background Air Quality

As stated previously, if any pollutant exceeds its respective PSD significance level, a refined analysis (cumulative analysis) was performed for that pollutant and averaging period. The analysis was used to determine compliance with the PSD Class II Increments and the NAAQS. The NAAQS are set up to protect the air quality for all sensitive populations, and attainment is determined by the comparison to the NAAQS thresholds. As such, there are existing concentrations of each criteria pollutant that are present in ambient air that must be included in an analysis to account for items, such as mobile source emissions, that are not already accounted for in the model. Monitored ambient emission levels were added to the modeled ground level impacts to account for these sources.

Regional background values were obtained from the WDNR *Guidance on Background Concentrations* memo (WDNR, 2021) that lists values for both "low" and "high" background categories. The Project is located in an area categorized as a "high" background area; therefore, the "high" background values were used for each pollutant that requires a refined analysis. The values listed in Table 6-8 were used as background levels and were added to the modeled impacts for each pollutant if NAAQS modeling is required.

Pollutant	Averaging Period	Background Concentration (micrograms per cubic meter)
NO	Annual	HROFDY & MONTH ^a
NO_2	1-hour	HROFDY & MONTH ^a
CO	8-hour	916.8
CO	1-hour	1,196.0
PM_{10}	24-hour	33.1
DM	Annual	8.0
PM _{2.5}	24-hour	20.8

Table 6-8:	Background	Concentrations
	Dackground	ooncentrations

Source: WDNR, *Guidance on Air Quality Background Concentrations*, 2021(a) Hour of day and monthly values are provided in the WDNR background guidance memo

6.4.13 NO₂ Modeling – Multi-Tiered Screening Approach

The AERMOD model gives the emission results for all pollutants, including NO_x . However, impacts of NO_2 must be examined for comparison to the NAAQS, PSD Class II Increments, and significance values. The EPA has a three-tier approach to modeling NO_2 concentrations:

- Tier I total conversion, or all $NO_x = NO_2$
- Tier II use a default NO_2/NO_x ratio
- Tier III case-by-case detailed screening methods, such as the Ozone Limiting Method (OLM) or Plume Volume Molar Ratio Method (PVMRM)

Tier II of the Ambient Ratio Method (ARM2) uses a minimum and maximum ratio that varies based on the modeled level of NO_x . For the 1-hour modeled results, the default minimum and maximum ratios of 0.5 and 0.9, respectively, were applied to determine the predicted ground-level concentration of NO_2 . For the annual modeled results, NO_x was assumed to be equal to NO_2 (Tier I).

6.5 Significance Model Results

Significance modeling was performed for NO_2 , CO, PM_{10} , $PM_{2.5}$, and SO_2 for the appropriate emission sources. The modeled impacts are shown in Table 6-9 below.

Pollutant	Averaging	UTM Co	ordinatesª	Predicted Concentration Year		Modeling Significance Level ¹	Monitoring De Minimis Level ²
	Period	Easting (meters)	Northing (meters)		micrograms	s per cubic meter (μg/m³)	
NO	Annual	572,555.5	5,170,865.2	2016	2.9	1	14
NO_2	1-hour	568,000.0	5,183,000.0	5 years	162.5 ^b	7.5	NA
<u> </u>	8-hour	572,900.0	5,171,475.0	2015	2,329.7	500	575
CO	1-hour	573,025.0	5,171,450.0	2015	5,252.7	2,000	NA
DM	Annual	572,769.1	5,171,086.5	2018	7.0	1	NA
PM_{10}	24-hour	572,808.9	5,171,122.0	2020	25.8	5	10
PM _{2.5}	Annual	572,791.2	5,171,106.1	2015	0.61°	0.2 ^e	NA
	24-hour	572,300.0	5,170,725.0	2018	6.5 ^d	1.2 ^e	4^{f}

Table 6-9: Maximum Modeled Concentrations for Significance Modeling.

Sources: WDNR, Wisconsin Air Dispersion Modeling Guidelines, 2018

(a) UTM = Universal Transverse Mercator: NAD83.

(b) ARM2 methodology was applied to the model.

(c) Impact represents primary and secondary annual $PM_{2.5}$ (0.6 μ g/m³+ 0.01 μ g/m³)

(d) Impact represents primary and secondary 24-hour $PM_{2.5}$ (6.3 µg/m³+ 0.19 µg/m³)

(e) EPA Memorandum, 2018a, "Guidance on Significant Impact Levels for Ozone and Fine Particles in the Prevention of Significant Deterioration Permitting Program."

(f) The PM_{2.5} 24-hour significant monitoring concentration vacated by the United States Court of Appeals for the District of Columbia Circuit on January 22, 2013, is not considered valid in Wisconsin. However, representative local monitoring data is available for use.

6.5.1 NO₂ Significance Results

After examining the modeling results, it was determined that exceedances of the annual and 1-hour NO₂ modeling significance level occurred, and that refined modeling will be required. The annual predicted impacts were lower than the ambient air monitoring *de minimis* level and therefore no pre-construction ambient monitoring is proposed for NO₂.

6.5.2 CO Significance Results

After examining the modeling results, it was determined that exceedances of the 8-hour or 1-hour CO modeling significance level occurred, and that refined modeling will be required. The 8-hour predicted impacts were greater than the ambient air monitoring *de minimis* level and therefore pre-construction ambient monitoring must be considered for CO. The Owners request that existing monitoring data from the Anoka County Airport monitor located in Blaine, Minnesota (AQS ID: 27-003-1002) be used for existing ambient levels of CO in the area.

6.5.3 PM₁₀/PM_{2.5} Significance Results

After examining the modeling results, it was determined that exceedances of the 24-hour and annual PM_{10} and 24-hour and annual $PM_{2.5}$ modeling significance level occurred, and that refined modeling will be required.

The 24-hour predicted impacts were greater than the $PM_{2.5}$ ambient air monitoring *de minimis* levels and therefore pre-construction ambient monitoring must be considered for $PM_{2.5}$. The Owners request that existing monitoring data from the 720 North Central Avenue monitor located in Duluth, Minnesota (AQS ID: 27-137-7554) be used for existing ambient levels of $PM_{2.5}$ in the area.

The 24-hour predicted impacts were greater than the PM_{10} ambient air monitoring *de minimis* levels and therefore pre-construction ambient monitoring must be considered for PM_{10} . The Owners request that existing monitoring data from the 37th Avenue West and Oneota Street monitor located in Duluth, Minnesota (AQS ID: 27-137-0032) be used for existing ambient levels of PM_{10} in the area.

6.6 PSD Class II Increment Modeling

Refined modeling was performed for NO_2 , PM_{10} , and $PM_{2.5}$ to demonstrate compliance with the PSD Class II Increments.

All Project emission sources and all inventory sources (provided by WDNR and Minnesota Pollution Control Agency) were included in the modeling analysis.

There were no modeled PSD Class II Increment exceedances for NO_2 , PM_{10} , and $PM_{2.5}$ as shown in Table 6-10. Therefore, the Project will be in compliance with the Class II PSD Increment.

Pollutant		UTM Co	ordinates ^a		Predicted	PSD Class II	
	Averaging	Easting	Northing	Year	Concentration	Increment	
	Period	(meters) (meters)	•	•		micrograms pe (μg/r	
NO ₂	Annual	570,600.0	5,170,800.0	2017	8.4	25	
PM_{10}	Annual	572,769.1	5,171,086.5	2018	7.1	17	
P 1 V 110	24-hour	572,808.9	5,171,122.0	2020	23.9	30	
PM _{2.5}	Annual	572,791.2	5,171,106.1	2015	0.61 ^b	4	
	24-hour	573,300.0	5,171,050.0	2017	5.3°	9	

Table 6-10: Maximum Modeled Concentrations for Increment Modeling

Source: Title 40 CFR 52.21(c).

(a) UTM = Universal Transverse Mercator: NAD83

(b) Impact represents primary and secondary annual $PM_{2.5}$ (0.60 μ g/m³ + 0.01 μ g/m³)

(c) Impact represents primary and secondary 24-hour $PM_{2.5}$ (5.1 μ g/m³+ 0.19 μ g/m³)

6.7 NAAQS Modeling

Refined modeling was performed for NO₂, CO, PM₁₀, and PM_{2.5} for all Project emission sources and all inventory sources (provided by WDNR and Minnesota Pollution Control Agency).

The modeling results showed that the Project will not contribute to any NAAQS exceedance for the pollutants and averaging periods modeled. Therefore, the Project will be in compliance with the NAAQS. The NAAQS analysis modeling results are shown in Table 6-11.

Pollutant and Averaging Period		UTM Coordinates ^a			Predicted	Background	Total	
		Easting	Northing	Year	Concentration	Concentration	Concentration	NAAQS
		(meters) (meters)			micrograms per cubic meter (µg/m³)			
NO	Annual	570,600.0	5,170,800.0	2016	^b	^b	52.5	100
NO ₂	1-hour	571,500.0	5,186,000.0	5 years	^b	^b	181.9 ^c	188
CO	8-hour	573,300.0	5,171,075.0	2017	1,903.3	916.8	2,820.13	10,000
CO	1-hour	572,875.0	5,171,525.0	2015	4,954.9	1,196.0	6,150.93	40,000
PM ₁₀	24-hour	572,808.9	5,171,122.0	2015	19.7	33.1	52.8	150
PM _{2.5}	Annual	570,000.0	5,175,250.0	5 years	0.93 ^d	8.0	8.93	12
	24-hour	570,000.0	5,175,250.0	5 years	5.3 ^e	20.8	26.1	35

Table 6-11: Maximum Modeled Concentrations for NAAQS Modeling

Source: Title 40 CFR Part 50

(a) UTM = Universal Transverse Mercator: NAD83

(b) HROFDY & MONTH background data used; therefore, the modeled impact is presented as project impacts and background combined.

(c) ARM2 methodology was applied to the model.

(d) Impact represents primary and secondary annual $PM_{2.5}$ (0.92 µg/m³+ 0.01 µg/m³)

(e) Impact represents primary and secondary 24-hour $PM_{2.5}$ (5.1 μ g/m³+ 0.19 μ g/m³)

6.8 PSD Class I Increment Screening Analysis

Under the PSD program, Class I areas are protected more stringently than under the NAAQS. Class I

areas include national parks, wilderness areas, and other areas of special national and cultural

significance.

There are four Class I areas that are within 300 kilometers of the Nemadji River Site

- Rainbow Lake Wilderness, Wisconsin (60 kilometers)
- Boundary Waters Canoe Area Wilderness, Minnesota (126 kilometers)
- Voyageurs National Park, Minnesota (182 kilometers)
- Isle Royale National Park, Michigan (237 kilometers)

There is also one non-Federal Class I area that is within 300 kilometers of the Project, Forest County Potawatomi Community Reservation, Wisconsin (261 kilometers).

Areas that have submitted requests to change the air quality status from Class II to Class I but whose request has yet to be granted were not evaluated for this Project.

The locations of the Project site and the Class I areas are shown in Figure B-5, Appendix B.

An assessment of air quality impacts at Class I areas was performed to demonstrate that the operation of the Project will not result in, or contribute to, concentrations above the PSD Class I Increment threshold. A screening analysis to determine if further analysis is required was performed for the four Class I areas and one non-Federal Class I area. The Class I Increment screening will be analyzed with AERMOD at a 50-kilometer distance from the Project by placing an arc of receptors extending 45 degrees (+/-) from the line connecting the Project and the Class I area. One Class I screening model that combined all Class I receptor arcs into one receptor grid was run for this analysis.

The AERMOD modeled impacts in comparison to the Class I significance thresholds are shown in Table 6-12. Based on the analysis, it was determined that the impacts from the Project will not significantly impact the PSD Class I Increment at the surrounding Class I areas and does not require further analysis.

Pollutant	Averaging Time	Maximum Modeled Concentration	Class I Significant Impact Level ¹	
		micrograms per cubic m	neter (µg/m³)	
NO ₂ ^a	Annual	0.03	0.1	
DM	24-hour	0.3	0.3	
PM_{10}	Annual	0.02	0.2	
DM	24-hour	0.27 ^b	0.27^{2}	
PM _{2.5}	Annual	0.02 ^c	0.05^{2}	

 Table 6-12: Class I Modeled Screening Impacts and Class I Significant Impact Level

Sources:

(1) EPA. Prevention of Significant Deterioration (PSD) and Nonattainment New Source Review (NSR) Proposed Rulemaking, July 23, 1996. (61 FR 38249).

(b) Impact represents primary and secondary 24-hour $PM_{2.5}$ (0.265 μ g/m³ + 0.0127 μ g/m³)

(c) Impact represents primary and secondary annual PM_{2.5} $(0.02 \mu g/m^3 + 0.0006 \mu g/m^3)$

⁽²⁾ EPA Memorandum, 2018a, "Guidance on Significant Impact Levels for Ozone and Fine Particles in the Prevention of Significant Deterioration Permitting Program."(a) Modeled as NO_x.

6.9 Secondary Formation Analysis

An analysis of the impact of secondary formation of ozone (NO_x and VOC) and PM_{2.5} (NO_x and SO₂) was performed. The NAAQS and modeling significance level threshold for ozone and PM_{2.5} are shown in Table 6-13.

Pollutant	Averaging Period	Modeling Significance Level ^{1,a}	NAAQS ^{2,a}
Ozone	8-hour	1.0 ppb	0.07 ppm (70 ppb)
DM	Annual	$0.2 \ \mu g/m^3$	$12 \mu g/m^3$
PM _{2.5}	24-hour	$1.2 \ \mu g/m^3$	35 µg/m ³

Source:

(1) EPA Memorandum, 2018, "Guidance on Significant Impact Levels for Ozone and Fine Particles in the Prevention of Significant Deterioration Permitting Program."

(2) Title 40 CFR Part 50.

(a) ppb = parts per billion; ppm = parts per million; micrograms per cubic meter = $\mu g/m^3$.

In April 2019, the EPA provided *Guidance on the Development of Modeled Emission Rates for Precursors (MERPS) as a Tier I Demonstration Tool for Ozone and PM*_{2.5} *under the PSD Permitting Program* (the Guidance) in final form. The MERPS methodology was used to satisfy the compliance demonstration requirements for both ozone and secondary PM_{2.5} for PSD purposes. The Tier 1 assessment in the Guidance uses existing empirical relationships between precursors and secondary impacts based on modeling performed by the EPA. MERPs were used to describe an emission rate of a precursor that is expected to result in a change in ambient ozone or PM_{2.5} that would be less than a specific air quality concentration threshold for ozone or PM_{2.5}.

6.9.1 Secondary PM_{2.5} Formation Analysis

The NO_x (269.0 tons per year) emissions from the Project are below the lowest MERP values for the daily and annual PM_{2.5} from the NO_x precursor for the Upper Midwest climate zone shown in Table 4-1 of the Guidance. The SO₂ (29.0 tons per year) emissions from the Project are below the lowest MERP value for the daily and annual PM_{2.5} from the SO₂ precursor for the Upper Midwest climate zone shown in Table 4-1 of the Guidance. Based on these comparisons it was determined that it was appropriate to use the Upper Midwest climate zone data for the PM_{2.5} significant impact level, Class II Increment, and NAAQS analysis. For the Class I Increment analysis it was determined that it was more appropriate to use a specific hypothetical source in the same region and geographic area for comparison. Therefore, an analysis was performed to determine the most relevant hypothetical source.

Next, the NO_x and SO₂ precursor contributions to the daily and annual average $PM_{2.5}$ were considered together to determine if the Project's air quality impact of $PM_{2.5}$ would exceed the $PM_{2.5}$ significant impact level, Class II Increment, Class I Increment, and NAAQS.

6.9.1.1 Daily PM_{2.5} Source Impact Analysis (μg/m³)

The secondary $PM_{2.5}$ impacts were expressed in $\mu g/m^3$ to add to the primary $PM_{2.5}$ AERMOD results to obtain the overall $PM_{2.5}$ impacts. Using the Project emissions and Upper Midwest air quality impact information the source nitrate and sulfate daily impact is calculated as follows:

Nitrate Impact =
$$\left(1.2 \ \frac{\mu g}{m3} * \ \frac{269.0 \ tpy}{2,963 \ tpy}\right) = 0.11 \ \frac{\mu g}{m3}$$

Sulfate Impact = $\left(1.2 \ \frac{\mu g}{m3} * \ \frac{29.0 \ tpy}{454 \ tpy}\right) = 0.08 \ \frac{\mu g}{m3}$

Therefore, the total daily secondary PM_{2.5} impact is:

Total Daily Secondary PM2.5 Impact =
$$\left(0.11 \frac{\mu g}{m3} + 0.08 \frac{\mu g}{m3}\right) = 0.19 \frac{\mu g}{m3}$$

6.9.1.1.1 Daily PM_{2.5} – Class II Significant Impact Level

When the Project source primary impact (from AERMOD) and daily secondary impacts (from MERP equation) are added together the total impacts are greater than the daily $PM_{2.5}$ Class II significant impact level value of 1.2 µg/m³ as shown below.

Primary PM2.5 Impact + Secondary PM2.5 Impact =
$$\left(6.3 \frac{\mu g}{m3} + 0.19 \frac{\mu g}{m3}\right) = 6.5 \frac{\mu g}{m3}$$

6.9.1.1.2 Daily PM_{2.5} – Class II Increment

When the Project source primary impact (from AERMOD) and daily secondary impacts (from MERP equation) are added together the total impacts are less than the daily $PM_{2.5}$ Class II Increment value of 9.0 $\mu g/m^3$ as shown below.

Primary PM2.5 Impact + Secondary PM2.5 Impact =
$$\left(5.1 \frac{\mu g}{m3} + 0.19 \frac{\mu g}{m3}\right) = 5.3 \frac{\mu g}{m3}$$

Nemadji Trail Energy Center

6.9.1.1.3 Daily PM_{2.5} – NAAQS

When the Project source primary impact (from AERMOD), background value, and daily secondary impacts (from MERP equation) are added together the total impacts are less than the daily $PM_{2.5}$ NAAQS value of 35 μ g/m³ as shown below.

Primary PM2.5 Impact + background + Secondary PM2.5 Impact = $\left(5.1 \frac{\mu g}{m3} + 20.8 \frac{\mu g}{m3} + 0.19 \frac{\mu g}{m3}\right) = 26.1 \frac{\mu g}{m3}$

6.9.1.2 Annual PM_{2.5} Source Impact Analysis (µg/m³) – Class II Significant

Impact Level

The secondary $PM_{2.5}$ impacts were expressed in $\mu g/m^3$ to add to the primary $PM_{2.5}$ AERMOD results to obtain the overall $PM_{2.5}$ impacts. Using the Project emissions and Upper Midwest air quality impact information the annual source nitrate and sulfate impact is calculated as follows:

Nitrate Impact =
$$\left(0.2 \ \frac{\mu g}{m3} * \ \frac{269.0 \ tpy}{10,011 \ tpy}\right) = 0.01 \ \frac{\mu g}{m3}$$

Sulfate Impact = $\left(0.2 \ \frac{\mu g}{m3} * \ \frac{29.0 \ tpy}{2.522 \ tpy}\right) = 0.002 \ \frac{\mu g}{m3}$

Therefore, the total annual secondary PM_{2.5} impact is:

Total Annual Secondary PM2.5 Impact =
$$\left(0.01 \frac{\mu g}{m3} + 0.002 \frac{\mu g}{m3}\right) = 0.01 \frac{\mu g}{m3}$$

6.9.1.2.1 Annual PM_{2.5} – Class II Significant Impact Level

When the Project source primary impact (from AERMOD) and secondary impacts (from MERP equation) are added together the total impacts are greater than annual $PM_{2.5}$ Class II significant impact level value of 0.2 µg/m³ as shown below.

Primary PM2.5 Impact + Secondary PM2.5 Impact =
$$\left(0.60 \frac{\mu g}{m3} + 0.01 \frac{\mu g}{m3}\right) = 0.61 \frac{\mu g}{m3}$$

6.9.1.2.2 Annual PM_{2.5} – Class II Increment

When the Project source primary impact (from AERMOD) and annual secondary impacts (from MERP equation) are added together the total impacts are less than the annual $PM_{2.5}$ Class II Increment value of $4.0 \ \mu g/m^3$ as shown below.

Primary PM2.5 Impact + Secondary PM2.5 Impact =
$$\left(0.60 \frac{\mu g}{m3} + 0.01 \frac{\mu g}{m3}\right) = 0.61 \frac{\mu g}{m3}$$

6.9.1.2.3 Annual PM_{2.5} – NAAQS

When the Project source primary impact (from AERMOD), background value, and annual secondary impacts (from MERP equation) are added together the total impacts are less than the annual $PM_{2.5}$ NAAQS value of 12 µg/m³ as shown below. Further analysis demonstrated that cumulative impacts from all NSG sources are less than the significant impact level for all modeled NAAQS exceedances.

Primary PM2.5 Impact + background + Secondary PM2.5 Impact = $\left(0.92 \frac{\mu g}{m3} + 8.0 \frac{\mu g}{m3} + 0.01 \frac{\mu g}{m3}\right) = 8.93 \frac{\mu g}{m3}$

6.9.1.3 Class I Daily and Annual PM_{2.5}

For the Class I analysis it was determined that it was more appropriate to use a specific hypothetical source in the same region and geographic area for comparison. Therefore, an analysis was performed to determine the most relevant hypothetical source.

6.9.1.3.1 Hypothetical PM_{2.5} Source Impact Analysis

The Project is not located in an area with complex terrain and is not located close to large sources of pollutants that would impact atmospheric chemistry or meteorology (predominately rural area). Nearby hypothetical sources located in Wisconsin and Minnesota were identified and are shown in Table 6-14. According to the distance analysis, the closest hypothetical source is the St. Louis County source (137.8 kilometers away). The St. Louis County source surrounding terrain is representative of the Project site and the source is in a rural area similar to the Project location. A review of the data indicates that the St. Louis County source is representative of this Project.

County	County	Max Nearby Terrain (meters)	Max Nearby Urban (%)	Distance from Project Site (kilometers)
St Louis	Minnesota	431	2.8	137.8
Rusk	Wisconsin	410	2.3	156.5
Dakota	Minnesota	292	52.4	233.3
Wadena	Minnesota	420	2.2	234.5
Shawano	Wisconsin	237	32.2	365.5

 Table 6-14: Hypothetical Source Review

Source: EPA MERPS View Qlik (Accessed October 2021)

Table 6-15 lists the values for the St. Louis County source for the respective emission rates and stack height combination. Project SO_2 and NO_x emissions are each less than 500 tons per year; therefore, the

hypothetical 500 ton per year source was selected. Most of the emissions from project are emitted from a stack height above 50 meters; therefore, the 90-meter stack source was selected. These values were used to calculate the additive secondary impacts for Class I PSD Increment daily and annual PM_{2.5}.

Metric	Emissions (tons per year)	Stack Height (meters)	Distance (kilometers)ª	Concentration (μg/m³) ^ь
Annual PM _{2.5} SO ₂	500	90	60	0.003108
Daily PM _{2.5} SO ₂	500	90	60	0.0812
Annual PM _{2.5} NO _x	500	90	60	0.00071
Daily PM _{2.5} NO _x	500	90	60	0.0149

Table 6-15: Hypothetical St. Louis County Source Table Values

Source: EPA MERPS View Qlik (Accessed November 2021)

(a) The analysis was performed using the distance values associated to the nearest Class I area (most conservative), since Rainbow Lake Wilderness is located 60 kilometers from the Project. (b) $\mu g/m^3 =$ micrograms per cubic meter

6.9.1.3.2 Daily Class I PM_{2.5} Source Impact Analysis (µg/m³)

The secondary $PM_{2.5}$ impacts were expressed in $\mu g/m^3$ to add to the primary $PM_{2.5}$ AERMOD results to obtain the overall $PM_{2.5}$ impacts. Using the Project emissions and air quality impact information from St. Louis County Source the source nitrate and sulfate daily impact is calculated as follows:

Nitrate Impact =
$$\left(269.0 \ tpy * \frac{0.0149 \ \frac{\mu g}{m3}}{500 \ tpy}\right) = 0.0080 \ \frac{\mu g}{m3}$$

Sulfate Impact = $\left(29.0 \ tpy * \frac{0.0812 \ \frac{\mu g}{m3}}{500 \ tpy}\right) = 0.0047 \ \frac{\mu g}{m3}$

Therefore, the total daily secondary PM_{2.5} impact is:

Total Daily Secondary PM2.5 Impact =
$$\left(0.0080 \frac{\mu g}{m3} + 0.0047 \frac{\mu g}{m3}\right) = 0.0127 \frac{\mu g}{m3}$$

6.9.1.3.3 Daily PM_{2.5} – Class I Increment

When the Project source primary impact (from AERMOD) and daily secondary impacts (from MERP equation) are added together the total impacts are less than the daily $PM_{2.5}$ Class I Increment value of 0.27 $\mu g/m^3$ as shown below.

Primary PM2.5 Impact + Secondary PM2.5 Impact =
$$\left(0.265 \ \frac{\mu g}{m3} + \ 0.0127 \ \frac{\mu g}{m3}\right) = 0.278 \ \frac{\mu g}{m3}$$

6.9.1.3.4 Annual Class I PM_{2.5} Source Impact Analysis (µg/m³)

Using the Project emissions and air quality impact information from St. Louis County Source the source nitrate and sulfate annual impact is calculated as follows:

Nitrate Impact =
$$\left(269.0 \ tpy * \frac{0.00071 \ \frac{\mu g}{m3}}{500 \ tpy}\right) = 0.0004 \ \frac{\mu g}{m3}$$

Sulfate Impact = $\left(29.0 \ tpy * \frac{0.003108 \ \frac{\mu g}{m3}}{500 \ tpy}\right) = 0.0002 \ \frac{\mu g}{m3}$

Therefore, the total annual secondary PM_{2.5} impact is:

Total Annual Secondary PM2.5 Impact =
$$\left(0.0004 \ \frac{\mu g}{m3} + \ 0.0002 \ \frac{\mu g}{m3}\right) = 0.0006 \ \frac{\mu g}{m3}$$

6.9.1.3.5 Annual PM_{2.5} – Class I Increment

When the Project source primary impact (from AERMOD) and annual secondary impacts (from MERP equation) are added together the total impacts are less than the annual $PM_{2.5}$ Class I Increment value of 0.05 μ g/m³ as shown below.

Primary PM2.5 Impact + Secondary PM2.5 Impact =
$$\left(0.02 \ \frac{\mu g}{m3} + \ 0.0006 \ \frac{\mu g}{m3}\right) = 0.02 \ \frac{\mu g}{m3}$$

6.9.2 Secondary Ozone Formation Analysis

The NO_x (269.0 tons per year) emissions from the Project are greater than the lowest MERP values for 8hour ozone from NO_x for the Upper Midwest climate zone shown in Table 4-1 of the Guidance. The VOC (250.0 tons per year) emissions from the Project are less than the lowest MERP value for the 8-hour ozone from VOC for the Upper Midwest climate zone shown in Table 4-1 of the Guidance. Therefore, air quality impacts from the Project would be expected to be greater than the critical air quality threshold (CAQT).

The NO_x and VOC precursor contributions to the 8-hour daily maximum ozone need to be considered together to determine if the Project's air quality impact would exceed the CAQT. The additive secondary impacts on 8-hour daily maximum ozone is calculated as follows:

$$\begin{pmatrix} \frac{269.0 \ tpy \ NOx}{125 \ tpy \ NOx \ 8hr \ daily \ max} \\ O_3 \ MERP \end{pmatrix} + \begin{pmatrix} \frac{250.0 \ tpy \ VOC}{1,560 \ tpy \ VOC \ 8hr \ daily \ max} \\ O_3 \ MERP \end{pmatrix} = 2.15 + 0.16 = 2.31 * 100 = 231\%$$

A value greater than 100 percent indicates that the CAQT will be exceeded when considering the combined impacts of these precursors on 8-hour daily maximum ozone; therefore, comparable hypothetical sources were identified to determine the additive secondary impacts on 8-hour daily maximum ozone.

The Project is not located in an area with complex terrain and is not located close to large sources of pollutants that would impact atmospheric chemistry or meteorology (predominately rural area). Nearby hypothetical sources located in the Upper Midwest region were identified. According to the distance analysis, the closest hypothetical source is located in St. Louis County (137.8 kilometers away). The terrain surrounding the St. Louis County source is somewhat representative of the Project site and the source is located in a rural area similar to the Project location. A review of the data indicates that the St. Louis County source is representative of this Project.

Table 6-16 lists the EPA MERPS View Qlik values for the St. Louis County source for the respective emission rates and stack height combination. These values were used to calculate the additive secondary impacts for ozone.

Metric	Emissions (tons per year)	Stack Height (meters)	MERP (tons per year)
Daily ozone NO _x	500	90	437.0
Daily ozone VOC	500	10 ^a	6,036.0

Table 6-16: Hypothetical Source St. Louis County Values

Source: EPA MERPS View Qlik (Accessed November 2021)

(a) No 90 meter stack data was available; therefore, 10 meter stack data was selected.

The NO_x and VOC precursor contributions to the 8-hour daily maximum ozone were considered together to determine if the Project's air quality impact would exceed the CAQT.

$$NOx Impact = \left(1 \ ppb * \frac{269.0 \ tpy}{437.0 \ tpy}\right) = 0.62 \ ppb$$
$$VOC \ Impact = \left(1 \ ppb * \frac{250.0 \ tpy}{6,036.0 \ tpy}\right) = 0.041 \ ppb$$

The additive secondary impacts on 8-hour daily maximum ozone is calculated as follows:

$$0.61\,ppb + 0.042\,ppb = 0.66\,ppb$$

A value less than the ozone significant impact level value of 1 parts per billion (ppb) indicates that the CAQT will not be exceeded when considering the combined impacts of these precursors on 8-hour daily maximum ozone.

6.10 Dispersion Modeling Conclusion

The modeling results shown in Table 6-9 demonstrate that exceedances of NO_x , CO, PM_{10} , and $PM_{2.5.}$ modeling significance levels occurred and refined modeling is required. A refined modeling analysis was conducted to demonstrate compliance with the PSD Class II Increment and NAAQS for NO_x , CO, PM_{10} , and $PM_{2.5.}$ The Project will not cause or contribute to any modeled Class II PSD Increment or NAAQS exceedances.

Based on the Class I analysis, it was determined that the impacts from the Project will not significantly impact the four Class I areas and one non-Federal Class I area that are within 300 kilometers of the Project and does not require further analysis.

The operation of the Project will not cause or contribute to a significant degradation of ambient air quality. After examining the results of the model, it has been determined that the modeling requirements for PM₁₀, PM_{2.5}, CO, and NO₂ have been fulfilled, and no further modeling is required.

7.0 ADDITIONAL IMPACTS ANALYSIS

Section 7 overview: The references to the most current additional impacts sections are presented in Table 7-1. The model values presented in this section have been updated to reflect the latest modeling analysis.

Report Heading	Previous Application Reference	December 2021 Submittal Location
Construction Impacts	Section 7.1 January 2021 Submittal	Section 7.1
Vegetation Impacts	Section 7.2 January 2021 Submittal	Section 7.2
Carbon Monoxide	Section 7.2.1 December 2018 Submittal	Section 7.2.1
Carbon Dioxide	Section 7.2.1 January 2021 Submittal	Section 7.2.2
Nitrogen Oxides	Section 7.2.3 December 2018 Submittal	Section 7.2.3
Particulate Matter	Section 7.2.3 January 2021 Submittal	Section 7.2.4
Synergistic Effects of Pollutants	Section 7.2.5 December 2018 Submittal	Section 7.2.5
Sulfuric Acid Mist	Section 7.2.6 December 2018 Submittal	Section 7.2.6
Volatile Organic Compounds	Section 7.2.2 January 2021 Submittal	Section 7.2.7
Soil Impacts	Section 7.3 January 2021 Submittal	Section 7.3
Industrial, Residential, and Commercial Growth Impacts	Section 7.4 January 2021 Submittal	Section 7.4
Visibility and Deposition Analysis	Section 7.5 January 2021 Submittal	Section 7.5
Class I Area Analysis	Section 7.5.1 January 2021 Submittal	Section 7.5.1
Class II Area Analysis	Section 7.5.2 January 2021 Submittal	Section 7.5.2
Conclusion	Section 7.6 January 2021 Submittal	Section 7.6

Table 7-1:	Additional	Impacts	Section	References
------------	------------	---------	---------	------------

The additional impacts analysis requirement under PSD includes the ambient air quality impact analysis, soils and vegetation impacts, visibility impairment, and growth analysis for the Project.

7.1 Construction Impacts

Construction for the Project has the potential for short-term adverse effects on air quality in the immediate area around the site and will not affect the attainment status for Douglas County. Diesel fumes from

construction vehicles and dust from site preparation and construction vehicle operation can affect local air quality during certain meteorological conditions. However, these instances are limited in time and area of effect.

Low sulfur fuel will be used for construction vehicles that use diesel fuel. Operation of these vehicles is not expected to significantly affect ambient air quality. During prolonged periods without rainfall, fugitive construction-related dust may need to be minimized through the application of water to onsite roads used by construction equipment.

7.2 Vegetation Impacts

The following sections briefly describe the potential effects of CO, CO₂, NO₂, PM/PM₁₀/PM_{2.5}, H₂SO₄ mist, VOC, and synergistic effects of pollutants produced by the installation of the Project on the nearby vegetation. The potential effects of the air emissions on vegetation within the immediate vicinity of the Project were compared to scientific research examining the effects of pollution on vegetation. Damage to vegetation often results from acute exposure to pollution but may also occur after prolonged or chronic exposures. Acute exposures are typically manifested by internal physical damage to leaf tissues, while chronic exposures are associated with the inhibition of physiological processes such as photosynthesis, carbon allocation, and stomatal functioning (Hallgren, 1984; Hill and Littlefield, 1969; Mansfield and Freer-Smith, 1984).

7.2.1 Carbon Monoxide

CO is not known to injure plants nor has it been shown to be taken up by plants. Consequently, no adverse impacts to vegetation at or near the Project are expected from CO stack emissions from the Project.

7.2.2 Carbon Dioxide

 CO_2 is not known to injure plants. Long-term exposure to elevated CO_2 levels has shown to improve the efficiency of nutrient, water, and photosynthesis in some plants (Drake, et al., 1997; Leakey et al., 2009). However, the improved efficiencies that result from elevated CO_2 levels may not necessarily result in greater yields for crop plants (Morgan et al., 2005). No adverse impacts to vegetation at or near the Project are expected from CO_2 emissions from the Project.

7.2.3 Nitrogen Oxides

During fuel combustion, atmospheric and fuel-bound nitrogen is oxidized to nitrogen oxide and small amounts of NO_2 (Chang, 1981). The NO is photochemically oxidized to NO_2 , which is then subsequently

consumed during the production of ozone and peroxyacetyl nitrates. NO_2 has been shown to deleteriously impact vegetation (Taylor et al., 1975; Heath, 1980; Kozlowski and Constantinidou, 1986; Darrall, 1989). Typical leaf injury responses include interveinal necrotic blotches similar to SO_2 injury for angiosperms and red-brown distal necrosis in gymnosperms (Kozlowski and Constantinidou, 1986). Injury threshold concentrations vary by species and dose but are much higher than that of SO_2 as described above. In general, short-term, high concentrations of NO₂ are required for deleterious impacts on plants (Prinz and Brandt, 1985). The injury threshold concentration for typical plants that are grown in Wisconsin is 7,380 µg/m³ for tomato (Lycopersicon esculentum) and annual sunflower (Helianthus annuus). A common, weedy plant found in Wisconsin is lamb's quarters (Chenopodium album); this species was not injured following 2 hours of exposure at concentrations of $1.9 \,\mu g/m^3 \, NO_2$. Furthermore, short-term fumigations of approximately 1-hour, 20-hours, and 48-hours at NO₂ concentrations of 940 to 38,000 μ g/m³, 470 $\mu g/m^3$, and 3,000 to 5,000 $\mu g/m^3$, respectively, have been shown to deter photosynthesis in a number of herbaceous [tomato, oats (Avena sativa), alfalfa (Medicago sativa)] and woody plants (Hill and Bennett, 1970; Capron and Mansfield, 1976; Smith, 1981). Moreover, Taylor and McLean (1970), in their review of NO₂ effects on vegetation, noted that long-term exposures of phytotoxic doses of NO₂ ranged from 280 to 560 μ g/m³.

The maximum annual modeled value for the Project is $2.9 \ \mu g/m^3$ and the maximum 1-hour NO₂ modeled value for the Project is 162.5 $\ \mu g/m^3$. These levels are low, so it is highly unlikely that NO₂ emissions will impact vegetation adjacent to or surrounding the Project.

7.2.4 Particulate Matter

Particulates have been shown to be detrimental to vegetation typically within the immediate vicinity of the source. The most obvious effect of particle deposition on vegetation is a physical smothering of the leaf surface. This will reduce light transmission to the plant and cause a decrease in photosynthesis. The maximum PM_{10} 24-hour modeled value from this Project is 25.8 µg/m³ and the maximum $PM_{2.5}$ 24-hour modeled value is 6.3 µg/m³. These levels are low, so it is highly unlikely that PM_{10} and $PM_{2.5}$ emissions will impact vegetation adjacent to the Project.

7.2.5 Synergistic Effects of Pollutants

Air pollutants are known to act in concert to cause injury to or decrease the plant function (Reinert et al., 1975; Omrod, 1982). Synergistic refers to the combined effects of pollutants when they are greater than is expected from the additive effect of the compounds. The inhibitory effects of SO_2 and NO_2 , NO_2 and NO, NO_2 and ozone, and ozone and SO_2 have been reported in various short-term studies for crop plants (e.g., soybean, broad bean (*Vicia faba*), annual sunflower, and tomato) and various tree species that grow in

Wisconsin [e.g., eastern cottonwood (*Populus deltoides*), sugar maple (*Acer saccharum*), white ash (*Fraxinus americana*), and black oak (*Quercus velutina*)] (White et al., 1974; Wright et al., 1986; Capron and Mansfield, 1976; Furakawa et al., 1984; Okana et al., 1985; Costonis, 1970, Carlson, 1979; Jensen, 1981; Omrod et al., 1981). Concentrations of pollutants (80 to 981 μ g/m³) in these studies are higher than the concentrations predicted to occur near the Project. Consequently, no synergistic effects of the air pollutants are expected to inhibit vegetation at or near the Project.

7.2.6 Sulfuric Acid Mist

H₂SO₄ mist impacts vegetation in much the same way as acid rain, causing foliar damage and necrosis. In a study that examined the effects of acidic mist on crops and trees in London, the H₂SO₄ mist concentrations in polluted regions were insufficient to produce acute injury to vegetation except in close vicinity of intense emission sources. Generally, in experimental studies, the concentrations of acidic aerosol required to produce measurable reductions in growth and noticeable injury to plants vary between 10 to 100 milligrams per cubic meter (mg/m³). Short time exposures of 4-16 hours at rates of 100-200 mg/m³ have been shown to cause injury to plants (Lange, 1979). Kohno and Kobayashi analyzed the effect of simulated acid rain on soybean growth in Japan and found that visible injury to the young, trifoliate leaves occurred only when the pH was below 3.0 (Kohno and Kobayashi, 1989). In the area around the Project, the average sulfate concentration in acid rain is projected to be approximately 1.5 mg/L with a pH ranging from 5.5 to 5.7 (National Atmospheric Deposition Program (NRSP-3), 2018a and 2018b). These concentrations and levels of acidity are not likely to cause foliar damage, as described in the Kohno and Kobayashi study, because the pH is not low enough.

7.2.7 Volatile Organic Compounds

VOCs are formed from the products of incomplete combustion of natural gas. Currently VOCs are not one of the six "criteria" pollutants for which the EPA has set NAAQS (EPA, 2020). Ozone is a gas created by a chemical reaction between NO_x and VOCs in the presence of sunlight. Vegetation that is impacted by ozone is commonly referred to as "ground-level" ozone, where it forms in potential harmful concentrations and becomes a primary constituent of smog. Similar to particulate matter and lead, the primary impact of smog produced by ozone on vegetation is a physical smothering of the leaf surface. Ozone also gets inside the leaf and damages the parts of the leaf that make the sugars. Ozone's effects on plants typically result in mottled markings, yellowing leaves, or a bronzed appearance. As a result, this damage to the leaves interferes with the ability of sensitive plants to produce and store food, making them more susceptible to diseases, insects, other pollutants, and harsh weather. Chronic exposures to ozone concentrations of greater than or equal to 196 μ g/m³ can cause negative impacts to vegetation (Heath, 1975). Reductions in growth and photosynthesis of trees can occur at ozone levels of less than 200 μ g/m³ (Pye, 1988). Trees typically found within the vicinity of the facility that could be impacted by such levels of ozone include sugar, silver, and red maple (*Acer saccharum, A. saccharinum* and *A. rubrum*, respectively); white ash, green ash (*Fraxinus pennsylvanica*), and black locust (*Robinia pseudoacacia*). Soybeans, corn, wheat, annual sunflower, and white clover showed decreases in photosynthetic rates with short-term (200 μ g/m³ to 1,399 μ g/m³ for 1 to 4 hours) and long-term (70 to 270 μ g/m³ for 147 to 180 hours in 3 weeks) exposures to ozone (Hill and Littlefield, 1969; Bennett and Hill, 1973, Furukawa et al., 1984; Reich and Amundson, 1985). In a study of three varieties of rice produced commercially in California that were fumigated with ozone at 0.05, 0.10, 0.15, and 0.20 ppm concentrations for 25 hours per week, the effects of the ozone exposure resulted in a reduction of growth and yield and an increase of seed sterility as the ozone concentrations increased (Thompson et al., 1983). However, the ozone exposure concentrations experienced by the three cultivars of rice are higher than would be expected to result from the Project.

It is difficult to determine the contribution the Project would have on local or regional ambient ozone levels. Photoreactive modeling runs would be required to estimate the ozone impacts resulting from the emissions of NO_x and VOC. Due to the transport effects of ozone, it is unlikely that concentrations in the vicinity of the Project would exceed NAAQS.

7.3 Soil Impacts

Eight soil types were mapped at, or in the immediate vicinity of, the Project site and include (Natural Resources Conservation Service, 2018):

- Arnheim mucky silt loam, 0 to 1 percent slopes, frequently flooded (5A)
- Moquah fine sandy loam, 0 to 3 percent slopes, frequently flooded (6A)
- Udorthents, ravines and escarpments, 25 to 60 percent slopes (92F)
- Amnicon-Cuttre complex, 0 to 4 percent slopes (262B)
- Miskoaki clay loam, 6 to 12 percent slopes (274C)
- Miskoaki clay loam, 12 to 25 percent slopes (274D)
- Bergland-Cuttre complex, 0 to 3 percent slopes (347A)
- Lupton, Cathro, and Tawas soils, 0 to 1 percent slopes (405A)

Sulfates and nitrates caused by NO_2 deposition on soil can be both beneficial and detrimental to soils depending on their composition. However, given the low expected deposition from the Project, operation of the Project should not significantly affect the soils onsite or in the immediate vicinity.

7-5

7.4 Industrial, Residential, and Commercial Growth Impacts

The Project is expected to increase employment in the area. The building phase will last approximately one year. Construction employment is expected to peak at approximately 150 skilled construction jobs. Projected employment, reflecting full-time jobs directly tied to the operation of the Project, is estimated to be five people at the facility. This will result in moderate amounts of secondary employment being created by the economic activity of the facility. In the immediate vicinity of the Project, increased vehicular traffic is expected; however, these activities are not expected to significantly impact air quality.

An increase in the construction work may temporarily increase the number of people residing in the area for the construction phase. After construction is completed, many of the new employees are expected to already live in the area surrounding the Project. However, some new employees are expected to move into the area, with only a slight increase in the residential growth in the area. This small increase in new residences is not expected to have an impact on the air quality in the area.

Adding additional electricity to the grid in this area may increase industrial growth; however, it is unknown at this time how increasing available electrical power in this area may affect future industrial growth.

7.5 Visibility and Deposition Analysis

The visibility impairment analysis is part of the additional impacts analysis requirement under PSD.

7.5.1 Class I Area Analysis

Under the PSD program, Class I areas are protected more stringently than under the NAAQS. Class I areas include national parks, wilderness areas, and other areas of special national and cultural significance.

There are four Class I areas that are within 300 kilometers of the Nemadji River Site

- Rainbow Lake Wilderness, Wisconsin (60 kilometers)
- Boundary Waters Canoe Area Wilderness, Minnesota (126 kilometers)
- Voyageurs National Park, Minnesota (182 kilometers)
- Isle Royale National Park, Michigan (237 kilometers)

There is also one non-Federal Class I area that is within 300 kilometers of the Project, Forest County Potawatomi Community Reservation, Wisconsin (261 kilometers).

Areas that have submitted requests to change the air quality status from Class II to Class I but whose request has yet to be granted were not evaluated for this Project.

Following the most recent Federal Land Managers' Air Quality Related Values Work Group (FLAG) Workshop procedures (USFS, NPS, and USFWS, 2010), the Screening Procedure (Q/D) was used to determine if the Project could opt (screen) out of an Air Quality Related Value (AQRV) assessment for visibility and deposition. Following the screening procedures in FLAG, to calculate "Q," the emissions of NO_x, SO₂, PM₁₀, and H₂SO₄ were summed based on maximum 24-hour emission rates for the two worstcase emission scenarios and then divided by the distance to the respective Class I area.

Although overall turbine operations are limited to 500 hours per year fuel oil usage, per guidance from the FLMs, the maximum 24-hour emission rate must be used and ratioed for 365-day operation to determine the "Q" value when assessing the need for a full AQRV analysis. Maximum 24-hour emissions include start-up emissions as well as 100 percent load and duct burning for both the natural gas operation and fuel oil operation. Note that the "Q" value also includes the emissions from the auxiliary equipment. Refer to Appendix C for the overall calculation breakdown and maximum emission rates for the units.

The screening analysis is summarized below for each of the areas located within 300 kilometers of the proposed Project in Table 7-2.

	D	Q/D		
Class I Area	(Kilometers)	Fuel Oil Duct Firing ^a	Natural Gas Duct Firing ^ь	
Rainbow Lake Wilderness	60	9.9	7.3	
Boundary Waters Canoe Area Wilderness	126	4.7	3.5	
Voyageurs National Park	182	3.3	2.4	
Isle Royale National Park	237	2.5	1.9	
Forest County Potawatomi Community Reservation	261	2.3	1.7	

Table 7-2: Class I Screening Analysis

(a) Q duct firing fuel oil =sum $(NO_x+PM_{10}+SO_2+H_2SO_4) = 595.8$ tons per year and includes start-up emissions (b) Q duct firing natural gas =sum $(NO_x+PM_{10}+SO_2+H_2SO_4) = 439.6$ tons per year and includes start-up emissions

In accordance with the FLAG Guidance, if Q/D is less than 10, then no AQRV analysis is required. Based on the ratio of Q/D, all of the areas listed in the table above do not require further analysis of AQRV. Thus, no visibility or deposition analysis is anticipated for impacts to AQRVs. A notification letter will be submitted to the Federal Land Managers (FLMs) for concurrence with the above assessment.

7.5.2 Class II Area Analysis

The Project is located in a Class II area. With respect to visibility conditions around the facility, no known Class II screening visibility criteria have been recommended at this time. Per discussions with WDNR, no Class II visibility analysis is required since the application includes a complete, complex dispersion analysis.

7.6 Conclusion

Based upon the results presented in this section of the application and additional supplemental information, it was concluded that the Project will not have a significant adverse impact on the air quality, soils, vegetation, visibility, and growth in the surrounding area.

8.0 REFERENCES

Section 8.0 overview: The report reference sections are listed in Table 8-1. The previous application submittal citations are current except for the updated modeling guidance documents, which have been updated in this section.

Application	Report Section
December 2018 Submittal	8.0 References
June 2020 Submittal	3.0 References
January 2021 Submittal	8.0 References

Table 8-1: References

- AP-42 Compilation of Air Pollutant Emission Factors, Fifth Edition, Volume I Chapter 13: Miscellaneous Sources, Section 13.2.1 Paved Roads. January 2011.
- Bennett, J.H. and A.C. Hill. Absorption of Gaseous Air Pollutants by a Standardized Plant Canopy. JAPCA 23. (1973): 203-206.
- Blackman, J., M. Averyt, and Z. Taylor. *SF*₆ Leak Rates from High Voltage Circuit Breakers U.S. EPA Investigates Potential Greenhouse Gas Emissions Source. Retrieved January 24, 2019 from https://www.epa.gov/sites/production/files/2016-02/documents/leakrates_circuitbreakers.pdf
- Capron, A.C. and Mansfield, TA. *Inhibition of Net Photosynthesis in Tomato in Air Polluted with NO and NO*₂. Journal of Experimental Botany. 27 (1976) 1181-1186.
- Carlson, RW. Reduction in the Photosynthetic Rate of Acer, Quercus, and Fraxinus Species Caused by Sulphur and Ozone. Environmental Pollution. 18 (1979): 159-170.
- Chang, R. Chemistry. New York: Random House Inc., 1981.
- Costonis, A.C. *Acute Foliar Injury of Easter White Pine Induced by Sulfur Dioxide and Ozone*. Phytopathology. 60 (1970): 994-999.
- Darrall, N.M. *The Effect of Air Pollutants on Physiological Processes in Plants*. Plant, Cell and Environment. 12 (1989): 1-30.
- Drake, B. G., Gonzales-Meler, M., and Long, S. P. *More efficient plants: a consequence of rising atmospheric CO*₂? Annual Review of Plant Physiology and Plant Molecular Biology. 48 (1997): 609-639.
- Environmental Resources Management. *Project ASCENT Best Available Control Technology (BACT) Analysis*. May 2014 http://www.dep.wv.gov/daq/permitting/Documents/Appendix_E_ASCENT_BACT_Final_May20 14.pdf._Accessed October 1, 2018.

- Furukawa, A., M. Yokoyama, T. Ushijima, and T. Totsuka. *The Effects of NO₂ and/or NO on Photosynthesis of Sunflower Leaves.* Studies on the Effects of Air Pollutant Mixtures on Plants, Part 1. Research Report from the Institute of Environmental Studies. 65 (1984): 89-98.
- Hallgren, J-E. *Photosynthetic Gas Exchange in Leaves Affected by Air Pollutants*. In M.J. Koziol and F.R. Whatley (Eds.), Gaseous Air Pollutants and Plant Metabolism (pp. 147-160). London: Buttersworth (1984).
- Hart, R, P.G. Webb, R.H. Biggs, and K.M. Portier. *The Use of Lichen Fumigation Studies to Evaluate the Effects of New Emission sources on Class I Areas*. Journal of Air Pollution Association. 38 (1988): 144-147.
- Heath, R.L. Ozone. Responses of Plants to Air Pollution. Ed. JB Mudd and TT Kozlowski. New York: Academic Press, 1975.
- Heath, R.L. Initial Events in Injury to Plants by Air Pollutants. Annual Review of Plant Physiology. 31 (1980): 395-431.
- Hill, A.C. and J.H. Bennett. *Inhibition of Apparent Photosynthesis by Nitrogen Oxides*. Atmospheric Environment. 4 (1970): 341-348.
- Hill, A.C. and N. Littlefield. Ozone: *Effect on Apparent Photosynthesis, Rate of Transpiration and Stomatal Closure in Plants*. Environmental Science and Technology. 3 (1969):52-56.
- Holopainen, T.H. *Types and Distribution of ultrastructural symptoms in epiphytic lichens in several urban and industrial environments in Finland*. Annales Botanica Fennici. 21 (1984): 213-229.
- Huang, T.S.R., C.L. Mulchi, and M.K. Aycock, Jr. Correlations Between Air Pollution Injury and Certain Agronomic, Chemical, and Physical Characteristics of Maryland Tobacco. Journal Environmental Quality. 5 (1976): 352-356.
- Jensen, K.F. *Growth Analysis of Hybrid Poplar Cuttings Fumigated with Ozone and Sulphur Dioxide*. Environmental Pollution (Series A). 26 (1981): 243-250.
- Kohno, Y. and Kobayashi, T. *Effects of Simulated Acid Rain on the Yield of Soybean. Water, Air, and Soil Pollution.* 45 (1989), 173-181.
- Kozlowski, T.T. and H.A. Constantinidou. *Responses of Woody Plants to Environmental Pollution*, Part I Sources and Types of Pollutants and Plant Responses. Forestry Abstracts. 47 (1986): 5-51.
- Lange, D.S. *Effects of Sulfuric Acid Aerosols on Vegetation*. U.S. Environmental Protection Agency, Office of Research and Development, Health Effects Research Laboratory (EPA-600/3-79-002). Triangle Park, NC. (1979).
- Leakey A.D.B., E.A. Ainsworth, C.J. Bernacchi, A. Rogers, S.P. Long, D.R. Ort. *Elevated CO₂ effects on plant carbon, nitrogen, and water relations: six important lessons from FACE*. Journal of Experimental Botany. 60 (2009): 2859-2876.
- LeBlanc, F. and D.N. Rao. *Effects of Air Pollutants on Lichens and Bryophytes*. Responses of Plants to Air Pollution. Ed. JB Mudd and TT Kozlowski. New York: Academic Press, 1975.

- Linzon, S.N. *Effects of Gaseous Pollutants on Forests in Eastern North America*. Water, Air, and Soil Pollution. 31 (1986):537-550.
- Mansfield, T.A. and P-H Freer-Smith. The Role of Stomata in Resistance Mechanisms. Gaseous Air Pollutants and Plant Metabolism. Ed. M.J. Koziol and F. R. Whatley. London: Buttersworth, (1984). 131-146
- McCune, B. *Lichen Communities along O₃ and SO₂ Gradients in Indianapolis*. The Bryologist. 91 (1988): 223-228.
- Morgan P.B., G.A. Bollero, R.L. Nelson, F.G. Dohleman, and S.P. Long. *Smaller than predicted increase in aboveground net primary production and yield of field grown soybean under fully open air (CO₂) elevation.* Global Change Biology. 11 (2005): 1856-186.
- National Atmospheric Deposition Program (NRSP-3). 2018a. Sulfate Ion Concentration, 2016. NADP Program Office, Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, WI 53706. Retrieved 1 June 2018 from http://nadp.slh.wisc.edu/maplib/pdf/2016/SO4_conc_2016.pdf.
- National Atmospheric Deposition Program (NRSP-3). 2018b. Hydrogen Ion Concentration as pH from Measurements Made at the Central Analytical Laboratory, 2016. NADP Program Office, Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, WI 53706. Retrieved June 1, 2018 from http://nadp.slh.wisc.edu/maplib/pdf/2016/pH_2016.pdf.
- Natural Resources Conservation Service. 2018. Soil Survey of Douglas County, Wisconsin. Retrieved June 1, 2018 from https://sdmdataaccess.nrcs.usda.gov/.
- Okana, K, O. Ito, G. Takeba, A. Shimizu, and T. Totsuka. *Effects of O₃ and NO₂ Alone or in Combination on the Distribution of 13C-Assimilate in Kidney Bean Plants*. Japanese Journal of Crop Science. 54 (1985): 152-159.
- Omrod, D.P. Air Pollutant Interactions in Mixtures. Effects of Gaseous Air Pollution in Agriculture and Horticulture. Ed. M.H. Unsworth and D.P. Omrod. London: Butterworth, 1982.
- Omrod, D.P., V.J. Black, and M.H. Unsworth. *Depression of Net Photosynthesis in Vicia faba L. Exposed* to Sulphur Dioxide and Ozone. Nature (London). 291 (1981): 585-586.
- Prinz, B. and C.J. Brandt. *Effects of Air Pollution on Vegetation. Pollutants and Their Ecotoxicological Significance.* Ed. HW Nurnberg. New York: John Wiley & Sons, 1985. 67-84.
- Pye, J.M. Impact of Ozone on the Growth and Yield of Trees: A Review. J. Environ. Qual. 17. (1988). 347-360.
- Reich, P.B. and R.G. Amundson. *Ambient Levels of O₃ Reduce Net Photosynthesis in Tree and Crop Species.* Science 230 (1985): 566-670.
- Reinert, R.A., A.S. Heagle, W.W. Heck. *Plant Responses to Pollutant Combinations. Responses of Plants to Air Pollution.* Ed. J.B. Mudd and T.T. Kozlowski. London: Academic Press, 1975.
- Reisman and Frisbie, 2004. *Calculating Realistic PM*₁₀*Emissions from Cooling Towers*. AWMA, 2001 Florida Conference Proceedings. Abstract No. 216, Session No. AM-1b.

- Siemens Industry, Inc., *Tech Topics SF₆ Gas in Medium Voltage Switchgear*. May 2013. Retrieved January 25, 2019 from https://w3.usa.siemens.com/smartgrid/us/en/newsletters/archive/pages/sf6-gas-in-medium-voltage-switchgear.aspx
- Smith, W. H. Air Pollution and Forests, New York: Springer-Verlag, 1981.
- Taylor, O.C. and D.C. McLean. Nitrogen Oxides and Peroxyacyl Nitrates. Recognition of Air Pollution Injury to Vegetation: A Pictorial Atlas. Ed. JS Jacobsen. Pittsburgh: Air Pollution Control Association, 1970. E1-E14.
- Taylor, O.C., C.R. Thompson, D.T. Tingey, and R.A. Reinert. Oxides of Nitrogen. Responses of Plants to Air Pollution. Ed. JB Mudd and TT Kozlowski. New York: Academic Press, 1975. 122-140
- Texas Commission on Environmental Quality. *Air Permit Technical Guidance for Chemical Sources Fugitive Guidance*. APDG 6422v2, Revised June 201www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/fugitiveguidance.pdf
- Thompson, C.R., Kats G., Dawson, P., Wolf, J., and Bytnerowicz, A. *Effects of Ozone or SO*₂ on Growth and Yield of Rice, Final Report. California Air Resources Board. Statewide Air Pollution Research Center, University of California, Riverside, California. (1983).
- Tingey, D.T., R.A. Reinert, J.A. Dunning, and W.W. Heck. *Vegetation Injury from the Interaction of Nitrogen Dioxide and Sulfur Dioxide*. Phytopathology. 61 (1971): 1506-1511.
- Treshow, M and F.K. Anderson. Plant Stress and Air Pollution. New York: John Wiley & Sons, 1989.
- U.S. Climate Change Technology Program, Technology Options for the Near and Long Term, 4.3.5, *Electric Power System and Magnesium: Substitutes for SF*₆, November 2003, Page 185.
- U.S. Environmental Protection Agency. *Ambient Air Monitoring Guidelines for Prevention of Significant Deterioration (PSD)*. EPA-450/4-87-007. North Carolina: Office of Air Quality Planning and Standards, 1987.
- U.S. Environmental Protection Agency. *Control of Open Fugitive Dust Sources*. EPA-450/3-88-008. September 1988.
- U.S. Environmental Protection Agency. *Guidance on Significant Impact Levels for Ozone and Fine Particles in the Prevention of Significant Deterioration Permitting Program* (Memorandum from Peter Tsirigotis). April 17, 2018a.
- U.S. Environmental Protection Agency. *Guidance on the Development of Modeled Emission Rates for Precursors (MERPS) as a Tier I Demonstration Tool for Ozone and PM*_{2.5} *under the PSD Permitting Program.* Memo from Richard A. Wayland. April 30, 2019.
- U.S. Environmental Protection Agency. *Guideline for Determination of Good Engineering Practice Stack Height (Technical Support Document for Stack Height Regulations)*. EPA-450/4-80-023LR. North Carolina: Office of Air Quality Planning and Standards, 1985.
- U.S. Environmental Protection Agency. *Haul Road Workgroup Final Report Submission to EPA-OAQPS*. Memo from Tyler Fox. March 2, 2012.

- U.S. Environmental Protection Agency. *Hazardous Air Pollutant Emissions from Process Units in the Synthetic Organic Chemical Manufacturing Industry – Background Information for Proposed Standards Volume 1C: Model Emission Sources.* EPA-453/D-92-016c. North Carolina: Office of Air Quality Planning and Standards, November 1992.
- U.S. Environmental Protection Agency. *New Source Review Workshop Manual Draft*. North Carolina: Office of Air Quality Planning and Standards, 1990.
- U.S. Environmental Protection Agency. *NAAQS Table*. Available online at https://www.epa.gov/criteria-air-pollutants/naaqs-table%20. Accessed December 15, 2020.
- U.S. Environmental Protection Agency. *Protocol for Equipment Leak Emission Estimates*. EPA-453/R-95-017. North Carolina: Office of Air Quality Planning and Standards, November 1995.
- U.S. Environmental Protection Agency. *PSD and Title V Permitting Guidance for Greenhouse Gases*. North Carolina: Office of Air Quality Planning and Standards, March 2011.
- U.S. Environmental Protection Agency. *Revisions to the Guideline on Air Quality Models: Enhancements to the AERMOD Dispersion Modeling System and Incorporation of Approaches to Address Ozone and Fine Particulate Matter.* EPA-HQ-OAR-2015-0310. Final rule, January 17, 2017. (82 FR 5182).
- U.S. Environmental Protection Agency. SF₆ Emission Reduction Partnership for Electric Power Systems 2014 Annual Report. March 2015. Retrieved January 25, 2019 from https://www.epa.gov/sites/production/files/2016-02/documents/sf6_annrep_2015_v9.pdf
- U.S. Environmental Protection Agency. *User's Guide for the AMS/EPA Regulatory Model –AERMOD*. EPA-454/B-21-001. North Carolina: Office of Air Quality Planning and Standards, April 2021.
- U.S. Forest Service, National Park Service, and the U.S. Fish and Wildlife Service. (2010). *Federal Land Managers' Air Quality Related Values Workgroup (FLAG). Phase I Report – Revised (2010).* Natural Resources Report NPS/NRPC/NRR-2010/232.
- Westman, K.P. Preston, L.B. Weeks, and W.E. *SO*₂ *Effects on the Growth of Native Plants*. SO₂ and Vegetation. Ed. WE Winner et al. Palo Alto: Stanford University Press, 1985.
- Wetmore, C.M. *Lichens and Air Quality in Indiana National Lakeshore*. Mycotaxon. XXXIII (1988): 25-39.
- White, K.L., A.C. Hill, and J.H. Bennett. Synergistic Inhibition of Apparent Photosynthesis Rate of Alfalfa by Combinations of Sulphur Dioxide and Nitrogen Dioxide. Environmental Science and Technology. 8 (1974): 574-576.
- Will-Wolf, S. *Effects of a "Clean" Coal-fired Generating station on Four Common Wisconsin lichen Species.* The Bryologist. 83 (1980): 296-300.
- Winner, W.E. and Mooney, H.A. *Ecology of SO*₂ *Resistance: III. Metabolic Changes of C*₃ *and C*₄ *Atriplex Species Due to SO*₂ *Fumigation.* Oecologia. 44 (1980): 49-54.
- Wisconsin Department of Natural Resources. Correspondence/Memorandum *Guidance for Including PM*_{2.5} *in Air Pollution Control Permit Applications*. February 22, 2016.

- Wisconsin Department of Natural Resources. *Guidance on Air Quality Background Concentrations*. October 15, 2021.
- Wisconsin Department of Natural Resources. *Wisconsin Air Dispersion Modeling Guidelines*. AM-528 2015. March 2018.
- Wright, E.A., Lucas, P.W., Cottam, D.A., and Mansfield, T.A. Physiological Responses of Plants to SO₂, O₂, and O₃. Implications for Drought Resistance. Direct Effects of Dry and Wet Deposition on Forest Ecosystems — In Particular Canopy Interactions. Lokeberg, Sweden: EEC Cost Workshop, 1986.

APPENDIX A – FORMS

Facility Details and Permit Actions

Air Pollution Control Permit Application Form 4530-100 (R 9/17) Page 1 of 2

Notice: Use of this form is required by the Department for any air pollution control permit application filed pursuant to ss. 285.61, 285.62 or 285.66, Wis. Stats. Completion of this form is mandatory. The Department will not consider or act upon your application unless you complete and submit this application form. You are required to submit two copies in accordance with s. NR 407.05(2), Wis. Adm. Code. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Open Records Law [ss. 19.31-19.39, Wis. Stats.].

	cility Information				0 [to ID Novels and (EID)
	Facility Name	2. SIC and NAICS				ity ID Number (FID)
	Nemadji Trail Energy Center	4911 & 221112				127840
4. S	Street Address (where pollution sources are/will be located)	5. 💽 City 🔵 Tow	n 🔿 ۱	/illage	6. Cour	nty
1	161 31st Street	of Superior				Douglas
7. F	Primary Operating Activity (e.g., lead-acid battery manufacturer or sulfite	e paper mill)				
H	Electric generation					
		. If yes, indicate the pol	lutant(s)	for the	nonattai	nment designation
	(refer to instructions) O Yes () No					
Ар	plicant Information					
10.	Responsible Official Name (person legally responsible for the operation of	f the permitted air pollution	sources [s	ee NR 40	0.02(80e), Wis. Adm. Code])
	Josh Skelton					
11.	Title 12. E	Email				
	Vice President - Generation, South Shore Energy, LLC j	jskelton@mnpower.c	om			
13.	Mailing Address City				State	ZIP Code
	1259 NW 3rd St. Coh	nasset			MN	55721
14.	Parent Corporation or Owner Name (if not wholly owned by application	cant)				
	South Shore Energy, LLC					
15.	Mailing Address City		State	ZIP Co	de	Country (if not U.S.)
	30 West Superior Duluth		MN	558	302	
16.	Permit Contact Person - to be contacted for additional information concern	ning air pollution sources 1	7. Email			
	Melissa Weglarz	mweglarz@mnpower.com				
18.	Title	1	9. Phone	e Numb	er	
	Environmental Audit and Policy Manager			(2	218) 35	5-3321
Per	rmit Information			Ì	,	
20.	Construction Permit Actions: Instructions: If applying for a construction permit action (including mod MUST also apply for an operation permit option. A check for the constru- forms before the department will begin their review. Application fees are	uction permit application e listed below in section A	fees MUS A. Additio	ST be su nal fees	bmitted v may be i	with the application required and a final
Α.	invoice will be sent when a final permit decision is made. See ch. NR 41		s and ad	altional r	eview te	es.
А.	Permit Actions: New Construction/Modification (\$7,500) – A	Inticipated start dates:		·····		Orientiere
	Construction Permit Revision (\$1,500 fee)		Cons	truction		Operation
	List Permit(s) to be revised:					
	Requesting Expedited Review – If expedited review of con periods, the construction permit review fee—invoiced with the depending on the type and how fast the permit is issued. See	e final permit—will inclu	de a sur	charge	from \$4	
Β.	Construction Permit Exemptions (indicate one): If you are reques included for the a	sting a review and resp appropriate exemption				
	Actual Emissions-Based Exemption (for construction projection)	ect only) (\$1,250)				
	Research & Testing (\$1,250)					
	Modification for source with Plant-wide Applicability Limit		nodeling))		
	Significant Net Emissions Increase (\$5,500 / \$6,500 with I	modeling)				
	○ General exemption (\$500 - NR 406.04(2))					
	Specific exemptions (\$500) – Select appropriate code c	citation(s) from list:				
	Other: For more information on exemption citations: <u>h</u>		isin.gov/	code/ac	lmin co	de/nr/400/406.pdf
C.	Operation Permit type for Construction Action (select one):					
0.	 Original – if you currently do not have a facility-wide oper 	ration permit				

- O Revision so that your facility-wide operation permit will be revised to reflect the proposed project
- O Renewal if you are renewing your facility-wide operation permit in conjunction with the proposed project

Facility Details and Permit ActionsAir Pollution Control Permit ApplicationForm 4530-100 (R 9/17)Page 2 of 2

21.	Operation Permit Actions:		
Α.	Type of Operation Permit Requested (select one) Part 70 Source Synthetic Minor, Non - Part 70 Source Non - Part 70 Source Elective	NOTE:	Facilities that do not have a facility-wide operation permit issued MUST select the appropriate option. All other requests should indicate type of permit, to reflect continued or changing status.
В.	Renewal Operation Permit Renewal	NOTE:	For more information, see website on streamlined renewal application options.
C.	Operation Permit Revision: (select one revision type – O Administrative Revision (NR 407.11) O Minor Revision (NR 407.12) O Significant Revision (NR 407.13)		de for criteria) rmit(s) to be revised:
D.	Operation Permit Exemption Options: IMPOR (select one type for entire facility) O Actual Emissions Based Exemption (NR 407.03 O Natural Minor Source Exemption (NR 407.03(1s))	8(1m)) s))	The exemption options in Section D. require revocation of existing operation and/or construction permits. Certain construction permit conditions cannot be revoked, and therefore the department would be unable to revoke the permits. Review all existing permits for case-by-case determinations, especially NR 405/NR 408, and discuss with department staff whether conditions are revocable.
E.	Other Operation Permit Exemption Options: O General exemptions – NR 407.03(2) O Specific categories – Must be only air pollution s Select appropriate code citation(s) from list:		entire facility
22.	For All Permit Actions:		
OR	BUREAU MADI Email an electronic copy to <u>DNRAMAirPermit@wisc</u>	TMENT C OF AIR N P.O. BOX SON, WI	OF NATURAL RESOURCES MANAGEMENT
Α.	address above. Signature of Responsible Official Statement of Completeness: I have reviewed this application in its entirety and, based I certify that the statements and information contained in	n this app	lication are true, accurate and complete.
В.	I certify that the facility described in this air pollution except for the following emissions unit(s) (list all non	permit ap permit ap	plication is fully in compliance with all applicable requirements. plication is fully in compliance with all applicable requirements, ng units):
Sigr		Date Signe	

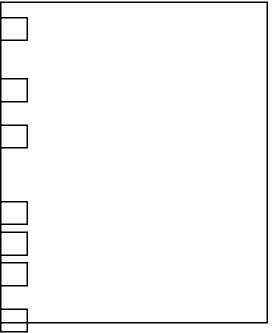
State of Wisconsin Department of Natural Resources APPLICATION

FACILITY PLOT PLAN AIR POLLUTION CONTROL PERMIT

Form 4530-101 Rev. 12-99

Use of this form is required by the Department for any air pollution control permit application filed pursuant to ss. 285.61, 285.62 or 285.66, Wis Stats. Completion of this form is mandatory. The Department will not consider or act upon your application unless you complete and submit this form. It is not the Department's intention to use any personally identifiable information from this form for any other purpose.

In order for a comprehensive air quality analysis to be accomplished, a facility plot plan MUST be included with the permit application. If the application is for an initial operation permit, submit the elements under #2 below. If the application is for a renewal, answer #1 below first.


1. Have there been changes to the facility plot plan since the previous operation permit application was submitted?

No. The plot plan submitted with the original application can be used for the renewal. Yes. An up-to-date plot plan is attached.

2. If there have been changes to the facility plot plan since the last operation permit application submittal, RESUBMIT an up-to-date plot plan which must include the following or the permit application will be deemed incomplete:

FOR DEPARTMENT USE ONLY

COMPLETE INCOMPLETE NOT APPLICABLE

1. A building layout (blueprint, plan view) including all buildings occupied by or located on the site of the facility.

2. The maximum height of each building (excluding stack height).

3. The location and numerical designation of each stack. Please ensure these designations correspond to the appropriate stacks listed on the other permit forms in this application.

4. The location of fenced property lines (if any).

5. Identify direction "North" on all submittals.

6. All drawings shall be to scale and shall have the scale graphically depicted.

7. An additional regional map depicting the facility location in relation to the surrounding vicinity (roads or other features) shall be included.

Are there any outdoor storage piles on the facility site? \Box Yes \boxtimes No

If so, what material does the pile(s) consist of?

Are there any dirt roads or unpaved parking lots on the facility site? \Box Yes \boxtimes No

From January 2021 Application

SOURCE AND SITE DESCRIPTIONS AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-102 Rev. 12-99 Information attached? <u>Y (y/n)</u>

Use of this form is required by the Department for any air pollution control permit application filed pursuant to ss. 285.61, 285.62 or 285.66, Wis Stats. Completion of this form is mandatory. The Department will not consider or act upon your application unless you complete and submit this form. It is not the Department's intention to use any personally identifiable information from this form for any other purpose.

1. Briefly describe the proposed project or existing Unit(s) to be permitted. Attached supplemental forms as needed.

The proposed project is a combined-cycle combustion turbine electricity generation facility. Emission units will include one H-class combustion turbine with a heat recovery steam generator (HRSG) and one steam turbine generator. The combustion turbine will primarily combust pipeline-grade natural gas and will combust fuel oil as a back-up fuel. Other emission units for the project include an auxiliary boiler, two natural gas-fired gas heaters, an emergency diesel fire pump, an emergency diesel generator, fuel oil storage tanks, SF₆ circuit breakers, haul road truck traffic, and piping component fugitives.

For Renewal Applications:

1. Were any new or modified emissions units installed/modified at the facility since the last operation permit issuance date?

 \checkmark No. Proceed to form 4530-102A.

 \Box Yes. Answer the following questions:

- 2. Briefly describe any new/modified emissions units installed at the facility since the last operation permit issuance date and include the following information. Attach supplemental forms as needed.
 - a. List the Department issued construction and/or operation permit number as applicable (identifying which units were covered by which permit if multiple permits issued).
 - i. If operation permit application forms were submitted for the new emission unit(s) covered by the construction permit mentioned above, reference the date of that application.
 - ii. For Part 70 Sources Only: If no operation permit application forms were submitted for the new emissions unit(s) covered by the construction permit mentioned above, complete the appropriate forms 4530-118 through 4530-125.
 - b. Include the Department issued construction permit exemption number, if one was assigned, or reference the date of the letter of the exemption.

2. Site Description

The Project will be located east of the existing Enbridge Energy Superior Terminal Facility on the banks of the Nemadji River in the City of Superior in Douglas County, Wisconsin.

From January 2021 Application

State of Wisconsin Department of Natural Resources SOURCE DESCRIPTION - SUPPLEMENTAL AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-102A Rev. 12-99 Information attached? <u>N</u> (y/n)

Use of this form is required by the Department for any air pollution control permit application filed pursuant to ss. 285.61, 285.62 or 285.66, Wis Stats. Completion of this form is mandatory. The Department will not consider or act upon your application unless you complete and submit this form. It is not the Department's intention to use any personally identifiable information from this form for any other purpose.

- List all <u>significant</u> existing or proposed air pollution units, operations, and activities at the facility. A short narrative of the inventory of air pollution emissions unit (e.g., boiler, printing line, etc.) followed by equipment specifications will suffice. If the facility consists of several individual emission units, present this information in an outline format. (See instruction booklet for an example Unit description.)
 - A. Combustion Turbine, EU01 Combined cycle with duct burner –S01, P01, C01a (SCR), C01b (oxidation catalyst) Manufacturer – Siemens SGT6-80000H Fuel – Natural gas (primary), Fuel oil (back-up) Maximum continuous heat input – 4,671 MMBtu/hr HHV when combusting natural gas, 4,027 MMBtu/hr, HHV when combusting diesel fuel oil with a natural gas-fired duct burner Maximum hourly fuel combustion – 4.58 MMscf/hr (natural gas); 22,050 gal/hr (fuel oil)
 - B. Auxiliary Boiler, EU02, S02, B02, C02 (ultra-low NO_x burners); Flue Gas Recirculation, and Oxidation Catalyst) Manufacturer – to be determined Fuel – Natural gas Maximum continuous heat input – 100 MMBtu/hr Maximum hourly fuel combustion- 98,040 scf/hr
 - C. Circuit Breakers, EU 03, F03 Three 345-kV and two 19-kV circuit breakers Manufacturer – to be determined
 - D. Natural Gas Heater #1, EU04, S04, P04 Manufacturer – to be determined Fuel – Natural gas Maximum continuous heat input – 10 MMBtu/hr Maximum hourly fuel combustion – 9,804 scf/hr
 - E. Natural Gas Heater #2, EU05, S05, P05 Manufacturer – to be determined Fuel – Natural gas Maximum continuous heat input – 10 MMBtu/hr Maximum hourly fuel combustion – 9,804 scf/hr
 - F. Emergency Diesel Fire Pump, EU06, S06, P06 Manufacturer – to be determined Fuel – Fuel oil Maximum continuous heat input – 282 HP Maximum hourly fuel combustion – 14.1 gallons per hour
 - G. Emergency Diesel Generator, EU07, S07, P07 Manufacturer – to be determined Fuel – Fuel oil Maximum continuous heat input – 1,490 HP Maximum hourly fuel combustion – 150 gallons per hour
 - H. Storage Tank(s) T01 - One 180,000-gallon fuel oil tank (backup fuel for combustion turbine) T02 - One 1,700-gallon diesel generator tank T03- One 350-gallon diesel fire pump tank

- I. Haul road fugitives, F01
- J. Piping component fugitives, F02

For Renewal Applications:

1. If there were any new or modified emissions units installed/modified at the facility since the last operation permit issuance date:

- a. If any of these new/modified units were exempt from construction permit requirements, but are significant emissions units and operation permit application(s) for the new unit(s) were submitted to the Department reference the date of those submittals.
- b. If any of the new/modified units are insignificant emissions units list them on form 4530-102B.
- c. If any of the new/modified emissions units do not fit any of the above categories, fill out the appropriate forms for each emissions unit as follows:
 - i. For Part 70 Sources: Fill out the appropriate forms 4530-103 through 4530-133; OR
 - ii. For Synthetic Minor Non Part-70 Sources and Non-Part 70 Sources: Fill out the appropriate forms 4530-103 through 4530-117 and 4530-126 through 4530-129.

State of Wisconsin Department of Natural Resources APPLICATION

SOURCE DESCRIPTION - SUPPLEMENTAL AIR POLLUTION CONTROL PERMIT

Form 4530-102B Rev. 12-99

Information attached? <u>N</u> (y/n)

Use of this form is required by the Department for any air pollution control permit application filed pursuant to ss. 285.61, 285.62 or 285.66, Wis Stats. Completion of this form is mandatory. The Department will not consider or act upon your application unless you complete and submit this form. It is not the Department's intention to use any personally identifiable information from this form for any other purpose.

- 1. Mark all <u>insignificant</u> existing or proposed air pollution units, operations, and activities at the facility listed below. If not listed, provide a short narrative of the inventory of air pollution emissions unit (e.g., boiler, printing line, etc.) followed by equipment specifications. If the facility consists of several individual emission units, present this information in an outline format. For Renewal Applications, identify those that are new since the last update to your application. (See instruction booklet for an example Unit description.)
 - Maintenance of Grounds, Equipment, and Buildings (lawn care, painting, etc.)
 - Boiler, Turbine, and HVAC System Maintenance
 - I Pollution Control Equipment Maintenance
 - □ Internal Combustion Engines Used for Warehousing and Material Transport
 - I Fire Control Equipment
 - I Janitorial Activities
 - I Office Activities
 - ⊠ Convenience Water Heating
 - Convenience Space Heating (< 5 million BTU/hr Burning Gas, Liquid, or Wood)
 - ⊠ Fuel Oil Storage Tanks (< 10,000 gal.)
 - □ Stockpiled Contaminated Soils
 - Demineralization and Oxygen Scavenging of Water for Boilers
 - I Purging of Natural Gas Lines
 - Sanitary Sewer and Plumbing Venting

From December 2018 Application

State of Wisconsin
Department of Natural Resources

FACILITY HAZARDOUS AIR POLLUTANT SUMMARY AIR POLLUTION CONTROL PERMIT APPLICATION

Form 4530-127 11-93

Information attached? <u>n</u> (y/n)

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center 2. Facility id

2. Facility identification number: To Be Assigned 816127840

3. Complete the following emissions summary for all hazardous air emissions at this facility (as defined in ch. NR 445, Wis Adm. Code, and sec. 112, 1990 Clean Air Act Amendments):

		Units		Units		
SEE APPENDIX C FOR HAPS EMISSIONS SUMMARY						
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY
						TPY

From December 2018 Application

State of Wisconsin Department of Natural Resources SEE INSTRUCTIONS ON REVERSE SIDE	C EMISSIONS SUMMARY LUTION CONTROL PERMIT APPLICATION 0-129 11-93 Information attached? Y (y/n)			
1. Facility name Nemadji Trail Energy Center:		2. Facility identifi	cation number: To Be /	Assigned 816127840
3. Complete the following emissions summary	for the listed emissio	ns at this facility.		
Air pollutant	Actual	Maximum theoretical emissions	Potential to emit	Maximum allowable
	TPY	TPY	TPY	TPY
SEE A	PPENDIX C FOR E	MISSIONS SUMM	ARY	
Particulates				
Sulfur dioxide				
Organic compounds				
Carbon monoxide				
Lead				
Nitrogen oxides				
Total reduced sulfur				
Mercury				
Asbestos				
Beryllium				
Vinyl chloride				

From January 2021 Application CURRENT EMISSIONS REQUIREMENTS AND STATUS OF FACILITY AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-132 11-93 Information attached? <u>n (y/n)</u>

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center		2. Facility identification number: 816127840			
		5. State Only			
Ambient Air Quality	NR 404, 40 CFR 50		Will comply with rule	Units not constructed yet	
State Origin PSD Review	NR 405	Х	Will comply with rule	Units not constructed yet	
Construction Permits	NR 406	Х	Will comply with rule	Units not constructed yet	
Operation Permits	NR 407, 40 CFR 70		Will comply with rule	Units not constructed yet	
Air Permit, Emission, and Inspection Fees	NR 410	Х	Will comply with rule	Units not constructed yet	
Carbon Monoxide	NR 426	х	Will comply with rule	Units not constructed yet	
Malodorous Emissions and Open Burning	NR 429	Х	Will comply with rule	Units not constructed yet	
NO _x and SO ₂	NR 432	Х	Will comply with rule	Units not constructed yet	
Emission Prohibition, Exceptions, Delayed Compliance Orders, and Variance	NR 436	Х	Will comply with rule	Units not constructed yet	
Air Contaminant Emission Inventory Reporting Requirements	NR 438	Х	Will comply with rule	Units not constructed yet	
Reporting, Recordkeeping, Testing, Inspection, and Determination of Compliance Requirements	NR 439	Х	Will comply with rule	Units not constructed yet	
Standards of Performance for New Stationary Sources	NR 440, 40 CFR 60		Will comply with rule	Units not constructed yet	
Hazardous Pollutants	NR 445	Х	Will comply with rule	Units not constructed yet	

8. Is this facility subject to the provisions governing prevention of accidental releases of hazardous air contaminants contained in section 112(r)(7) of the Clean Air Act?

If you answered yes, please describe how you will achieve compliance with these provisions, including the requirement to formulate a plan for preventing accidental releases (sec. 112(r)(7)(B)(ii)):

State Only	

		From January 2021 Application
State of Wisconsin	FACILITY REQUIREMENT CO	MPLIANCE PLAN
Department of Natural Resources	COMMITMENTS AND SCHED	ULE
•	AIR POLLUTION CONTROL PI	ERMIT APPLICATION
	Form 4530-133 11-93	Information attached? n (y/n)
SEE INSTRUCTIONS ON REVERSE SIDE		

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: 816127840

- 3. For facilities that are presently in compliance with all applicable requirements, including any enhanced monitoring and compliance certification requirements under section 114(a)(3) of the Clean Air Act that apply, complete the following. These commitments are part of the application for Part 70 permits.
 - □ We will continue to operate and maintain this facility in compliance with all applicable requirements.
 - Form 4530-132 includes new requirements that apply or will apply to this facility during the term of the permit. We will meet such requirements on a timely basis.
- 4. For facilities not presently fully in compliance, complete the following.
- This facility is in compliance with all applicable requirements except for those indicated below. We will achieve compliance according to the following schedule:

Applicable Requirement	~		
	Corrective Actions	Deadline	
1.			
1.			
2.			
3.			
		<u>II</u>	
Progress reports will be submitted:			
Start date: and every six (6) months the	ereafter		

State of Wisconsin Department of Natural Resources SEE INSTRUCTIONS ON REVERSE SI	IT APPLICATION Information attached? <u>n</u> (y/n)				
		3. Stack identification number:			
1. Facility name: Nemadji Trail	2. Facility identification number:				
Energy Center	To be assigned 816127840	S01			
4. Exhausting Unit(s), use Unit identification	n number from appropriate Form(s) 4530-104, 106,	107, 108 and/or 109			
4530-104 EU01 4530-106	4530-107 4530-108	4530-109			
5. Identify this stack on the plot plan required	d on Form 4530-101				
 6. Indicate by checking: ✓ This stack has an actual exhaust point. □ This stack serves to identify fugitive emissions. If this stack has an actual exhaust point, then provide the following stack parameters					
7. Discharge height above ground level: <u>190</u> (feet)					
8. Inside dimensions at outlet (check one and complete):					
Circular <u>21.28</u> (feet) □ rectangular length (feet) width (feet)					
9. Exhaust flow rate:					
Normal (ACFM) (at 7.9 °F)	Maximum (ACFM) (at 7.9 °F				
Natural Gas = 1,488,999 (without DB)	<u>Natural Gas = 1,496,266 (wit</u>	<u>h DB),</u>			
<u>Fuel Oil = 1,519,142 (without DB)</u>	Fuel Oil = 1,519,142 (without DB)Fuel Oil = 1,535,605 (with DB)				
10. Exhaust gas temperature (normal): <u>N</u>	Vatural Gas = 168, Fuel Oil = 185 (°F)				
11. Exhaust gas moisture content:	Normal volume percent	Maximumvolume percent			
12. Exhaust gas discharge direction:	Up Down	Horizontal			
13. Is this stack equipped with a rainhat or any obstruction to the free flow of the exhaust gases from the stack?					
***** Complete the appropriate Air Perm exhausting through this stack.	it Application Forms(s) 4530-104, 106, 107, 108 or	109 for each Unit *****			

From December 2018 Application

State of Wisconsin Department of Natural Resources

SEE INSTRUCTIONS ON REVERSE SIDE

BOILER OR FURNACE OPERATION AIR POLLUTION CONTROL PERMIT APPLICATION

Form 4530-104 11-93

Information attached? (y/n)

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840	
3. Stack identification number: S01	4. Boiler/furnace number: EU01	
4a. Unit description:		

Natural gas-fired combustion turbine and heat recovery steam generator operating in combined cycle. Capable of burning No. 2 fuel oil as a backup fuel. Duct burning capability for natural gas and fuel oil combustion.

5. Indicate the boiler/furnace control technology status. \Box Unc	ontrolled 🗹 Controlled
If the boiler/furnace is controlled, enter the control device num	ber(s) from the appropriate forms:
4530-110 4530-111 4530-112 4530-114 4530-115 4530-116	
6. Furnace type: Combined-Cycle Combustion Turbine	 7. Maximum continuous rating: 4,671 MMBtu/hr HHV for Natural Gas; 4,027 MMBtu/hr for Fuel Oil
8. Manufacturer: Siemens	9. Model number: 8000H

10. Date of construction or last modification: $\frac{06}{01}/2021$

11. Fuels and firing conditions:		1	1	1
	Primary fuel	Backup fuel #1	Backup fuel #2	Backup fuel #3
Fuel name	Natural Gas	Fuel Oil		
Higher heating value	1,020 Btu/scf	137,000 Btu/gal		
Maximum sulfur content (Wt.%)	0.5 gr/100 SCF (annual average)	0.0015%		
Maximum ash content (Wt.%)	Negligible	Negligible		
Excess Combustion Air (%O ₂)	N/A	N/A		
Moisture content (as fired) (%)	Negligible	Negligible		
Maximum hourly consumption	3.59 MMscf/hr (CT) 0.99 MMscf/hr (DB)	22,050 gal/hr (CT)		
Actual yearly consumption	40,109 MMscf/yr	11.0 x 10 ⁶ gal/yr		

***** For this emissions unit, identify the method of compliance demonstration by completing Form 4530-118, ***** DESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCE. Attach Form 4530-118 and its attachment(s) to this form. This is not a requirement of non-Part 70 sources.

***** Please complete the Air Pollution Control Permit Application Forms 4530-126 and 4530-128 for this Unit. *****

State of Wisconsin Department of Natural Resources

From December 2018 Application

CONTROL EQUIPMENT-CATALYTIC OR THERMAL OXIDATION

AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-113 11-93 Informati

Information attached? <u>n</u> (y/n)

SEE INSTRUCTIONS ON REVERSE SIDE

Section A	
1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S01	4. Unit identification number: EU01

5. Control device number: C01a

6. Manufacturer and model number: TBD

7. Date of installation: 06/01/2021

8. Describe in detail the oxidation system. Attach a blueprint or diagram of the system.

Attached? No

Selective catalytic reduction of NOx using ammonia injection and a catalyst.

9. List the pollutants to be controlled by this equipment and the expected control efficiency for each pollutant on the table below.

Pollutant	Inlet pollutant concentration		Outlet pollutant concentration		Efficiency (%)	
	gr/acf	ppmv	gr/acf	ppmv	hood capture	pollutant destruction
NOx (Natural gas)		35		2.0 @ 15% O ₂		94%
NOx (Fuel oil)		42		6.0 @ 15% O ₂		85%

10: Check one: 🔽 Catalytic DThermal oxidizer

11. Discuss how the spent catalyst will be handled for reuse or disposal.

TBD

- 12. Prepare a malfunction prevention and abatement plan (if required under s. NR 439.11) for this pollution control system. Please include the following:
 - a. Identification of the individuals(s), by title, responsible for inspecting, maintaining and repairing this device.
 - b. Operation variables such as temperature that will be monitored in order to detect a malfunction or breakthrough, the correct operating range of these variables, and a detailed description of monitoring or surveillance procedures that will be used to show compliance.
 - c. An inspection schedule and items or conditions that will be inspected. For catalytic oxidizers, discuss the replacement and/or regeneration schedule for the bed and steps you have taken to ensure the bed's proper functioning throughout its expected lifetime.
 - d. A listing of materials and spare parts that will be maintained in inventory.
 - e. Is this plan available for review? <u>No</u>

Section B

The following questions must be answered by sources installing new equipment or existing Units which cannot document control efficiency of this device by other means. (Catalytic/Thermal dependent on item 10)

Catalytic oxidation	Thermal oxidation
13a. Operating temperature (°F):	b. Operating temperature (°F):
Max <u>TBD</u> Min	Max Min
14a. Catalvst bed volume (ft ³): TBD	b. Combustion chamber volume (ft ³):
15a. Gas volumetric flow rate at combustion conditions (ACFM): TBD	b. Maximum gas velocity through the device (ft./min):
16a. Type of fuel used: TBD	b. Type of fuel used:
17a. Maximum fuel use: TBD	b. Maximum fuel used:
18a. Type of catalyst used and volume of catalyst used (ft ³): The second seco	BD
19a. Residence time (seconds): TBD	b.Residence time (seconds):

From December 2018 Application COMPLIANCE CERTIFICATION - MONITORING AND REPORTING Department of Natural Resources

State of Wisconsin Department of Natural Resources

DESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCE Form 4530-118 11-93 Information attached? n (y/n)CONTROL EQUIPMENT-CATALYTIC OR THERMAL OXIDATION AIR POLLUTION CONTROL PERMIT APPLICATION

Form 4530-113 11-93

Information attached? (y/n)

SEE INSTRUCTIONS ON REVERSE SIDE

<u>Section A</u>	
1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S01	4. Unit identification number: EU01
5. Control device number: C01b	

6. Manufacturer and model number: TBD

7. Date of installation: TBD

8. Describe in detail the oxidation system. Attach a blueprint or diagram of the system.

Attached? Yes

Oxidation catalyst for the oxidation of CO.

9. List the pollutants to be controlled by this equipment and the expected control efficiency for each pollutant on the table below. Documentation is attached

Pollutant	Inlet pollutar	t concentration	Outlet pollut	ant concentration	Efficie	ncy (%)
	gr/acf	ppmv	gr/acf	ppmv	hood capture	pollutant
						destruction
CO (NG or FO with DB)				1.5 @15% O ₂		50-80%
CO (NG pr FO without DB)				1.5 @15% O ₂		50-80%
VOC (NG or FO without)				0.6 @15% O ₂		35-40%
VOC (NG with DB)				2.7 @15% O ₂		35-40%
VOC (FO with DB)				3.3 @15% O ₂		35-40%
10: Check one: 🗹 Cat	alytic	Thermal oxidiz	zer			

Discuss how the spent catalyst will be handled for reuse or disposal: 11.

TBD

Prepare a malfunction prevention and abatement plan (if required under s. NR 439.11) for this pollution control system. 12. Please include the following:

a. Identification of the individuals(s), by title, responsible for inspecting, maintaining and repairing this device.

b. Operation variables such as temperature that will be monitored in order to detect a malfunction or breakthrough, the correct operating range of these variables, and a detailed description of monitoring or surveillance procedures that will be used to show compliance.

c. An inspection schedule and items or conditions that will be inspected. For catalytic oxidizers, discuss the replacement and/or regeneration schedule for the bed and steps you have taken to ensure the bed's proper functioning throughout its expected lifetime.

d. A listing of materials and spare parts that will be maintained in inventory.

e. Is this plan available for review? <u>No.</u>

Section B

The following questions must be answered by sources installing new equipment or existing Units which cannot document control efficiency of this device by other means. (Catalytic/Thermal dependent on item 10)

Catalvtic oxidation	Thermal oxidation
13a. Operating temperature (°F): Max <u>TBD</u> Min <u>TBD</u>	b. Operating temperature (°F): Max Min
14a. Catalyst bed volume (ft ³): TBD	b. Combustion chamber volume (ft ³):
15a. Gas volumetric flow rate at combustion conditions (ACFM): TBD	b. Maximum gas velocity through the device (ft./min):
16a. Type of fuel used: N/A	b. Type of fuel used:
17a. Maximum fuel use: TBD	b. Maximum fuel used:
18a. Type of catalyst used and volume of catalyst used (ft ³): TBI)
19a. Residence time (seconds): TBD	b. Residence time (seconds):

P01

State of Wisconsin

From December 2018 Application COMPLIANCE CERTIFICATION - MONITORING AND REPORTING DESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCE Form 4530-118 11-93 Information attached? n_ (y/n)

All applicants except non-Part 70 sources are required to certify compliance with all applicable air pollution permit requirements by including a statement within the permit application of the methods used for determining compliance (please see sec. NR 407.05(4)(i), Wis. Adm. Code.) This statement must include a description of the monitoring, recordkeeping, and reporting requirements and test methods. In addition, the application must include a schedule for compliance certification submittals during the permit term. These submittals must be no less frequent than annually, and may need to be more frequent if specified by the underlying applicable requirement.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S01	4. Unit identification number: EU01

- 5. This Unit will use the following method(s) for determining compliance with the requirements of the permit (check all that apply and attach the appropriate form(s) to this form).
 - Continuous Emission Monitoring (CEM) Form 4530-119 Pollutant(s): NOx
 - Periodic Emission Monitoring Using Portable Monitors Form 4530-120 Pollutant(s):
 - □ Monitoring Control System Parameters or Operating Parameters of a Process Form 4530-121 Pollutant(s):
 - □ Monitoring Maintenance Procedures Form 4530-122 Pollutant(s):
 - Stack Testing Form 4530-123 Pollutant(s): NOx, SO₂, CO, VOC, PM₁₀, PM_{2.5}, H₂SO₄, opacity
 - ✓ Fuel Sampling and Analysis (FSA) Form 4530-124 Pollutant(s): SO₂
 - Recordkeeping Form 4530-125
 Pollutant(s): NO_x, SO₂ CO, VOC, PM₁₀, PM_{2.5}
 - □ Other (please describe) Form 4530-135 Pollutant(s):
- 6. Compliance certification reports will be submitted to the Department according to the following schedule:

Start date: <u>12 months after Title V issuance</u> and every <u>12</u> months thereafter.

Compliance monitoring reports will be submitted to the Department according to the following schedule:

Start date: 6 months after Title V issuance and every <u>6</u> months thereafter.

State of Wisconsin Department of Natural Resources

From December 2018 Application

COMPLIANCE DEMONSTRATION BY CONTINUOUS EMISSION MONITORING AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-119 11-93 Information attached? <u>n (y/n)</u>

An installation plan for each new (i.e., proposed) Continuous Emission Monitoring (CEM) system shall be submitted with the permit application for Department approval. Installation plans for existing CEMs are not required to be submitted with the permit application. The installation plan shall contain the following information: the name and address of the source; the source facility identification number; a general description of the process and the control equipment; the pollutant or diluent being monitored; the manufacturer, model number, and serial number of each analyzer; the operating principles of each analyzer; a schematic of the CEM system showing the sample acquisition point and the location of the monitors; and an explanation of any deviations from the siting criteria in Performance Specifications 1,2,3,4,5,6 and 7 in 40 CFR part 60, Appendix B, incorporated by reference in ch. NR 484, Wis. Adm. Code.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840		
3. Stack identification number: S01	4. Unit identification number: EU01		
5. Pollutant being monitored: (If other than opacity then item 6 or 7 will be required) NOx			
a. Name of manufacturer: TBD	b. Model number: TBD		
c. Is this an existing system 🗆 Yes 🗹 No	d. Installation date: 06/01/2021		
e. Type \Box In situ \blacksquare Extractive \Box Dilution \Box Other (specify)			
f. Describe how the monitor works: TBD			
g. Backup system: TBD			
 h. □ The CEM system certification is attached for Department aptic the startup of the CEM system. □ The certification was i. □ A CEM system Quality Assurance/Quality Control Plan is at please submit it within 60 days of the CEM system startup 	submitted to the Department on tached for Department approval. If the plan is not attached,		
6. Diluent being monitored: TBD			
a. Name of manufacturer: TBD	b. Model number: TBD		
c. Is this an existing system \Box Yes \bigtriangledown No d. Installation date: $06/01/2021$			
e. Type 🛛 In situ 🔽 Extractive 🗆 O2 🗋 CO2 🔹 Other (specify)			
f. Describe how the monitor works: TBD			
g. Backup system: TBD			
 h. □ The CEM system certification is attached for Department approval. ☑ If it is not attached, please submit it within 60 days of the startup of the CEM system. □ The certification was submitted to the Department on i. □ A CEM system Quality Assurance/Quality Control Plan is attached for Department approval. ☑ If the plan is not attached, please submit it within 60 days of the CEM system startup. □ The plan was submitted to the Department on 			
7. Flow. No flow meter. Fuel flow meter will be used to calculate s	tack flow.		
a. Name of manufacturer:	b. Model number:		
c. Is this an existing system \Box Yes \Box No	d. Installation date:		
e. Type Differential pressure Thermal Other (specify)			
f. Describe how the monitor works:			

g. Backup system:

h. □ The CEM system certification is attached for Department approval. □ If it is not attached, please submit it within 60 days of the startup of the CEM system. □ The certification was submitted to the Department on _____.

i. □ A CEM system Quality Assurance/Quality Control Plan is attached for Department approval. □ If the plan is not attached, please submit it within 60 days of the CEM system startup. □ The plan was submitted to the Department on _____.

State of Wisconsin Department of Natural Resources

COMPLIANCE DEMONSTRATION BY STACK TESTING AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-123 11-93 Info

Information attached? <u>n</u> (y/n)

The performance of an EPA stack test method for demonstrating compliance with an emission limitation has always been acceptable. EPA test methods contain quality assurance procedures that shall be strictly adhered to by the source. The applicant shall propose an appropriate program of stack testing for compliance demonstration. The stack testing program shall correlate with the corresponding emission limitation in terms of the frequency and duration of the stack tests. The Department may approve the proposed stack testing program, or other program which the Department determines to be appropriate. The procedures outlined in chapter NR 439 for stack test plans and procedures shall apply to stack test performed for ongoing compliance demonstration.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S01	4. Unit identification number: EU01

5. Pollutant being monitored: NOx, CO, VOC, PM10, PM2.5, H2SO4, opacity

6. Procedure being monitored: N/A

7. Is this an existing method of demonstrating compliance?	8. Installation date: 06/01/2021
\Box Yes \bigtriangledown No	

9. EPA or Department approved test method:

EPA Test Methods 5, 7, 8, 9, 10, 25, 201A, 202

10. Backup system

N/A

11.	Compliance shall be demonstrated:	□ Daily	□ Weekly	\Box Monthly	Upon initial startu

***** Any measured emission rate that exceeds an emission limitation established by the permit shall be ***** reported as an excess emission.

State of Wisconsin Department of Natural Resources

From December 2018 Application

COMPLIANCE	DEMONSTRATION BY FUEL SAMPI	LING AND ANALYSIS	
AIR POLLUTION O	CONTROL PERMIT APPLICATION		
Form 4530-124	11-93	Information attached?	<u>n</u> (y/n)

An installation plan for each fuel sampling and analysis system (FSA) may be submitted with the permit application for Department approval. The installation plan shall contain the following information: the name and address of the source; the source facility identification number; a general description of the process and the control equipment; the type of fuel being sampled; the manufacturer, model number, and serial number of each sampler; and a schematic of the FSA system showing the sample acquisition point and the location of the machine that produces the daily, weekly, or monthly composite fuel sample. A completed form 4530-124, supplemented to satisfy the requirements of this paragraph, may constitute an installation plan for a FSA system.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S01	4. Unit identification number: EU01
5. Pollutant being monitored: SO ₂	6. Fuel being sampled: Natural gas and fuel oil

7. List the ASTM fuel sample collecting and analyzing methods used:

In accordance with 40 CFR Part 75

8. Is this an existing FSA system? Yes No			9. Installation date: 06/01/2021				
10.	0. □ Automated sampling ☑ Manual sampling						
11.	Backup system? No						
12.	Compliance shall be demonstrated:	Daily Weekly	□ Monthly	✓ Per shipment of fuel			
13.	Indicate by checking:						

- □ The FSA system certification is attached for Department approval. ☑ If the certification is not attached, please submit it within 60 days of the FSA system startup. □ The certification was submitted to the Department on _____.
- □ A FSA quality assurance/quality control plan for fuel sampling program is attached for Department approval. ☑ If the plan is not attached, please submit it within 60 days of the CEM startup system. □ The plan was submitted to the Department on _____.

***** Any composite sample over the emission limit

State of Wisconsin Department of Natural Resources

COMPLIANCE DEMONSTRATION BY RECORDKEEPING AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-125 11-93 Infor

Information attached? <u>n</u> (y/n)

Recordkeeping may be acceptable as a compliance demonstration method provided that a correlation between the parameter value recorded and the emission rate of a particular pollutant is established in the form of a curve or chart of emission rate versus parameter values. This correlation may constitute the certification of the system. It should be attached for Department approval. If it is not attached, please submit it within 60 days of the startup of the system.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S01	4. Unit identification number: EU01
5. Pollutant(s) being monitored: PM ₁₀ , PM _{2.5} , VOC	6. Material or parameter being monitored and recorded: fuel usage

7. Method of monitoring and recording:

Fuel Flow

8. List any EPA methods used: N/A			
9. Is this an existing method of demonstrating compliance?	10. Installation date: 06/01/2021		
11. Backup system:			
12. Compliance shall be demonstrated:	Monthly Batch (not to exceed monthly)		

13. Indicate by checking:

The monitoring system shall be subject to appropriate performance specifications, calibration requirements, and quality assurance procedures. \Box A quality assurance/quality control plan for the recordkeeping system is attached for Department approval. \Box If the plan is not attached, please submit it within 60 days of the startup of the recordkeeping program. \Box The plan was submitted to the Department on _____.

- ***** The compliance records shall be available for Department inspection. The format for the compliance ***** certification report and the excess emission report shall be approved by the Department. A proposed format for the compliance certification report and excess emission report shall be submitted at the same time as the application.
- **** The source shall record any malfunction that causes or may cause an emission limit to be exceeded. **** Malfunctions shall be reported to the Department the next business day. Hazardous air spills shall be reported to the Department immediately.

From December 2018 Application

Department of Natural Resources AIR		AIR POL	EMISSION UNIT HAZARDOUS AIR POLLUTANT SUMMA AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-126 11-93 Information attack				
SEE INSTRUCTIONS ON REVERSE SIDE							
1. Facility name: Nemadji Tr	rail Energy Center		2. Facility identificat	ion number: 4	To be assigned 81612	.7840	
3. Stack identification number	er: S01		4. Unit identification	number: EU()1		
5. Unit material description:	Combined Cycle Turk	oine combust	ing natural gas and fue	el oil			
6. Complete the following su references. Attached?			from this unit. Attach	sample calcu	lations and emission fa	ctor	
				_			
		Units		Units			
	SEE APPENDIX C	FOR EMISS	SIONS CALCULATIC	DNS		TPV	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	

From December 2018 Application

State of Wisconsin
Department of Natural Resources

EMISSION UNIT SUMMARY

AIR POLLUTION CONTROL PERMIT APPLICATION

Form 4530-128 11-93

Information attached? $\underline{y}(y/n)$

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S01	4. Unit identification number: EU01

5. Complete the following emissions summary for the following pollutants. Attach sample calculations and emission factor references. Attached? Yes, see Appendix C

		U	TPY		U	TPY		-	U	TPY
Particulates	SEE AP	PEN	DIX C FOI	R EMISSI	ONS	CALCULA	TIONS	TPY		
Sulfur dioxide								TPY		
Organic compounds								TPY		
Carbon monoxide								TPY		
Lead								TPY		
Nitrogen oxides								TPY		
Total reduced sulfur								TPY		
Mercury								TPY		
Asbestos								TPY		
Beryllium								TPY		
Vinyl chloride								TPY		
								TPY		
								TPY		
								TPY		
								TPY		
								TPY		

Units (U) should be entered as follows:

1 = lb/hr

2 = lb/mmBTU

3 = grains/dscf

4 = lb/gallon

5 = ppmdv

6 = other (specify)

7 = other (specify)

8 = other (specify)

State of Wisconsin Department of Natural Resources

SEE INSTRUCTIONS ON REVERSE SIDE

CURRENT EMISSIONS REQUIREMENTS AND STATUS OF UNIT AIR POLLUTION CONTROL PERMIT APPLICATION

Form 4530-130 Rev. 12-99

Information attached? <u>n</u> (y/n)

From December 2018 Application

1. Facility name: Nemadji Tra	ail Energy Center	2. Facility identification number: To be assigned 816127840				
3. Stack identification numbe	r: S01	4. Unit identification number: EU01				
		7. State Only				
Nitrogen Dioxide	40 CFR 60.4320(a) (Subpart KKKK)		15 ppm at 15 percent O_2 for natural gas; 42 ppm at 15 percent O_2 for fuel oil.	Units not constructed yet		
Sulfur Dioxide	40 CFR 60.4330 (Subpart KKKK)		0.90 lb/MW-hr gross output	Units not constructed yet		
GHG (CO ₂)	40 CFR Part 60, Subpart TTTT		1,000 lb/MW-hr gross output (90% NG) or petition for other standard	Units not constructed yet		
Opacity	NR 431	Х	20% opacity	Units not constructed yet		
Nitrogen Dioxide	NR 432 – Clean Air Interstate Rule NOx Allowances,		Replaced by Cross-State Air Pollution Rule	Units not constructed yet		
Ammonia - SCR	NR 445	Х	N/A	Units not constructed yet		
Carbon Monoxide	NR 426	х		Units not constructed yet		
Volatile Organic Compounds	NR 419	х		Units not constructed yet		
Particulate	NR 415.06(2)(c)	Х	0.10 lb PM/MMBtu	Units not constructed yet		
Nitrogen Dioxide	40 CFR 60.4320(a) (Subpart KKKK)		96 ppm @ 15% O2 at temperatures below 0 degress Fahrenheit	S Units not constructed yet		
			State Only	y		

** PART 70 SOURCES ONLY:

1. Be sure to review the Compliance Assurance Monitoring (CAM) Rule, 40 CFR Part 64, for the Renewal Application. The CAM rule requires owners and operators of Part 70 sources to monitor the operation and maintenance of their control equipment so that they can evaluate the performance of their control devices and report whether or not their facilities meet established emission standards. All facilities that have a Title V, Part 70, Federal Operating Permit are required to meet the CAM rule and **submit a CAM plan with this Title V renewal application.** The rule requires that a CAM plan be submitted with the Title V renewal application for each pollutant at **each emissions unit** which has a potential to emit - prior to controls - of that pollutant greater than the major source threshold for the respective pollutant. Please refer to the CAM Technical Guidance web site at

<u>http://www.epa.gov/ttn/emc/cam.html</u> for further documentation on the rule and how to prepare a CAM plan for submittal with the renewal application.

2. List all applicable **Maximum Achievable Control Technology** (MACT) rule(s) and the effective date(s) if they were promulgated <u>during the last 3 years of your operation permit term</u>. Identify the emissions units subject to each MACT rule listed.

EMISSION UNIT COMPLIANCE PLAN COMMITMENTS AND SCHEDULE AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-131 11-93 Information

Information attached? $n_{y/n}$

SEE INSTRUCTIONS ON REVERSE SIDE

1.Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S01	4. Unit identification number: EU01

5. For Units that are presently in compliance with all applicable requirements, including any enhanced monitoring and compliance certification requirements under section 114(a)(3) of the Clean Air Act that apply, complete the following. These commitments are part of the application for Part 70 permits.

□ We will continue to operate and maintain this Unit in compliance with all applicable requirements.

- Form 4530-130 includes new requirements that apply or will apply to this Unit during the term of the permit. We will meet such requirements on a timely basis.
- 6. For Units not presently fully in compliance, complete the following.
- This Unit is in compliance with all applicable requirements except for those indicated below. We will achieve compliance according to the following schedule:

Applicable Requirement

	Corrective Actions	Deadline
1.		
2.		
3.		

502		From December 2018 Application
State of Wisconsin Department of Natural Resources SEE INSTRUCTIONS ON REVERSE SIDE	STACK IDENTIFICATION AIR POLLUTION CONTROL Form 4530-103 11-93	PERMIT APPLICATION Information attached? <u>n</u> (y/n)
1. Facility name: Nemadji Trail Energy Center2. Facility identification number: To be assigned 816127840		3. Stack identification number: S02
4. Exhausting Unit(s), use Unit identification	n number from appropriate Form(s) 4530-10	4, 106, 107, 108 and/or 109
4530-104 EU02 4530-106	4530-107 4530-108	4530-109
5. Identify this stack on the plot plan require	ad on Form 4530-101	
 6. Indicate by checking: ☑ This stack has an actual exhaust poin If this stack has an actual exhaust poin 	pint.	-
7. Discharge height above ground level: <u>1</u>	<u>10</u> (feet)	
8. Inside dimensions at outlet (check one and	d complete):	
✓ Circular <u>3.50</u> (feet)	□ rectangular length (feet)	width (feet)
9. Exhaust flow rate: Normal 27,709 (ACFM)	Maximum 27,709 (ACFM)	
	290_(°F)	
11. Exhaust gas moisture content:	Normal volume percent	Maximum volume percent
12. Exhaust gas discharge direction:	☑ Up □ Down	Horizontal
13. Is this stack equipped with a rainhat or exhaust gases from the stack?	r any obstruction to the free flow of the	□ Yes
***** Complete the appropriate Air Perm exhausting through this stack.	nit Application Forms(s) 4530-104, 106, 107	, 108 or 109 for each Unit *****

From December 2018 Application

State of Wisconsin Department of Natural Resources		LER OR FURNACE OP POLLUTION CONTRC 1 4530-104 11-93	L PERMIT APPLICA	TION ation attached? <u>n (y</u> /n)	
SEE INSTRUCTIONS ON REVERSE S				(),)	
1. Facility name: Nemadji Trail Energy	Center	2. Facility identified	cation number: To be a	ssigned816127840	
3. Stack identification number: S02		4. Boiler/furnace n	umber: EU02		
4a. Unit description: 100-MMBtu/hr Auxiliary boiler respon	sible for delivering su	pplemental steam to the	combined-cycle combu	ustion turbine.	
5. Indicate the boiler/furnace control tec	chnology status.	Uncontrolled	Controlled		
If the boiler/furnace is controlled,	, enter the control devi	ce number(s) from the a	opropriate forms:		
4530-110 <u>C02</u> 45 4530-114 <u>4530-</u>	330-111 453 115 4530-1	30-112 4530-1 16 4530-117	13		
6. Furnace type: Unknown		7. Maximum conti	nuous rating: 100 MI	MBtu/hr	
8. Manufacturer: TBD	9. Model number:	9. Model number: TBD			
10. Date of construction or last modif	fication: 06/01/2021				
11. Fuels and firing conditions:					
	Primary fuel	Backup fuel #1	Backup fuel #2	Backup fuel #3	
Fuel name	Natural Gas				
Higher heating value	1,020 Btu/scf				
Maximum sulfur content (Wt.%)	Pipeline-grade				
Maximum ash content (Wt.%)	N/A				
Excess Combustion Air (%O ₂)	N/A				
Moisture content (as fired) (%)	N/A				
Maximum hourly consumption	98,039 scf/hr				
Actual yearly consumption	859 x 10 ⁶ scf				
***** For this emissions unit, identia	fy the method of com	bliance demonstration by	completing Form 4530)-118, ****	

***** For this emissions unit, identify the method of compliance demonstration by completing Form 4530-118, ***** DESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCE. Attach Form 4530-118 and its attachment(s) to this form. This is not a requirement of non-Part 70 sources.

***** Please complete the Air Pollution Control Permit Application Forms 4530-126 and 4530-128 for this Unit. *****

From December 2018 Application

CONTROL EQUIPMENT MISCEI	LLANEOUS		
AIR POLLUTION CONTROL PERMIT APPLICATION			
Form 4530-110 11-93	Information attached? $n_(y/n)$		
2. Facility identification number: -	To be assigned 816127840		
	AIR POLLUTION CONTROL PEF Form 4530-110 11-93		

4. Unit identification number: EU02

5. Control device number: C02

3. Stack identification number: S02

6. Manufacturer and model number: TBD

7. Date of installation: 06/01/2021

8. Describe in detail the device in use. Ultra-low NO_x burners and flue gas recirculation (FGR) and Oxidation Catalyst (OxCat)

Attach a diagram of the system. Attached? <u>No</u>

9. List the pollutants to be controlled by this equipment and the expected control efficiency for each pollutant on the table below.

Pollutant	Inlet pollutant concentration		Hood capture efficiency (%)	Outlet pollutant concentration		Efficiency (%)
	gr/acf	ppmv		gr/acf	ppmv	
NO _x			50%		9 ppm	0.011 lb/MMBtu
VOC			50%			0.0027 lb/MMBtu
СО			90%			0.0037 lb/MMBtu

- 10. Discuss how the collected material will be handled for reuse or disposal. <u>Ultra-low NO_x burners control the formation of NO_x using a two-stage combustion process.</u> Oxidation catalyst system is an add-on control that converts CO and VOC to CO2 by use of a catalyst.
- 11. Prepare a malfunction prevention and abatement plan (if required under s. NR 439.11) for this pollution control system. Please include the following:
 - a. Identification of the individuals(s), by title, responsible for inspecting, maintaining and repairing this device.
 - b. Operation variables such as temperature that will be monitored in order to detect a malfunction or breakthrough, the correct operating range of these variables, and a detailed description of monitoring or surveillance procedures that will be used to show compliance.
 - c. What type of monitoring equipment will be provided (temperature sensors, pressure sensors, CEMs).
 - d. An inspection schedule and items or conditions that will be inspected.
 - e. A listing of materials and spare parts that will be maintained in inventory.
 - f. Is this plan available for review? <u>No</u>

State of Wisconsin Department of Natural Resources

From December 2018 Application

COMPLIANCE CERTIFICATION - MONITORING AND REPORTING DESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCE Form 4530-118 11-93 Information attached? <u>n (y/n)</u>

All applicants except non-Part 70 sources are required to certify compliance with all applicable air pollution permit requirements by including a statement within the permit application of the methods used for determining compliance (please see sec. NR 407.05(4)(i), Wis. Adm. Code.) This statement must include a description of the monitoring, recordkeeping, and reporting requirements and test methods. In addition, the application must include a schedule for compliance certification submittals during the permit term. These submittals must be no less frequent than annually, and may need to be more frequent if specified by the underlying applicable requirement or by the Department.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S02	4. Unit identification number: EU02

5. This Unit will use the following method(s) for determining compliance with the requirements of the permit (check all that apply and attach the appropriate form(s) to this form).

- □ Continuous Emission Monitoring (CEM) Form 4530-119 Pollutant(s):
- □ Periodic Emission Monitoring Using Portable Monitors Form 4530-120 Pollutant(s):
- □ Monitoring Control System Parameters or Operating Parameters of a Process Form 4530-121 Pollutant(s):
- □ Monitoring Maintenance Procedures Form 4530-122 Pollutant(s):
- □ Stack Testing Form 4530-123 Pollutant(s):
- \Box Fuel Sampling and Analysis (FSA) Form 4530-124 Pollutant(s): <u>2</u>
- Recordkeeping Form 4530-125 Pollutant(s): All
- □ Other (please describe) Form 4530-135 Pollutant(s):

6. Compliance certification reports will be submitted to the Department according to the following schedule:

Start date: <u>At date of permit issuance</u> and every <u>12</u> months thereafter.

Compliance monitoring reports will be submitted to the Department according to the following schedule:

Start date: <u>At date of permit issuance</u> and every <u>6</u> months thereafter.

State of Wisconsin Department of Natural Resources

COMPLIANCE DEMONSTRATION BY RECORDKEEPING AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-125 11-93 Inform

Information attached? <u>n</u> (y/n)

Recordkeeping may be acceptable as a compliance demonstration method provided that a correlation between the parameter value recorded and the emission rate of a particular pollutant is established in the form of a curve or chart of emission rate versus parameter values. This correlation may constitute the certification of the system. It should be attached for Department approval. If it is not attached, please submit it within 60 days of the startup of the system.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S02	4. Unit identification number: EU02
5. Pollutant(s) being monitored: SO ₂	6. Material or parameter being monitored and recorded: Sulfur content of natural gas.

7. Method of monitoring and recording:

Owners will keep records of the sulfur content of the natural gas as certified by the supplier or test data and record the daily usage of natural gas.

8. List any	EPA	methods	used:
N/A			

9. Is this an existing method of demonstrating compliance?

10. Installation date: 06/01/2021

11. Backup system: N/A

12. Compliance shall be demonstrated: 🖾 Daily 🗆 Weekly 🗆 Monthly 🗆 Batch (not to exceed monthly)

13. Indicate by checking:

The monitoring system shall be subject to appropriate performance specifications, calibration requirements, and quality assurance procedures. \Box A quality assurance/quality control plan for the recordkeeping system is attached for Department approval. \Box If the plan is not attached, please submit it within 60 days of the startup of the recordkeeping program. \Box The plan was submitted to the Department on _____.

- **** The compliance records shall be available for Department inspection. The format for the compliance ***** certification report and the excess emission report shall be approved by the Department. A proposed format for the compliance certification report and excess emission report shall be submitted at the same time as the application.
- **** The source shall record any malfunction that causes or may cause an emission limit to be exceeded. **** Malfunctions shall be reported to the Department the next business day. Hazardous air spills shall be reported to the Department immediately.

State of Wisconsin Department of Natural Resources

COMPLIANCE DEMONSTRATION BY RECORDKEEPING AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-125 11-93 Inform

Information attached? <u>n</u> (y/n)

Recordkeeping may be acceptable as a compliance demonstration method provided that a correlation between the parameter value recorded and the emission rate of a particular pollutant is established in the form of a curve or chart of emission rate versus parameter values. This correlation may constitute the certification of the system. It should be attached for Department approval. If it is not attached, please submit it within 60 days of the startup of the system.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840			
3. Stack identification number: S02	4. Unit identification number: EU02			
5. Pollutant(s) being monitored: All	6. Material or parameter being monitored and recorded:Hours of operation of the natural gas heater will be recorded so that emissions may be calculated.			
7. Method of monitoring and recording: <u>Hours of operation</u>				
8. List any EPA methods used: <u>Not applicable</u>				
9. Is this an existing method of demonstrating compliance?	10. Installation date: 06/01/2021			
11. Backup system: N/A				
12. Compliance shall be demonstrated: Daily Dweekly	☑ Monthly □ Batch (not to exceed monthly)			
13. Indicate by checking:				

The monitoring system shall be subject to appropriate performance specifications, calibration requirements, and quality assurance procedures. A quality assurance/quality control plan for the recordkeeping system is attached for Department approval. If the plan is not attached, please submit it within 60 days of the startup of the recordkeeping program. The plan was submitted to the Department on _____.

- **** The compliance records shall be available for Department inspection. The format for the compliance ***** certification report and the excess emission report shall be approved by the Department. A proposed format for the compliance certification report and excess emission report shall be submitted at the same time as the application.
- **** The source shall record any malfunction that causes or may cause an emission limit to be exceeded. **** Malfunctions shall be reported to the Department the next business day. Hazardous air spills shall be reported to the Department immediately.

From December 2018 Application

State of Wisconsin Department of Natural Resources		AIR P	SION UNIT HAZARE	OL PERMIT APP	LICATION		
SEE INSTRUCTIONS ON RE	EVERSE SIDE	Form 4	4530-126 11-93		Information attached? <u>y</u> (y/n)		
1. Facility name: Nemadji Trail Energy Center			2. Facility identification number: To be assigned 816127840				
3. Stack identification numbe	er: S02		4. Unit identification	number: EU02			
5. Unit material description: 1	Natural gas combusti	on					
6. Complete the following sur references. Attached?	mmary of hazardous See Appendix C	air emissions	from this unit. Attacl	h sample calculati	ions and emission factor		
Pollutant CAS	Actual emiss	ions	Maximum theoretica	al emissions	Potential to emit		
		Units		Units			
	SEE APPENDIX	C FOR HA	PS EMISSIONS CAL	CULATIONS			
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					ТРҮ		
					ТРҮ		
					ТРҮ		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					ТРҮ		
					ТРҮ		
					TPY		
					TPY		
					ТРҮ		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		

From December 2018 Application

State of Wisconsin Department of Natural Resources EMISSION UNIT SUMMARY AIR POLLUTION CONTROL PERMIT APPLICATION

Form 4530-128 11-93

Information attached? \underline{y} (y/n)

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S02	4. Unit identification number: EU02

5. Complete the following emissions summary for the following pollutants. Attach sample calculations and emission factor references. Attached? See Appendix C

Air pollutant	Actu	al	Maximum theoretical emissions			Potential to emit	Maxin	Maximum allowable	
	U	TPY		U	TPY			U	TPY

SEE APPENDIX C FOR EMISSIONS CALCULATIONS

Sulfur dioxide				TPY		
Organic compounds				TPY		
Carbon monoxide				TPY		
Lead				TPY		
Nitrogen oxides				TPY		
Total reduced sulfur				TPY		
Mercury				TPY		
Asbestos				TPY		
Beryllium				TPY		
Vinyl chloride				TPY		
				TPY		
				TPY		
				TPY		
				TPY		
				TPY		

Units (U) should be entered as follows:

1 = lb/hr

2 = lb/mmBTU

3 = grains/dscf

4 = lb/gallon

5 = ppmdv

6 =other (specify) 7 =other (specify)

8 =other (specify)

State of Wisconsin Department of Natural Resources

CURRENT EMISSIONS REQUIREMENTS AND STATUS OF UNIT AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-130 Rev. 12-99 Information attached? <u>n (y/n)</u>

From December 2018 Application

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Tr	2. Facility identification number: To be assigned 816127840						
3. Stack identification numbe	r: S02	4. Unit identification number: EU02					
5. Pollutant	6. Wis. Adm. Code Wis. Stats., 40 CFR	7. State Only	8. Limitation		9. Compliance Status (in or out)		
Particulate	NR415	x	0.15 lb PM/MMbtu		Units not	constructed yet	
Sulfur Dioxide	NR 417, NSPS 40 CFR 60, Subpart Dc		Keep records of the sulfu content of the natural gas certified by the supplier of data and record of the dai usage of natural gas	Units not	ot constructed yet		
Nitrogen Dioxide	NR 428	X		Units not constructed yet			
Carbon Monoxide	NR 426	X		Units not constructed yet			
Lead	NR 427	x		Units not constructed yet			
Volatile Organic Compounds Opacity	NR 419 NR 431	X X	20% opacity	Units not constructed yet Units not constructed yet			
10. Other requirements (e.g., m existing permit, etc.)	alfunction reporting, sp	ecial operati	ng conditions from an	Sta	te Only	Compliance Status (in or out)	

** PART 70 SOURCES ONLY:

1. Be sure to review the Compliance Assurance Monitoring (CAM) Rule, 40 CFR Part 64, for the Renewal Application. The CAM rule requires owners and operators of Part 70 sources to monitor the operation and maintenance of their control equipment so that they can evaluate the performance of their control devices and report whether or not their facilities meet established emission standards. All facilities that have a Title V, Part 70, Federal Operating Permit are required to meet the CAM rule and **submit a CAM plan with this Title V renewal application.** The rule requires that a CAM plan be submitted with the Title V renewal application for each pollutant at **each emissions unit** which has a potential to emit - prior to controls - of that pollutant greater than the major source threshold for the respective pollutant. Please refer to the CAM Technical Guidance web site at

<u>http://www.epa.gov/ttn/emc/cam.html</u> for further documentation on the rule and how to prepare a CAM plan for submittal with the renewal application.

2. List all applicable **Maximum Achievable Control Technology** (MACT) rule(s) and the effective date(s) if they were promulgated <u>during the last 3 years of your operation permit term</u>. Identify the emissions units subject to each MACT rule listed.

EMISSION UNIT COMPLIANCE PLAN COMMITMENTS AND SCHEDULE AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-131 11-93 Information attached? <u>n</u> (y/n)

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S02	4. Unit identification number: EU02

5. For Units that are presently in compliance with all applicable requirements, including any enhanced monitoring and compliance certification requirements under section 114(a)(3) of the Clean Air Act that apply, complete the following. These commitments are part of the application for Part 70 permits.

□ We will continue to operate and maintain this Unit in compliance with all applicable requirements.

☑ Form 4530-130 includes new requirements that apply or will apply to this Unit during the term of the permit. We will meet such requirements on a timely basis.

6. For Units <u>not</u> presently fully in compliance, complete the following.

This Unit is in compliance with all applicable requirements except for those indicated below. We will achieve compliance according to the following schedule:

Applicable R	equirement	Corrective Actions	Deadline
1.			
1.	ŀ		
	-		
2.			
3.			
Progress reports wi Start date:	Il be submitted:	x (6) months thereafter	
		(0) monuis mercaner	

F03 State of Wisconsin		June 2020
STACK IDENTIFICATION Department of Natural Resources SEE INSTRUCTIONS ON REVERSE SIDE	AIR POLLUTION CON Form 4530-103 11-93	TROL PERMIT APPLICATION Information attached? <u>n</u> (y/n)
1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: 816127840	3. Stack identification number: NA
4. Exhausting Unit(s), use Unit identification	n number from appropriate Form(s) 4	1530-104, 106, 107, 108 and/or 109
4530-104 4530-106	4530-107 4530-108	4530-109 _F01 _F03
5. Identify this stack on the plot plan require	d on Form 4530-101	
6. Indicate by checking: This stack has an actual exhaust po If this stack has an actual exhaust poin	int. I This stack serves to ide	, ,
7. Discharge height above ground level:	(feet)	
¥_¥¥		
8. Inside dimensions at outlet (check one and	- /	
Circular (feet)	□ rectangular length (feet)	width (feet)
9. Exhaust flow rate:		
Normal (ACFM)	Maximum	(ACFM)
10. Exhaust gas temperature (normal):	_(°F)	
11. Exhaust gas moisture content:	Normal volume percent	Maximum volume percent
12. Exhaust gas discharge direction:	□ Up □ Down	Horizontal
13. Is this stack equipped with a rainhat or exhaust gases from the stack?	any obstruction to the free flow of t	he 🗆 Yes 🗆 No
***** Complete the appropriate Air Perm	it Application Forms(s) 4530-104, 1	06, 107, 108 or 109 for each Unit *****

exhausting through this stack.

F03				From June 2020	Application		
State of Wisconsin Department of Natural Resou	rces	MISCELLANEOUS PR AIR POLLUTION CON Form 4530-109 11-93		IIT APPLICATION Information attached? <u>n</u> (y/n)			
SEE INSTRUCTIONS	ON REVERSE SIDE	1					
	adji Trail Energy Center	2. Facility identification	number: 81	6127840			
3. Stack identification		4. Process number: F01	F03				
4a. Unit description							
5. Indicate the control	technology status. Uncontr	olled 🛛 Controlled					
If the process is	controlled, enter the control device	e number(s) from the app	propriate form	n(s):			
4530-110	4530-111 4	530-112 4530-	113				
4530-114		530-116 4530-	117				
6. Source Classificatio	on Code (SCC): 31300500						
7. Date of construction	n or last modification: TBD						
8. Normal operating so	chedule: <u>24</u> hrs./day <u>7</u> d	ays/wk. <u>365</u> days/yr	r.				
	ss (please attach a flow diagram o will interrupt current flow after a			Attached? See next pag Figures are at end of	;e.		
10. List the types an	d amounts of raw materials used	in this process:					
Material	Storage/material handling process	Average usage Units		Maximum usage	Units		
SF ₆	Circuit breaker (19 kV)	0.23	lbs/yr	0.23	lbs/yr		
SF ₆	Circuit breaker (345 kV)	10.31	lbs/yr	10.31	lbs/yr		
					ļ		
	d amounts of finished products:						
Material	Storage/material handling process	Average amount produced	Units	Maximum amount produced	Units		
N/A							
12. Process fuel usage							
Type of fuel	Maximum heat input to process million BTU/hr.	Average usage	Units	Maximum usage	Units		
N/A							
	gitive emissions associated with thoads, open conveyors, etc.: N/A	nis process, such as outdo	or storage	Attached? N	/A		
DESCRIPTI	sions unit, identify the method(s) ON OF METHODS USED FOR ment(s) to this form. This is not	DETERMINING COMPI	LIANCE. At	bleting Form 4530-118, *: tach Form 4530-118	****		

***** Please complete the Air Pollution Control Permit Application Forms 4530-126 and 4530-128 for this Unit. *****

From June 2020 Application COMPLIANCE CERTIFICATION - MONITORING AND REPORTING DESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCE Form 4530-118 11-93 Information attached? n (y/n)

All applicants except non-Part 70 sources are required to certify compliance with all applicable air pollution permit requirements by including a statement within the permit application of the methods used for determining compliance (please see sec. NR 407.05(4)(i), Wis. Adm. Code.) This statement must include a description of the monitoring, recordkeeping, and reporting requirements and test methods. In addition, the application must include a schedule for compliance certification submittals during the permit term. These submittals must be no less frequent than annually, and may need to be more frequent if specified by the underlying applicable requirement.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: 816127840
3. Stack identification number: NA	4. Unit identification number: F01 F03

- 5. This Unit will use the following method(s) for determining compliance with the requirements of the permit (check all that apply and attach the appropriate form(s) to this form).
 - □ Continuous Emission Monitoring (CEM) Form 4530-119 Pollutant(s):
 - Periodic Emission Monitoring Using Portable Monitors Form 4530-120 Pollutant(s):
 - □ Monitoring Control System Parameters or Operating Parameters of a Process Form 4530-121 Pollutant(s):
 - □ Monitoring Maintenance Procedures Form 4530-122 Pollutant(s):
 - □ Stack Testing Form 4530-123 Pollutant(s):
 - □ Fuel Sampling and Analysis (FSA) Form 4530-124 Pollutant(s):
 - Recordkeeping Form 4530-125 Pollutant(s): Geenhouse gases – sulfur hexafluoride (SF₆)
 - □ Other (please describe) Form 4530-135 Pollutant(s):
- 6. Compliance certification reports will be submitted to the Department according to the following schedule:

Start date: <u>At date of permit issuance</u> and every <u>12</u> months thereafter.

Compliance monitoring reports will be submitted to the Department according to the following schedule:

Start date: At date of permit issuance and every <u>6</u> months thereafter.

COMPLIANCE DEMONSTRATION BY RECORDKEEPING AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-125 11-93 Infor

Information attached? <u>n</u> (y/n)

Recordkeeping may be acceptable as a compliance demonstration method provided that a correlation between the parameter value recorded and the emission rate of a particular pollutant is established in the form of a curve or chart of emission rate versus parameter values. This correlation may constitute the certification of the system. It should be attached for Department approval. If it is not attached, please submit it within 60 days of the startup of the system.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: 816127840
3. Stack identification number: NA	4. Unit identification number: F01 F03
5. Pollutant(s) being monitored: Greenhouse gases – sulfur hexafluoride (SF ₆)	6. Material or parameter being monitored and recorded: SF_6
7. Method of monitoring and recording: recordkeeping	
8. List any EPA methods used: N/A	
9. Is this an existing method of demonstrating compliance?	10. Installation date: TBD
11. Backup system: N/A	
12. Compliance shall be demonstrated:	■ Monthly □ Batch (not to exceed monthly)
13. Indicate by checking:	

The monitoring system shall be subject to appropriate performance specifications, calibration requirements, and quality assurance procedures. A quality assurance/quality control plan for the recordkeeping system is attached for Department approval. If the plan is not attached, please submit it within 60 days of the startup of the recordkeeping program. The plan was submitted to the Department on _____.

- **** The compliance records shall be available for Department inspection. The format for the compliance ***** certification report and the excess emission report shall be approved by the Department. A proposed format for the compliance certification report and excess emission report shall be submitted at the same time as the application.
- ***** The source shall record any malfunction that causes or may cause an emission limit to be exceeded. ***** Malfunctions shall be reported to the Department the next business day. Hazardous air spills shall be reported to the Department immediately.

F03 State of Wisconsin		EMISS	From June 2020 Application MISSION UNIT HAZARDOUS AIR POLLUTANT SUMMARY					
Department of Natural Resources		AIR POLLUTION CONTROL PERMIT APPLICATION						
SEE INSTRUCTIONS ON REVE	RSE SIDE	Form ²	4530-126 11-93		Information attache	3d? <u>n</u> (y/n)		
1. Facility name: Nemadji Trail E	nergy Center		2. Facility identification number: 816127840					
3. Stack identification number: N	A		4. Unit identification number: F01 F03					
5. Unit material description: Gree	mhouse gases – SF ₆							
6. Complete the following summa references. Attached?	•	nissions	from this unit. Attach	n sample calc	ulations and emission f	lactor		
	U	nits		Units				
I			OM THE CIRCUIT B	8				
						TPY		
						TPY		
						ТРҮ		
						ТРҮ		
						TPY		
						TPY		
						TPY		
						TPY		
						TPY		
						TPY		
						TPY		
						TPY		
						TPY		
						TPY		
						TPY		
						TPY		
						TPY		
						TPY		
						TPY		
						TPY		
						TPY		
						TPY		
						TPY		
						TPY		

From June 2020 Application

State of Wisconsin Department of Natural Resources

EMISSION UNIT SUMMARY

AIR POLLUTION CONTROL PERMIT APPLICATION

Form 4530-128 11-93

Information attached? $\underline{y}(y/n)$

SEE INSTRUCTIONS	ON REVERSE SIDE
------------------	-----------------

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: 816127840
3. Stack identification number: NA	4. Unit identification number: F01 F03

5. Complete the following emissions summary for the following pollutants. Attach sample calculations and emission factor references. Attached? _See Appendix B Appendix C

	U	TPY	U	TPY		U	TPY

Appendix C

SEE APPENDIX B-FOR EMISSION CALCULATIONS

Sulfur dioxide				TPY		
Organic compounds				TPY		
Carbon monoxide				TPY		
Lead				TPY		
Nitrogen oxides				TPY		
Total reduced sulfur				TPY		
Mercury				TPY		
Asbestos				TPY		
Beryllium				TPY		
Vinyl chloride				TPY		
				TPY		
				TPY		
				TPY		
				TPY		
				TPY		

Units (U) should be entered as follows:

1 = lb/hr

2 = lb/mmBTU

3 = grains/dscf

4 = lb/gallon

5 = ppmdv6 = other (specify)

7 = other (specify)

8 = other (specify)

CURRENT EMISSIONS REQUIREMENTS AND STATUS OF UNIT AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-130 Rev. 12-99 Information attached? _ (y/n)

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center		2. Facility identification number: 816127840			
3. Stack identification number: NA		4. Unit identification number: F01 F03			
		7. State Only			
			_	State Only	

** PART 70 SOURCES ONLY:

1. Be sure to review the Compliance Assurance Monitoring (CAM) Rule, 40 CFR Part 64, for the Renewal Application. The CAM rule requires owners and operators of Part 70 sources to monitor the operation and maintenance of their control equipment so that they can evaluate the performance of their control devices and report whether or not their facilities meet established emission standards. All facilities that have a Title V, Part 70, Federal Operating Permit are required to meet the CAM rule and **submit a CAM plan with this Title V renewal application.** The rule requires that a CAM plan be submitted with the Title V renewal application for each pollutant at **each emissions unit** which has a potential to emit - prior to controls - of that pollutant greater than the major source threshold for the respective pollutant. Please refer to the CAM Technical Guidance web site at http://www.epa.gov/ttn/emc/cam.html for further documentation on the rule and how to prepare a CAM plan for submittal with the

renewal application.

2. List all applicable **Maximum Achievable Control Technology** (MACT) rule(s) and the effective date(s) if they were promulgated during the last 3 years of your operation permit term. Identify the emissions units subject to each MACT rule listed.

Applicable

EMISSION UNIT COMPLIANCE PLAN COMMITMENTS AND SCHEDULE AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-131 11-93 Information attached? <u>n</u> (y/n)

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: 816127840
3. Stack identification number: NA	4. Unit identification number: F01 F03

5. For Units that are presently in compliance with all applicable requirements, including any enhanced monitoring and compliance certification requirements under section 114(a)(3) of the Clean Air Act that apply, complete the following. These commitments are part of the application for Part 70 permits.

□ We will continue to operate and maintain this Unit in compliance with all applicable requirements.

Form 4530-130 includes new requirements that apply or will apply to this Unit during the term of the permit. We will meet such requirements on a timely basis.

6. For Units not presently fully in compliance, complete the following.

Requirement

This Unit is in compliance with all applicable requirements except for those indicated below. We will achieve compliance according to the following schedule:

	Applicable	Requirement	Corrective Actions	Deadline		
1.						
1.						
2.						
3.						
	ft					
	Progress reports will be submitted:					
	Start date: and every six (6) months thereafter					

From June 2020 Application FACILITY REQUIREMENT COMPLIANCE PLAN COMMITMENTS AND SCHEDULE

Information attached? <u>n</u> (y/n)

AIR POLLUTION CONTROL PERMIT APPLICATION

SEE INSTRUCTIONS ON REVERSE SIDE

Applicable

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: 816127840
---	--

Form 4530-133 11-93

- 3. For facilities that are presently in compliance with all applicable requirements, including any enhanced monitoring and compliance certification requirements under section 114(a)(3) of the Clean Air Act that apply, complete the following. These commitments are part of the application for Part 70 permits.
 - □ We will continue to operate and maintain this facility in compliance with all applicable requirements.
 - Form 4530-132 includes new requirements that apply or will apply to this facility during the term of the permit. We will meet such requirements on a timely basis.
- 4. For facilities not presently fully in compliance, complete the following.

Requirement

This facility is in compliance with all applicable requirements except for those indicated below. We will achieve compliance according to the following schedule:

	Corrective Actions	Deadline	
1.			
2.			
3.			
Progress reports will be submitted:			
Start date: and every six (6) months thereafter			

-04		From December 2018 Application
State of Wisconsin Department of Natural Resources SEE INSTRUCTIONS ON REVERSE SIDE	STACK IDENTIFICATION AIR POLLUTION CONTROL Form 4530-103 11-93	PERMIT APPLICATION Information attached? <u>n</u> (y/n)
1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840	3. Stack identification number: S04
4. Exhausting Unit(s), use Unit identification	n number from appropriate Form(s) 4530-10	04, 106, 107, 108 and/or 109
4530-104 EU04 4530-106	4530-107 4530-108	4530-109
5. Identify this stack on the plot plan require	d on Form 4530-101	
 6. Indicate by checking: ✓ This stack has an actual exhaust point 	int.	-
7. Discharge height above ground level: <u>1</u>	<u>5</u> (feet)	
8. Inside dimensions at outlet (check one and	d complete):	
Circular <u>1.67</u> (feet)	□ rectangular length (feet)	width (feet)
9. Exhaust flow rate: Normal <u>3,272</u> (ACFM)	Maximum <u>3,272</u> (ACFM)	
10. Exhaust gas temperature (normal): <u>7</u>	<u>'50 (</u> °F)	
11. Exhaust gas moisture content:	Normal volume percent	Maximum volume percent
12. Exhaust gas discharge direction:	☑ Up 🛛 Down	Horizontal
13. Is this stack equipped with a rainhat or exhaust gases from the stack?	any obstruction to the free flow of the	🗆 Yes 🗹 No
***** Complete the appropriate Air Permexhausting through this stack.	it Application Forms(s) 4530-104, 106, 107	, 108 or 109 for each Unit *****

Moisture content (as fired) (%)

Maximum hourly consumption

Actual yearly consumption

From December 2018 Application

State of Wisconsin		BOILER OR FURNACE OPERATION			
Department of Natural Resources		AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-104 11-93 Information attached? <u>n</u>			
SEE INSTRUCTIONS ON REVERSE S				(),)	
1. Facility name: Nemadji Trail Energy	Center	2. Facility identific	ation number: To be a	ssigned 816127840	
3. Stack identification number: S04		4. Boiler/furnace n	umber: EU04		
4a. Unit description:					
Natural gas-fired heater for maintaining combustion turbine.	g the pipeline-grade natu	ural gas at or above the	mixture's dew point b	efore injection in the	
5. Indicate the boiler/furnace control te	chnology status.	Uncontrolled	Controlled		
If the boiler/furnace is controlled	, enter the control device	e number(s) from the a	opropriate forms:		
4530-110 4530- 4530-114 4530-	-111 4530-11 -115 4530-11	2 4530-113 6 4530-117			
6. Furnace type:		7. Maximum conti	nuous rating: 10 MMI	Btu/hr	
8. Manufacturer: TBD	9. Model number:	TBD			
10. Date of construction or last modi	fication: 06/01/2021				
11. Fuels and firing conditions:					
	Primary fuel	Backup fuel #1	Backup fuel #2	Backup fuel #3	
Fuel name	Natural Gas				
Higher heating value	1,020 Btu/scf				
Maximum sulfur content (Wt.%)	Pipeline-grade				
Maximum ash content (Wt.%)	N/A				
Excess Combustion Air (%O ₂)	N/A				
Moisture content (as fired) $(\%)$	N/A				

9,804 scf/hr

 $85.9 \ x \ 10^{6} \ scf$

State of Wisconsin	CONTROL EQUIPMENT MISC	CELLANEOUS
Department of Natural Resources	AIR POLLUTION CONTROL F	PERMIT APPLICATION
	Form 4530-110 11-93	Information attached? <u>N</u> (y/n)
SEE INSTRUCTIONS ON REVERSE SIDE		<u> </u>

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S04	4. Unit identification number: EU04
5. Control device number: C04	

6. Manufacturer and model number: TBD

7. Date of installation: 06/01/2021

8. Describe in detail the device in use. Attach a diagram of the system. Attached? No Low NO_x burner – Low NO_x burners control flame temperatures by using a two-stage combustion process which limits thermal NO_x formation.

9. List the pollutants to be controlled by this equipment and the expected control efficiency for each pollutant on the table below.

Pollutant	Inlet po concen		Hood capture efficiency (%)	poll	tlet utant ntration	Efficiency
	gr/acf	ppmv		gr/ac f	ppmv	
NO _x			100%			Controls emissions of NO_x to 0.049 lb/MMBtu of heat input

10. Discuss how the collected material will be handled for reuse or disposal.

<u>N/A.</u>

- 11. Prepare a malfunction prevention and abatement plan (if required under s. NR 439.11) for this pollution control system. Please include the following:
 - a. Identification of the individuals(s), by title, responsible for inspecting, maintaining and repairing this device.
 - b. Operation variables such as temperature that will be monitored in order to detect a malfunction or breakthrough, the correct operating range of these variables, and a detailed description of monitoring or surveillance procedures that will be used to show compliance.
 - c. What type of monitoring equipment will be provided (temperature sensors, pressure sensors, CEMs).
 - d. An inspection schedule and items or conditions that will be inspected.
 - e. A listing of materials and spare parts that will be maintained in inventory.
 - f. Is this plan available for review?

State of Wisconsin Department of Natural Resources

From December 2018 Application

COMPLIANCE CERTIFICATION - MONITORING AND REPORTINGDESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCEForm 4530-11811-93Information attached? n.gv(y/n)

All applicants except non-Part 70 sources are required to certify compliance with all applicable air pollution permit requirements by including a statement within the permit application of the methods used for determining compliance (please see sec. NR 407.05(4)(i), Wis. Adm. Code.) This statement must include a description of the monitoring, recordkeeping, and reporting requirements and test methods. In addition, the application must include a schedule for compliance certification submittals during the permit term. These submittals must be no less frequent than annually, and may need to be more frequent if specified by the underlying applicable requirement or by the Department.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S04	4. Unit identification number: EU04

5. This Unit will use the following method(s) for determining compliance with the requirements of the permit (check all that apply and attach the appropriate form(s) to this form).

- □ Continuous Emission Monitoring (CEM) Form 4530-119 Pollutant(s):
- □ Periodic Emission Monitoring Using Portable Monitors Form 4530-120 Pollutant(s):
- □ Monitoring Control System Parameters or Operating Parameters of a Process Form 4530-121 Pollutant(s):
- □ Monitoring Maintenance Procedures Form 4530-122 Pollutant(s):
- □ Stack Testing Form 4530-123 Pollutant(s):
- □ Fuel Sampling and Analysis (FSA) Form 4530-124 Pollutant(s):
- Recordkeeping Form 4530-125 Pollutant(s): all pollutants
- □ Other (please describe) Form 4530-135 Pollutant(s):

6. Compliance certification reports will be submitted to the Department according to the following schedule:

Start date: At date of permit issuance and every <u>12</u> months thereafter.

Compliance monitoring reports will be submitted to the Department according to the following schedule:

Start date: At date of permit issuance and every <u>6</u> months thereafter.

State of Wisconsin Department of Natural Resources

COMPLIANCE DEMONSTRATION BY RECORDKEEPING AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-125 11-93 Inform

Information attached? <u>n</u> (y/n)

Recordkeeping may be acceptable as a compliance demonstration method provided that a correlation between the parameter value recorded and the emission rate of a particular pollutant is established in the form of a curve or chart of emission rate versus parameter values. This correlation may constitute the certification of the system. It should be attached for Department approval. If it is not attached, please submit it within 60 days of the startup of the system.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S04	4. Unit identification number: EU04
5. Pollutant(s) being monitored: SO ₂	6. Material or parameter being monitored and recorded: Sulfur content of natural gas.

7. Method of monitoring and recording:

Owners will keep records of the sulfur content of the natural gas as certified by the supplier or test data and record the daily usage of natural gas.

8. List any	EPA	methods	used:
N/A			

9. Is this an existing method of demonstrating compliance?

10. Installation date: 06/01/2021

11. Backup system: N/A

12. Compliance shall be demonstrated: 🖾 Daily 🗆 Weekly 🗆 Monthly 🗆 Batch (not to exceed monthly)

13. Indicate by checking:

The monitoring system shall be subject to appropriate performance specifications, calibration requirements, and quality assurance procedures. \Box A quality assurance/quality control plan for the recordkeeping system is attached for Department approval. \Box If the plan is not attached, please submit it within 60 days of the startup of the recordkeeping program. \Box The plan was submitted to the Department on _____.

- **** The compliance records shall be available for Department inspection. The format for the compliance ***** certification report and the excess emission report shall be approved by the Department. A proposed format for the compliance certification report and excess emission report shall be submitted at the same time as the application.
- **** The source shall record any malfunction that causes or may cause an emission limit to be exceeded. **** Malfunctions shall be reported to the Department the next business day. Hazardous air spills shall be reported to the Department immediately.

State of Wisconsin Department of Natural Resources

COMPLIANCE DEMONSTRATION BY RECORDKEEPING AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-125 11-93 Infor

Information attached? <u>n</u> (y/n)

Recordkeeping may be acceptable as a compliance demonstration method provided that a correlation between the parameter value recorded and the emission rate of a particular pollutant is established in the form of a curve or chart of emission rate versus parameter values. This correlation may constitute the certification of the system. It should be attached for Department approval. If it is not attached, please submit it within 60 days of the startup of the system.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840				
3. Stack identification number: S04	4. Unit identification number: EU04				
5. Pollutant(s) being monitored: All	 6. Material or parameter being monitored and recorded: Hours of operation of the natural gas heater will be recorded so that emissions may be calculated. 				
7. Method of monitoring and recording: <u>Hours of operation</u>					
8. List any EPA methods used: <u>Not applicable</u>					
9. Is this an existing method of demonstrating compliance? □ Yes ☑ No	10. Installation date: 06/01/2021				
11. Backup system: N/A					
12. Compliance shall be demonstrated:	☑ Monthly □ Batch (not to exceed monthly)				
13. Indicate by checking:					

The monitoring system shall be subject to appropriate performance specifications, calibration requirements, and quality assurance procedures. A quality assurance/quality control plan for the recordkeeping system is attached for Department approval. If the plan is not attached, please submit it within 60 days of the startup of the recordkeeping program. The plan was submitted to the Department on _____.

- **** The compliance records shall be available for Department inspection. The format for the compliance ***** certification report and the excess emission report shall be approved by the Department. A proposed format for the compliance certification report and excess emission report shall be submitted at the same time as the application.
- **** The source shall record any malfunction that causes or may cause an emission limit to be exceeded. **** Malfunctions shall be reported to the Department the next business day. Hazardous air spills shall be reported to the Department immediately.

P04

State of Wisconsin Department of Natural Resources	AIR P	SSION UNIT HAZARDOUS AIR POLLUTANT SUMMARY POLLUTION CONTROL PERMIT APPLICATION n 4530-126 11-93 Information attached? <u>y</u> (y/n)					
SEE INSTRUCTIONS ON REV	VERSE SIDE	1 Ohn -	1990 120 11 99			<u>y</u> (y/ii)	
1. Facility name: Nemadji Trai	il Energy Center		2. Facility identification number: To be assigned 816127840				
3. Stack identification number:	: \$04		4. Unit identification	number: EU04			
5. Unit material description: N	atural Gas Combust	ion					
6. Complete the following sum references. Attached?	nmary of hazardous a _See Appendix C	air emissions	from this unit. Attacl	h sample calcula	ations and emission fa	ctor	
Pollutant CAS	Actual emiss	ions	Maximum theoretic:	al emissions	Potential to em	nit	
		Units		Units			
	SEE APPENDIX	C FOR HA	PS EMISSIONS CAL	CULATIONS			
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
						TPY	
				ļļ		TPY	
						TPY	
						TPY	

State of Wisconsin Department of Natural Resources EMISSION UNIT SUMMARY

AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-128 11-93 Information

Information attached? $y_{(y/n)}$

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S04	4. Unit identification number: EU04

5. Complete the following emissions summary for the following pollutants. Attach sample calculations and emission factor references. Attached? __See Appendix C

Air pollutant	Actua	al	Maximum theoretical emissions			Potential to emit	Maxin	Maximum allowable	
	U	TPY		U	TPY			U	TPY

SEE APPENDIX C FOR EMISSIONS CALCULATIONS

Sulfur dioxide			TPY		
Organic compounds			TPY		
Carbon monoxide			 TPY		
Lead			 TPY		
Nitrogen oxides			 TPY		
Total reduced sulfur			 TPY		
Mercury			 TPY		
Asbestos			TPY		
Beryllium			 TPY		
Vinyl chloride			 TPY		
			TPY		
			 TPY		
			TPY		
			TPY		
			TPY		

Units (U) should be entered as follows:

1 = lb/hr

2 = lb/mmBTU

3 = grains/dscf

4 = lb/gallon

5 = ppmdv

6 =other (specify) 7 =other (specify)

8 =other (specify)

State of Wisconsin Department of Natural Resources

CURRENT EMISSIONS REQUIREMENTS AND STATUS OF UNIT AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-130 Rev. 12-99 Information attached? <u>n</u> (y/n)

From December 2018 Application

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Tr	ail Energy Center	2. Facility identification number: To be assigned 816127840					
3. Stack identification number: S04		4. Unit identification number: EU04					
5. Pollutant	6. Wis. Adm. Code Wis. Stats., 40 CFR	7. State Only	8. Limitation	9. Compliance Status (in or out)			
Particulate	NR 415	X	0.15 lb/MMBtu	Units not	constructed yet		
Sulfur Dioxide	NR 417, NSPS 40 CFR 60, Subpart Dc		Keep records of the sulfur content of the natural gas as certified by the supplier or test data and record the daily usage		t constructed yet		
Nitrogen Dioxide	NR 428	X	Units not con				
Carbon Monoxide	NR 426	X		constructed yet			
Lead	NR 427	X		Units not	constructed yet		
Volatile Organic Compounds	NR 419	x		Units not constructed			
Opacity	NR 431	X			constructed yet		
10. Other requirements (e.g., m existing permit, etc.)	alfunction reporting, spe	cial operati	ng conditions from an St	ate Only	Compliance Status (in or out)		
					_		

** PART 70 SOURCES ONLY:

1. Be sure to review the Compliance Assurance Monitoring (CAM) Rule, 40 CFR Part 64, for the Renewal Application. The CAM rule requires owners and operators of Part 70 sources to monitor the operation and maintenance of their control equipment so that they can evaluate the performance of their control devices and report whether or not their facilities meet established emission standards. All facilities that have a Title V, Part 70, Federal Operating Permit are required to meet the CAM rule and **submit a CAM plan with this Title V renewal application.** The rule requires that a CAM plan be submitted with the Title V renewal application for each pollutant at **each emissions unit** which has a potential to emit - prior to controls - of that pollutant greater than the major source threshold for the respective pollutant. Please refer to the CAM Technical Guidance web site at http://www.epa.gov/ttn/emc/cam.html for further documentation on the rule and how to prepare a CAM plan for submittal with the renewal application.

2. List all applicable **Maximum Achievable Control Technology** (MACT) rule(s) and the effective date(s) if they were promulgated <u>during the last 3 years of your operation permit term</u>. Identify the emissions units subject to each MACT rule listed.

EMISSION UNIT COMPLIANCE PLAN COMMITMENTS AND SCHEDULE AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-131 11-93 Information attached? <u>n</u> (y/n)

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840

3. Stack identification number: S04 4. Unit identification number: EU04

5. For Units that are presently in compliance with all applicable requirements, including any enhanced monitoring and compliance certification requirements under section 114(a)(3) of the Clean Air Act that apply, complete the following. These commitments are part of the application for Part 70 permits.

□ We will continue to operate and maintain this Unit in compliance with all applicable requirements.

Form 4530-130 includes new requirements that apply or will apply to this Unit during the term of the permit. We will meet such requirements on a timely basis.

6. For Units <u>not</u> presently fully in compliance, complete the following.

This Unit is in compliance with all applicable requirements except for those indicated below. We will achieve compliance according to the following schedule:

Applicable	Requirement	Corrective Actions	Deadline			
1.						
1.						
2.						
3.						
			JL			
Progress repor Start date:	Progress reports will be submitted: Start date: and every six (6) months thereafter					
		· · ·				

P05		From December 2018 Application					
State of Wisconsin Department of Natural Resources SEE INSTRUCTIONS ON REVERSE SIDE	STACK IDENTIFICATION AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-103 11-93 Information attached DE						
1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840	3. Stack identification number: S05					
4. Exhausting Unit(s), use Unit identification	n number from appropriate Form(s) 4530-10	04, 106, 107, 108 and/or 109					
4530-104 EU05 4530-106	4530-107 4530-108	4530-109					
5. Identify this stack on the plot plan require	ed on Form 4530-101						
 6. Indicate by checking: This stack has an actual exhaust point If this stack has an actual exhaust point 	oint.						
7. Discharge height above ground level: <u>1</u>	<u>5</u> (feet)						
8. Inside dimensions at outlet (check one and	d complete):						
Circular <u>1.67</u> (feet)	□ rectangular length (feet)	width (feet)					
9. Exhaust flow rate: Normal <u>3,272</u> (ACFM)	Maximum <u>3,272</u> (ACFM)						
10. Exhaust gas temperature (normal): <u>7</u>	<u>250</u> (°F)						
11. Exhaust gas moisture content:	Normal volume percent	Maximum volume percent					
12. Exhaust gas discharge direction:	☑ Up 🔲 Down	Horizontal					
13. Is this stack equipped with a rainhat or exhaust gases from the stack?	r any obstruction to the free flow of the	🗆 Yes 🖾 No					
***** Complete the appropriate Air Permeter exhausting through this stack.	nit Application Forms(s) 4530-104, 106, 107	7, 108 or 109 for each Unit *****					

From December 2018 Application

State of Wisconsin Department of Natural Resources SEE INSTRUCTIONS ON REVERSE SID	AIR POI Form 453	BOILER OR FURNACE OPERATION AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-104 11-93 Information attached? <u>n</u> (y/n)					
1. Facility name: Nemadji Trail Energy Ce	nter	2. Facility identification number: To be assigned 816127840					
3. Stack identification number: S05	4. Boiler/furnace n	umber: EU05					
4a. Unit description: Natural gas-fired heater for maintaining the combustion turbine.	e pipeline-grade natura	l gas at or above the	mixture's dew point be	fore injection in the			
5. Indicate the boiler/furnace control technology If the boiler/furnace is controlled, en 4530-110 4530-111 4530-114 4530-115	ter the control device n	umber(s) from the ap					
6. Furnace type:		7. Maximum contin	nuous rating: 10 MMB	tu/hr			
8. Manufacturer: TBD		9. Model number: TBD					
10. Date of construction or last modification	tion: 06/01/2021						
11. Fuels and firing conditions:	Primary fuel	Backup fuel #1	Backup fuel #2	Backup fuel #3			
Fuel name	Natural Gas						
Higher heating value	1,020 Btu/scf						
Maximum sulfur content (Wt.%)	Pipeline-grade						
Maximum ash content (Wt.%)	N/A						

N/A

N/A

9,804 scf/hr

 $85.9 \ x \ 10^{6} \ scf$

Excess Combustion Air (%O₂)

Moisture content (as fired) (%)

Maximum hourly consumption

Actual yearly consumption

State of Wisconsin	CONTROL EQUIPMENT MISC	ELLANEOUS
Department of Natural Resources	AIR POLLUTION CONTROL P	ERMIT APPLICATION
	Form 4530-110 11-93	Information attached? <u>N</u> (y/n)
SEE INSTRUCTIONS ON REVERSE SIDE		

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S05	4. Unit identification number: EU05
5. Control device number: C05	

6. Manufacturer and model number: TBD

7. Date of installation: 06/01/2021

8. Describe in detail the device in use. Attach a diagram of the system. Attached? No Low NO_x burner – Low NO_x burners control flame temperatures by using a two-stage combustion process which limits thermal NO_x formation.

9. List the pollutants to be controlled by this equipment and the expected control efficiency for each pollutant on the table below.

Pollutant	Inlet pollutant concentration		Hood capture efficiency (%)	poll	itlet utant ntration	Efficiency
	gr/acf ppmv			gr/ac ppmv f		
NO _x			100%			Controls emissions of NO_x to 0.049 lb/MMBtu of heat input

10. Discuss how the collected material will be handled for reuse or disposal.

<u>N/A.</u>

- 11. Prepare a malfunction prevention and abatement plan (if required under s. NR 439.11) for this pollution control system. Please include the following:
 - a. Identification of the individuals(s), by title, responsible for inspecting, maintaining and repairing this device.
 - b. Operation variables such as temperature that will be monitored in order to detect a malfunction or breakthrough, the correct operating range of these variables, and a detailed description of monitoring or surveillance procedures that will be used to show compliance.
 - c. What type of monitoring equipment will be provided (temperature sensors, pressure sensors, CEMs).
 - d. An inspection schedule and items or conditions that will be inspected.
 - e. A listing of materials and spare parts that will be maintained in inventory.
 - f. Is this plan available for review?

State of Wisconsin Department of Natural Resources

From December 2018 Application

COMPLIANCE CERTIFICATION - MONITORING AND REPORTING DESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCE Form 4530-118 11-93 Information attached? <u>n (y/n)</u>

All applicants except non-Part 70 sources are required to certify compliance with all applicable air pollution permit requirements by including a statement within the permit application of the methods used for determining compliance (please see sec. NR 407.05(4)(i), Wis. Adm. Code.) This statement must include a description of the monitoring, recordkeeping, and reporting requirements and test methods. In addition, the application must include a schedule for compliance certification submittals during the permit term. These submittals must be no less frequent than annually, and may need to be more frequent if specified by the underlying applicable requirement or by the Department. SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S05	4. Unit identification number: EU05

- 5. This Unit will use the following method(s) for determining compliance with the requirements of the permit (check all that apply and attach the appropriate form(s) to this form).
 - □ Continuous Emission Monitoring (CEM) Form 4530-119 Pollutant(s):
 - □ Periodic Emission Monitoring Using Portable Monitors Form 4530-120 Pollutant(s):
 - □ Monitoring Control System Parameters or Operating Parameters of a Process Form 4530-121 Pollutant(s):
 - □ Monitoring Maintenance Procedures Form 4530-122 Pollutant(s):
 - □ Stack Testing Form 4530-123 Pollutant(s):
 - □ Fuel Sampling and Analysis (FSA) Form 4530-124 Pollutant(s):
 - Recordkeeping Form 4530-125 Pollutant(s): all pollutants
 - □ Other (please describe) Form 4530-135 Pollutant(s):
- 6. Compliance certification reports will be submitted to the Department according to the following schedule:

Start date: At date of permit issuance and every <u>12</u> months thereafter.

Compliance monitoring reports will be submitted to the Department according to the following schedule:

Start date: At date of permit issuance and every <u>6</u> months thereafter.

State of Wisconsin Department of Natural Resources

COMPLIANCE DEMONSTRATION BY RECORDKEEPING AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-125 11-93 Infor

Information attached? <u>n</u> (y/n)

Recordkeeping may be acceptable as a compliance demonstration method provided that a correlation between the parameter value recorded and the emission rate of a particular pollutant is established in the form of a curve or chart of emission rate versus parameter values. This correlation may constitute the certification of the system. It should be attached for Department approval. If it is not attached, please submit it within 60 days of the startup of the system.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S05	4. Unit identification number: EU05
5. Pollutant(s) being monitored: SO ₂	6. Material or parameter being monitored and recorded: Sulfur content of natural gas.

7. Method of monitoring and recording:

Owners will keep records of the sulfur content of the natural gas as certified by the supplier or test data and record the daily usage of natural gas.

8. List any	EPA	methods	used:
N/A			

9. Is this an existing method of demonstrating compliance?

10. Installation date: 06/01/2021

11. Backup system: N/A

12. Compliance shall be demonstrated: 🗵 Daily 🗆 Weekly 🗆 Monthly 🗆 Batch (not to exceed monthly)

13. Indicate by checking:

The monitoring system shall be subject to appropriate performance specifications, calibration requirements, and quality assurance procedures. \Box A quality assurance/quality control plan for the recordkeeping system is attached for Department approval. \Box If the plan is not attached, please submit it within 60 days of the startup of the recordkeeping program. \Box The plan was submitted to the Department on _____.

- **** The compliance records shall be available for Department inspection. The format for the compliance ***** certification report and the excess emission report shall be approved by the Department. A proposed format for the compliance certification report and excess emission report shall be submitted at the same time as the application.
- **** The source shall record any malfunction that causes or may cause an emission limit to be exceeded. **** Malfunctions shall be reported to the Department the next business day. Hazardous air spills shall be reported to the Department immediately.

State of Wisconsin Department of Natural Resources

COMPLIANCE DEMONSTRATION BY RECORDKEEPING AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-125 11-93 Infor

Information attached? <u>n</u> (y/n)

Recordkeeping may be acceptable as a compliance demonstration method provided that a correlation between the parameter value recorded and the emission rate of a particular pollutant is established in the form of a curve or chart of emission rate versus parameter values. This correlation may constitute the certification of the system. It should be attached for Department approval. If it is not attached, please submit it within 60 days of the startup of the system.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S05	4. Unit identification number: EU05
5. Pollutant(s) being monitored: All	6. Material or parameter being monitored and recorded:Hours of operation of the natural gas heater will be recorded so that emissions may be calculated.
7. Method of monitoring and recording: <u>Hours of operation</u>	
8. List any EPA methods used: <u>Not applicable</u>	
9. Is this an existing method of demonstrating compliance? Yes ☑ No	10. Installation date: 06/01/2021
11. Backup system: N/A	
12. Compliance shall be demonstrated:	☑ Monthly □ Batch (not to exceed monthly)
13. Indicate by checking:	

The monitoring system shall be subject to appropriate performance specifications, calibration requirements, and quality assurance procedures. A quality assurance/quality control plan for the recordkeeping system is attached for Department approval. If the plan is not attached, please submit it within 60 days of the startup of the recordkeeping program. The plan was submitted to the Department on _____.

- **** The compliance records shall be available for Department inspection. The format for the compliance ***** certification report and the excess emission report shall be approved by the Department. A proposed format for the compliance certification report and excess emission report shall be submitted at the same time as the application.
- **** The source shall record any malfunction that causes or may cause an emission limit to be exceeded. **** Malfunctions shall be reported to the Department the next business day. Hazardous air spills shall be reported to the Department immediately.

	\sim	_
Ρ		5
	U	U
	-	_

State of Wisconsin Department of Natural Resources		AIR P	SION UNIT HAZARDOUS AIR POLLUTANT SUMMARY OLLUTION CONTROL PERMIT APPLICATION						
SEE INSTRUCTIONS ON RE	VERSE SIDE	Form 4	4530-126 11-93		Information attached? <u>y</u> (y/n)				
1. Facility name: Nemadji Tra	il Energy Center		2. Facility identification number: To be assigned 816127840						
3. Stack identification number: S05			4. Unit identification	number: EU05					
5. Unit material description: N	Vatural Gas Combust	ion							
6. Complete the following sun references. Attached?		air emissions	s from this unit. Attacl	h sample calculat	ions and emission factor				
Pollutant CAS	Actual emiss	ions	Maximum theoretic:	al emissions	Potential to emit				
		Units		Units					
	SEE APPENDIX	C FOR HA	PS EMISSIONS CAL	CULATIONS					
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				
					TPY				

State of Wisconsin Department of Natural Resources EMISSION UNIT SUMMARY

AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-128 11-93 Information

Information attached? $\underline{y}(y/n)$

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S05	4. Unit identification number: EU05

5. Complete the following emissions summary for the following pollutants. Attach sample calculations and emission factor references. Attached? <u>See Appendix C</u>

Air pollutant	Actı	ıal	Maximum theoretical emissions			Potential to emit	Maxin	num a	llowable
	U	TPY		U	TPY			U	TPY

SEE APPENDIX C FOR EMISSIONS CALCULATIONS

Sulfur dioxide				TPY		
Organic compounds				TPY		
Carbon monoxide				TPY		
Lead				TPY		
Nitrogen oxides				TPY		
Total reduced sulfur				TPY		
Mercury				TPY		
Asbestos				TPY		
Beryllium				TPY		
Vinyl chloride				TPY		
				TPY		
				TPY		
				TPY		
				TPY		
				TPY		

Units (U) should be entered as follows:

1 = lb/hr

2 = lb/mmBTU

3 = grains/dscf

4 = lb/gallon

5 = ppmdv

6 = other (specify)7 = other (specify)

8 =other (specify)

State of Wisconsin Department of Natural Resources CURRENT EMISSIONS REQUIREMENTS AND STATUS OF UNIT AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-130 Rev. 12-99 Information attached? <u>n</u> (y/n)

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center		2. Facility identification number: To be assigned 816127840				
3. Stack identification number: S05		4. Unit identification number: EU05				
5. Pollutant	6. Wis. Adm. Code Wis. Stats., 40 CFR	7. State Only	8. Limitation			ompliance Status 1 or out)
Particulate	NR 415	x	0.15 lb/MMBtu		Units not co	nstructed yet
Sulfur Dioxide	NR 417, NSPS 40 CFR 60, Subpart Dc		Keep records of the sulfur content of the natural gas as certified by the supplier or tes data and record the daily usag		Units not co	nstructed yet
Nitrogen Dioxide	NR 428	X			Units not co	nstructed yet
Carbon Monoxide	NR 426	x			Units not co	instructed yet
Lead	NR 427	x			Units not co	instructed yet
Volatile Organic Compounds	NR 419	x			Units not co	nstructed yet
Opacity	NR 431	X	20% opacity		Units not co	nstructed yet
10. Other requirements (e.g., m existing permit, etc.)	alfunction reporting	, special ope	rating conditions from an	S	State Only	Compliance Status (in or out)

** PART 70 SOURCES ONLY:

1. Be sure to review the Compliance Assurance Monitoring (CAM) Rule, 40 CFR Part 64, for the Renewal Application. The CAM rule requires owners and operators of Part 70 sources to monitor the operation and maintenance of their control equipment so that they can evaluate the performance of their control devices and report whether or not their facilities meet established emission standards. All facilities that have a Title V, Part 70, Federal Operating Permit are required to meet the CAM rule and submit a CAM plan with this Title V renewal application. The rule requires that a CAM plan be submitted with the Title V renewal application for each pollutant at each emissions unit which has a potential to emit - prior to controls - of that pollutant greater than the major source threshold for the respective pollutant. Please refer to the CAM Technical Guidance web site at

<u>http://www.epa.gov/ttn/emc/cam.html</u> for further documentation on the rule and how to prepare a CAM plan for submittal with the renewal application.

2. List all applicable **Maximum Achievable Control Technology** (MACT) rule(s) and the effective date(s) if they were promulgated during the last 3 years of your operation permit term. Identify the emissions units subject to each MACT rule listed.

EMISSION UNIT COMPLIANCE PLAN COMMITMENTS AND SCHEDULE AIR POLLUTION CONTROL PERMIT APPLICATION Information attached? <u>n</u> (y/n)Form 4530-131 11-93

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S05	4. Unit identification number: EU05

5. For Units that are presently in compliance with all applicable requirements, including any enhanced monitoring and compliance certification requirements under section 114(a)(3) of the Clean Air Act that apply, complete the following. These commitments are part of the application for Part 70 permits.

□ We will continue to operate and maintain this Unit in compliance with all applicable requirements.

Form 4530-130 includes new requirements that apply or will apply to this Unit during the term of the permit. We will meet such requirements on a timely basis.

6. For Units not presently fully in compliance, complete the following.

This Unit is in compliance with all applicable requirements except for those indicated below. We will achieve compliance according to the following schedule:

Applicable	Requirement	Corrective Actions	Deadline	
1.				
	_			
	-			
2.				
3.				
5.				
	N		<u> </u>	
Progress reports will be submitted: Start date: and every six (6) months thereafter				

P05

From December 2018 Application

State of Wisconsin Department of Natural Resources SEE INSTRUCTIONS ON REVERSE SIDE	STACK IDENTIFICATION AIR POLLUTION CONTROL Form 4530-103 11-93	PERMIT APPLICATION Information attached? <u>n</u> (y/n)
1. Facility name:	2. Facility identification number:	3. Stack identification number:
Nemadji Trail Energy Center	To be assigned 816127840	S06
4. Exhausting Unit(s), use Unit identification	n number from appropriate Form(s) 4530-10	4, 106, 107, 108 and/or 109
4530-104 EU06 4530-106	4530-107 4530-108	4530-109
5. Identify this stack on the plot plan require	d on Form 4530-101	
7. Discharge height above ground level: <u>1</u>	t, then provide the following stack paramete 5(feet)	-
8. Inside dimensions at outlet (check one and Circular 0.5 (feet)	• •	width (feet)
9. Exhaust flow rate: Normal <u>1,813</u> (ACFM)	Maximum <u>1,813</u> (ACFM)	
10. Exhaust gas temperature (normal):	<u>.,030</u> (°F)	
11. Exhaust gas moisture content:	Normal volume percent	Maximum volume percent
12. Exhaust gas discharge direction:	☑ Up □ Down	□ Horizontal
13. Is this stack equipped with a rainhat or exhaust gases from the stack?	any obstruction to the free flow of the	□ Yes ✓ No
***** Complete the appropriate Air Perm exhausting through this stack.	it Application Forms(s) 4530-104, 106, 107,	108 or 109 for each Unit *****

From December 2018 Application

State of Wisconsin Department of Natural Resources SEE INSTRUCTIONS ON REVERSE S	SIDE	AIR POL	OR FURNACE OPI LUTION CONTRO 30-104 11-93	L PERMIT APPLICA	TION ation attached? <u>n</u> (y/n)
1. Facility name: Nemadji Trail Energy	Center		2. Facility identific	ation number: To be a	ssigned 816127840
3. Stack identification number: S06			4. Boiler/furnace n	umber: EU06	
4a. Unit description:					
282-hp emergency diesel fire pump.					
5. Indicate the boiler/furnace control tec If the boiler/furnace is controlled,				Controlled opropriate forms:	
4530-110 4530- 4530-114 4530-	-111 4 -115 4	530-112 _ 530-116 _	4530-113 4530-117		
6. Furnace type:			7. Maximum conti	nuous rating: 1.95 MN	/IBtu/hr
8. Manufacturer: TBD			9. Model number:	TBD	
10. Date of construction or last modif	ication: 06/01/2	021			
11. Fuels and firing conditions:			I		
	Primary fu	ıel	Backup fuel #1	Backup fuel #2	Backup fuel #3
Fuel name	Fuel oil				
Higher heating value	137,000 B	tu/gal			
Maximum sulfur content (Wt.%)	ULSD				
Maximum ash content (Wt.%)	N/A				

***** For this emissions unit, identify the method of compliance demonstration by completing Form 4530-118, ***** DESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCE. Attach Form 4530-118 and its attachment(s) to this form. This is not a requirement of non-Part 70 sources.

N/A

N/A

14.1 gal/hr

7,050 gal/yr

Excess Combustion Air (%O2)

Moisture content (as fired) (%)

Maximum hourly consumption

Actual yearly consumption

***** Please complete the Air Pollution Control Permit Application Forms 4530-126 and 4530-128 for this Unit. *****

State of Wisconsin Department of Natural Resources

From December 2018 Application

COMPLIANCE CERTIFICATION - MONITORING AND REPORTINGDESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCEForm 4530-11811-93Information attached? n (y/n)

All applicants except non-Part 70 sources are required to certify compliance with all applicable air pollution permit requirements by including a statement within the permit application of the methods used for determining compliance (please see sec. NR 407.05(4)(i), Wis. Adm. Code.) This statement must include a description of the monitoring, recordkeeping, and reporting requirements and test methods. In addition, the application must include a schedule for compliance certification submittals during the permit term. These submittals must be no less frequent than annually, and may need to be more frequent if specified by the underlying applicable requirement or by the Department.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S06	4. Unit identification number: EU06

- 5. This Unit will use the following method(s) for determining compliance with the requirements of the permit (check all that apply and attach the appropriate form(s) to this form).
 - □ Continuous Emission Monitoring (CEM) Form 4530-119 Pollutant(s):
 - Periodic Emission Monitoring Using Portable Monitors Form 4530-120 Pollutant(s):
 - □ Monitoring Control System Parameters or Operating Parameters of a Process Form 4530-121 Pollutant(s):
 - □ Monitoring Maintenance Procedures Form 4530-122 Pollutant(s):
 - □ Stack Testing Form 4530-123 Pollutant(s):
 - ✓ Fuel Sampling and Analysis (FSA) Form 4530-124 Pollutant(s): SO₂
 - Recordkeeping Form 4530-125 Pollutant(s): <u>All</u>
 - □ Other (please describe) Form 4530-135 Pollutant(s):
- 6. Compliance certification reports will be submitted to the Department according to the following schedule:

Start date: At date of permit issuance and every <u>12</u> months thereafter.

Compliance monitoring reports will be submitted to the Department according to the following schedule:

Start date: At date of permit issuance and every <u>6</u> months thereafter.

State of Wisconsin Department of Natural Resources

From December 2018 Application

COMPLIANCE DEMONSTRATION BY FUEL SAMPLING AND ANALYSIS AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-124 11-93 Information attached? <u>n (y/n)</u>

An installation plan for each fuel sampling and analysis system (FSA) may be submitted with the permit application for Department approval. The installation plan shall contain the following information: the name and address of the source; the source facility identification number; a general description of the process and the control equipment; the type of fuel being sampled; the manufacturer, model number, and serial number of each sampler; and a schematic of the FSA system showing the sample acquisition point and the location of the machine that produces the daily, weekly, or monthly composite fuel sample. A completed form 4530-124, supplemented to satisfy the requirements of this paragraph, may constitute an installation plan for a FSA system.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S06	4. Unit identification number: EU06
5. Pollutant being monitored: SO_2	6. Fuel being sampled: Diesel fuel oil

7. List the ASTM fuel sample collecting and analyzing methods used: In accordance with 40 CFR Part 75

8. Is this an existing FSA system? 🛛 Yes 🗹 No	9. Installation date: 06/01/2021

10. Automated sampling Manual sampling

11. Backup system? Not applicable

12.	Compliance shall be demonstrated:	🗆 Daily	✓ □ Weekly	□ Monthly	Per shipment of diesel fuel
-----	-----------------------------------	---------	------------	-----------	-----------------------------

13. Indicate by checking:

□ The FSA system certification is attached for Department approval. ☑ If the certification is not attached, please submit it within 60 days of the FSA system startup. □ The certification was submitted to the Department on _____.

□ A FSA quality assurance/quality control plan for fuel sampling program is attached for Department approval. If the plan is not attached, please submit it within 60 days of the CEM startup system. The plan was submitted to the Department on _____.

***** Any composite sample over the emission limit shall be reported as an excess emission. *****

State of Wisconsin Department of Natural Resources

COMPLIANCE DEMONSTRATION BY RECORDKEEPING AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-125 11-93 Inform

Information attached? <u>n</u> (y/n)

Recordkeeping may be acceptable as a compliance demonstration method provided that a correlation between the parameter value recorded and the emission rate of a particular pollutant is established in the form of a curve or chart of emission rate versus parameter values. This correlation may constitute the certification of the system. It should be attached for Department approval. If it is not attached, please submit it within 60 days of the startup of the system.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S06	4. Unit identification number: EU06
5. Pollutant(s) being monitored: All	6. Material or parameter being monitored and recorded: The hours of operation of the emergency fire pump will be recorded so that emissions may be calculated.

7. Method of monitoring and recording: Hours of operation

8. List any EPA methods used:	
9. Is this an existing method of demonstrating compliance?	10. Installation date: 06/01/2021
11. Backup system:	
12. Compliance shall be demonstrated: \Box Daily \Box Weekly	\checkmark Monthly \square Batch (not to exceed monthly)

13. Indicate by checking:

The monitoring system shall be subject to appropriate performance specifications, calibration requirements, and quality assurance procedures. \Box A quality assurance/quality control plan for the recordkeeping system is attached for Department approval. \Box If the plan is not attached, please submit it within 60 days of the startup of the recordkeeping program. \Box The plan was submitted to the Department on _____.

- ***** The compliance records shall be available for Department inspection. The format for the compliance ***** certification report and the excess emission report shall be approved by the Department. A proposed format for the compliance certification report and excess emission report shall be submitted at the same time as the application.
- ***** The source shall record any malfunction that causes or may cause an emission limit to be exceeded. ***** Malfunctions shall be reported to the Department the next business day. Hazardous air spills shall be reported to the Department immediately.

State of Wisconsin Department of Natural Resources	ent of Natural Resources AIR F			SION UNIT HAZARDOUS AIR POLLUTANT SUMMARY POLLUTION CONTROL PERMIT APPLICATION 4530-126 11-93 Information attached? <u>y</u> (y/n)			
			2. Facility identification number: To be assigned 816127840				
1. Facility name: Nemadji Trail Energy Center					e assigned 810127840		
3. Stack identification numb			4. Unit identification	number: EU06			
5. Unit material description:							
6. Complete the following su references. Attached?		air emissions	s from this unit. Attacl	h sample calculat	ions and emission factor		
Pollutant CAS	Actual emiss	ions	Maximum theoretic:	al emissions	Potential to emit		
		Units		Units			
	SEE APPENDIX	C FOR HA	PS EMISSIONS CAL	CULATIONS			
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					ТРҮ		
					TPY		
					ТРҮ		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		

From December 2018 Application

State of Wisconsin Department of Natural Resources EMISSION UNIT SUMMARY AIR POLLUTION CONTROL PERMIT APPLICATION

Form 4530-128 11-93

Information attached? $\underline{y}(y/n)$

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S06	4. Unit identification number: EU06

5. Complete the following emissions summary for the following pollutants. Attach sample calculations and emission factor references. Attached? See Appendix C

Air pollutant	Actua	al	Maximum theoretical emissions			Potential to emit	Maxin	Maximum allowable	
	U	TPY		U	TPY			U	TPY

SEE APPENDIX C FOR EMISSIONS CALCULATIONS

					
Sulfur dioxide			 TPY		
Organic compounds			 TPY		
Carbon monoxide			 TPY		
Lead			 TPY		
Nitrogen oxides			 TPY		
Total reduced sulfur			 TPY		
Mercury			 TPY		
Asbestos			TPY		
Beryllium			 TPY		
Vinyl chloride			 TPY		
			TPY		
			 TPY		
			TPY		
			TPY		
			TPY		

Units (U) should be entered as follows:

1 = lb/hr

2 = lb/mmBTU

3 = grains/dscf

4 = lb/gallon5 = ppmdv

6 = other (specify)7 = other (specify)

8 = other (specify)

State of Wisconsin Department of Natural Resources

CURRENT EMISSIONS REQUIREMENTS AND STATUS OF UNIT AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-130 Rev. 12-99 Information attached? <u>n</u> (y/n)

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Tr	ail Energy Center	2. Faci	lity identification number: To be	assigned 8161278
3. Stack identification numbe	r: S06	4. Unit	identification number: EU06	
5. Pollutant	6. Wis. Adm. Code Wis. Stats., 40 CFR	7. State Only	8. Limitation	9. Compliance Status (in or out)
Particulate	NR415, 40 CFR Part 60, Subpart IIII, 40 CFR Part 63 ZZZZ		0.15 lb/MMBtu and 0.15 g/hp-hr	Units not constructed yet
Sulfur Dioxide	NR 417	x		Units not constructed yet
Nitrogen Dioxide	NR 428, 40 CFR Part 60, Subpart IIII, 40 CFR Part 63 ZZZZ		$NMHC + NO_x = 3.0 \text{ g/hp-hr}$	Units not constructed yet
Carbon Monoxide	NR 426, 40 CFR Part 60, Subpart IIII, 40 CFR Part 63 ZZZZ		2.6 g/hp-hr	Units not constructed yet
Lead	NR 427	X		Units not constructed yet
Volatile Organic Compounds	NR 419	X		Units not constructed yet
Opacity	NR 431	X	20% opacity	Units not constructed yet
10. Other requirements (e.g., m existing permit, etc.)	alfunction reporting, special oper	ating condit	ions from an State Only	Compliance Status (in or out)

EMISSION UNIT COMPLIANCE PLAN COMMITMENTS AND SCHEDULE AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-131 11-93 Information attached? <u>n</u> (y/n)

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3 Stack identification number: \$06	4 Unit identification number: EU06

5. For Units that are presently in compliance with all applicable requirements, including any enhanced monitoring and compliance certification requirements under section 114(a)(3) of the Clean Air Act that apply, complete the following. These commitments are part of the application for Part 70 permits.

□ We will continue to operate and maintain this Unit in compliance with all applicable requirements.

Form 4530-130 includes new requirements that apply or will apply to this Unit during the term of the permit. We will meet such requirements on a timely basis.

6. For Units not presently fully in compliance, complete the following.

This Unit is in compliance with all applicable requirements except for those indicated below. We will achieve compliance according to the following schedule:

Applicable Requirement

	Corrective Actions	Deadline			
1.					
2.					
3.					
5.					
Progress reports will be submitted: Start date: and every six (6) months thereafter					

State of Wisconsin Department of Natural Resources SEE INSTRUCTIONS ON REVERSE SIDE	STACK IDENTIFICATION AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-103 11-93 Information attached?				
1. Facility name:	2. Facility identification number:	3. Stack identification number:			
Nemadji Trail Energy Center	To be assigned 816127840	S07			
4. Exhausting Unit(s), use Unit identification	n number from appropriate Form(s) 4530-10	14, 106, 107, 108 and/or 109			
4530-104 EU07 4530-106	4530-107 4530-108	4530-109			
5. Identify this stack on the plot plan require	d on Form 4530-101				
 6. Indicate by checking: ✓ This stack has an actual exhaust po If this stack has an actual exhaust point 	int.	-			
7. Discharge height above ground level: <u>1</u>	5(feet)				
8. Inside dimensions at outlet (check one and	d complete):				
Circular <u>0.67</u> (feet)	□ rectangular length (feet)	width (feet)			
9. Exhaust flow rate:					
Normal <u>7,540</u> (ACFM)	Maximum <u>7,540</u> (ACFM)				
10. Exhaust gas temperature (normal): <u>8</u>	<u>890 (</u> °F)				
11. Exhaust gas moisture content:	Normal volume percent	Maximum volume percent			
12. Exhaust gas discharge direction:	☑ Up □ Down	□ Horizontal			
13. Is this stack equipped with a rainhat or any obstruction to the free flow of the □ Yes ✓ No exhaust gases from the stack?					
***** Complete the appropriate Air Perm exhausting through this stack.	it Application Forms(s) 4530-104, 106, 107	, 108 or 109 for each Unit *****			

From December 2018 Application

State of Wisconsin Department of Natural Resources SEE INSTRUCTIONS ON REVERSE SIDE	AIR POI Form 453	OR FURNACE OPE LLUTION CONTROL 30-104 11-93	PERMIT APPLICA	ΠΟΝ attached? <u>n</u> (y/n)
1. Facility name: Nemadji Trail Energy Cer		2. Facility identifica	tion number: To be as	signed 816127840
3. Stack identification number: S07		4. Boiler/furnace nu	mber: EU07	
4a. Unit description:				
1,490-hp emergency diesel generator.				
5. Indicate the boiler/furnace control technol If the boiler/furnace is controlled, ent 4530-110 4530-111 4530-114 4530-115	er the control device n	number(s) from the app	1	
6. Furnace type:		7. Maximum continuous rating: 21.0 MMBtu/hr		
8. Manufacturer: Cummins		9. Model number: DQFAD		
10. Date of construction or last modificat	ion: 06/01/2021			
11. Fuels and firing conditions:		1	1	- <u>-</u>
	Primary fuel	Backup fuel #1	Backup fuel #2	Backup fuel #3
	Fuel Oil			

Fuel name	Fuel Oil		
Higher heating value	137,000 Btu/gal		
Maximum sulfur content (Wt.%)	ULSD		
Maximum ash content (Wt.%)	N/A		
Excess Combustion Air (%O ₂)	N/A		
Moisture content (as fired) (%)	N/A		
Maximum hourly consumption	150 gal/hr		
Actual yearly consumption	75,000 gal/yr		

***** For this emissions unit, identify the method of compliance demonstration by completing Form 4530-118, ***** DESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCE. Attach Form 4530-118 and its attachment(s) to this form. This is not a requirement of non-Part 70 sources.

***** Please complete the Air Pollution Control Permit Application Forms 4530-126 and 4530-128 for this Unit. *****

State of Wisconsin Department of Natural Resources

From December 2018 Application

COMPLIANCE CERTIFICATION - MONITORING AND REPORTINGDESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCEForm 4530-11811-93Information attached?n (y/n)

All applicants except non-Part 70 sources are required to certify compliance with all applicable air pollution permit requirements by including a statement within the permit application of the methods used for determining compliance (please see sec. NR 407.05(4)(i), Wis. Adm. Code.) This statement must include a description of the monitoring, recordkeeping, and reporting requirements and test methods. In addition, the application must include a schedule for compliance certification submittals during the permit term. These submittals must be no less frequent than annually, and may need to be more frequent if specified by the underlying applicable requirement or by the Department.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S07	4. Unit identification number: EU07

- 5. This Unit will use the following method(s) for determining compliance with the requirements of the permit (check all that apply and attach the appropriate form(s) to this form).
 - □ Continuous Emission Monitoring (CEM) Form 4530-119 Pollutant(s):
 - □ Periodic Emission Monitoring Using Portable Monitors Form 4530-120 Pollutant(s):
 - □ Monitoring Control System Parameters or Operating Parameters of a Process Form 4530-121 Pollutant(s):
 - □ Monitoring Maintenance Procedures Form 4530-122 Pollutant(s):
 - □ Stack Testing Form 4530-123 Pollutant(s):
 - ✓ Fuel Sampling and Analysis (FSA) Form 4530-124 Pollutant(s): SO₂
 - Recordkeeping Form 4530-125 Pollutant(s): <u>All</u>
 - □ Other (please describe) Form 4530-135 Pollutant(s):
- 6. Compliance certification reports will be submitted to the Department according to the following schedule:

Start date: At date of permit issuance and every <u>12</u> months thereafter.

Compliance monitoring reports will be submitted to the Department according to the following schedule:

Start date: At date of permit issuance and every <u>6</u> months thereafter.

State of Wisconsin Department of Natural Resources

From December 2018 Application

COMPLIANCE DEMONSTRATION BY FUEL SAMPLING AND ANALYSISAIR POLLUTION CONTROL PERMIT APPLICATIONForm 4530-12411-93Information attached? n (y/n)

An installation plan for each fuel sampling and analysis system (FSA) may be submitted with the permit application for Department approval. The installation plan shall contain the following information: the name and address of the source; the source facility identification number; a general description of the process and the control equipment; the type of fuel being sampled; the manufacturer, model number, and serial number of each sampler; and a schematic of the FSA system showing the sample acquisition point and the location of the machine that produces the daily, weekly, or monthly composite fuel sample. A completed form 4530-124, supplemented to satisfy the requirements of this paragraph, may constitute an installation plan for a FSA system.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S07	4. Unit identification number: EU07
5. Pollutant being monitored: SO ₂	6. Fuel being sampled: Diesel fuel oil

7. List the ASTM fuel sample collecting and analyzing methods used: In accordance with 40 CFR Part 75

8. Is this an existing FSA system? 🛛 Yes 🔽 No	9. Installation date: 06/01/2021

10. Automated sampling Manual sampling

11. Backup system? Not applicable

12.	Compliance shall be demonstrated:	🗆 Daily	∕ □ Weekly	□ Monthly	Per shipment of diesel fuel
-----	-----------------------------------	---------	------------	-----------	-----------------------------

13. Indicate by checking:

□ The FSA system certification is attached for Department approval. ✓ If the certification is not attached, please submit it within 60 days of the FSA system startup. □ The certification was submitted to the Department on _____.

□ A FSA quality assurance/quality control plan for fuel sampling program is attached for Department approval. If the plan is not attached, please submit it within 60 days of the CEM startup system. The plan was submitted to the Department on _____.

***** Any composite sample over the emission limit shall be reported as an excess emission. *****

State of Wisconsin Department of Natural Resources

COMPLIANCE DEMONSTRATION BY RECORDKEEPING AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-125 11-93 Inform

Information attached? <u>n</u> (y/n)

Recordkeeping may be acceptable as a compliance demonstration method provided that a correlation between the parameter value recorded and the emission rate of a particular pollutant is established in the form of a curve or chart of emission rate versus parameter values. This correlation may constitute the certification of the system. It should be attached for Department approval. If it is not attached, please submit it within 60 days of the startup of the system.

SEE INSTRUCTIONS ON REVERSE SIDE

2. Facility identification number: To be assigned 816127840
4. Unit identification number: EU07
6. Material or parameter being monitored and recorded: The hours of operation of the emergency generator will be recorded so that emissions may be calculated.
10. Installation date: 06/01/2021
Monthly Batch (not to exceed monthly)

The monitoring system shall be subject to appropriate performance specifications, calibration requirements, and quality assurance procedures. A quality assurance/quality control plan for the recordkeeping system is attached for Department approval. If the plan is not attached, please submit it within 60 days of the startup of the recordkeeping program. The plan was submitted to the Department on _____.

- ***** The compliance records shall be available for Department inspection. The format for the compliance ***** certification report and the excess emission report shall be approved by the Department. A proposed format for the compliance certification report and excess emission report shall be submitted at the same time as the application.
- ***** The source shall record any malfunction that causes or may cause an emission limit to be exceeded. ***** Malfunctions shall be reported to the Department the next business day. Hazardous air spills shall be reported to the Department immediately.

State of Wisconsin Department of Natural Resources	AIR P	SSION UNIT HAZARDOUS AIR POLLUTANT SUMMARY POLLUTION CONTROL PERMIT APPLICATION 4530-126 11-93 Information attached? <u>y</u> (y/n)					
SEE INSTRUCTIONS ON REV	ERSE SIDE				V		
1. Facility name: Nemadji Trail	Energy Center		2. Facility identificat	ion number: To b	e assigned 816127840		
3. Stack identification number:	3. Stack identification number: S07			number: EU07			
5. Unit material description: Fu	el Oil Combustion						
6. Complete the following sum references. Attached?		air emissions	s from this unit. Attacl	n sample calculati	ons and emission factor		
Pollutant CAS	Actual emiss	ions	Maximum theoretica	al emissions	Potential to emit		
		Units		Units			
	SEE APPENDIX	C FOR HA	PS EMISSIONS CAL	CULATIONS			
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		

From December 2018 Application

State of Wisconsin Department of Natural Resources EMISSION UNIT SUMMARY AIR POLLUTION CONTROL PERMIT APPLICATION

Form 4530-128 11-93 Informa

Information attached? $\underline{y}(y/n)$

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S07	4. Unit identification number: EU07

5. Complete the following emissions summary for the following pollutants. Attach sample calculations and emission factor references. Attached? <u>See Appendix C</u>

Air pollutant	,	Actua	ıl	Maximum theoretical emissions			Potential to emit	Maxin	num a	llowable
		U	TPY		U	TPY			U	TPY

SEE APPENDIX C FOR EMISSION CALCULATIONS

Sulfur dioxide				TPY		
Organic compounds				TPY		
Carbon monoxide				TPY		
Lead				TPY		
Nitrogen oxides				TPY		
Total reduced sulfur				TPY		
Mercury				TPY		
Asbestos				TPY		
Beryllium				TPY		
Vinyl chloride				TPY		
				TPY		
				TPY		
				TPY		
				TPY		
				TPY		

Units (U) should be entered as follows:

1 = lb/hr

2 = lb/mmBTU

3 = grains/dscf

4 = lb/gallon

5 = ppmdv

6 = other (specify)

7 = other (specify)

8 = other (specify)

State of Wisconsin Department of Natural Resources

CURRENT EMISSIONS REQUIREMENTS AND STATUS OF UNIT AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-130 Rev. 12-99 Information attached? <u>n</u> (y/n)

SEE INSTRUCTIONS ON REVERSE SIDE

	ail Energy Center	2. Facility identification number: To be assigned 8161278					
3. Stack identification numbe	er: S07	4. Unit identification number: EU07					
5. Pollutant	6. Wis. Adm. Code Wis. Stats., 40 CFR	7. State Only	8. Limitation	9. Compliance Status (in or out)			
Particulate	NR415, 40 CFR Part 60, Subpart IIII, 40 CFR Part 63 ZZZZ		0.15 lb/MMBtu and 0.15 g/hp-hr	Units not constructed yet			
Sulfur Dioxide	NR 417	X		Units not constructed yet			
Nitrogen Dioxide	NR 428, 40 CFR Part 60, Subpart IIII, 40 CFR Part 63 ZZZZ		$NMHC + NO_x = 4.8 \text{ g/hp-hr}$	Units not constructed yet			
Carbon Monoxide	NR 426, 40 CFR Part 60, Subpart IIII, 40 CFR Part 63 ZZZZ	Х	CO = 2.6 g/hp-hr	Units not constructed yet			
Lead	NR 427	X		Units not constructed yet			
Volatile Organic Compounds	NR 419	Х		Units not constructed yet			
Opacity	NR 431	X	20% opacity	Units not constructed yet			

EMISSION UNIT COMPLIANCE PLAN COMMITMENTS AND SCHEDULE AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-131 11-93 Information attached? <u>n</u> (y/n)

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3 Stack identification number: S07	4 Unit identification number: EU07

5. For Units that are presently in compliance with all applicable requirements, including any enhanced monitoring and compliance certification requirements under section 114(a)(3) of the Clean Air Act that apply, complete the following. These commitments are part of the application for Part 70 permits.

□ We will continue to operate and maintain this Unit in compliance with all applicable requirements.

Form 4530-130 includes new requirements that apply or will apply to this Unit during the term of the permit. We will meet such requirements on a timely basis.

6. For Units not presently fully in compliance, complete the following.

This Unit is in compliance with all applicable requirements except for those indicated below. We will achieve compliance according to the following schedule:

Applicable Requirement

	Corrective Actions	Deadline						
1.								
2.								
3.								
5.								
Progress reports will be submitted: Start date: and every si	Progress reports will be submitted: Start date: and every six (6) months thereafter							

		From December 2018 Applicat						
State of Wisconsin Department of Natural Resources SEE INSTRUCTIONS ON REVERSE SIDI	STACK IDENTIFICATION AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-103 11-93 Information attached? _							
1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840	3. Stack identification number: S08						
4. Exhausting Unit(s), use Unit identification	on number from appropriate Form(s) 4530-	104, 106, 107, 108 and/or 109						
4530-104 4530-106	4530-107 4530-108	4530-109						
5. Identify this stack on the plot plan requir	red on Form 4530-101							
7. Discharge height above ground level:	ant, then provide the following stack parameters and a stack paramet	-						
8. Inside dimensions at outlet (check one an	ia complete).							
8. Inside dimensions at outlet (check one an Circular (feet)	□ rectangular length (feet)	width (feet)						
Circular (feet)	• <i>'</i>	width (feet)						
Circular (feet) 9. Exhaust flow rate: Normal (ACFM)	□ rectangular length (feet)	width (feet)						
Circular (feet) 9. Exhaust flow rate: Normal (ACFM)	□ rectangular length (feet) Maximum (ACFM)	width (feet)						
Circular (feet) 9. Exhaust flow rate: Normal (ACFM) 10. Exhaust gas temperature (normal):	□ rectangularlength (feet) Maximum(ACFM) (°F)							

T01

T01			F	rom December 20	18 Application	
State of Wisconsin Department of Natural Resources	STORAGE TANKS AIR POLLUTION CONTROL PERMIT APPLICATIO Form 4530-105 11-93 Information attached?					
n SEE ATTACHED SHEET FOR INSTRU	JCTIONS				(), 1)	
1.Facility Name: Nemadji Riv	er Energy Center	2.Facility Identific	ation Number 816127840	3.Storage Tank Number:	EU08	
4.Control Device Number (use number fr 111, 112, 113, 114, 115, 116, or 117)	om appropriate Form(s) 4530-110,	5.Storage Tank Capacit	y 180,000 gallons gallons	6.Date of Installation or L 06/01/2021	ast Modification	
7.Tank Height: 30 ft	8.Tank Diameter: 33 ft	9.Color of Tank (White_	/	Underground		
10.Is this tank equipped with a submerged		11.Is this tank equ	ipped with a pressure/va	cuum conservation vent?	_ √ _ No	
	_ √ Yes No	If yes; at what wh	at pressure is it set? at vacuum is it set?	(psia)		
12.Type of Storage Tank (check one) Open Top Tank Pressurized Tank	_√_ Fixed Roof External Floating Roof	Fixed Roof w/l Variable Vapor	nternal Floating Roof Space	Other (spec	ify)	
13.For all Fixed Roof Tanks:						
a.Tank Configuration (check one):	_ √ _ Vertical (upright cylinder)	Horizonta	ıl			
b.Tank Roof Type (check one): (required if vertical was selected)	Cone Roof - Indicate Dome Roof - Indicate ta	0	(feet) (feet) - Indicate t	tank shell radius	(feet)	

Riveted Tank

____ Vapor Mounted Primary

____ Vapor Primary, Rim Secondary

Unslotted guide-pole well

(mph)

_____ Vapor Primary w/Weather Shield

Ungasketed sliding cover

Vacuum Breaker (10" diameter well)

_____ Weighted mechanical actuation,

Weighted mechanical actuation,

Adjustable, pontoon area

_Adjustable, center area

Adjustable, double-deck roofs

gasketed

ungasketed

Fixed

Roof leg (3" diameter)

__ Double Deck Roof

(8" diameter unslotted pole, 21" diameter well)

Gasketed sliding cover

Light Rust

Dense Rust

Gunite Lined

Liquid Mounted Primary

___ Liquid Primary w/Weather Shield

Gauge-float well (20" diameter)

Roof Drain (3-inch diameter)

Fixed

90% closed

Unbolted cover, gasketed

_ Unbolted cover, ungasketed

Bolted cover, gasketed

Adjustable, pontoon area

Adjustable, center area

Adjustable, double deck roofs

___ Liquid Primary, Rim Secondary

Open

Roof leg(2-1/2" diameter)

b.Average Wind Speed at Tank Site:

c.Rim Seal System Description (check one): ____ Shoe Mounted Primary

Shoe Primary, Rim Secondary

Shoe Primary, Shoe Secondary

Access Hatch (24" diameter well)

e.Roof Fitting Types (indicate the number of each type):

Bolted cover, gasketed

Gauge-Hatch/sample well (8" diameter)

gasketed

ungasketed

Slotted guide-pole/sample well (8" diameter

diameter slotted pole, 21" diameter well)

Unbolted cover, ungasketed

_ Weighted mechanical actuation,

Weighted mechanical actuation,

_ Ungasketed sliding cover, without float

Ungasketed sliding cover, with float

Gasketed sliding cover, without float

Gasketed sliding cover, with float

Unbolted cover, gasketed

15.For External Floating Roof Tanks: a.Tank Construction (check one):

d.Roof Type (check one):

14.For all Floating Roof Tanks (both internal and external) - Shell Condition (check one):

Welded Tank

Pontoon Roof

Continued on following page

-	-0	
- 1		
	0	

From December 2018 Application

State of Wisconsin Department of Natural Resources APPLICATION	STORAGE TANKS AIR POLLUTION CONTROL PERMIT
	Form 4530-105 11-93 Information attached?
(y/n)	page 2
16.For Internal Floating Roof Tanks:	1.0
a.Rim Seal System Description (check one):	Vapor Mounted Primary Vapor Mounted Primary plus Secondary Seal Liquid Mounted Primary Liquid Mounted Primary plus Secondary Seal
b.Number of Columns:	
c.Effective Column Diameter:	(feet)
d.Deck Type (check one): Welded	Bolted
e.Total Deck Seam Length:	_(feet)
f.Deck Area:	(square feet)
g.Deck Fitting Types (indicate the number of each t	/pe):
Access Hatch (24" diameter) Bolted cover, gasketed Unbolted cover, gasketed Unbolted cover, ungasketed	Automatic gauge float well Ladder Well (36" diameter) Bolted cover, gasketed Sliding cover, gasketed Unbolted cover, ungasketed Sliding cover, ungasketed
Column Well (24" diameter) Builtup column-sliding cover, gask Builtup column-sliding cover, unga Pipe column-flexible fabric sleeve Pipe column-sliding cover, gaskete Pipe column-sliding cover, ungaskete	sketed Slotted pipe-sliding cover, ungasketed Fixed seal Sample well-slit fabric seal 10% open area Fixed d Stub drain (1" diameter) Fixed
Vacuum breaker (10" diameter) Weighted mechanical actuation, ga Weighted mechanical actuation, un	
17.For Variable Vapor Space Tanks: Volume Exp	ansion Capacity (gallons)

18.Complete the following table for materials to be stored in this tank:

Material Stored	Annual Throughput (gal/yr)	Daily Average Amount Stored (gallons)	Material Molecular Weight (lb/lb-mole)	Material Vapor Pressure (psia)	Storage Pressure (psia)	Average Storage Temperature (°F)	Material Liquid Density (lb/gal)
No. 2 Fuel Oil	10,791,748	180,000				Ambient	

19.Maximum Liquid Loading Rate of Tank:

_____(gallons)

20.Can this tank be loaded at the same time other tanks are loaded? ____Yes ___No

If yes, indicate which other tanks can be loaded at the same time:

21.Describe the operations this tank will serve: 180,000 tank stores No. 2 fuel oil as a backup fuel for the combustion turbine at the facility.

From December 2018 Application

Information attached? $\underline{y}(y/n)$

State of Wisconsin Department of Natural Resources

EMISSION UNIT SUMMARY

AIR POLLUTION CONTROL PERMIT APPLICATION

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S08	4. Unit identification number: EU08

Form 4530-128 11-93

5. Complete the following emissions summary for the following pollutants. Attach sample calculations and emission factor references. Attached? See Appendix C

	U	TPY		U	TPY		U	TPY

SEE APPENDIX C FOR EMISSIONS CALCULATIONS

Sulfur dioxide	ТРҮ
Organic compounds	ТРУ
Carbon monoxide	ТРҮ
Lead	ТРҮ
Nitrogen oxides	ТРҮ
Total reduced sulfur	ТРУ
Mercury	ТРҮ
Asbestos	ТРҮ
Beryllium	ТРҮ
Vinyl chloride	ТРҮ
	ТРУ

Units (U) should be entered as follows:

1 = lb/hr

2 = lb/mmBTU

3 = grains/dscf

4 = lb/gallon

5 = ppmdv

6 =other (specify)

7 = other (specify)

8 = other (specify)

State of Wisconsin Department of Natural Resources SEE INSTRUCTIONS ON REVERSE SIDE	STACK IDENTIFICATION AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-103 11-93 Information attache					
1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840	3. Stack identification number: S09				
4. Exhausting Unit(s), use Unit identification	n number from appropriate Form(s) 4530-10	4, 106, 107, 108 and/or 109				
4530-104 4530-106	4530-107 4530-108	4530-109				
5. Identify this stack on the plot plan require	d on Form 4530-101					
 6. Indicate by checking: ☐ This stack has an actual exhaust point If this stack has an actual exhaust point 7. Discharge height above ground level: 8. Inside dimensions at outlet (check one and 	t, then provide the following stack paramete _(feet)					
☐ Circular (feet)	1 /	width (feet)				
9. Exhaust flow rate: <u>Normal</u> (ACFM) 10. Exhaust gas temperature (normal):	Maximum (ACFM)					
11. Exhaust gas moisture content:	Normalvolume percent	Maximum volume percent				
12. Exhaust gas discharge direction:	Up Down	□ Horizontal				
13. Is this stack equipped with a rainhat or exhaust gases from the stack?	any obstruction to the free flow of the	□ Yes				
***** Complete the appropriate Air Perm exhausting through this stack.	it Application Forms(s) 4530-104, 106, 107	, 108 or 109 for each Unit *****				

T02

T02 State of Wisconsin Department of Natural Resources

STORAGE TANKS	

Department of Natu	ral Resources				LUTION CONTI m 4530-105 11-9	ROL PERMIT APPLICATION 3 Information attached? r		
SEE ATTACHED S	SHEET FOR INSTRUCTIONS							
1.Facility Name:	Nemadji River Energy	Center	2.Facility Id	entificati	ion Number 8161	27840 3.Storage	Tank Number: EU09	
4.Control Device No 111, 112, 113, 114	umber (use number from approp , 115, 116, or 117)	iate Form(s) 4530-11	0, 5.Storage Tank Ca	apacity	1,700 gallons gallons		lation or Last Modification 1/2021	
7.Tank Height:	8. Tank Diameter:	9	.Color of Tank (check				· · ·	
14 ft x 6.5 ft x	a 1.2 ft Belly Tank (approximat	e specifications)	<u> </u>	hite0	Other	U	Inderground	
10.Is this tank equip	pped with a submerged fill pipe?		11.Is this tar	ık equipj	ped with a pressu	re/vacuum conser		
	_ <u>√</u> Ye	s No	If yes;	at what at what	pressure is it set? vacuum is it set?		Yes _√_ No (psia) (psia)	
12.Type of Storage Open Top T Pressurized		d Roof mal Floating Roof	Fixed Ro Variable	of w/Inte Vapor S	ernal Floating Ro pace	of <u>Gen</u>	_✔_ Other (specify) erator Belly Tank	
13.For all Fixed Roo	of Tanks:							
a.Tank Config	uration (check one): Vert	cal (upright cylinder)	_ √_ H	orizonta	1			
	Type (check one):	Cone Roof - Indicate Dome Roof - Indicat	e tank roof height e tank roof height		(feet) (feet) - Indi	cate tank shell rac	lius (feet)	
14.For all Floating F	Roof Tanks (both internal and ex			Ligh		Dense Rust	Gunite Lined	
15.For External Floa a.Tank Constru		Welded Tank	_Riveted Tank					
b.Average Win	nd Speed at Tank Site:		(mph)					
c.Rim Seal Sy Shoe Shoe Shoe	stem Description (check one): Mounted Primary Primary, Rim Secondary Primary, Shoe Secondary	Vapor Pri Vapor Pri Vap	oor Mounted Primary mary, Rim Secondary oor Primary w/Weather	Shield	_1	Liquid Primary, R	Mounted Primary im Secondary Primary w/Weather Shield	
d.Roof Type (Double Deck F	Roof				
e.Roof Fitting	Types (indicate the number of ea	ich type):						
Access F	Hatch (24" diameter well) Bolted cover, gasketed Unbolted cover, ungasketed Unbolted cover, gasketed	(8" dia	ted guide-pole well meter unslotted pole, 2 /ngasketed sliding cov Gasketed sliding c	er	eter well)		at well (20" diameter) _Unbolted cover, ungasketed olted cover, gasketed _Bolted cover, gasketed	
Gauge-H 	latch/sample well (8" diameter) Weighted mechanical actuatio gasketed		n Breaker (10" diamet Veighted mechanical a gasketed		,	Roof Drai Open	n (3-inch diameter) _90% closed	
	Weighted mechanical actuatio ungasketed	n, V	Veighted mechanical a ungasketed	ctuation,	,			
	uide-pole/sample well (8" diame slotted pole, 21" diameter well)	ter Roof leg (3"	diameter) Adjustable, ponto	on area		Roof leg(2-1/2"	diameter) _Adjustable, pontoon area	
	Ungasketed sliding cover, wit	nout float	Adjustable, center	area			_Adjustable, center area	
	Ungasketed sliding cover, with Gasketed sliding cover, without		Adjustable, double Fixed	e-deck ro	oofs		_ Adjustable, double deck roof Fixed	s
	Gasketed sliding cover, with f	_					_	

Continued on following page

From December 2018 Application

State of Wisconsin Department of Natural Resources APPLICATION	STORAGE TANKS AIR POLLUTION CONTROL PERMIT				
		Form 4530-105 11-93	Information attached?		
(y/n)		page 2			
16.For Internal Floating Roof Tanks:					
a.Rim Seal System Description (check one):	Vapor Mounted PrimaryVapor Mounted Liquid Mounted PrimaryLiquid Mounted	Primary plus Secondary Se nted Primary plus Secondar	al y Seal		
b.Number of Columns:					
c.Effective Column Diameter:	(feet)				
d.Deck Type (check one): Welded	Bolted				
e.Total Deck Seam Length:	(feet)				
f.Deck Area:	(square feet)				
g.Deck Fitting Types (indicate the number of each	n type):				
Access Hatch (24" diameter) Bolted cover, gasketed Unbolted cover, gasketed Unbolted cover, ungasketed	Automatic gauge float well Bolted cover, gasketed Unbolted cover, gasketed Unbolted cover, ungasketed	Ladder Well (36" dia Slid	ameter) ling cover, gasketed ling cover, ungasketed		
Column Well (24" diameter) Builtup column-sliding cover, ga Builtup column-sliding cover, un Pipe column-flexible fabric sleev Pipe column-sliding cover, gaske Pipe column-sliding cover, ungas	gasketed Slotted pipe-sliding cover, ungasketed re seal Sample well-slit fabric seal 10% open area eted Stub drain (1" diameter)	d Fixed	ustable		
Vacuum breaker (10" diameter) Weighted mechanical actuation, a Weighted mechanical actuation, a					
17.For Variable Vapor Space Tanks: Volume Ez	xpansion Capacity(gallons)				

18.Complete the following table for materials to be stored in this tank:

Material Stored	Annual Throughput (gal/yr)	Daily Average Amount Stored (gallons)	Material Molecular Weight (lb/lb-mole)	Material Vapor Pressure (psia)	Storage Pressure (psia)	Average Storage Temperature (°F)	Material Liquid Density (lb/gal)
#2 Fuel	35,360	1,700				Ambient	

19.Maximum Liquid Loading Rate of Tank:

_____(gallons)

20.Can this tank be loaded at the same time other tanks are loaded? ____Yes ___ \checkmark No

If yes, indicate which other tanks can be loaded at the same time:

21.Describe the operations this tank will serve: 1,700-gallon fuel oil tank for emergency generator.

From December 2018 Application

State of Wisconsin Department of Natural Resources EMISSION UNIT SUMMARY

AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-128 11-93 Information attached? <u>y</u> (y/n)

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S09	4. Unit identification number: EU09

5. Complete the following emissions summary for the following pollutants. Attach sample calculations and emission factor references. Attached? See Appendix C

	U	TPY		U	TPY		U	TPY

SEE APPENDIX C FOR EMISSIONS CALCULATIONS

Sulfur dioxide	ТРҮ
Organic compounds	ТРҮ
Carbon monoxide	ТРҮ
Lead	ТРҮ
Nitrogen oxides	ТРҮ
Total reduced sulfur	ТРҮ
Mercury	ТРУ
Asbestos	ТРУ
Beryllium	ТРҮ
Vinyl chloride	ТРҮ
	TPY

Units (U) should be entered as follows:

1 = lb/hr

2 = lb/mmBTU

3 = grains/dscf

4 = lb/gallon

5 = ppmdv

6 =other (specify)

7 =other (specify) 8 =other (specify) T03

State of Wisconsin Department of Natural Resources	STACK IDENTIFICATION AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-103 11-93 Information attached? <u>n</u> (y/n)								
SEE INSTRUCTIONS ON REVERSE SIDE				· · ·					
1. Facility name: Nemadji Trail Energy Center	2. Facility identifi To be assigned 8		3. Stack identif S10	ication number:					
4. Exhausting Unit(s), use Unit identificatio	n number from app	ropriate Form(s) 4530-	104, 106, 107, 108	and/or 109					
4530-104 4530-106	4530-107	4530-108	4530-109						
5. Identify this stack on the plot plan require	d on Form 4530-10	1							
 6. Indicate by checking: □ This stack has an actual exhaust po If this stack has an actual exhaust point 7. Discharge height above ground level:	_	ck serves to identify fug following stack parame							
8. Inside dimensions at outlet (check one and	d complete):								
Circular (feet)	□ rectangular	length (feet)	width (feet)						
9. Exhaust flow rate:									
Normal (ACFM)	Maximu	ım (ACFM)							
10. Exhaust gas temperature (normal):	_(°F)								
11. Exhaust gas moisture content:	Normalvo	lume percent	Maximum	volume percent					
12. Exhaust gas discharge direction:	□ Up	Down	Horizontal						
13. Is this stack equipped with a rainhat or exhaust gases from the stack?	any obstruction to	the free flow of the	□ Yes	🗷 No					
***** Complete the appropriate Air Perm exhausting through this stack.	nit Application Form	ns(s) 4530-104, 106, 10)7, 108 or 109 for e	ach Unit *****					

STORAGE TANKS

POLLUTION CONTRO	DL PERMIT APPLICATION	
Form 4530-105 11-93	Information attached? <u>n</u> (y	/n)

PERMIT ADDI ICATION Department of Natural Resources AIR SEE ATTACHED SHEET FOR INSTRUCTIONS 1.Facility Name: Nemadji River Energy Center 2.Facility Identification Number 816127840 3.Storage Tank Number: EU10 4.Control Device Number (use number from appropriate Form(s) 4530-110, 5.Storage Tank Capacity 180,000 gallons 6.Date of Installation or Last Modification 111, 112, 113, 114, 115, 116, or 117) 06/01/2021 gallons 7.Tank Height: 8. Tank Diameter: 9.Color of Tank (check one) ✓ White Other Underground 3.5 ft x 3.5 ft x 5 ft Belly Tank (approximate specifications) 10.Is this tank equipped with a submerged fill pipe? 11.Is this tank equipped with a pressure/vacuum conservation vent? Yes _√_ No _√_Yes __No If yes; at what pressure is it set? (psia) at what vacuum is it set? (psia) 12. Type of Storage Tank (check one) ____Fixed Roof Open Top Tank Fixed Roof w/Internal Floating Roof \checkmark Other (specify) ____ Variable Vapor Space Pressurized Tank External Floating Roof Generator belly tank 13.For all Fixed Roof Tanks: ____Vertical (upright cylinder) ✓ Horizontal a.Tank Configuration (check one): ___ Cone Roof - Indicate tank roof height ____ ____(feet) b.Tank Roof Type (check one): (required if vertical was selected) Dome Roof - Indicate tank roof height (feet) - Indicate tank shell radius (feet) 14.For all Floating Roof Tanks (both internal and external) - Shell Condition (check one): Light Rust Dense Rust Gunite Lined 15.For External Floating Roof Tanks: ___ Riveted Tank Welded Tank a.Tank Construction (check one): b.Average Wind Speed at Tank Site: (mph) c.Rim Seal System Description (check one): Shoe Mounted Primary Liquid Mounted Primary Vapor Mounted Primary _____ Vapor Primary, Rim Secondary Shoe Primary, Rim Secondary Liquid Primary, Rim Secondary ____ Vapor Primary w/Weather Shield Shoe Primary, Shoe Secondary Liquid Primary w/Weather Shield __ Double Deck Roof d.Roof Type (check one): Pontoon Roof e.Roof Fitting Types (indicate the number of each type): Access Hatch (24" diameter well) Unslotted guide-pole well Gauge-float well (20" diameter) Bolted cover, gasketed (8" diameter unslotted pole, 21" diameter well) Unbolted cover, ungasketed Unbolted cover, gasketed Unbolted cover, ungasketed ___ Ungasketed sliding cover ____ Gasketed sliding cover _____Bolted cover, gasketed Unbolted cover, gasketed Roof Drain (3-inch diameter) Gauge-Hatch/sample well (8" diameter) Vacuum Breaker (10" diameter well) Weighted mechanical actuation, Weighted mechanical actuation, Open 90% closed gasketed gasketed _ Weighted mechanical actuation, Weighted mechanical actuation, ungasketed ungasketed Roof leg (3" diameter) Slotted guide-pole/sample well (8" diameter Roof leg(2-1/2" diameter) diameter slotted pole, 21" diameter well) _____ Adjustable, pontoon area ____ Adjustable, pontoon area Ungasketed sliding cover, without float Adjustable, center area Adjustable, center area Ungasketed sliding cover, with float Adjustable, double-deck roofs Adjustable, double deck roofs Gasketed sliding cover, without float Fixed Fixed Gasketed sliding cover, with float

T03

From December 2018 Application

State of Wisconsin Department of Natural Resources APPLICATION	STORAGE TANKS AIR POLLUTION CONTROL PERMIT
	Form 4530-105 11-93 Information attached?
(y/n)	page 2
16.For Internal Floating Roof Tanks:	1.8
a.Rim Seal System Description (check one): Va	por Mounted Primary Vapor Mounted Primary plus Secondary Seal Liquid Mounted Primary Liquid Mounted Primary plus Secondary Seal
b.Number of Columns:	
c.Effective Column Diameter:	(feet)
d.Deck Type (check one): Welded	Bolted
e.Total Deck Seam Length: (eet)
f.Deck Area:	(square feet)
g.Deck Fitting Types (indicate the number of each type)	
Access Hatch (24" diameter) Bolted cover, gasketed Unbolted cover, gasketed Unbolted cover, ungasketed	Automatic gauge float well Ladder Well (36" diameter) Bolted cover, gasketed Sliding cover, gasketed Unbolted cover, ungasketed Sliding cover, ungasketed
Column Well (24" diameter) Builtup column-sliding cover, gasketed Builtup column-sliding cover, ungasket Pipe column-flexible fabric sleeve seal Pipe column-sliding cover, gasketed Pipe column-sliding cover, ungasketed	Sample pipe or well (24" diameter) Roof leg or hanger well
Vacuum breaker (10" diameter) Weighted mechanical actuation, gasket Weighted mechanical actuation, ungask	eted
17.For Variable Vapor Space Tanks: Volume Expansi	on Capacity (gallons)

18.Complete the following table for materials to be stored in this tank:

Material Stored	Annual Throughput (gal/yr)	Daily Average Amount Stored (gallons)	Material Molecular Weight (lb/lb-mole)	Material Vapor Pressure (psia)	Storage Pressure (psia)	Average Storage Temperature (°F)	Material Liquid Density (lb/gal)
No. 2 Fuel Oil	7,292	350				Ambient	

19.Maximum Liquid Loading Rate of Tank:

(gallons)

20.Can this tank be loaded at the same time other tanks are loaded? ____Yes ___No

If yes, indicate which other tanks can be loaded at the same time:

21.Describe the operations this tank will serve: 350 gallon tank stores No. 2 fuel oil for emergency fire pump engine tank.

From December 2018 Application

State of Wisconsin	
Department of Natural Resources	

EMISSION UNIT SUMMARY

AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-128 11-93 Information attached? <u>n</u> (y/n)

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: To be assigned 816127840
3. Stack identification number: S10	4. Unit identification number:EU10

5. Complete the following emissions summary for the following pollutants. Attach sample calculations and emission factor references. Attached? See Appendix C

	<u> </u>							
	U	TPY		U	TPY		U	TPY

SEE APPENDIX C FOR EMISSIONS CALCULATIONS

Sulfur dioxide				TPY		
Organic compounds				TPY		
Carbon monoxide				TPY		
Lead				TPY		
Nitrogen oxides				TPY		
Total reduced sulfur				TPY		
Mercury				TPY		
Asbestos				TPY		
Beryllium				TPY		
Vinyl chloride				TPY		
				TPY		
				TPY		
				TPY		
				TPY		
				TPY		

Units (U) should be entered as follows:

1 = lb/hr

2 = lb/mmBTU

3 = grains/dscf

4 = lb/gallon

5 = ppmdv

6 = other (specify)

7 =other (specify) 8 =other (specify)

	\sim	
-		
	0	
	_	

State of Wisconsin STACK IDENTIFICATION						
Department of Natural Resources		AIR POLLUTION CONTROL PERMIT APPLICATION				
SEE INSTRUCTIONS ON REVERSE SIDE	Form	4530-103 11-93	Info	rmation attached? <u>n</u> (y/n)		
1. Facility name: Nemadji Trail Energy Center	2. Facility identit 816127840		3. Stack identifi	cation number: NA		
4. Exhausting Unit(s), use Unit identificatio	n number from app	propriate Form(s) 4530-10)4, 106, 107, 108 a	and/or 109		
4530-104 4530-106	4530-107	4530-108	4530-109 <u>F01</u>			
5. Identify this stack on the plot plan require	d on Form 4530-1	01				
 6. Indicate by checking: □ This stack has an actual exhaust point If this stack has an actual exhaust point 	—	stack serves to identify fu	-			
7. Discharge height above ground level:	_(feet)	<u> </u>				
8. Inside dimensions at outlet (check one an	d complete):					
Circular (feet)	□ rectangular	length (feet)	width (feet)			
9. Exhaust flow rate:						
Normal (ACFM)	Max	ximum (ACFM	1)			
10. Exhaust gas temperature (normal):	_(°F)					
11. Exhaust gas moisture content:	Normal <u>v</u> o	olume percent	Maximum	volume percent		
12. Exhaust gas discharge direction:	□ Up	Down	□ Horizontal			
13. Is this stack equipped with a rainhat or exhaust gases from the stack?	any obstruction to	the free flow of the	□ Yes	□ No		
***** Complete the appropriate Air Pern exhausting through this stack.	it Application For	ms(s) 4530-104, 106, 107	, 108 or 109 for ea	ach Unit *****		

F01

From January 2021 Application

State of Wisconsin Department of Natural Resou	rces	MISCELLANEOUS PRO AIR POLLUTION CON Form 4530-109 11-93		IIT APPLICATION Information attac	hed? n (v/n)
SEE INSTRUCTIONS	ON REVERSE SIDE	10111 4350 107 11 75		information attac	neu: <u>n</u> (y/n)
1. Facility name: Nem	adji Trail Energy Center	2. Facility identification	number: 816	5127840	
3. Stack identification	number: NA	4. Process number: F01			
4a. Unit description:	: haul road fugitives				
5. Indicate the control	technology status. 🗹 Uncontr	olled 🛛 Controlled			
If the process is	controlled, enter the control devic	e number(s) from the app	ropriate form	(s):	
4530-110 4530-114	4530-111 4 4530-115 4	530-112 4530- 530-116 4530-	113 <u> </u>		
6. Source Classificatio	on Code (SCC): 30502011				
7. Date of construction	n or last modification: TBD				
8. Normal operating so	chedule: <u>24 </u> hrs./day <u> 7 </u> d	ays/wk. <u>365</u> days/yr	·.		
	ss (please attach a flow diagram o om haul road truck traffic.	f the process).		Attached? See next pag	je.
10. List the types an	d amounts of raw materials used i	in this process:			
Material	Storage/material handling process	Average usage	Units	Maximum usage	Units
N/A					
11. List the types an	d amounts of finished products:				
Material	Storage/material handling process	Average amount produced	Units	Maximum amount produced	Units
N/A					
12. Process fuel usage					
Type of fuel	Maximum heat input to process million BTU/hr.	Average usage	Units	Maximum usage	Units
N/A					
	gitive emissions associated with th bads, open conveyors, etc.: N/A	nis process, such as outdoo	or storage	Attached? N	/A
***** For this emis DESCRIPTIO	sions unit, identify the method(s) ON OF METHODS USED FOR ment(s) to this form. This is not	DETERMINING COMPL	IANCE. Att		****
	te the Air Pollution Control Perm			30-128 for this Unit. ***	**

State of Wisconsin Department of Natural Resources

From January 2021 Application

COMPLIANCE CERTIFICATION - MONITORING AND REPORTING DESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCE Form 4530-118 11-93 Information attached? <u>n</u> (y/n)

All applicants except non-Part 70 sources are required to certify compliance with all applicable air pollution permit requirements by including a statement within the permit application of the methods used for determining compliance (please see sec. NR 407.05(4)(i), Wis. Adm. Code.) This statement must include a description of the monitoring, recordkeeping, and reporting requirements and test methods. In addition, the application must include a schedule for compliance certification submittals during the permit term. These submittals must be no less frequent than annually, and may need to be more frequent if specified by the underlying applicable requirement.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: 816127840
3. Stack identification number: NA	4. Unit identification number: F01

- 5. This Unit will use the following method(s) for determining compliance with the requirements of the permit (check all that apply and attach the appropriate form(s) to this form).
 - □ Continuous Emission Monitoring (CEM) Form 4530-119 Pollutant(s):
 - Periodic Emission Monitoring Using Portable Monitors Form 4530-120 Pollutant(s):
 - □ Monitoring Control System Parameters or Operating Parameters of a Process Form 4530-121 Pollutant(s):
 - □ Monitoring Maintenance Procedures Form 4530-122 Pollutant(s):
 - □ Stack Testing Form 4530-123 Pollutant(s):
 - □ Fuel Sampling and Analysis (FSA) Form 4530-124 Pollutant(s):
 - Recordkeeping Form 4530-125 Pollutant(s): PM/PM₁₀/PM_{2.5}
 - □ Other (please describe) Form 4530-135 Pollutant(s):
- 6. Compliance certification reports will be submitted to the Department according to the following schedule:

Start date: <u>At date of permit issuance</u> and every <u>12</u> months thereafter.

Compliance monitoring reports will be submitted to the Department according to the following schedule:

Start date: At date of permit issuance and every 6 months thereafter.

State of Wisconsin Department of Natural Resources

COMPLIANCE DEMONSTRATION BY RECORDKEEPING AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-125 11-93 Inform

Information attached? <u>n</u> (y/n)

Recordkeeping may be acceptable as a compliance demonstration method provided that a correlation between the parameter value recorded and the emission rate of a particular pollutant is established in the form of a curve or chart of emission rate versus parameter values. This correlation may constitute the certification of the system. It should be attached for Department approval. If it is not attached, please submit it within 60 days of the startup of the system.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: 816127840
3. Stack identification number: NA	4. Unit identification number: F01
5. Pollutant(s) being monitored: PM/PM ₁₀ /PM _{2.5}	6. Material or parameter being monitored and recorded: Fugitive dust

7. Method of monitoring and recording:

Comply with fugitive dust control plan

8. List any EPA methods used: N/A

9. Is this an existing method of demonstrating compliance? □ Yes ☑ No

10. Installation date: TBD

11. Backup system: N/A

12. Compliance shall be demonstrated: Daily Weekly Monthly Batch (not to exceed monthly)

13. Indicate by checking:

The monitoring system shall be subject to appropriate performance specifications, calibration requirements, and quality assurance procedures. \Box A quality assurance/quality control plan for the recordkeeping system is attached for Department approval. \Box If the plan is not attached, please submit it within 60 days of the startup of the recordkeeping program. \Box The plan was submitted to the Department on _____.

- ***** The compliance records shall be available for Department inspection. The format for the compliance ***** certification report and the excess emission report shall be approved by the Department. A proposed format for the compliance certification report and excess emission report shall be submitted at the same time as the application.
- ***** The source shall record any malfunction that causes or may cause an emission limit to be exceeded. ***** Malfunctions shall be reported to the Department the next business day. Hazardous air spills shall be reported to the Department immediately.

From January 2021 Application

State of Wisconsin Department of Natural Resources		AIR P	OLLUTION CONTRO		
SEE INSTRUCTIONS ON R	EVERSE SIDE	Form ·	4530-126 11-93		Information attached? <u>n</u> (y/n)
1. Facility name: Nemadji Trail Energy Center			2. Facility identificat	ion number: 8	316127840
3. Stack identification number	er: NA		4. Unit identification	number: F01	
5. Unit material description:	PM, PM ₁₀ , PM _{2.5} fugi	tives			
6. Complete the following su			from this unit. Attacl	h sample calc	ulations and emission factor
references. Attached?	<u>no</u>				
		Units		Units	
		NO HAP	S EMISSIONS		<u> </u>
					ТРҮ
					TPY
					ТРҮ
					TPY
					ТРҮ
					ТРҮ
					ТРҮ
					TPY
					TPY
					ТРҮ
					TPY
					ТРҮ
					TPY
					ТРҮ

From January 2021 Application

State of Wisconsin Department of Natural Resources

EMISSION UNIT SUMMARY

 AIR POLLUTION CONTROL PERMIT APPLICATION

 Form 4530-128
 11-93

 Information attached? <u>y</u> (y/n)

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: 816127840
3. Stack identification number: NA	4. Unit identification number: F01

5. Complete the following emissions summary for the following pollutants. Attach sample calculations and emission factor references. Attached? See Appendix C

	U	TPY	U	TPY		U	TPY

SEE APPENDIX C FOR EMISSION CALCULATIONS

	 r	1				
Sulfur dioxide				TPY		
Organic compounds				 TPY		
Carbon monoxide				TPY		
Lead				TPY		
Nitrogen oxides				TPY		
Total reduced sulfur				TPY		
Mercury				TPY		
Asbestos				TPY		
Beryllium				TPY		
Vinyl chloride				TPY		
				TPY		
				TPY		
				TPY		
				TPY		
				TPY		

Units (U) should be entered as follows:

1 = lb/hr

2 = lb/mmBTU

3 = grains/dscf

4 = lb/gallon

5 = ppmdv

6 = other (specify)

7 = other (specify)

8 =other (specify)

State of Wisconsin Department of Natural Resources

CURRENT EMISSIONS REQUIREMENTS AND STATUS OF UNIT AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-130 Rev. 12-99 Information attached? <u>n (y/n)</u>

From January 2021 Application

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center		2. Facility identification number: 816127840					
3. Stack identification number	r: NA	4. Unit identification number: F01					
		7. State Only					
				State Only			

** PART 70 SOURCES ONLY:

1. Be sure to review the Compliance Assurance Monitoring (CAM) Rule, 40 CFR Part 64, for the Renewal Application. The CAM rule requires owners and operators of Part 70 sources to monitor the operation and maintenance of their control equipment so that they can evaluate the performance of their control devices and report whether or not their facilities meet established emission standards. All facilities that have a Title V, Part 70, Federal Operating Permit are required to meet the CAM rule and **submit a CAM plan with this Title V renewal application.** The rule requires that a CAM plan be submitted with the Title V renewal application for each pollutant at **each emissions unit** which has a potential to emit - prior to controls - of that pollutant greater than the major source threshold for the respective pollutant. Please refer to the CAM Technical Guidance web site at

<u>http://www.epa.gov/ttn/emc/cam.html</u> for further documentation on the rule and how to prepare a CAM plan for submittal with the renewal application.

2. List all applicable **Maximum Achievable Control Technology** (MACT) rule(s) and the effective date(s) if they were promulgated during the last 3 years of your operation permit term. Identify the emissions units subject to each MACT rule listed.

Applicable

F01

EMISSION UNIT COMPLIANCE PLAN COMMITMENTS AND SCHEDULE AIR POLLUTION CONTROL PERMIT APPLICATION Information attached? <u>n</u> (y/n)Form 4530-131 11-93

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: 816127840
3. Stack identification number: NA	4. Unit identification number: F01

5. For Units that are presently in compliance with all applicable requirements, including any enhanced monitoring and compliance certification requirements under section 114(a)(3) of the Clean Air Act that apply, complete the following. These commitments are part of the application for Part 70 permits.

□ We will continue to operate and maintain this Unit in compliance with all applicable requirements.

Form 4530-130 includes new requirements that apply or will apply to this Unit during the term of the permit. We will meet such requirements on a timely basis.

6. For Units not presently fully in compliance, complete the following.

Requirement

This Unit is in compliance with all applicable requirements except for those indicated below. We will achieve compliance according to the following schedule:

Applicable Requirement	Corrective Actions	Deadline
1.		
2.		
3.		
	l	n
Progress reports will be submitted:		
Start date:and every s	ix (6) months thereafter	

F	0	2
۰.	~	-

State of Wisconsin STACK IDENTIFICATION Department of Natural Resources SEE INSTRUCTIONS ON REVERSE SIDE	AIR POLLUTION CONTROL Form 4530-103 11-93	PERMIT APPLICATION Information attached? <u>n</u> (y/n)				
1.Facility name: Nemadji Trail Energy Center	2. Facility identification number: 816127840	3. Stack identification number: NA				
4. Exhausting Unit(s), use Unit identification number from appropriate Form(s) 4530-104, 106, 107, 108 and/or 109						
4530-104 4530-106	4530-107 4530-108	4530-109 <u>F02</u>				
5. Identify this stack on the plot plan require	ed on Form 4530-101					
 6. Indicate by checking: □ This stack has an actual exhaust point 	oint. If This stack serves to identify f	C C				
7. Discharge height above ground level:	(feet)					
8. Inside dimensions at outlet (check one and complete):						
Circular (feet)	□ rectangular length (feet)	_width (feet)				
9. Exhaust flow rate:						
Normal (ACFM) Maximum (ACFM)						
10. Exhaust gas temperature (normal):	_(°F)					
11. Exhaust gas moisture content:	Normal volume percent	Maximum volume percent				
12. Exhaust gas discharge direction:	🗆 Up 🛛 Down	□ Horizontal				
13. Is this stack equipped with a rainhat or any obstruction to the free flow of the exhaust gases from the stack?		□ Yes □ No				
***** Complete the appropriate Air Pern exhausting through this stack.	nit Application Forms(s) 4530-104, 106, 107	', 108 or 109 for each Unit *****				

F02

From January 2021 Application

tate of Wisconsin epartment of Natural Resources		MISCELLANEOUS PROCESSES AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-109 11-93 Information attached? <u>n</u> (y/n)			
SEE INSTRUCTIONS					
1. Facility name: Nemadji Trail Energy Center		2. Facility identification number: 816127840			
3. Stack identification number: NA		4. Process number: F02			
4a. Unit description	** * *				
5. Indicate the control	technology status. Uncontro	olled 🛛 Controlled			
If the process is	controlled, enter the control devic	e number(s) from the appr	ropriate form	(s):	
4530-110 4530-114		530-112 4530-1 530-116 4530-1			
6. Source Classification	on Code (SCC): 30180001				
7. Date of construction	n or last modification: TBD				
8. Normal operating so	chedule: <u>24</u> hrs./day <u>7</u> da	ays/wk. <u>365</u> days/yr	•		
	ss (please attach a flow diagram of om piping components (valves, fla f valves).			Attached? See next page. Figures are at the end of Appendix A	
10. List the types an	d amounts of raw materials used i	n this process:			
Material	Storage/material handling process	Average usage	Units	Maximum usage	Units
N/A					
11. List the types an	d amounts of finished products:				
Material	Storage/material handling process	Average amount produced	Units	Maximum amount produced	Units
N/A					
12. Process fuel usage	2:				<u> </u>
Type of fuel	Maximum heat input to process million BTU/hr.	Average usage	Units	Maximum usage	Units
N/A					
13. Describe any fug piles, unpaved re	is process, such as outdoo	or storage	Attached? N/A		
DESCRIPTI	ssions unit, identify the method(s) ON OF METHODS USED FOR I ment(s) to this form. This is not a	DETERMINING COMPL	IANCE. Att		****

***** Please complete the Air Pollution Control Permit Application Forms 4530-126 and 4530-128 for this Unit. *****

State of Wisconsin Department of Natural Resources

COMPLIANCE CERTIFICATION - MONITORING AND REPORTING DESCRIPTION OF METHODS USED FOR DETERMINING COMPLIANCE

Information attached? <u>n</u> (y/n)

From January 2021 Application

All applicants except non-Part 70 sources are required to certify compliance with all applicable air pollution permit requirements by including a statement within the permit application of the methods used for determining compliance (please see sec. NR 407.05(4)(i), Wis. Adm. Code.) This statement must include a description of the monitoring, recordkeeping, and reporting requirements and test methods. In addition, the application must include a schedule for compliance certification submittals during the permit term. These submittals must be no less frequent than annually, and may need to be more frequent if specified by the underlying applicable requirement or by the Department.

Form 4530-118 11-93

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: 816127840
3. Stack identification number: NA	4. Unit identification number: F02

- 5. This Unit will use the following method(s) for determining compliance with the requirements of the permit (check all that apply and attach the appropriate form(s) to this form).
 - □ Continuous Emission Monitoring (CEM) Form 4530-119 Pollutant(s):
 - Periodic Emission Monitoring Using Portable Monitors Form 4530-120 Pollutant(s):
 - □ Monitoring Control System Parameters or Operating Parameters of a Process Form 4530-121 Pollutant(s):
 - ✓ Monitoring Maintenance Procedures Form 4530-122 Pollutant(s): GHG and VOC
 - □ Stack Testing Form 4530-123 Pollutant(s):
 - □ Fuel Sampling and Analysis (FSA) Form 4530-124 Pollutant(s):
 - Recordkeeping Form 4530-125 Pollutant(s): GHG and VOC
 - □ Other (please describe) Form 4530-135 Pollutant(s):
- 6. Compliance certification reports will be submitted to the Department according to the following schedule:

Start date: <u>At date of permit issuance</u> and every <u>12</u> months thereafter.

Compliance monitoring reports will be submitted to the Department according to the following schedule:

Start date: At date of permit issuance and every 6 months thereafter.

F02

State of Wisconsin Department of Natural Resources

From January 2021 Application

COMPLIANCE DEMONSTRATION BY MONITORING MAINTENANCE PROCEDURES AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-122 11-93 Information attached? (y/n)

The monitoring of a maintenance procedure may be acceptable as a compliance demonstration method provided that a correlation between the procedure and the emission rate of a particular pollutant is established in the form of a curve of emission rate versus the frequency the procedure is performed. VOC leak detection programs or fugitive dust control programs are examples of procedures that could be monitored. The correlation shall be established using stack test data. This correlation shall constitute the certification of the monitoring system. It should be attached for Department approval. If it is not attached, please submit it within 60 days of the startup of the monitoring program.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: 816127840
3. Stack identification number: NA	4. Unit identification number: F02

5. Pollutant(s) being monitored: GHG and VOC

6. Procedure being monitored: GHG and VOC fugitives from pipi	ng components
7. Is this an existing maintenance procedure? □ Yes ☑ No	8. Installation date: TBD

9. Method of monitoring: Quarterly and/or semi-annual inspection of equipment using instrumental methods, sight, sound, and smell.

10. Compliance shall be demonstrated: Daily Weekly Monthly - Quarterly and/or semi-annual inspection

11. Indicate by checking:

The monitoring program shall be subject to appropriate performance specifications, calibration requirements, and quality assurance procedures. \Box A quality assurance/quality control plan for the monitoring program is attached for Department approval. \Box If the plan is not attached, please submit it within 60 days of the startup of the monitoring program. \Box The plan was submitted to the Department on _____.

***** Any failure to fulfill a maintenance requirement shall be reported as an excess emission. *****

State of Wisconsin Department of Natural Resources

COMPLIANCE DEMONSTRATION BY RECORDKEEPING AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-125 11-93 Inform

Information attached? <u>n</u> (y/n)

Recordkeeping may be acceptable as a compliance demonstration method provided that a correlation between the parameter value recorded and the emission rate of a particular pollutant is established in the form of a curve or chart of emission rate versus parameter values. This correlation may constitute the certification of the system. It should be attached for Department approval. If it is not attached, please submit it within 60 days of the startup of the system.

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: 816127840			
3. Stack identification number: NA	4. Unit identification number: F02			
5. Pollutant(s) being monitored: GHG and VOC	6. Material or parameter being monitored and recorded: GHG and VOC fugitives from piping components			

7. Method of monitoring and recording:

Per plan, comply with inspection of equipment using instrumental methods, sight, sound, and smell.

8. List any EPA methods used: N/A

□Yes ☑ No	······································	10. Installation date: TBD
-----------	--	----------------------------

11. Backup system: N/A

12. Compliance shall be demonstrated: Daily Weekly Monthly Batch (not to exceed monthly) Applicant proposes quarterly and/or semi-annual compliance demonstrations

13. Indicate by checking:

The monitoring system shall be subject to appropriate performance specifications, calibration requirements, and quality assurance procedures. \Box A quality assurance/quality control plan for the recordkeeping system is attached for Department approval. \Box If the plan is not attached, please submit it within 60 days of the startup of the recordkeeping program. \Box The plan was submitted to the Department on _____.

- **** The compliance records shall be available for Department inspection. The format for the compliance ***** certification report and the excess emission report shall be approved by the Department. A proposed format for the compliance certification report and excess emission report shall be submitted at the same time as the application.
- **** The source shall record any malfunction that causes or may cause an emission limit to be exceeded. **** Malfunctions shall be reported to the Department the next business day. Hazardous air spills shall be reported to the Department immediately.

-	0	0
F	U	2
-	-	_

From January 2021 Application

State of Wisconsin Department of Natural Resources		AIR P	OLLUTION CONTRO				
SEE INSTRUCTIONS ON RE	EVERSE SIDE	Form 4	4530-126 11-93		Information attached? <u>n</u> (y/n)		
1. Facility name: Nemadji Trail Energy Center			2. Facility identification number: 816127840				
3. Stack identification numbe	er: NA		4. Unit identification	number: F02			
5. Unit material description: 1	Piping fugitives (GH0	G and VOC)					
6. Complete the following sur	mmary of hazardous	air emissions	from this unit. Attacl	n sample calcu	lations and emission factor		
references. Attached?	no						
		Units	S EMISSIONS	Units			
I		ΝΟ ΠΑΡ	S EMISSIONS				
					ТРУ		
					TPY		
					ТРУ		
					TPY		
					TPY		
					ТРУ		
					ТРУ		
					ТРУ		
					TPY		
					ТРУ		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		
					TPY		

From January 2021 Application

State of Wisconsin Department of Natural Resources EMISSION UNIT SUMMARY

AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-128 11-93 Information attached? $\underline{y}(y/n)$

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: 816127840
3. Stack identification number: NA	4. Unit identification number: F02

5. Complete the following emissions summary for the following pollutants. Attach sample calculations and emission factor references. Attached? See Appendix C

	U	TPY	U	TPY		U	TPY

SEE APPENDIX C FOR EMISSION CALCULATIONS

Sulfur dioxide				TPY		
Organic compounds				TPY		
Carbon monoxide				TPY		
Lead				TPY		
Nitrogen oxides				TPY		
Total reduced sulfur				TPY		
Mercury				TPY		
Asbestos				TPY		
Beryllium				TPY		
Vinyl chloride				TPY		
				TPY		
				TPY		
				TPY		
				TPY		
				TPY		

Units (U) should be entered as follows:

1 = lb/hr

2 = lb/mmBTU

3 = grains/dscf

4 = lb/gallon

5 = ppmdv6 = other (specify)

7 = other (specify)

8 = other (specify)

State of Wisconsin Department of Natural Resources

CURRENT EMISSIONS REQUIREMENTS AND STATUS OF UNIT AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-130 Rev. 12-99 Information attached? <u>n</u> (y/n)

SEE INSTRUCTIONS ON REVERSE SIDE

1. Facility name: Nemadji Trail Energy Center		2. Facility identification number: 816127840				
3. Stack identification number: NA		4. Unit identification number: F02				
		7. State Only				
				State Only		

** PART 70 SOURCES ONLY:

1. Be sure to review the Compliance Assurance Monitoring (CAM) Rule, 40 CFR Part 64, for the Renewal Application. The CAM rule requires owners and operators of Part 70 sources to monitor the operation and maintenance of their control equipment so that they can evaluate the performance of their control devices and report whether or not their facilities meet established emission standards. All facilities that have a Title V, Part 70, Federal Operating Permit are required to meet the CAM rule and **submit a CAM plan with this Title V renewal application.** The rule requires that a CAM plan be submitted with the Title V renewal application for each pollutant at **each emissions unit** which has a potential to emit - prior to controls - of that pollutant greater than the major source threshold for the respective pollutant. Please refer to the CAM Technical Guidance web site at

<u>http://www.epa.gov/ttn/emc/cam.html</u> for further documentation on the rule and how to prepare a CAM plan for submittal with the renewal application.

2. List all applicable **Maximum Achievable Control Technology** (MACT) rule(s) and the effective date(s) if they were promulgated during the last 3 years of your operation permit term. Identify the emissions units subject to each MACT rule listed.

Applicable

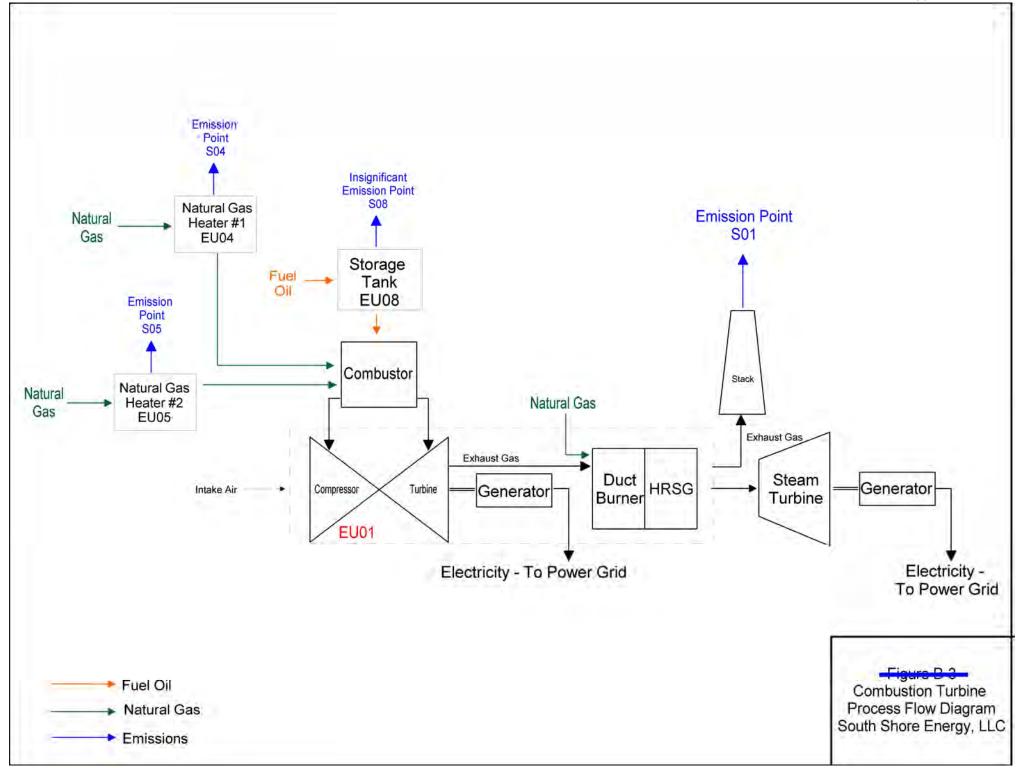
EMISSION UNIT COMPLIANCE PLAN COMMITMENTS AND SCHEDULE AIR POLLUTION CONTROL PERMIT APPLICATION Form 4530-131 11-93 Information attached? <u>n</u> (y/n)

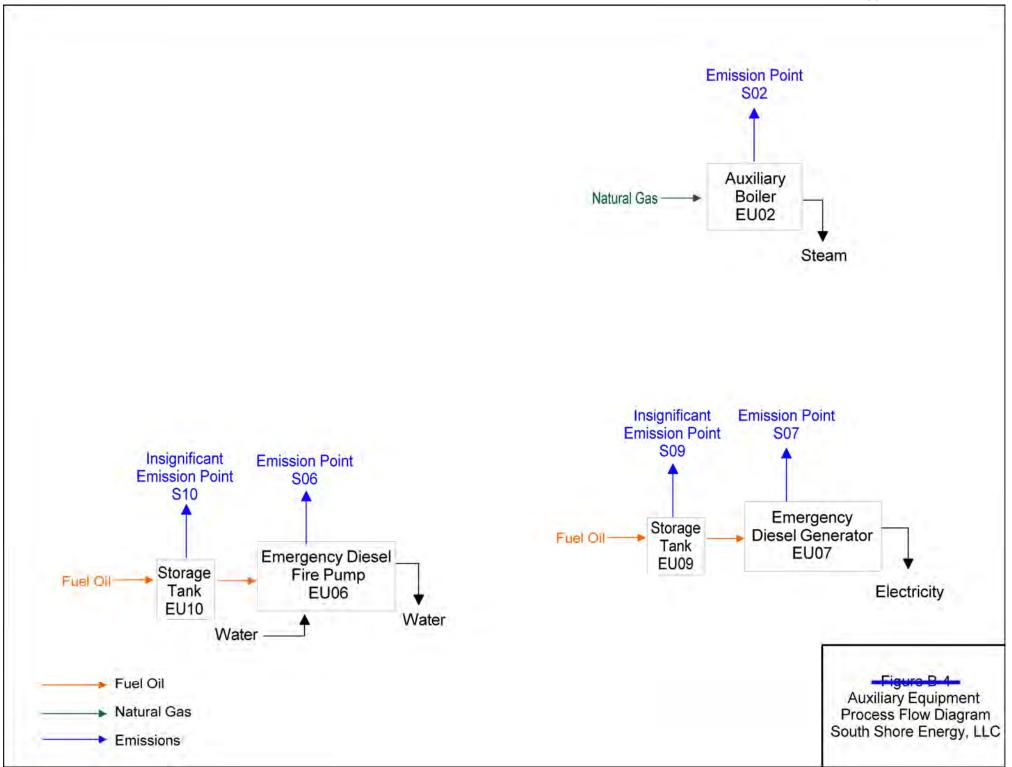
SEE INSTRUCTIONS ON REVERSE SIDE

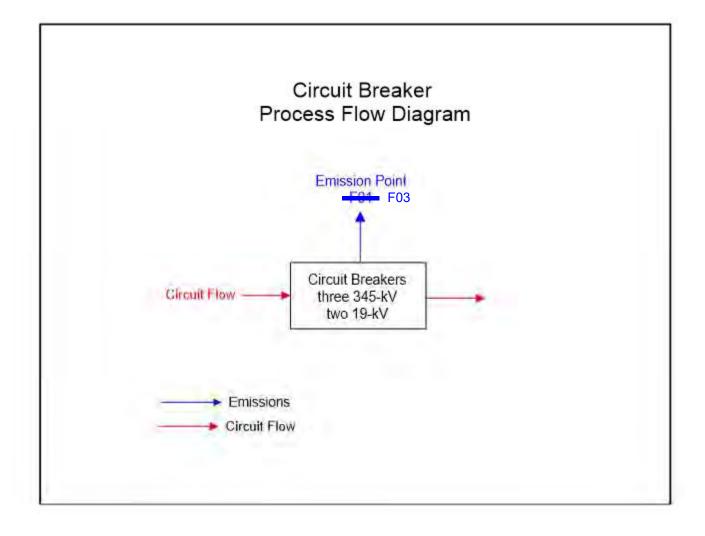
1. Facility name: Nemadji Trail Energy Center	2. Facility identification number: 816127840
3. Stack identification number: NA	4. Unit identification number: F02

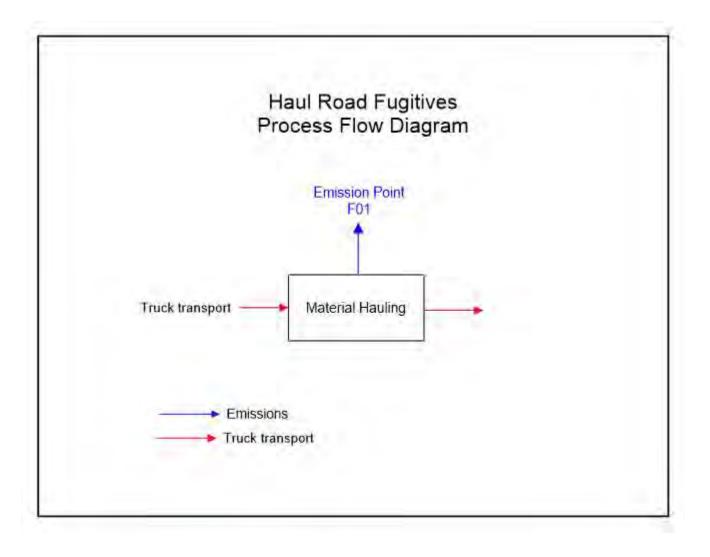
5. For Units that are presently in compliance with all applicable requirements, including any enhanced monitoring and compliance certification requirements under section 114(a)(3) of the Clean Air Act that apply, complete the following. These commitments are part of the application for Part 70 permits.

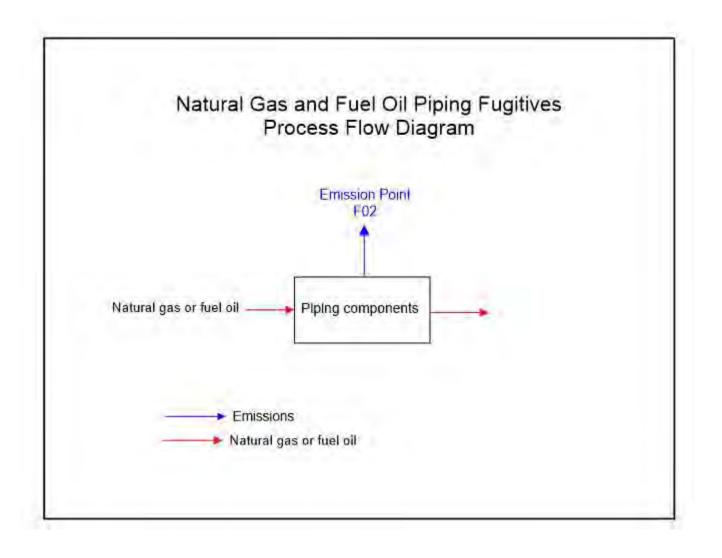
□ We will continue to operate and maintain this Unit in compliance with all applicable requirements.

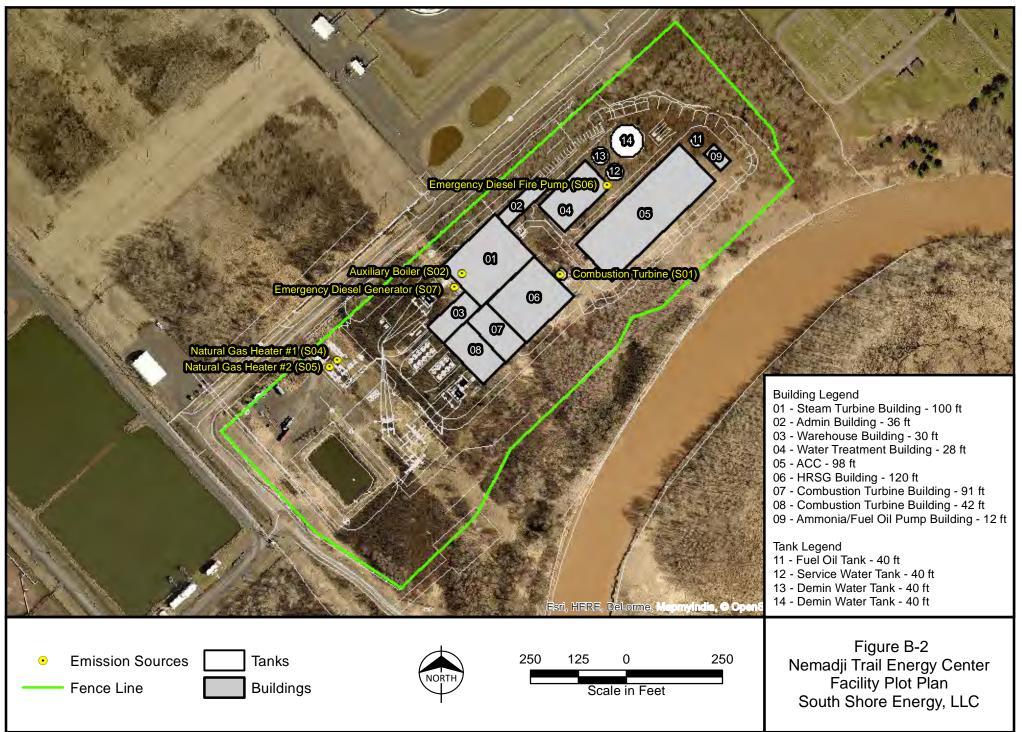

Form 4530-130 includes new requirements that apply or will apply to this Unit during the term of the permit. We will meet such requirements on a timely basis.


6. For Units not presently fully in compliance, complete the following.


Requirement


This Unit is in compliance with all applicable requirements except for those indicated below. We will achieve compliance according to the following schedule:

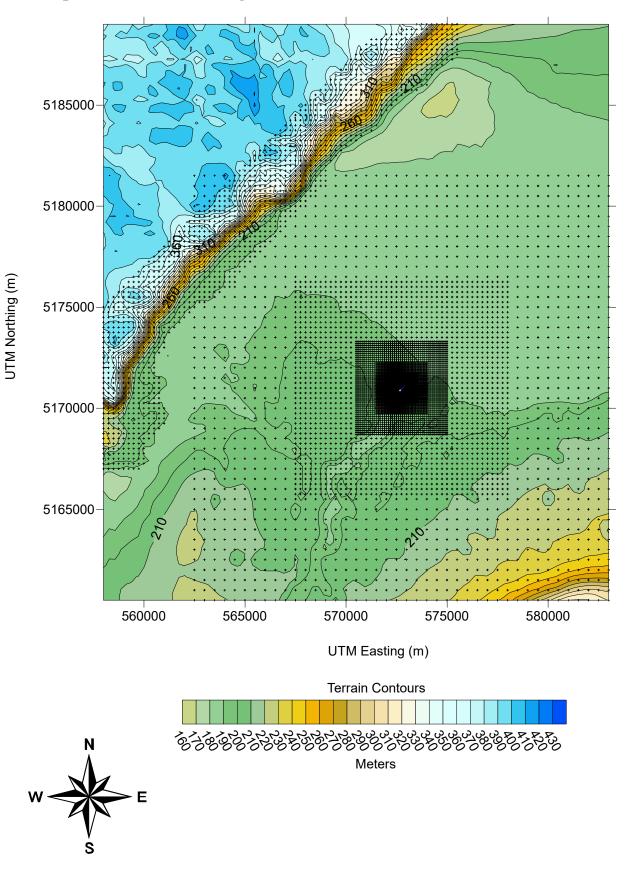
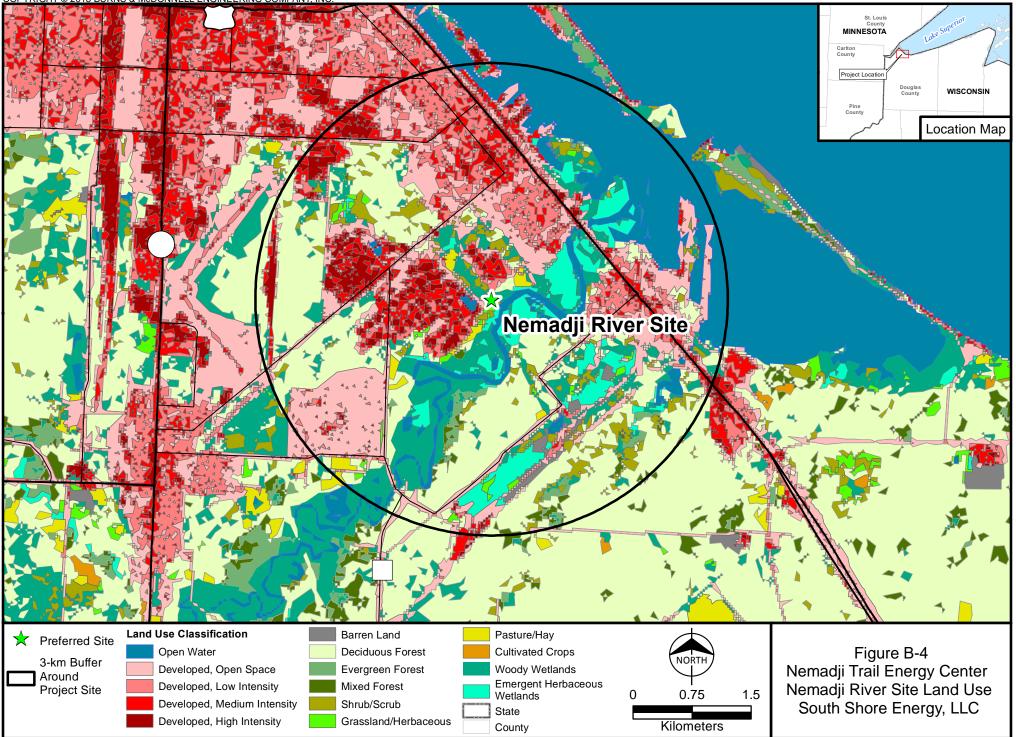

Applicable Requirement	Corrective Actions	Deadline					
1.							
2.							
3.							
NN							
Progress reports will be submitted:	Progress reports will be submitted:						
Start date: and every six (6) months thereafter							

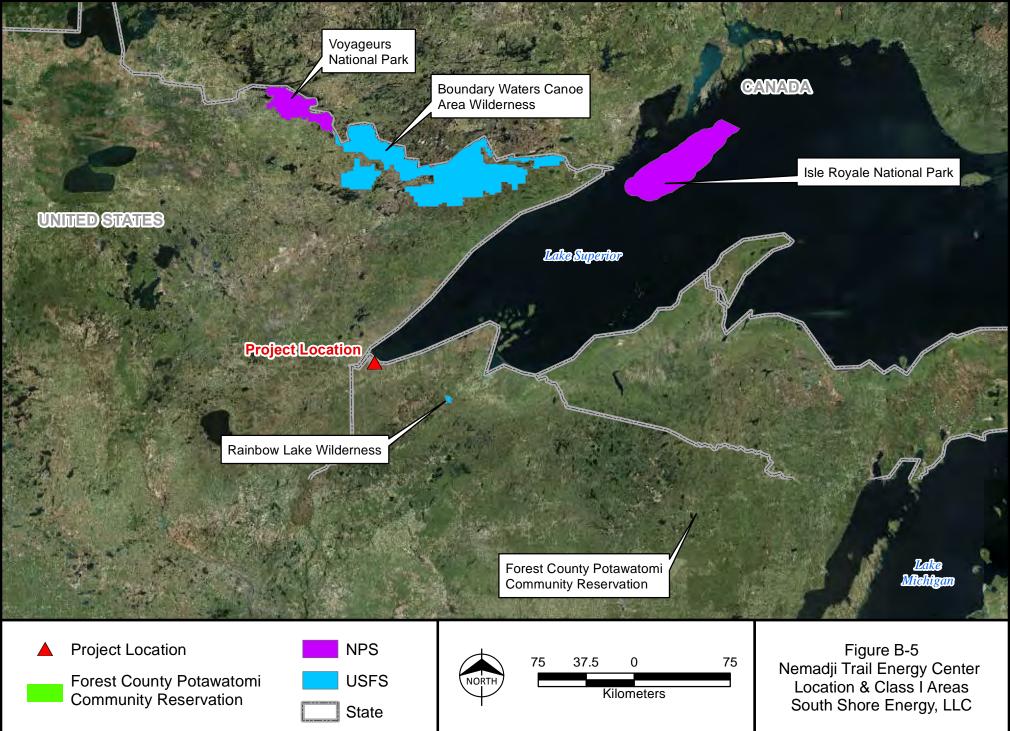


APPENDIX B – FIGURES

Path: Z:\Clients\ENS\SouthShoreEn\101798_NTECGeneration\Studies\Geospatial\DataFiles\ArcDocs\Air_Permit_Application\Figure_B_1_Nemadji_Location.mxd kasamuelson 12/10/2018 COPYRIGHT © 2018 BURNS & McDONNELL ENGINEERING COMPANY, INC.

Path: \\bmcd\Dfs\Clients\ENS\SouthShoreEn\101798_NTECGeneration\Studies\Permitting\Modeling\Air\Layouts\Primary\Figure B-2 Facility Plot Plan Nemadji 05-21-20.mxd gweger 5/26/2020 COPYRIGHT © 2020 BURNS & McDONNELL ENGINEERING COMPANY, INC.


Figure B-3: 20 km by 20 km Receptor Grid and Elevation Map

Path: Z:\Clients\ENS\SouthShoreEn\101798_NTECGeneration\Studies\Geospatial\DataFiles\ArcDocs\Air_Permit_Application\Figure_G_2_Nemadji_Primary_Land_Use.mxd kasamuelson 12/10/2018 <u>COPYRIGHT</u> © 2018 BURNS & McDONNELL ENGINEERING COMPANY, INC.

Source: ESRI, NLCD 2011, Burns & McDonnell Engineering Company, Inc.

Path: Z:\Clients\ENS\SouthShoreEn\101798_NTECGeneration\Studies\Geospatial\DataFiles\ArcDocs\Air_Permit_Application\Figure_G_3_Nemadji_Classl_Areas.mxd kasamuelson 12/10/2018 <u>COPYRIGHT © 2018 BURNS & McDONNELL ENGINEERING COMPANY, INC.</u>

Source: USFS; NPS; BIA; Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community; Burns & McDonnell.

APPENDIX C – CALCULATIONS

South Shore Energy, LLC - Nemadji Trail Energy Center Project Emissions

Maximum Facility Emissions

	Permitted Potential Emissions ^a	Project Potential Emissions ^b	Total Facility Potential Emissions
Pollutant	(tpy)	(tpy)	(tpy)
NO _x	269.1		269
CO	2,002.52		2,003
PM	166.9	0.10	167
PM ₁₀	166.9	0.02	167
PM _{2.5}	166.9	0.005	167
SO ₂	28.7		29
VOC	239	10.4	250
H₂SO₄	43.2		43
Lead	0.0		0.01
CO ₂ e	2,738,317.8	976.6	2,739,294

(a) Construction Permit Number: 18-MMC-168 (b) Construction Permit Number: 21-MMC-011

Maximum Annual Emission Rates

		Construction Permit Number: 18-MMC-168								Construction Permit Number: 21-MMC-011		
Pollutant	P01 Combined-Cycle Combustion Turbine ^a (tpy)	B02 Auxiliary Boiler (tpy)	P04 Natural Gas Heater #1 (tpy)	P05 Natural Gas Heater #2 (tpy)	P06 Emergency Diesel Fire Pump (tpy)	P07 Emergency Diesel Generator (tpy)	T01, T02, T03 Storage Tanks (tpy)	F03 Circuit Breakers (tpy)	F01 Haul Road Fugitives (tpy)	F02 Piping Fugitives (tpy)	Total ^o (tpy)	PSD Significant Emission Rates (tpy)
NOx	255.6	4.8	2.1	2.1	0.5	3.9					269	40
CO	1,991.1	1.6	3.6	3.6	0.4	2.1					2,003	100
PM	162.8	3.3	0.3	0.3	0.02	0.1			0.10		167	25
PM ₁₀	162.8	3.3	0.3	0.3	0.02	0.1			0.02		167	15
PM _{2.5}	162.8	3.3	0.3	0.3	0.02	0.1			0.005		167	10
SO ₂	28.2	0.3	0.03	0.03	0.1	4.5.E-03					29	40
VOC	237.3	1.2	0.2	0.2	0.2	0.3	0.04			10.4	250	40
H ₂ SO ₄	43.2	0.04	3.9.E-03	3.9.E-03	0.02	6.9.E-04					43	7
Lead	0.01	2.1.E-04	4.3.E-05	4.3.E-05							0.01	0.6
CO ₂ e	2,675,731	51,289	5,129	5,129	80	841		120		977	2,739,294	75,000

(a) Represents worse-case emissions scenario(b) Numbers in bold indicate the PSD significance level is exceeded

	Assumptions				
Unit	Limitation	Units			
	8,760	Natural gas hours per year			
	50	Number of natural gas cold starts per year			
	150	Number of natural gas warm starts per year			
	900	Number of natural gas hot/fast starts per year			
	1,100	Total number of combined natural gas start-ups per year (cold/warm/hot/fast)			
Turbine	1,100	Total number of natural gas shutdowns per year			
	1,525.0	Hours of natural gas Startup/Shutdown per year			
	500	Fuel oil hours per year with or without duct burning			
	11,025,196	gallons/year fuel oil			
	42	Number of fuel oil startup/shutdowns per year			
	105.0	Hours of fuel oil Startup/Shutdown			
Natural Gas Duct Firing	8,760	Hours per year			
Auxiliary Boiler	8,760	Hours per year			
Cooling Tower	8,760	Hours per year			
Natural Gas Heater #1	8,760	Hours per year			
Natural Gas Heater #2	8,760	Hours per year			
Emergency Diesel Fire Pump	500	Hours per year			
Emergency Diesel Generator	500	Hours per year			
Fuel oil heating value	137,000	Btu/gal			

South Shore Energy, LLC - Nemadji Trail Energy Center **Combustion Turbine**

	Natural Gas						
	Duct Burning	100	75	Minimum Emissions Compliance Load			
Pollutants	lb/hr	lb/hr	lb/hr	lb/hr			
NO _X	33.5	26.5	20.6	12.4			
CO	15.3	12.1	9.4	5.7			
PM/PM ₁₀ /PM _{2.5}	36.3	21.8	16.8	12.9			
SO ₂	6.4	5.1	4.0	2.4			
VOC	15.5	2.8					
H_2SO_4	9.9	7.8					
Lead	0.0	0.0					
CO ₂	495,325	392,985					
N ₂ O	303.5	240.8					
CH ₄	254.6	202.0					
CO ₂ e (sum)	592,127	469,787					
Temperature	163.55	167.12	164.93	164.93			
Velocity	64.00	63.81	48.88	36.82			

Natural Gas Startup/Shutdown Emissions

Pollutant	Start-up Emissions (lb/cold start) ^{b,d}	Start-up Emissions (Ib/warm start) ^{b, d}	Start-up Emissions (Ib/hot-fast start) ^{b, d}	Shutdown Emissions (lb/shutdown) ^c	Start-up/ Shutdown Emissions (tpy)
NOx ^a	335.0	233.0	111.0	59.0	108.3
CO ^a	11,066	6,495	779.0	463.0	1,369
PM/PM ₁₀ /PM _{2.5}	43.6	29.1	16.3	10.9	16.6
SO ₂	10.2	6.8	3.8	2.6	3.9
VOC ^a	950.0	558.0	67.0	40.0	117.8
H ₂ SO ₄	15.6	10.4	5.9	3.9	6.0
Lead	0.0	0.0	0.0	0.0	0.0
CO ₂	785,971	523,981	294,739	196,493	299,651
N ₂ O	482	321	181	120	184
CH ₄	404	269	151	101	154
CO ₂ e	939,573	626,382	352,340	234,893	358,212

(a) Start-up emissions based on vendor load and startup profiles

(b) Cold start-up period is 2 hours, warm start-up period is 80 minutes, hot/fast start-up period is 45 minutes

(c) Shutdown emissions from "startup summary" (assumes half hour)

(d) Emissions are based on 1525 hours spent in start-up/shutdown operation

	Fuel Oil							
D. H. Garde	Duct Burning	100	75	Minimum Emissions Compliance Load				
Pollutants	lb/hr	lb/hr	lb/hr	lb/hr				
NO _X	72.7	51.6	41.0	31.1				
CO	11.1	7.8	6.2	15.8				
PM/PM ₁₀ /PM _{2.5}	54.5	39.4	37.5	35.7				
SO ₂	6.1	4.6	3.6	2.8				
VOC	14.1	1.8						
H_2SO_4	9.3	7.0						
Lead	0.04	0.04						
CO ₂	559,613	452,619						
N ₂ O	1,256.3	1,190.8						
CH ₄	554.4	499.5						
CO ₂ e (sum)	947,846	819,965						
Temperature	176.63	176.63	169.24	165.01				
Velocity	71.96	71.19	57.75	43.48				

Fuel Oil Startup/Shutdown Emissions

Pollutant	Start-up Emissions (Ib/cold start) ^b	Shutdown Emissions (Ib/shutdown) ^c	Number of Starts Per Turbine	Start-up/ Shutdown Emissions (tpy)
NOx ^a	860.0	108.0	42	20.3
CO ^a	25,846	1,227	42	568.5
PM/PM ₁₀ /PM _{2.5}	78.9	19.7	42	2.1
SO ₂	9.2	2.3	42	0.2
VOC ^a	2,951	122.0	42	64.5
H_2SO_4	14.0	3.5	42	0.4
Lead	0.08	0.02	42	0.002
CO ₂	905,239	226,310	42	23,763
N ₂ O	2,382	595	42	63
CH ₄	999	250	42	26
CO ₂ e	1,639,929	409,982	42	43,048

(a) Start-up emissions based on vendor load and startup profiles

(b) Start-up emissions are 2 hours.

(c) Shutdown emissions from "startup summary" (assumes half hour)

South Shore Energy, LLC - Nemadji Trail Energy Center Combustion Turbine Emissions

DB= Duct Burning NG= Natural Gas SUSD= Startup Shutdown FO=Fuel Oil

	DB NG	NG 100	DB FO	FO 100
Pollutant	lb/hr	lb/hr	lb/hr	lb/hr
NO _X	33.5	26.5	72.7	51.6
CO	15.3	12.1	11.1	7.8
PM/PM10/PM2.5	36.3	21.8	54.5	39.4
SO ₂	6.4	5.1	6.1	4.6
VOC	15.5	2.8	14.1	1.8
H ₂ SO ₄	9.9	7.8	9.3	7.0
Lead	0.0	0.0	0.042	0.042
CO ₂	495,325	392,985	559,613	452,619
N ₂ O	303.5	240.8	1,256.3	1,190.8
CH ₄	254.6	202.0	554.4	499.5
CO ₂ e (sum)	592,127	469,787	947,846	819,965

NG Start- up/Shutdown Emissions	FO Start- up/Shutdown Emissions
tpy	tpy
108.3	20.3
1,369.0	568.5
16.6	2.1
3.9	0.2
117.8	64.5
6.0	0.4
0.0	0.002
299,651	23,763
184	63
154	26
358,212	43,048

	Hours						
	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7
DB NG	8,760	7,235	6,735	0	0	8,260	6,735
NG	0	0	0	7,235	6,735	0	0
NG SUSD	0	1,525	1,525	1,525	1,525	0	1,525
DB FO	0	0	0	0	0	395	395
FO	0	0	395	0	395	0	0
FO SUSD	0	0	105	0	105	105	105
Total Hours	8,760	8,760	8,760	8,760	8,760	8,760	8,760

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Maximum
Pollutant				tons p	er year			
NO _X	146.5	229.3	251.4	204.3	228.2	172.9	255.6	255.6
CO	66.9	1,424.2	1,990.5	1,412.8	1,979.9	633.8	1,991.1	1,991.1
PM/PM ₁₀ /PM _{2.5}	159.0	148.0	148.8	95.5	99.9	162.8	151.7	162.8
SO ₂	28.2	27.2	26.7	22.4	22.2	28.0	27.0	28.2
VOC	68.0	173.9	234.9	127.8	192.0	131.4	237.3	237.3
H_2SO_4	43.2	41.6	40.9	34.3	34.1	42.9	41.4	43.2
Lead	0.00	0.00	0.01	0.00	0.01	0.01	0.01	0.01
CO ₂	2,169,524	2,091,490	2,080,813	1,721,276	1,736,185	2,179,979	2,101,945	2,179,979
N ₂ O	1,329	1,281	1,503	1,055	1,292	1,564	1,516	1,564
CH ₄	1,115	1,075	1,136	885	959	1,187	1,147	1,187
CO ₂ e (sum)	2,593,514	2,500,230	2,557,190	2,057,666	2,145,210	2,675,731	2,582,446	2,675,731

Scenario 1	Hours
DB NG	8,760
NG	0
NG SSSD	0
DB FO	0
FO	0
FO SUSD	0
Total Hours	8,760

Pollutant	DB NG	NG	NG SSSD	DB FO	FO	FO SUSD	SUM
	tpy	tpy	tpy	tpy	tpy	tpy	tpy
NO _X	146.5	0.0	0.0	0.0	0.0	0.0	146.5
CO	66.9	0.0	0.0	0.0	0.0	0.0	66.9
PM/PM10/PM2.5	159.0	0.0	0.0	0.0	0.0	0.0	159.0
SO ₂	28.2	0.0	0.0	0.0	0.0	0.0	28.2
VOC	68.0	0.0	0.0	0.0	0.0	0.0	68.0
H ₂ SO ₄	43.2	0.0	0.0	0.0	0.0	0.0	43.2
Lead	0.00	0.0	0.0	0.0	0.0	0.0	0.00
CO ₂	2,169,524	0.0	0.0	0.0	0.0	0.0	2,169,524
N ₂ O	1,329	0.0	0.0	0.0	0.0	0.0	1,329
CH ₄	1,115	0.0	0.0	0.0	0.0	0.0	1,115
CO ₂ e (sum)	2,593,514	0.0	0.0	0.0	0.0	0.0	2,593,514

Scenario 2	Hours
DB NG	7,235
NG	0
NG SSSD	1525
DB FO	0
FO	0
FO SUSD	0
Total Hours	8,760

Pollutant	DB NG	NG	NG SSSD	DB FO	FO	FO SUSD	SUM
	tpy	tpy	tpy	tpy	tpy	tpy	tpy
NO _X	121.0	0.0	108.3	0.0	0.0	0.0	229.3
CO	55.3	0.0	1,369.0	0.0	0.0	0.0	1,424.2
PM/PM10/PM2.5	131.4	0.0	16.6	0.0	0.0	0.0	148.0
SO ₂	23.3	0.0	3.9	0.0	0.0	0.0	27.2
VOC	56.1	0.0	117.8	0.0	0.0	0.0	173.9
H ₂ SO ₄	35.7	0.0	6.0	0.0	0.0	0.0	41.6
Lead	0.00	0.0	0.00	0.0	0.0	0.0	0.00
CO ₂	1,791,838	0.0	299,651	0.0	0.0	0.0	2,091,490
N ₂ O	1,098	0.0	184	0.0	0.0	0.0	1,281
CH ₄	921	0.0	154	0.0	0.0	0.0	1,075
CO ₂ e (sum)	2,142,018	0.0	358,212	0.0	0.0	0.0	2,500,230

Scenario 3	Hours
DB NG	6,735
NG	0
NG SSSD	1525
DB FO	0
FO	395
FO SUSD	105
Total Hours	8,760

Pollutant	DB NG	NG	NG SSSD	DB FO	FO	FO SUSD	SUM
	tpy	tpy	tpy	tpy	tpy	tpy	tpy
NO _X	112.7	0.0	108.3	0.0	10.2	20.3	251.4
CO	51.4	0.0	1,369.0	0.0	1.5	568.5	1,990.5
PM/PM10/PM2.5	122.3	0.0	16.6	0.0	7.8	2.1	148.8
SO ₂	21.7	0.0	3.9	0.0	0.9	0.2	26.7
VOC	52.3	0.0	117.8	0.0	0.4	64.5	234.9
H ₂ SO ₄	33.2	0.0	6.0	0.0	1.4	0.4	40.9
Lead	0.00	0.0	0.00	0.0	0.01	0.00	0.01
CO ₂	1,668,007	0.0	299,651	0.0	89,392	23,763	2,080,813
N ₂ O	1,022	0.0	184	0.0	235	63	1,503
CH ₄	857	0.0	154	0.0	99	26	1,136
CO ₂ e (sum)	1,993,986	0.0	358,212	0.0	161,943	43,048	2,557,190

South Shore Energy, LLC - Nemadji Trail Energy Center Combustion Turbine Emissions

Scenario 4	Hours
DB NG	0
NG	7,235
NG SSSD	1,525
DB FO	0
FO	0
FO SUSD	0
Total Hours	8,760

Pollutant	DB NG	NG	NG SSSD	DB FO	FO	FO SUSD	SUM
	tpy	tpy	tpy	tpy	tpy	tpy	tpy
NO _X	0.0	96.0	108.3	0.0	0.0	0.0	204.3
CO	0.0	43.9	1,369.0	0.0	0.0	0.0	1,412.8
PM/PM10/PM2.5	0.0	78.9	16.6	0.0	0.0	0.0	95.5
SO ₂	0.0	18.5	3.9	0.0	0.0	0.0	22.4
VOC	0.0	10.0	117.8	0.0	0.0	0.0	127.8
H ₂ SO ₄	0.0	28.3	6.0	0.0	0.0	0.0	34.3
Lead	0.0	0.0	0.0	0.0	0.0	0.0	0.00
CO ₂	0.0	1,421,625	299,651	0.0	0.0	0.0	1,721,276
N ₂ O	0.0	871.0	183.6	0.0	0.0	0.0	1,055
CH ₄	0.0	730.7	154.0	0.0	0.0	0.0	885
CO ₂ e (sum)	0.0	1,699,454	358,212	0.0	0.0	0.0	2,057,666

Hours
0
6,735
1,525
0
395
105
8,760

Pollutant	DB NG	NG	NG SSSD	DB FO	FO	FO SUSD	SUM
	tpy	tpy	tpy	tpy	tpy	tpy	tpy
NO _X	0.0	89.4	108.3	0.0	10.2	20.3	228.2
CO	0.0	40.8	1,369.0	0.0	1.5	568.5	1,979.9
PM/PM10/PM2.5	0.0	73.4	16.6	0.0	7.8	2.1	99.9
SO ₂	0.0	17.2	3.9	0.0	0.9	0.2	22.2
VOC	0.0	9.4	117.8	0.0	0.4	64.5	192.0
H ₂ SO ₄	0.0	26.3	6.0	0.0	1.4	0.4	34.1
Lead	0.0	0.00	0.00	0.0	0.01	0.00	0.01
CO ₂	0.0	1,323,379	299,651	0.0	89,392	23,763	1,736,185
N ₂ O	0.0	811	184	0.0	235	63	1,292
CH ₄	0.0	680	154	0.0	99	26	959
CO ₂ e (sum)	0.0	1,582,007	358,212	0.0	161,943	43,048	2,145,210

South Shore Energy, LLC - Nemadji Trail Energy Center Combustion Turbine Emissions

Scenario 6	Hours
DB NG	8,260
NG	0
NG SSSD	0
DB FO	395
FO	0
FO SUSD	105
Total Hours	8,760

Pollutant	DB NG	NG	NG SSSD	DB FO	FO	FO SUSD	SUM
	tpy	tpy	tpy	tpy	tpy	tpy	tpy
NO _X	138.2	0.0	0.0	14.4	0.0	20.3	172.9
CO	63.1	0.0	0.0	2.2	0.0	568.5	633.8
PM/PM10/PM2.5	150.0	0.0	0.0	10.8	0.0	2.1	162.8
SO ₂	26.6	0.0	0.0	1.2	0.0	0.2	28.0
VOC	64.1	0.0	0.0	2.8	0.0	64.5	131.4
H ₂ SO ₄	40.7	0.0	0.0	1.8	0.0	0.4	42.9
Lead	0.00	0.0	0.0	0.01	0.0	0.00	0.01
CO ₂	2,045,693	0.0	0.0	110,524	0.0	23762.5	2,179,979
N ₂ O	1253.4	0.0	0.0	248.1	0.0	62.5	1,564
CH ₄	1051.5	0.0	0.0	109.5	0.0	26.2	1,187
CO ₂ e (sum)	2,445,483	0.0	0.0	187,200	0.0	43048.1	2,675,731

Scenario 7	Hours
DB NG	6,735
NG	0
NG SSSD	1,525
DB FO	395
FO	0
FO SUSD	105
Total Hours	8,760

Pollutant	DB NG	NG	NG SSSD	DB FO	FO	FO SUSD	SUM
	tpy	tpy	tpy	tpy	tpy	tpy	tpy
NO _X	112.7	0.0	108.3	14.4	0.0	20.3	255.6
CO	51.4	0.0	1,369.0	2.2	0.0	568.5	1,991.1
PM/PM10/PM2.5	122.3	0.0	16.6	10.8	0.0	2.1	151.7
SO ₂	21.7	0.0	3.9	1.2	0.0	0.2	27.0
VOC	52.3	0.0	117.8	2.8	0.0	64.5	237.3
H ₂ SO ₄	33.2	0.0	6.0	1.8	0.0	0.4	41.4
Lead	0.00	0.0	0.00	0.01	0.0	0.00	0.01
CO ₂	1,668,007	0.0	299,651	110,524	0.0	23,763	2,101,945
N ₂ O	1,022	0.0	184	248	0.0	63	1,516
CH ₄	857	0.0	154	110	0.0	26	1,147
CO ₂ e (sum)	1,993,986	0.0	358,212	187,200	0.0	43,048	2,582,446

Client NTEC Project 1x1 Combined Cycle

Combined Cycle Startup Emissions Estimate (Natural Gas) 1x1 8000H Configuration

Rev: 0 Date: 4/18/2018

Startup Emi	ssions per (Gas Turbine	Startup Emissions per Gas Turbine											
	со	NOx	VOC											
lb/Start lb/Start lb/Start														
Cold Start	11,066	335	950											
Warm Start	6,495	233	558											
Hot Start	779	111	67											
Shutdown	463	59	40											

Startup Times (No Margin)									
	Time to Emissions Compliance	Time to Full Load							
	Minu	tes							
Cold Start	105	170							
Warm Start	70	113							
Hot Start	29	72							
Shutdown	25	31							

Max Hourly	Startup Emi	ssions per	Startup Tim	es (With Ma	argin)	
	со	NOx	VOC		Time to Emissions Compliance	Time to Full Load
	lb/hr	lb/hr	lb/hr		Minu	tes
Cold Start	7,190	200	620	Cold Start	120	210
Warm Start	6,480	210	560	Warm Start	80	130
Hot Start	1,200	170	100	Hot Start	45	90
Shutdown	3,920	210	340	Shutdown	30	35

Г

1) Startup period is defined as the operation period beginning when continuous fuel flow to the gas turbine is initiated and ending when stack emissions compliance is achieved.

Notes

2) Maximum lb/hr values are based on the maximum lbs of emission over a rolling hour through out the start up period.

3) Startup emissions estimates assume there is no removal from the catalysts Start Times to emissions compliance start at gas turbine ignition and end when stack emissions compliance is achieved. 5) Start Times to full load start at gas turbine start command and end when gas turbine is at full load, steam turbine is valves wide open, and Bypass valves are closed. 6) Shutdown Times are from gas turbine minimum emissions compliance load (MECL) or gas turbine Full load to flameout.

Client NTEC Project 1x1 Combined Cycle

Combined Cycle Startup Emissions Estimate (Fuel Oil) 1x1 8000H Configuration

Cold Start

Rev: 0 Date: 4/18/2018

Startup Emi	Startup Emissions per Gas Turbine											
	со	NOx	VOC									
	lb/Start	lb/Start	lb/Start									
Cold Start	25,846	860	2,951									
Warm Start	12,364	618	1,405									
Hot Start	1,854	326	192									
Shutdown	1,227	108	122									

Max Hourly Startup Emissions per Turbine										
	CO lb/hr	NOx lb/hr	VOC							
Cold Start	16,860	510	1,930							
Warm Start	12,140	530	1,390							
Hot Start	2,850	500	300							
Shutdown	10,440	580	1,040							

Startup Tim	es (No Mar	gin)
	Time to Emissions Compliance	Time to Full Load

Warm Start	70	113
Hot Start	29	72
Shutdown	25	31
Startup Tim	es (With Ma	argin)
	Time to Emissions	Time to Full Load
	Compliance	
	Compliance Minu	tes
Cold Start		tes 210
Cold Start Warm Start	Minu	
	Minu 120	210

Minutes

170

105

 Startup period is defined as the operation period beginning when continuous fuel flow to the gas turbine is initiated and ending when stack emissions compliance is achieved.

Notes

 Maximum lb/hr values are based on the maximum lbs of emission over a rolling hour through out the start up period.

 Startup emissions estimates assume there is no removal from the catalysts
 Start Times to emissions compliance start at gas turbine ignition and end when stack emissions compliance is achieved.
 Start Times to run load start at gas turbine start command and end when gas turbine is at full load, steam turbine is valves wide open, and Bypass valves are closed
 Shutdown Times are from gas turbine minimum emissions compliance load

(MECL) or gas turbine Full load to flameout.

South Shore Energy, LLC - Nemadji Trail Energ	y Center																					
Combustion Turbine Case #		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
		Fired Evap OFF	Fired Evap OFF	Fired Evap OFF	Fired Evap OFF	Fired Evap ON	Fired Evap ON	Fired Evap ON	Unfired Evap	Unfired Evap	Unfired Evap	Unfired Evap	Unfired Evap ON	Unfired Evap ON	Unfired Evap ON	Unfired Evap	Unfired Evap	Unfired Evap	Unfired Evap	Unfired Evap	Unfired Evap	
		Minimum	Winter Peak	Winter Average	Annual Average	Summer	Summer Peak	Maximum	OFF Minimum	OFF Winter	OFF Winter	OFF Annual	Summer	Summer Peak	Maximum	OFF Minimum	OFF Winter	OFF Winter	OFF Annual	OFF Summer	OFF Summer	Unfired Evap
Case Description		Ambient 1x100% GTG	Ambient 1x100% GTG	6 Ambient 1x100% GTG	Ambient 1x100% GTG	Average Ambient 1x100% GTG	Ambient 1x100% GTG	Ambient 1x100% GTG	Ambient 1x100% GTG	Peak Ambient 1x100% GTG	Average Ambient 1x100% GTG	Average Ambient 1x100% GTG	Average Ambien 1x100% GTG	t Ambient 1x100% GTG	Ambient 1x100% GTG	Ambient 1x75% GTG	Peak Ambient 1x75% GTG	Average Ambient 1x75% GTG	Average Ambient 1x75% GTG	Average Ambient 1x75% GTG	Peak Ambient 1x75% GTG	Max Ambient 1x75% GTG
Ambient Temperature		-34.3 F	7.9 F	15.4 F	39.1 F	61 F	76.8 F	95.5 F	-34.3 F	7.9 F	15.4 F	39.1 F	61 F	76.8 F	95.5 F	-34.3 F	7.9 F	15.4 F	39.1 F	61 F	76.8 F	95.5 F
Gas Turbine Load		100% OFF	100% OFF	100% OFF	100% OFF	100% COOLING ON	100% COOLING ON	100% COOLING ON	100% OFF	100% OFF	100% OFF	100% OFF	100% COOLING ON	100% COOLING ON	100% COOLING ON	75% OFF	75% OFF	75% OFF	75% OFF	75% OFF	75% OFF	75% OFF
Evaporative Cooling Water Injection		OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Duct Firing		FIRING ON	FIRING ON	FIRING ON	FIRING ON	FIRING ON	FIRING ON	FIRING ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Inlet Chiller No. of Gas Turbines In Operation		OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1
Gas Turbine Fuel		Natural Gas 1			Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1
Duct Burner Fuel		Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1	Natural Gas 1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ambient Conditions																						
Temperature	degree F	-34.3	7.9	15.4	39.1	61	76.8	95.5	-34.3	7.9	15.4	39.1	61	76.8	95.5	-34.3	7.9	15.4	39.1	61	76.8	95.5
Relative Humidity Wet Bulb Temperature	% degree F	70% -34.5	69% 6.5	70% 13.5	70% 35.4	76% 56.4	62% 67.3	36% 73.6	70% -34.5	69% 6.5	70% 13.5	70% 35.4	76% 56.4	62% 67.3	36% 73.6	70% -34.5	69% 6.5	70% 13.5	70% 35.4	76% 56.4	62% 67.3	36% 73.6
Pressure	psia	14.34	14.34	14.34	14.34	14.34	14.34	14.34	14.34	14.34	14.34	14.34	14.34	14.34	14.34	14.34	14.34	14.34	14.34	14.34	14.34	14.34
Gas Turbine Generator Performance Electrical Output	kW	305.185	321,687	318.848	308.281	299.825	290.408	284.119	305.185	321,687	318.848	308.281	299,825	290.408	284.119	228.890	241,193	239.136	231,211	222,417	211,956	196,065
Heat Rate - LHV	Btu/kWh	10,583	10,270	10,241	10,220	10,216	10,285	10,307	10,583	10,270	10,241	10,220	10,216	10,285	10,307	11,029	10,606	10,607	10,633	10,694	10,802	11,051
Heat Rate - HHV	Btu/kWh MMBtu/hr	11,740 3,230	11,393 3,304	11,361	11,338 3,151	11,333 3,063	11,410 2,987	11,434 2,928	11,740 3,230	11,393	11,361	11,338	11,333	11,410 2,987	11,434 2,928	12,235 2,524	11,766 2,558	11,767 2,536	11,796	11,864	11,984	12,259
GTG Heat Input- LHV GTG Heat Input- HHV	MMBtu/hr	3,230	3,304	3,265 3,622	3,495	3,398	2,987 3,314	3,249	3,230	3,304 3,665	3,265 3,622	3,151 3,495	3,063 3,398	2,987 3,314	3,249	2,524 2,801	2,838	2,536	2,459 2,727	2,379 2,639	2,290 2,540	2,167 2,404
Water / Sprint Injection Rate (per HRSG)	lb/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exhaust Flow (per HRSG) Exhaust Temperature	lb/hr degree F	6,341,490 1 184	6,495,270 1,195	6,440,176 1,195	6,268,714 1,202	6,106,456 1.208	5,964,540 1,217	5,857,095 1.220	6,341,490 1 184	6,495,270 1,195	6,440,176 1 195	6,268,714 1,202	6,106,456 1,208	5,964,540 1.217	5,857,096 1,220	5,046,885 1 192	5,102,834 1.202	5,086,122	5,000,930 1,205	4,898,065	4,772,174 1.214	4,543,438 1,225
Steam Turbine Generator Performance		1,101							1,101		1,100					1,102		1,202		1,210		
Electrical Output	kW	254,623	255,309	255,183	255,424	254,270	252,656	247,917	158,036	164,309	162,993	160,825	157,486	154,524	151,354	127,005	130,306	129,736	128,215	125,965	121,942	115,982
Duct Burner Fuel Consumption Heat Input, LHV (per HRSG)	MMBtu/hr	907.1	860.3	870.1	887.9	896.3	898.5	882.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Heat Input, HHV (per HRSG)	MMBtu/hr	1006.3	954.4	965.2	985.0	994.3	996.8	978.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Stack Volumetric Analysis, Wet	9/.	0.99%	0.99%	0.99%	0.99%	0.97%	0.96%	0.96%	0.90%	0.90%	0.90%	0.90%	0.00%	0.97%	0.97%	0.90%	0.90%	0.90%	0.90%	0.99%	0.99%	0.97%
CO2	%	0.88% 5.42%	0.88% 5.33%	0.88% 5.34%	0.88% 5.35%	0.87% 5.36%	0.86% 5.37%	0.86% 5.35%	0.89% 4.29%	0.89% 4.28%	0.89% 4.27%	0.89% 4.23%	0.88% 4.20%	0.87% 4.19%	0.87% 4.17%	0.89% 4.22%	0.89% 4.22%	0.89% 4.20%	0.89% 4.14%	0.88% 4.07%	0.88% 4.02%	0.87% 3.99%
H2O	%	10.51%	10.45%	10.52%	10.90%	11.85%	12.54%	12.97%	8.31%	8.41%	8.44%	8.72%	9.61%	10.26%	10.71%	8.16%	8.29%	8.31%	8.55%	9.23%	9.66%	9.72%
N2 02	%	73.93% 9.22%	73.91% 9.39%	73.86% 9.36%	73.57% 9.27%	72.84% 9.05%	72.30% 8.88%	71.95% 8.82%	74.80% 11.68%	74.71% 11.67%	74.68% 11.69%	74.43% 11.70%	73.71% 11.56%	73.19% 11.45%	72.84% 11.39%	74.86% 11.84%	74.76% 11.80%	74.73% 11.84%	74.49% 11.90%	73.91% 11.87%	73.54% 11.87%	73.47% 11.91%
Stack Emissions at Exit	/0	5.2270	3.35 /6	0.0070	5.2170	3.0070	0.00%	0.02 /0	11.0070	11.0776	11.0376	11.70%	11.50%	11.4070	11.3376	11.0470	11.00 %	11.0470	11.30 %	11.57 /0	11.0776	11.3170
NOx Emissions										07.7		0.5					05.5	05.5			0.5	
NOx,@15% O2 Into SCR NOx, as NO2 Into SCR (per HRSG)	ppmvd lb/hr	33.4 554.9	33.5 560.1	33.4 555.8	33.4 541.6	33.3 530.2	33.3 519.8	33.3 509.7	35.0 454.2	35.0 464.6	35.0 459.2	35.0 443.1	35.0 430.8	35.0 420.1	35.0 411.9	35.0 355.0	35.0 359.8	35.0 356.7	35.0 345.8	35.0 334.5	35.0 322.0	35.0 304.7
NOx, @15% O2 Out of SCR	ppmvd	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
NOx, as NO2 Out of SCR (per HRSG) SCR NOx Removal Efficiency	lb/hr	33.2 94.0%	33.5 94.0%	33.2 94.0%	32.5 94.0%	31.8 94.0%	31.2 94.0%	30.6 94.0%	26.0 94.3%	26.5 94.3%	26.2 94.3%	25.3 94.3%	24.6 94.3%	24.0 94.3%	23.5 94.3%	20.3 94.3%	20.6 94.3%	20.4 94.3%	19.8 94.3%	19.1 94.3%	18.4 94.3%	17.4 94.3%
NH3 Emissions	%	94.0%	94.0%	94.0%	94.0%	94.0%	94.0%	94.0%	94.3%	94.3%	94.3%	94.3%	94.3%	94.3%	94.3%	94.3%	94.3%	94.3%	94.3%	94.3%	94.3%	94.3%
NH3 Reacted with NOx (per HRSG)	lb/hr	251.0	253.4	251.5	245.0	239.8	235.1	230.6	206.1	210.8	208.4	201.1	195.5	190.6	186.9	161.1	163.2	161.9	156.9	151.8	146.1	138.3
NH3 slip @ 15% O2 NH3 slip (per HRSG)	ppmvd lb/hr	10 61.5	10 61.9	10 61.5	10 60.1	10 58.9	10 57.8	10 56.7	10 48.0	10 49.1	10 48.6	10 46.9	10 45.6	10 44.4	10 43.6	10 37.6	10 38.1	10 37.7	10 36.6	10 35.4	10 34.1	10 32.2
CO Emissions	ID/NF	61.5	61.9	61.5	60.1	58.9	57.8	30.7	48.0	49.1	48.0	40.9	40.0	44.4	43.0	37.0	38.1	31.1	30.0	35.4	34.1	32.2
CO into catalyst	ppmvd	19.8	18.8	19.0	19.7	20.3	20.8	20.9	5.5	5.5	5.5	5.5	5.5	5.5	5.5	13.5	13.6	13.5	13.3	13.2	13.1	13.0
CO into catalyst, @ 15% O2	ppmvd	11.1	10.7	10.8	11.1 109.6	11.3 109.5	11.5	11.5 107.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	10.0	10.0	10.0 62.1	10.0	10.0	10.0	10.0
CO into catalyst (per HRSG) CO out of catalyst	lb/hr ppmvd	112.1 2.69	108.7 2.64	109.2 2.64	2.66	2.69	109.0 2.72	2.73	31.6 2.07	32.3 2.07	32.0 2.06	30.8 2.05	30.0 2.06	29.2 2.06	28.7 2.07	61.8 2.03	62.6 2.04	2.03	60.2 2.00	58.2 1.99	56.0 1.97	53.0 1.96
CO out of catalyst, @ 15% O2	ppmvd	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
CO out of catalyst (per HRSG) CO Catalyst Removal Efficiency	lb/hr %	15.2 86.5%	15.3 85.9%	15.2 86.1%	14.8 86.5%	14.5 86.7%	14.3 86.9%	14.0 86.9%	11.9 62.5%	12.1 62.5%	12.0 62.5%	11.6 62.5%	11.2 62.5%	11.0 62.5%	10.7 62.5%	9.3 85.0%	9.4 85.0%	9.3 85.0%	9.0 85.0%	8.7 85.0%	8.4 85.0%	8.0 85.0%
SO2 Emissions																						
SO2 in Exh. Gas @ 15% O2 (assuming no conversion)	ppmvw	0.247	0.248	0.247	0.246	0.244	0.242	0.241	0.253	0.253	0.253	0.252	0.250	0.248	0.247	0.254	0.253	0.253	0.253	0.251	0.250	0.249
SO2 in Exh. Gas @ 15% O2 (assuming no conversion) SO2 in Exhaust Gas (assuming no conversion) (per HRSG)	ppmvd lb/hr	0.276 6.4	0.276 6.4	0.276 6.4	0.276 6.2	0.276 6.1	0.276 6.0	0.276 5.9	0.276 5.0	0.276 5.1	0.276 5.0	0.276 4.9	0.276 4.7	0.276 4.6	0.276 4.5	0.276 3.9	0.276 4.0	0.276 3.9	0.276 3.8	0.276 3.7	0.276 3.5	0.276 3.4
SO2 in Exhaust Gas (assuming no conversion) (per HRSG)	lb/MMBtu	0.00139	0.00139	0.00139	0.00139	0.00139	0.00139	0.00139	0.00139	0.00139	0.00139	0.00139	0.00139	0.00139	0.00139	0.00139	0.00139	0.00139	0.00139	0.00139	0.00139	0.00139
Volatile Organic Compounds	nomud	27	2.7	27	27	2.7	2.7	2.7	9.0	0.6	0.6	9.0	0.6	90	0.6	0.6	0.6	9.0	0.6	0.6	9.0	0.6
VOC @ 15% O2 VOC as CH4 (per HRSG)	ppmvd lb/hr	2.7 15.4	2.7	2.7 15.4	2.7 15.0	2.7	2.7	2.7	0.6 2.7	0.6 2.8	0.6 2.7	0.6 2.6	0.6 2.6	0.6 2.5	0.6 2.5	0.6 2.1	0.6 2.2	2.1	0.6 2.1	0.6 2.0	0.6 1.9	0.6 1.8
VOC % Removal in Catalyst	%	37%	35%	35%	38%	39%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%	40%
Particulates PM10, front including (NH4)2SO4 (per HRSG)	lb/hr	28.8	28.5	28.4	28.2	27.8	27.5	26.9	15.8	16.2	16.0	15.5	15.0	14.6	14.3	12.4	12.5	12.4	12.2	11.9	11.6	11.2
PM10, front & back including (NH4)2SO4 (per HRSG)	lb/hr	36.3	36.0	36.0	35.6	35.1	34.6	33.9	21.3	21.8	21.6	20.9	20.3	14.6	19.3	12.4	16.8	16.7	16.5	16.2	16.0	15.6
PM10, front & back including (NH4)2SO4 (per HRSG)	lb/MMBtu	0.00791	0.00780	0.00784	0.00794	0.00799	0.00803	0.00803	0.00595	0.00595	0.00596	0.00598	0.00597	0.00596	0.00595	0.00596	0.00592	0.00595	0.00605	0.00615	0.00628	0.00647
H2SO4 Emissions H2SO4 in Exhaust Gas (per HRSG)	lb/hr	9.79	9.86	9.79	9.56	9.37	9.20	9.02	7.65	7.82	7.73	7.46	7.25	7.07	6.93	5.98	6.06	6.01	5.82	5.63	5.42	5.13
H2SO4 in Exhaust Gas	lb/MMBtu	0.00213	0.00213	0.00213	0.00213	0.00213	0.00213	0.00213	0.00213	0.00213	0.00213	0.00213	0.00213	0.00213	0.00213	0.00213	0.00213	0.00213	0.00213	0.00213	0.00213	0.00213
GHG Emissions	lb/Mt 4Dt.	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00
CO2 in Exhaust Gas (per HRSG) CO2 in Exhaust Gas (per HRSG)	lb/MMBtu lb/hr	116.98 492,096	116.98 495,325	116.98 491,927	116.98 480,427	116.98 470,968	116.98 462,194	116.98 453,310	116.98 384,196	116.98 392,985	116.98 388,425	116.98 374,804	116.98 364,352	116.98 355,313	116.98 348,348	116.98 300,304	116.98 304,291	116.98 301,730	116.98 292,457	116.98 282,953	116.98 272,368	116.98 257,741
CO2 in Exhaust Gas (per HRSG)	lb/MWh (gross)	879.0	858.5	857.0	852.3	850.0	851.1	852.0	829.4	808.6	806.1	799.0	796.7	798.6	799.9	843.8	819.1	818.0	813.7	812.2	815.7	826.0
CH4 in Exhaust Gas (per HRSG) CH4 in Exhaust Gas (per HRSG)	lb/MMBtu	5.5116E-02	5.5116E-02	5.5116E-02	5.5116E-02	5.5116E-02	5.5116E-02	5.5116E-02	5.5116E-02	5.5116E-02	5.5116E-02	5.5116E-02	5.5116E-02	5.5116E-02	5.5116E-02	5.5116E-02	5.5116E-02	5.5116E-02	5.5116E-02	5.5116E-02	5.5116E-02	5.5116E-02
N2O in Exhaust Gas (per HRSG)	lb/hr lb/MMBtu	252.9 6.5698E-02	254.6 6.5698E-02	252.8 6.5698E-02	246.9 6.5698E-02	242.1 6.5698E-02	237.6 6.5698E-02	233.0 6.5698E-02	197.5 6.5698E-02	202.0 6.5698E-02	199.6 6.5698E-02	192.6 6.5698E-02	187.3 6.5698E-02	182.6 6.5698E-02	179.1 6.5698E-02	154.4 6.5698E-02	156.4 6.5698E-02	155.1 6.5698E-02	150.3 6.5698E-02	145.4 6.5698E-02	140.0 6.5698E-02	132.5 6.5698E-02
N2O in Exhaust Gas (per HRSG)	lb/hr	301.5	303.5	301.4	294.4	288.6	283.2	277.7	235.4	240.8	238.0	229.6	223.2	217.7	213.4	184.0	186.4	184.9	179.2	173.4	166.9	157.9
GHG in Exhaust Gas (per HRSG) Stack Exit	lb/hr	492,650.7	495,883.1	492,480.8	480,967.9	471,498.8	462,715.1	453,820.2	384,629.3	393,428.3	388,862.6	375,226.2	364,762.5	355,713.3	348,740.7	300,642.0	304,634.1	302,070.4	292,786.6	283,271.5	272,674.5	258,031.2
Temperature	degree F	164	164	164	165	165	165	165	167	168	167	167	169	170	171	165	165	165	165	165	165	165
Flow Rate (per HRSG)	lb/hr	6,385,420	6,536,937	6,482,315	6,311,717	6,149,863	6,008,056	5,899,829	6,341,490	6,495,270	6,440,176	6,268,714	6,106,456	5,964,540	5,857,096	5,046,885	5,102,834	5,086,122	5,000,930	4,898,065	4,772,174	4,543,438
Flow Rate (per HRSG) Flow Rate (per HRSG)	scfm acfm	1,187,865 1,460,169	1,216,129 1,496,266	1,206,283 1,484,101	1,176,216 1,449.619	1,150,232 1,416,832	1,126,707 1,388,416	1,108,344 1,365,742	1,174,082 1,451,496	1,203,057 1,488,999	1,193,062 1,475,747	1,162,725 1,437,799	1,136,614 1,409,239	1,113,056 1,382,539	1,094,939 1,361,747	934,102 1,151,028	944,911 1,164,375	941,950 1,160,709	927,225 1,142,353	910,735 1,122,002	888,969 1,095,221	846,630 1,043,011
Stack Velocity	ft/sec	68.4	70.1	69.5	67.9	66.4	65.1	64.0	68.0	69.8	69.2	67.4	66.0	64.8	63.8	53.9	54.6	54.4	53.5	52.6	51.3	48.9
Stack Diameter	ft	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3

 Notes:

 1. Particulate values exclude catalyst and other entrained particles.

 2. Emission values do not include heavy metals (lead, mercury, etc.)

 3. Differing fuel composition may change the calculated emissions.

 4. CTG performance based on performance runs provided by SEI.

 5. Fuel based on natural gas analysis provided by NTEC.

 6. 35 ppm NOX control on 8000H gas turbine.

 8. Stack SO2 content reported with no conversion of SO3.

 9. Particulate emissions assume 100% conversion of SO2.SO3, and 100% coversion of SO3 to (NH4)2SO4.

 10. H2SO4 assumes 100% conversion of SO2.SO3, and 100% corversion for SO3 to H2SO4.

 11. Greenhouse Gas (GHG) emissions are based on EPA 40 CFR Part 98 emissions factors for natural gas.

 2. 20% margin in Fuel flow and 20% margin in exhaust flow are included.

 13. Emissions reported on the basis of pounds per hour are for one combustion turbine and one HRSG.

 14. Emissions estimates are for information only and are NOT guaranteed.

All J	South Shore Energy, LLC - Nemadji Trail Energ	gy Center																					
	Combustion Turbine Case #	i	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49
Interf Norm Norm Norm Norm <th< td=""><td>Case #</td><td></td><td>23</td><td>30</td><td>51</td><td>32</td><td></td><td>34</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Fired NG CTG</td><td>45</td><td></td><td></td><td>40</td><td></td><td>40</td><td>Unfired Fuel Oil</td></th<>	Case #		23	30	51	32		34								Fired NG CTG	45			40		40	Unfired Fuel Oil
	Case Description																						
			-34.3 F	7.9 F	15.4 F	39.1 F	61 F	76.8 F	95.5 F	-34.3 F	7.9 F	15.4 F	39.1 F	61 F	76.8 F	95.5 F	-34.3 F	7.9 F	15.4 F	39.1 F	61 F	76.8 F	95.5 F
	Gas Turbine Load																						
	Inlet Chiller																						
	No. of Gas Turbines In Operation		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
			IN/A	N/A	IN/A	IN/A	IN/A	11/14	19/15	Natural Gas I	Natural Gas 1	Natural Gas I	Natural Gas 1	Natural Gas 1	Natural Gas I	Indiuidi GdS I	11/75	11/74	IN/A	IN/A	11/74	IN/A	IN/A
	Ambient Conditions																						
And a	Temperature	degree F	-34.3	7.9			61			-34.3				61				7.9			61	76.8	
	Relative Humidity																						
		degree F																					
		poid	14.04	14.04	14.04	14.04	14.04	14.04	14.04	14.54	14.04	14.54	14.04	14.04	14.54	14.54	14.04	14.04	14.04	14.04	14.04	14.04	14.04
circle	Electrical Output	kW	104,700	104,700	104,732	104,700	104,700	104,700	104,700	238,275	258,677	258,311	258,880	260,519	261,332	255,498	238,275	258,677	258,311	258,880	260,519	261,332	255,498
	Heat Rate - LHV				14,302		14,030		13,898	11,341		10,776	10,733	10,732	10,764	10,826	11,341	10,807	10,776		10,732		10,826
Circle Circle<	Heat Rate - HHV																						
Conv Day Day <td></td>																							
number land	Water / Sprint Injection Rate (per HRSG)		0	0			0		0														
	Exhaust Flow (per HRSG)																						
Caraching Caraching <t< td=""><td>Exhaust Temperature</td><td>degree F</td><td>1,202</td><td>1,210</td><td>1,210</td><td>1,210</td><td>1,210</td><td>1,210</td><td>1,210</td><td>1,001</td><td>1,012</td><td>1,020</td><td>1,046</td><td>1,076</td><td>1,104</td><td>1,109</td><td>1,001</td><td>1,012</td><td>1,020</td><td>1,046</td><td>1,076</td><td>1,104</td><td>1,109</td></t<>	Exhaust Temperature	degree F	1,202	1,210	1,210	1,210	1,210	1,210	1,210	1,001	1,012	1,020	1,046	1,076	1,104	1,109	1,001	1,012	1,020	1,046	1,076	1,104	1,109
Mit Information Other Market Other Other Market Other Market <td></td> <td>k\W</td> <td>86.643</td> <td>84 982</td> <td>85.488</td> <td>85.946</td> <td>86 527</td> <td>85,303</td> <td>83 031</td> <td>211.873</td> <td>212 141</td> <td>214 210</td> <td>219 010</td> <td>227 467</td> <td>230 308</td> <td>225 080</td> <td>115 287</td> <td>121 141</td> <td>122.020</td> <td>125 310</td> <td>130 683</td> <td>132 177</td> <td>129 417</td>		k\W	86.643	84 982	85.488	85.946	86 527	85,303	83 031	211.873	212 141	214 210	219 010	227 467	230 308	225 080	115 287	121 141	122.020	125 310	130 683	132 177	129 417
	Duct Burner Fuel Consumption	NVV	00,043	04,902	03,400	03,940	00,327	03,303	03,931	211,0/3	212,141	214,219	213,919	221,401	230,300	223,900	113,207	121,141	122,029	120,019	130,003	132,177	125,417
Carbon MBBu Co.	Heat Input, LHV (per HRSG)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	907.2		870.1	887.9	896.3		882.3	0.0	0.0	0.0	0.0	0.0	0.0	
	Heat Input, HHV (per HRSG)		0.0	0.0	0.0	0.0	0.0	0.0	0.0		954.4							0.0	0.0	0.0	0.0	0.0	
DP N 375	Stack Volumetric Analysis, Wet		0.000/	0.000/	0.000/	0.000/	0.000/	0.000/	0.000/	0.070/	0.070/	0.000/	0.000/	0.050/	0.0.407	0.000/	0.0007	0.000/	0.070/	0.070/	0.0001	0.050/	0.0.404
Chi Table T	Ar CO2	%																					
0 1	H2O	/-																					
International and mark Internat International and mark <	N2	%	75.25%	75.18%	75.14%	74.89%	74.29%	73.89%	73.81%	72.90%	72.74%	72.63%	71.98%	70.97%	70.20%	69.80%	73.75%	73.52%	73.43%	72.80%	71.80%	71.04%	70.63%
No. Home No. No	02	%	12.94%	12.98%	13.00%	13.02%	12.94%	12.89%	12.87%	12.42%	12.51%	12.43%	12.08%	11.62%	11.25%	11.16%	14.89%	14.79%	14.75%	14.49%	14.10%	13.77%	13.67%
M.R. PNL DEPAIL Line ACT Line ACT <thline act<="" th=""> <thline act<="" th=""></thline></thline>																							
Ob. St. Model (1995) Ob. St. M		pomyd	35.0	35.0	35.0	35.0	35.0	35.0	35.0	37.9	38.1	38.1	38.0	38.0	38.0	38.0	42.0	42.0	42.0	42.0	42.0	42.0	42.0
Object wite Sign (1) U	NOx, as NO2 Into SCR (per HRSG)																						
CH ND. Formal Philosop V. DA 25 DA 25 <thda 25<="" th=""> DA 25 <thda 25<="" th=""></thda></thda>	NOx,@15% O2 Out of SCR																						
No. No. <td>NOx, as NO2 Out of SCR (per HRSG)</td> <td></td>	NOx, as NO2 Out of SCR (per HRSG)																						
DH Spectral DNC for HSG) Dr BB2 BSG		%	94.3%	94.3%	94.3%	94.3%	94.3%	94.3%	94.3%	84.2%	84.3%	84.2%	84.2%	84.2%	84.2%	84.2%	85.7%	85.7%	85.7%	85.7%	85.7%	85.7%	85.7%
H is b 12 C2 prod 100 101 101 101 <t< td=""><td></td><td>lb/hr</td><td>98.8</td><td>95.9</td><td>95.6</td><td>94.5</td><td>93.7</td><td>93.2</td><td>92.9</td><td>181.5</td><td>184.4</td><td>184.2</td><td>184.6</td><td>185.7</td><td>186.7</td><td>183.5</td><td>143.3</td><td>148.2</td><td>147.6</td><td>147.2</td><td>148.0</td><td>148.9</td><td>146.4</td></t<>		lb/hr	98.8	95.9	95.6	94.5	93.7	93.2	92.9	181.5	184.4	184.2	184.6	185.7	186.7	183.5	143.3	148.2	147.6	147.2	148.0	148.9	146.4
Of Instant OF OF OF <	NH3 slip @ 15% O2			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10		10	10	10	10
Office stability pprod (0) 113 115		lb/hr	23.0	22.4	22.3	22.0	21.9	21.7	21.6	43.8	44.2	44.2	44.4	44.6	44.8	44.1	30.6	31.7	31.5	31.5	31.6	31.8	31.3
C P (a cost), \$ (Y, C) (a cost) provided (b cost), \$ (Y, C) (b cost) provided (b cost), \$ (Y, C) (c ost), \$ (Y, C) (S, C		nomud	11.0	11.7	11.7	11.5	11.5	11.5	11.5	22.7	21.9	22.1	22.0	24.0	24.9	24.0	9.6	0.7	0.0	0.0	0.4	0.7	0.7
Dire Byr TO 98.8 36.6 99.2 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.7 20.0 69.3 19.8 19.8 19.8 19.8 19.7 20.0 69.3 19.8 19.8 19.7 20.0 19.8 19.8 19.7 20.0 19.8 19.7 20.0 19.8 19.7 20.0 19.8 19.8 19.7 20.0 19.8 19.8 19.8 19.7 20.0 19.8 19.8 19.7 20.0 19.8 19																		10.0				10.0	
Cold addregal, 8 in C2 perind 1.20 1.20 1.50 1	CO into catalyst (per HRSG)							35.7	35.6	130.9		129.1				129.8	50.4	52.1	51.9		52.0		
C c) of digital (pri HRSG) Thr 6 7 6 7 6 7 6 7 6 7 6 7 8 7 7 8 </td <td>CO out of catalyst</td> <td>ppmvd</td> <td>1.77</td> <td>1.75</td> <td>1.75</td> <td>1.73</td> <td>1.72</td> <td>1.72</td> <td>1.72</td> <td>1.88</td> <td>1.85</td> <td>1.87</td> <td>1.93</td> <td>2.01</td> <td>2.08</td> <td>2.08</td> <td>1.30</td> <td>1.31</td> <td>1.32</td> <td>1.35</td> <td>1.41</td> <td>1.45</td> <td>1.46</td>	CO out of catalyst	ppmvd	1.77	1.75	1.75	1.73	1.72	1.72	1.72	1.88	1.85	1.87	1.93	2.01	2.08	2.08	1.30	1.31	1.32	1.35	1.41	1.45	1.46
Columnation % 8.0% 8.0% 8.0% 8.0% 8.0% 8.0% 9.1% 9.1% 9.1% 9.1% 9.1% 9.1% 9.1% 9.1% 9.1% 9.1% 9.1% 8.0%																							
G2 Entistion 0 <t< td=""><td>CO Catalyst Removal Efficiency</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	CO Catalyst Removal Efficiency																						
Sign 1 Sign 1<	SO2 Emissions																						
Sign F. Fundamental Gale Stammary conversion (jer HRS) DuM 2.3 3.3 <t< td=""><td>SO2 in Exh. Gas @ 15% O2 (assuming no conversion)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	SO2 in Exh. Gas @ 15% O2 (assuming no conversion)																						
SQ2 in E-handle Gissuming normanical joint RES() b-MMSU 0.00139 0.00139 0.00139 0.00151 0.00151 0.00151 0.00151 0.00151 0.00151 0.00151 0.00151 0.00151 0.00151 0.00152<																							
Ordelite Granue Compounds																							
OCC 6: 15% O2 Opmid 0.6	Volatile Organic Compounds																						
Vice Vice Network Vice Vice Vice Vice Vice Vice Vice Vice	VOC @ 15% O2																						
SamtCulates V V V <th<< td=""><td>VOC as CH4 (per HRSG)</td><td>lb/hr</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<<>	VOC as CH4 (per HRSG)	lb/hr																					
MM0, for the lacking (MH2/SO4/ (per HRSG)) b/r 8.9 8.8 8.7		70	40%	40%	40%	40%	40%	40%	40%	40%	31%	38%	36%	39%	39%	30%	40%	40%	40%	40%	40%	40%	40%
M10, mot & back, including (NH42SO4 (per HRSG)) bhr 12.9 12.8 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.9 0.0736 0.0386	PM10, front including (NH4)2SO4 (per HRSG)	lb/hr	8.9	8.8	8.8	8.7	8.7	8.7	8.6	37.2	36.9	37.0	37.2	37.4	37.5	37.1	24.1	24.4	24.4	24.3	24.4	24.4	24.3
USOL Emissions USOL 1 USOL 1 <thusol 1<="" th=""> <thu< td=""><td>PM10, front & back including (NH4)2SO4 (per HRSG)</td><td></td><td>12.9</td><td></td><td></td><td>12.7</td><td>12.7</td><td></td><td>12.6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>39.1</td><td>39.4</td><td></td><td>39.3</td><td>39.4</td><td>39.4</td><td></td></thu<></thusol>	PM10, front & back including (NH4)2SO4 (per HRSG)		12.9			12.7	12.7		12.6								39.1	39.4		39.3	39.4	39.4	
LB/hr 3.67 3.56 3.51 3.46 3.46 3.46 9.03 9.13 0.0231 0.00231		lb/MMBtu	0.00753	0.00767	0.00769	0.00774	0.00778	0.00781	0.00783	0.01389	0.01360	0.01364	0.01366	0.01362	0.01357	0.01369	0.01347	0.01312	0.01316	0.01318	0.01312	0.01306	0.01323
Izes of the Statust Gas Ib/MMBlu 0.00213 0.00213 0.00213 0.00213 0.00213 0.00213 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00232 0.00232 0.00232 0.00232 0.00232 0.00232 0.00232 0.00232 0.00232 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00232 0.00232 0.00232 0.00232 0.00232 0.00232 0.00232 0.00232 0.00232 0.00232 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00232 0.00232 0.00232 0.00232 0.00232 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00232 0.00232 0.00232 0.00232 0.00231 0.00231 0.00231 0.0023		lh/br	2.67	2.56	2.55	2.54	2.49	2.46	2.45	0.02	0.14	0.44	0.47	0.24	0.00	0.42	6.74	6.07	6.04	c0.3	6.07	7.04	6.00
HG Emissions Hissions Hissions Hissions Hissions Hissions DO2 In Eshaust Gas (per HRSG) Ib/hm 116.98 116.98 116.98 116.98 116.98 116.98 163.45 <t< td=""><td>H2SO4 in Exhaust Gas (per HRSG) H2SO4 in Exhaust Gas</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	H2SO4 in Exhaust Gas (per HRSG) H2SO4 in Exhaust Gas																						
CO2 In Exhaust Gas (per HRSG) Ib/hr 184,191 178,796 178,178 176,210 174,746 173,699 173,102 542,846 552,207 556,581 590,152 449,819 447,886 447,073 449,853 452,619 445,081 CO2 in Exhaust Gas (per HRSG) Ib/MWh (gross) 996,7 55116E-02 55166-02 1.6533E-01	GHG Emissions																						
DO2 In Exhaust Gas (per HRSG) IbMW (moss) 962.6 942.6 936.7 924.3 913.8 914.2 917.7 1,20.6 1,140.6 1,138.3 1,142.6 1,223.8 1,143.6 1,143.6 1,143.6 1,143.6 1,142.6 1,223.8 1,143.3 1,163.6 1,163.6 1,163.6 1,163.6 1,163.6 1,163.6 1,163.6 1,149.6 1,183.3 1,142.6 1,223.8 1,143.3 1,163.6	CO2 in Exhaust Gas (per HRSG)																						
CH4 in Exhaust Gas (per HRSG) Ib/MMBu 5.5116E-02 <	CO2 in Exhaust Gas (per HRSG)																						
CH4 in Exhaust Gas (per HRSG) Ib/r 94.7 91.9 91.6 90.6 89.8 89.3 89.0 535.3 549.0 547.7 551.2 554.4 545.4 549.0 3.9419E-01 3.9419E-01 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																							
V2D in Exhaust Gas (per HRSG) Ib/MMBlu 6.5698E-02 6.5698E-02 6.5698E-02 6.5698E-02 6.5698E-02 0.5698E-02 0.5498E-02 0.39419E-01 3.9419E-01																							
V2D in Exhaust Gas (per HRSG) Ibhr 112.9 109.5 109.2 109.0 107.1 106.4 106.1 1.246.1 1.246.1 1.246.8 1.246.8 1.255.3 1.144.0 1.178.3 1.176.2 1.183.5 1.180.8 1.177.2 SHG in Exhaust Gas (per HRSG) Ibhr 184,388.8 178,997.4 178,997.4 178,997.4 178,997.4 178,997.4 173,296.6 554,593.4 554,953.4 551,932.5 436.48.8 41,826.8 44,578.2 451,593.4 451,933.4 446,742.6 451,533.4 454,594.4	N2O in Exhaust Gas (per HRSG)																						
Stack Exit degree F lob	N2O in Exhaust Gas (per HRSG)			109.5	109.2					1,210.1		1,241.8	1,240.9				1,144.0		1,178.3		1,183.5		
Image: Ferring Constraints degree F 165 165 165 165 165 165 165 185 183 184 177 184 185 185 185 183 184 177 184 185 185 183 184 177 184 185 185 185 185 183 184 177 184 185 185 183 184 177 184 185 185 183 184 177 184 185 185 183 184 177 184 185 185 183 184 177 184 186 185 183 184 177 184 186 185 185 183 184 177 184 166 185 185 183 184 177 184 185 185 183 184 177 184 185 185 185 183 184 177 184 106 185 185		lb/hr	184,398.8	178,997.4	178,378.5	176,408.8	174,942.5	173,895.1	173,296.6	544,591.4	554,061.4	553,285.6	554,595.3	558,381.6	561,423.9	551,932.5	436,438.8	451,499.0	449,558.6	448,742.6	451,533.3	454,309.8	446,742.6
Flow Rate (per HRSG) lb/hr 3,526,941 3,452,470 3,452,088 3,454,351 3,454,625 3,456,818 3,444,104 6,418,548 6,584,579 6,532,792 6,382,793 6,237,719 6,107,880 6,003,036 6,074,610 6,542,912 6,490,652 6,399,790 6,194,311 6,064,364 5,960,032 100 Rate (per HRSG) cfm 802,569 785,817 785,881 787,333 789,733 789,733 791,777 789,189 1,176,274 1,242,75 1,198,308 1,174,130 1,152,671 1,152,471 1,		degroo E	165	165	165	165	165	165	165	1.96	195	195	1.92	194	177	194	186	195	195	192	194	177	1.9.4
Figure (per HRSG) sdm 651,405 637,853 637,899 639,092 641,022 640,596 1,176,074 1,207,255 1,198,008 1,174,130 1,152,2671 1,115,224 1,162,4312 1,185,218 1,180,775 1,139,195 1,118,921 1,101,900 Flow Rate (per HRSG) adm 802,669 785,817 785,881 787,333 789,733 791,777 789,189 1,498,773 1,524,302 1,488,626 1,461,037 1,519,142 1,519,142 1,162,755 1,198,914 1,309,337 Tack Velocity 1//se 1//se 1,498,713 1,524,302 1,488,626 1,461,036 1,416,160 1,481,377 1,519,142 1,507,651 1,445,931 1,445,931 1,445,931 1,445,931 1,445,931 1,445,931 1,445,931 1,445,931 1,445,931 1,445,931 1,445,931 1,445,931 1,445,931 1,445,931 1,445,931 1,445,931 1,445,931 1,404,933 1,445,931 1,445,931 1,445,931 1,445,931 1,445,931 1,445,931 1,445,931 1,445,93	Flow Rate (per HRSG)		3.526.941							6.418.548							6.374.610						
Stack Velocity ft/sec 37.6 36.8 36.8 36.9 37.0 37.1 37.0 70.2 72.0 71.4 69.8 68.6 66.6 66.4 69.4 71.2 70.7 69.0 67.8 65.8 65.8 65.8	Flow Rate (per HRSG)	scfm	651,405	637,853	637,899	639,092	641,022	642,689	640,596	1,176,074	1,207,255	1,198,308	1,174,130	1,152,671	1,132,427	1,115,224	1,162,424	1,194,312	1,185,218	1,160,775	1,139,195	1,118,921	1,101,960
	Flow Rate (per HRSG)	acfm		785,817	785,881	787,333	789,733		789,189		1,535,605					1,416,180		1,519,142	1,507,651		1,445,931		1,399,337
	Stack Velocity																						
	Stack Diameter	ft I	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3

 Notes:

 1. Particulate values exclude catalyst and other entrained particles.

 2. Emission values do not include heavy metals (lead, mercury, etc.)

 3. Differing fuel composition may change the calculated emissions.

 4. CTG performance based on performance runs provided by SEI.

 5. Fuel based on natural gas analysis provided by NTEC.

 6. 35 ppm NOX control on 8000H gas turbine.

 8. Stack SO2 content reported with no conversion to SO3.

 9. Particulate emissions assume 100% conversion of SO2-SO3, and 100% conversion of SO2-SO3, and 100% conversion of SO2-SO3, and 100% conversion of SO1. Greenhouse Gas (GHG) emissions are based on EPA 40 CFR Part 98 emissi 12. 20% margin in Evaluatifion avaria in textual flow ard 20% margin in exhaust flow are included.

 13. Emissions reported on the basis of pounds per hour are for one combustion tu 14. Emissions estimates are for information only and are NOT guaranteed.

South Shore Energy, LLC - Nemadji Trail Energy	y Center									
Combustion Turbine Case #		50	51	52	53	54	55	56	62	63
		Unfired Fuel Oil	Unfired Fuel Oil	Unfired Fuel Oil	Unfired Fuel Oil	Unfired Fuel Oil Evap OFF	Unfired Fuel Oil	Unfired Fuel Oil Evap OFF	Unfired Fuel Oil	Unfired Fuel Oil Evap OFF
		Evap OFF Min	Evap OFF	Evap OFF	Evap OFF	Summer	Evap OFF	Maximum	Evap OFF	Maximum
Case Description		Ambient 1x75% CTG	Winter Peak 1x75% CTG	Winter Average 1x75% CTG	Annual Average 1x75% CTG	Average 1x75% CTG	Summer Peak 1x75% CTG	Ambient 1x75% CTG	Summer Peak 1xMECL CTG	Ambient 1xMECL CTG
Ambient Temperature		-34.3 F	7.9 F	15.4 F	39.1 F	61 F	76.8 F	95.5 F	76.8 F	95.5 F
Gas Turbine Load		75%	75%	75%	75%	75%	75%	75%	49%	46%
Evaporative Cooling Water Injection		OFF INJECTION ON	OFF INJECTION ON	OFF INJECTION ON	OFF INJECTION ON	OFF INJECTION ON	OFF INJECTION ON	OFF INJECTION ON	OFF INJECTION ON	OFF INJECTION ON
Duct Firing		OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Inlet Chiller No. of Gas Turbines In Operation		OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1	OFF 1
Gas Turbine Fuel		Fuel Oil	Fuel Oil	Fuel Oil	Fuel Oil	Fuel Oil	Fuel Oil	Fuel Oil	Fuel Oil	Fuel Oil
Duct Burner Fuel		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ambient Conditions										
Temperature	degree F	-34.3	7.9	15.4	39.1	61	76.8	95.5	76.8	95.5
Relative Humidity Wet Bulb Temperature	% degree F	70% -34.5	69% 6.5	70% 13.5	70% 35.4	76% 56.4	62% 67.3	36% 73.6	62% 67.3	36% 73.6
Pressure	psia	14.34	14.34	14.34	14.34	14.34	14.34	14.34	14.34	14.34
Gas Turbine Generator Performance Electrical Output		170 707	404.000	400 700						
Heat Rate - LHV	kW Btu/kWh	178,707 12,234	194,008 11,514	193,733 11,482	194,160 11,377	195,081 11,309	190,691 11,395	177,262 11,694	127,127 13,312	118,174 13,744
Heat Rate - HHV	Btu/kWh	13,138	12,365	12,330	12,218	12,145	12,237	12,558	14,296	14,759
GTG Heat Input- LHV GTG Heat Input- HHV	MMBtu/hr MMBtu/hr	2,186 2,348	2,234 2,399	2,224 2,389	2,209 2,372	2,206 2,369	2,173 2,334	2,073 2,226	1,692 1,817	1,624 1,744
Water / Sprint Injection Rate (per HRSG)	lb/hr	30,810	35,112	37,373	45,497	51,415	56,533	58,985	33,019	35,212
Exhaust Flow (per HRSG)	lb/hr degree F	5,284,172	5,361,248	5,325,683	5,224,172	5,082,642 1,083	4,929,648	4,670,663	4,098,512	3,895,002
Exhaust Temperature Steam Turbine Generator Performance	degree F	1,001	1,012	1,020	1,046	1,003	1,107	1,127	1,107	1,127
Electrical Output	kW	94,716	98,744	99,747	103,104	108,209	107,240	103,077	88,107	84,708
Duct Burner Fuel Consumption Heat Input, LHV (per HRSG)	MMBtu/hr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Heat Input, LHV (per HRSG) Heat Input, HHV (per HRSG)	MMBtu/hr MMBtu/hr	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0
Stack Volumetric Analysis, Wet										
Ar CO2	%	0.88% 4.56%	0.88% 4.58%	0.88% 4.59%	0.87% 4.64%	0.86% 4.74%	0.85% 4.80%	0.85% 4.82%	0.86% 4.51%	0.86% 4.55%
H2O	%	4.56% 5.45%	4.58% 5.71%	4.59% 5.85%	4.64% 6.51%	7.61%	4.80%	4.82%	4.51% 7.60%	4.55% 7.89%
N2 02	%	74.01%	73.81%	73.70%	73.19%	72.33%	71.72%	71.48%	72.33%	72.10%
02 Stack Emissions at Exit	%	15.07%	14.99%	14.95%	14.76%	14.43%	14.20%	14.11%	14.67%	14.57%
NOx Emissions										
NOx,@15% O2 Into SCR	ppmvd	42.0	42.0	42.0	42.0	42.0	42.0	42.0	42.0	42.0
NOx, as NO2 Into SCR (per HRSG) NOx,@15% O2 Out of SCR	lb/hr ppmvd	281.2 6.0	287.3 6.0	286.1 6.0	284.0 6.0	283.5 6.0	279.1 6.0	266.2 6.0	217.7 6.0	208.9 6.0
NOx, as NO2 Out of SCR (per HRSG)	lb/hr	40.2	41.0	40.9	40.6	40.5	39.9	38.0	31.1	29.8
SCR NOx Removal Efficiency NH3 Emissions	%	85.7%	85.7%	85.7%	85.7%	85.7%	85.7%	85.7%	85.7%	85.7%
NH3 Reacted with NOx (per HRSG)	lb/hr	116.0	118.5	118.0	117.2	116.9	115.1	109.8	89.8	86.2
NH3 slip @ 15% O2	ppmvd	10	10	10	10	10	10	10	10	10
NH3 slip (per HRSG) CO Emissions	lb/hr	24.8	25.3	25.2	25.0	25.0	24.6	23.5	19.2	18.4
CO into catalyst	ppmvd	8.4	8.5	8.5	8.7	9.0	9.2	9.2	42.7	43.2
CO into catalyst, @ 15% O2	ppmvd	10.0	10.0	10.0	10.0	10.0	10.0	10.0	50.0	50.0
CO into catalyst (per HRSG) CO out of catalyst	lb/hr ppmvd	40.8 1.26	41.6 1.27	41.5 1.28	41.2 1.30	41.1 1.34	40.5 1.37	38.6 1.39	157.8 4.27	151.4 4.32
CO out of catalyst, @ 15% O2	ppmvd	1.50	1.50	1.50	1.50	1.50	1.50	1.50	5.00	5.00
CO out of catalyst (per HRSG) CO Catalyst Removal Efficiency	lb/hr %	6.1 85.0%	6.2 85.0%	6.2 85.0%	6.2 85.0%	6.2 85.0%	6.1 85.0%	5.8 85.0%	15.8 90.0%	15.1 90.0%
SO2 Emissions	76	00.076	00.070	00.076	00.070	00.070	00.076	00.070	30.076	30.070
SO2 in Exh. Gas @ 15% O2 (assuming no conversion)	ppmvw	0.361	0.360	0.360	0.357	0.353	0.350	0.349	0.353	0.352
SO2 in Exh. Gas @ 15% O2 (assuming no conversion) SO2 in Exhaust Gas (assuming no conversion) (per HRSG)	ppmvd lb/hr	0.382 3.6	0.382 3.6	0.382 3.6	0.382 3.6	0.382 3.6	0.382 3.5	0.382 3.4	0.382 2.8	0.382 2.6
SO2 in Exhaust Gas (assuming no conversion) (per HRSG)	lb/MMBtu	0.00152	0.00152	0.00152	0.00152	0.00152	0.00152	0.00152	0.00152	0.00152
Volatile Organic Compounds	0.0001/d	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
VOC @ 15% O2 VOC as CH4 (per HRSG)	ppmvd lb/hr	0.6 1.4	0.6 1.4	0.6 1.4	0.6 1.4	0.6 1.4	0.6 1.4	0.6 1.3	0.6 1.1	0.6 1.0
VOC % Removal in Catalyst	%	40%	40%	40%	40%	40%	40%	40%	40%	40%
Particulates PM10, front including (NH4)2SO4 (per HRSG)	lb/hr	22.3	22.5	22.5	22.4	22.4	22.3	22.0	20.7	20.5
PM10, front & back including (NH4)2SO4 (per HRSG)	lb/hr	22.3 37.3	22.5 37.5	22.5 37.5	37.4	37.4	37.3	37.0	35.7	35.5
PM10, front & back including (NH4)2SO4 (per HRSG)	lb/MMBtu	0.01591	0.01563	0.01569	0.01577	0.01579	0.01598	0.01660	0.01964	0.02033
H2SO4 Emissions H2SO4 in Exhaust Gas (per HRSG)	lb/hr	5.45	5.57	5.55	5.51	5.50	5.42	5.17	4.22	4.05
H2SO4 in Exhaust Gas	lb/MMBtu	0.00232	0.00232	0.00232	0.00232	0.00232	0.00232	0.00232	0.00232	0.00232
GHG Emissions CO2 in Exhaust Gas (per HRSG)	lb/MMBtu	163.45	163.45	163.45	163.45	163.45	163.45	163.45	163.45	163.45
CO2 in Exhaust Gas (per HRSG)	lb/hr	351,785	359,429	357,909	355,437	354,976	349,638	333,538	272,292	261,330
CO2 in Exhaust Gas (per HRSG)	lb/MWh (gross)	1,286.6	1,227.8	1,219.5	1,195.7	1,170.4	1,173.6	1,189.8	1,265.1	1,288.1
CH4 in Exhaust Gas (per HRSG) CH4 in Exhaust Gas (per HRSG)	lb/MMBtu lb/hr	1.6535E-01 388.2	1.6535E-01 396.7	1.6535E-01 395.0	1.6535E-01 392.2	1.6535E-01 391.7	1.6535E-01 385.8	1.6535E-01 368.1	1.6535E-01 300.5	1.6535E-01 288.4
N2O in Exhaust Gas (per HRSG)	lb/MMBtu	3.9419E-01	3.9419E-01	3.9419E-01	3.9419E-01	3.9419E-01	3.9419E-01	3.9419E-01	3.9419E-01	3.9419E-01
N2O in Exhaust Gas (per HRSG)	lb/hr	925.5	945.6	941.6	935.1	933.9	919.9	877.5	716.4	687.5
GHG in Exhaust Gas (per HRSG) Stack Exit	lb/hr	353,098.8	360,771.2	359,245.9	356,763.9	356,301.2	350,944.2	334,783.9	273,309.0	262,306.0
Temperature	degree F	181	179	178	175	175	169	174	165	168
Flow Rate (per HRSG) Flow Rate (per HRSG)	lb/hr	5,284,172 962,755	5,361,248	5,325,683 971,630	5,224,172 955,336	5,082,642 932,952	4,929,648 907,363	4,670,663	4,098,512 753,001	3,895,002 716,298
Flow Rate (per HRSG)	scfm acfm	962,755 1,216,120	977,629 1,232,310	971,630	955,336 1,196,409	932,952	907,363	860,607 1,075,325	927,783	716,298 886,447
Stack Velocity Stack Diameter	ft/sec ft	57.0 21.3	57.7 21.3	57.3 21.3	56.1 21.3	54.7 21.3	52.7 21.3	50.4 21.3	43.5 21.3	41.5 21.3
Notes: 1. Particulate values exclude catalyst and other entrained pa 2. Emission values do not include heavy metals (lead, mercu 3. Differing fuel composition may change the calculated emi 4. CTG performance based on performance runs provided the 5. Fuel based on natural gas analysis provided by NTEC. 35 ppm NOx control on 8000H gas turbine. 8. Stack SO2 content reported with no conversion to SO3. 9. Particulate emissions assume 100% conversion of SO2-S 10. H2SO4 assumes 100% conversion of SO2-SO3, and 100 11. Greenhouse Gas (GHG) emissions are based on EPA 40 2. 20% margin in Fuel flow and 20% margin in exhaust flow	rticles. iry, etc.) ssions. y SEI. O3, and 100% cow % conversion of 5C CFR Part 98 emissa are included.	9))								
 Emissions reported on the basis of pounds per hour are for Emissions estimates are for information only and are NOT 	or one combustion to	U								

South Shore Energy, LLC - Nemadji Trail Energy Center Auxiliary Combustion Sources Emissions Calculations

Auxiliary Boiler

Size	100.00	MMBtu/hr
HHV	1,020	Btu/cf
Operation	8,760	hours/year

Auxiliary Boiler Stack Parameters

Height (ft)	Temp. (F)	Velocity (ft/sec)	Diameter (ft)	ACFM	Stack Discharge Type	Fuel
110.00	290.00	48.00	3.50	27,709	Vertical	Natural Gas

	Emission Factors			Emis	ssions
Pollutant	lb/MMcf	lb/MMBtu	Source	lb/hr	tpy
NO _X		0.011	Vendor ^a	1.1	4.8
CO		0.0037	BACT	0.4	1.6
PM/PM ₁₀ /PM _{2.5}	7.6	0.01	AP-42 ^b	0.7	3.3
SO ₂	0.6	0.0006	AP-42 ^b	0.06	0.3
VOC		0.0027	BACT	0.3	1.2
H ₂ SO ₄ Mist			Mass Balance	9E-03	0.04
CO ₂		117.0	Federal Register ^c	11,698	51,236
CH ₄		0.0022	Federal Register ^c	0.22	0.97
N ₂ O		0.00022	Federal Register ^c	0.022	0.097
CO ₂ e			Federal Register ^c	11,710	51,289

(a) Ultra low-NOx burners (b) AP-42 Section 1.4 (7/98) (c) Federal Register - Subpart C of Part 98

Natural Gas Heaters

Size	10.00	MMBtu/hr
HHV	1,020	Btu/cf
Operation	8,760	hours/year
Number of heaters	2	

Natural Gas Heater Stack Parameters

Height (ft)	Temp. (F)	Velocity (ft/sec)	Diameter (ft)	ACFM	Stack Discharge Type	Fuel
15.00	750.00	25.00	1.67	3,272	Vertical	Natural Gas

	Emission	1 Factors		Emi	ssions	Emissions (2 heaters)
Pollutant	lb/MMcf	lb/MMBtu	Source	lb/hr	tpy	lb/hr	tpy
NO _X	50.0	0.049	AP-42 ^a	0.5	2.1	1.0	4.3
CO	84.0	0.08	AP-42 ^a	0.8	3.6	1.6	7.2
PM/PM ₁₀ /PM _{2.5}	7.6	0.01	AP-42 ^a	0.07	0.3	0.1	0.7
SO ₂	0.6	0.0006	AP-42 ^a	5.9E-03	0.03	0.01	0.05
VOC	5.5	0.005	AP-42 ^a	0.05	0.2	0.1	0.5
H ₂ SO ₄ Mist			Mass Balance	9.0E-04	3.9E-03	1.8E-03	7.9E-03
CO ₂		117.0	Federal Register ^b	1,170	5,124	2,340	10,247
CH ₄		0.0022	Federal Register ^b	0.022	0.10	0.04	0.19
N ₂ O		0.00022	Federal Register ^b	2.2E-03	0.010	0.00	0.02
CO ₂ e			Federal Register ^b	1,171	5,129	2,342	10,258

(a) AP-42 Section 1.4 (7/98) (b) Federal Register - Subpart C of Part 98

South Shore Energy, LLC - Nemadji Trail Energy Center Auxiliary Combustion Sources Emissions Calculations

Emergency Diesel Fire Pump

	282.0	HP	
Size	1.95	MMBtu/hr	
	14.10	gal/hr	
Operation	500	hours/year	

Emergency Fire Pump Stack Parameters

Height (ft)	Temp. (F)	Velocity (ft/sec)	Diameter (ft)	ACFM	Stack Discharge Type	Fuel
15.00	1,030	153.90	0.50	1,813	Vertical	Diesel

		Emission Factors				Emissions			
Pollutant	g/kw-hr	g/hp-hr	lb/hp-hr	lb/MMBtu	Source	lb/hr	tpy		
NO _X	4.0	3.0			NSPS ^a	1.9	0.5		
CO	3.5	2.6			NSPS ^a	1.6	0.4		
PM/PM ₁₀ /PM _{2.5}	0.2	0.15			NSPS ^a	0.09	0.02		
SO ₂			2.05E-03		AP-42 ^b	0.6	0.1		
VOC		1.1	2.51E-03		AP-42 ^b	0.7	0.2		
H ₂ SO ₄ Mist					Mass Balance	0.09	0.02		
CO ₂				163.1	Federal Register ^c	318.0	79.5		
CH ₄				0.0066	Federal Register ^c	0.013	3.2E-03		
N ₂ O				0.00132	Federal Register ^c	2.6E-03	6.4E-04		
CO ₂ e					Federal Register ^c	319	80		

(a) NSPS 40 CFR Part 60, Subapart IIII Limits

NSPS Limits - 40	CFR Part 60, Sub	apart IIII,	(40 CFR 60	Table 4)	
	NOV + VOM	C	\circ	DN	٨

	NOX + VOM	00	РМ
g/kW-hr	4.0	3.5	0.20
g/hp-hr	3.0	2.6	0.15
3 (10/96)			

(b) AP-42 Section 3.3 (10/96) (c) Federal Register - Subpart C of Part 98

Emergency Diesel Generator

	1,112	KW
Size	1,490	hp
Size	150.0	gal/hr
	20.6	MMBtu/hr
Operation	500	hours/year
Sulfur Content	0.0015	%

137,000 Btu/gal

Emergency Diesel Generator Stack Parameters

Height (ft)	Temp. (F)	Velocity (ft/sec)	Diameter (ft)	ACFM	Stack Discharge Type	Fuel
15.00	890.00	360.01	0.67	7,540	Vertical	Diesel

		Emissi	on Factors			Emissions				
Pollutant	g/kw-hr	g/hp-hr	lb/hp-hr	lb/MMBtu	Source	lb/hr	tpy			
NO _X	6.4	4.8			NSPS ^a	15.7	3.9			
CO	3.5	2.6			NSPS ^a	8.6	2.1			
PM/PM ₁₀ /PM _{2.5}	0.2	0.15			NSPS ^a	0.5	0.1			
SO ₂			1.21E-05		AP-42 ^b	0.02	4.5E-03			
VOC		0.32	7.05E-04		AP-42 ^b	1.1	0.3			
H ₂ SO ₄ Mist					Mass Balance	2.8E-03	6.9E-04			
CO ₂				163.1	Federal Register ^c	3,351	838			
CH ₄				0.0066	Federal Register ^c	1.4E-01	3.4E-02			
N ₂ O				0.00132	Federal Register ^c	2.7E-02	6.8E-03			
CO ₂ e					Federal Register ^c	3,362	841			

(a) NSPS 40 CFR Part 60, Subapart IIII Limits NSPS Limits - 40 CFR Part 60, Subapart IIII, (40 CFR 60.4202(a)(2) and 40 CFR 89.112 - Table 1)

	NOx + VOM	CO	PM
g/kW-hr	6.4	3.5	0.20
a/hp-hr	4.8	2.6	0.15

g/np-nr	4.8	2.6	0.15
(b) AP-42 Section 3.4 (10/96)			
(c) Federal Register - Subpart C of Par	rt 98		

Sulfuric Acid Mist		Co	onversion Perce	ent			
Assume 10% of SO ₂ is conver	ted to SO ₃		10		SO ₂ + 1/2 O ₂ = SO ₃		
Assume 100% of SO_3 is conver	ted to H ₂ SO ₄		100		$SO_3 + H_2O = H_2SO_4$		
		lb/hr SO ₂	lb/hr SO ₃	lb/hr H ₂ SO ₄	tons/year		
Name	lb/hr SO ₂	converted to SO ₃	created	created	H ₂ SO ₄	Molecular W	eights
Auxiliary Boiler	0.059	5.9E-03	7.4E-03	9.0E-03	3.9E-02	SO ₂	64.1
Dew Point Heater	5.9E-03	5.9E-04	7.4E-04	9.0E-04	3.9E-03	SO ₃	80.1
Emergency Fire Pump	0.58	5.8E-02	7.2E-02	8.9E-02	2.2E-02	H ₂ SO ₄	98.1
Emergency Diesel Generator	0.02	0.00	0.00	0.00	6.9E-04		

CO₂ Equivalent Ratios

			CO ₂ Equivalent
Gre	Ratio		
Carbon Dioxide	124-38-9	CO ₂	1
Methane	74-82-8	CH ₄	25
Nitrous Oxide	10024-97-2	N ₂ O	298
Hydrofluorocarbons	Various	CHF (various)	12 - 11,700
Perfluorocarbons	Various	CF (various)	6500 - 17,340
Sulfur Hexafluoride	2551-62-4	SF ₆	23,900
Chlorofluorocarbons	Various	CCIF (various)	Not Available

South Shore Energy, LLC - Nemadji Trail Energy Center Storage Tanks

		Size	VOC Emissions	
Tank #	Material Stored	Gallons	lb/year	Tons/year
1 - Day Tank	#2 Fuel Oil	180,000	83.30	4.17E-02
2 - Diesel Generator Tank	#2 Fuel Oil	1,700	0.48	2.40E-04
3 - Fire Pump Tank	#2 Fuel Oil	350	0.1	5.00E-05
			TOTAL: (tpy VOC)	0.04

TANKS 4.0.9d Inputs

	Day Tank		Diesel Generator	Fank	Fire Pump Tank	
Description	Value	Units	Value	Units	Value	Units
Tank Type	Vertical Fixed Roof Tank		Horizontal Tank		Horizontal Tank	
Location (meteorological data)	Duluth, MN		Duluth, MN		Duluth, MN	
Tank Contents	Distillate Fuel Oil #2		Distillate Fuel Oil #2		Distillate Fuel Oil #2	
Shell Height	30.00	ft	8.04	ft	5.00	ft
Diameter	33.00	ft	6.00	ft	3.45	ft
Avg. Liquid Height	14.07					
Volume	180,042.51	gal	1,700	gal	350.0	gal
Turnovers	59.94		20.83		20.83	
Net Throughput	10,791,747.84	gal	35,360.00	gal	7291.55	gal
Tank heated (y/n)	n		n		n	
Shell Color/Shade	White		n		n	
Shell Condition	Good		White		White	
Roof Color/Shade	White		Good		Good	
Roof Condition	Good					
Roof Type	Cone					
Roof Height	5.00	ft				
Slope (Cone Roof)	0.30	ft/ft				
Vacuum Settings (psig)	-0.03		-0.03		-0.03	
Pressure Settings (psig)	0.03		0.03		0.03	
Working Loss	69.18	lb/yr	0.34	lb/yr	0.07	lb/yr
Breathing Loss	14.11	lb/yr	0.14	lb/yr	0.03	lb/yr
Total losses	83.30	lb/yr	0.48	lb/yr	0.10	lb/yr
Total Emissions	4.17E-02	tpy	2.40E-04	tpy	5.00E-05	tpy

South Shore Energy, LLC - Nemadji Trail Energy Center Greenhouse Gas Emissions from SF_6 in Circuit Breakers

Inputs	
Number of 19 kV Generator Circuit Breakers	2
Quantity of SF ₆ in each 19 kV Breaker (lb)	23.0
Number of 345 kV Generator Circuit Breakers	3
Quantity of SF ₆ in each 345 kV Breaker (lb)	687.0
Global Warming Potential of SF6 (100yr)	22,800

Fugitive Emissions of SF6 due to leakage

	Number of Units	Quantity of SF ₆ per Breaker (lbs)	Emissions of SF ₆ Per Breaker ^a (lbs/yr)	Total SF ₆ Emissions (lbs/yr)	Global Warming Potential	Total CO ₂ e Emissions (tons/yr)
19 kV Breakers	2	23.0	0.12	0.23	22,800	2.6
345 kV Breakers	3	687.0	3.44	10.31	22,800	117.5
Total				10.5		120

(a) Based on a maximum SF_6 leakage rate of 0.5% per year

South Shore Energy, LLC - Nemadji Trail Energy Center Emissions from Paved Haul Roads

 Paved Haul Road Emissions

 $E = k * (sL)^{0.91} * (W)^{1.02}$ Equation 1 from AP 42 Section

 where E is the particulate emission factor having the units matching k
 Equation 1 from AP 42 Section 13.2.1.3.

Parameter	Value	Description of parameter
sL	2.4	Ubiquitous Silt Loading Default Value, g/m ²
W	see below	Mean vehicle weight [(loaded truck weight + unloaded truck weight)/2], tons
VMT	see below	Vehicle miles traveled (length traveled round trip)
VMT/hr	see below	Vehicle miles traveled per hour = VMT*maximum trips per hour
VMT/yr	see below	Vehicle miles traveled per year = VMT*maximum trips per year

	k
	(lb/VMT)
PM2.5	0.00054
PM10	0.0022
PM30 (TSP)	0.011

Constant k, lb/VMT is from AP 42 Table 13.2.1-1 Notes:

			Max #	Max #	VMT - Ler	igth (round	Truck	Weight [□]	Factor "E"	Factor "E"	Factor "E"	Traveled	Traveled	Emis	ssions	Emis	sions	Emis	sions
	Vehicle Type	Paved			tri	p)	Loaded	Unloaded			Ib PM2.5/VMT			Uncontrolled	Uncontrolled	Uncontrolled	Uncontrolled	Uncontrolled	Uncontrolled
			Trips/hour	I rips/yr-	meters	(miles)	tons	tons	Ib PM/VMT	ID PIVI10/VIVI1	ID PIVIZ.5/VIVII	VMT/hr	VMT/yr	lb PM/hr	PM tpy	lb PM10/hr	PM10 tpy	lb PM2.5/hr	PM2.5 tpy
Miscellaneous Deliveries	generic haul																		
paved (single-trip: loop)	truck	yes	6	520	837	0.52	40	15	0.72	0.14	0.04	3.12	270.40	2.24	0.10	0.45	0.02	0.11	0.005

(a) On average less than 10 trucks per week are expected for delivery or removal; therefore, 10 trucks per week * 52 weeks per year = 520 trips per year

(b) Based on generic truck weight of the trucks that will be traveling onsite

South Shore Energy, LLC - Nemadji Trail Energy Center Emissions from Piping Fugitives

	VOC	CO ₂ e
Total Emissions from Piping Fugitives (tpy)	10.4	976.6

Natural Gas									
Natural Gas			VOC ^D			CO ₂ e ^{c,d}			
Equipment Type	Service	Quantity	Factor ^a (kg/hr/source)	Maximum emissions (lb/hr)	Maximum theoretical emissions (tpy)	Potential to emit (tpy)	Maximum emissions (lb/hr)	Maximum theoretical emissions (tpy)	Potential to emit (tpy)
Connectors	Natural Gas	279	2.00E-04	0.01	0.04	0.04	3.00	13.13	13.13
Flanges	Natural Gas	465	3.90E-04	0.03	0.12	0.12	9.75	42.68	42.68
Open Ended Lines	Natural Gas	30	2.00E-03	0.01	0.04	0.04	3.22	14.12	14.12
Valves	Natural Gas	856	4.50E-03	0.59	2.60	2.60	207.00	906.65	906.65
			Total	0.64	2.80	2.80	222.97	976.59	976.59
(a) 1995 Protocol for Equi	ipment Leak Emission I	Estimates- EPA-453/R-95-0	017			-		-	
(b) Since methane is not a	a VOC, the maximum V		nimum methane conte minimum wt% methar						
(c) Since methane is GHC	G, the maximum CO ₂ e is	s calculated at the maximu	m methane content.						
		97.50%	maximum wt% metha	ne					
(d) Methane Global Warm	ning Potential (40 CFR	98) was applied	25						

Fuel Oil					VOC ^b			
Equipment Type	Service	Quantity	Factor ^a (kg/hr/source)	Maximum emissions (lb/hr)	Maximum theoretical emissions (tpy)	Potential to emit (tpy)		
Connectors	Light Oil	52	2.10E-04	0.02	0.11	0.11		
Flanges	Light Oil	420	1.10E-04	0.10	0.45	0.45		
Open Ended Lines	Light Oil	0	1.40E-03	0.00	0.00	0.00		
Valves	Light Oil	291	2.50E-03	1.60	7.02	7.02		
			Total	1.73	7.58	7.58		

Note: The 1995 Protocol for Equipment Leak Emission Rates is the most relevant calculation reference and is a reputable reference document that is widely referenced.

ours of Operation		
Combustion Turbine Natural Gas Hours =	8,760	hours per year
Combustion Turbine Fuel Oil Hours =	0	hours per year
Duct Burner =	0	hours per year
Auxillary Boiler =	8,760	hours per year
Natural Gas Heater =	8,760	hours per year
Emergency Diesel Fire Pump =	500	hours per year
Emergency Diesel Generator =	500	hours per year

tural Gas Usage			
_	mmBtu/hr	mmCF/hr	1,020 MMBtu/MMcf
Combustion Turbine (Natural Gas) =	3,665		
Combustion Turbine (Fuel Oil) =	3,021		
Duct Burner =	1,006	0.987	
Auxillary Boiler =	100.0	0.098	
Natural Gas Heaters =	20.0	0.020	2 Natural Gas Heaters
Emergency Diesel Fire Pump =	1.95		
Emergency Diesel Generator =	20.6		

Total Facility: Hazardous Air Pollutants Emissions

	Potential Emissions
HAP	tpy
1st Maximum: Formaldehyde	3.28
2nd Maximum: Toluene	2.09
3rd Maximum: Xylene	1.03
All HAPs	9.33

			Natural	l Gas - Internal C	Combustion	Fuel C	il - Internal Comb	oustion			Natural G	Gas- External C	ombustion					Fue	el Oil			1
	CAS		0	Combustion Tur	bine ^a	C	ombustion Turbi	neª	Emission Factor	Duct B	urner ^b	Auxillar	y Boiler ^b	Natural Ga	as Heaters ^b	Emission Factor	Emergency Die	sel Fire Pump ^c	Emission Factor	Emergency Die	sel Generator ^d	Total
Chemical		POM?	lb/MMBtu	lb/hr	tpv	lb/MMBtu	lb/hr	tpy	lb/MMcf	lb/hr	tpv	lb/hr	tpv	lb/hr	tpv	lb/MMBtu	lb/hr	tpy	lb/MMBtu	lb/hr	tpy	tpv
2-Methylnaphthalene	97-57-6	POM		-			-	17	2.4E-05	2.4E-05	0.0E+00	2.4E-06	1.0E-05	4.7E-07	2.1E-06			17		-		1.2E-05
3-Methylchloranthrene	56-49-5	POM							1.8E-06	1.8E-06	0.0E+00	1.8E-07	7.7E-07	3.5E-08	1.5E-07							9.3E-07
7,12-Dimethylbenz(a)anthracene		POM							1.6E-05	1.6E-05	0.0E+00	1.6E-06	6.9E-06	3.1E-07	1.4E-06							8.2E-06
Acenaphthene	83-32-9	POM							1.8E-06	1.8E-06	0.0E+00	1.8E-07	7.7E-07	3.5E-08	1.5E-07	1.42E-06	2.8E-06	6.9E-07	4.68E-06	9.6E-05	2.4E-05	2.6E-05
Acenaphthylene	203-96-8	POM							1.8E-06	1.8E-06	0.0E+00	1.8E-07	7.7E-07	3.5E-08	1.5E-07	5.06E-06	9.9E-06	2.5E-06	9.23E-06	1.9E-04	4.7E-05	5.1E-05
Acetaldehyde	75-07-0		4.0E-05	1.5E-01	6.4E-01											7.67E-04	1.5E-03	3.7E-04	2.52E-05	5.2E-04	1.3E-04	6.4E-01
Acrolein	107-02-8		6.4E-06	2.3E-02	1.0E-01											9.25E-05	1.8E-04	4.5E-05	7.88E-06	1.6E-04	4.0E-05	1.0E-01
Anthracene	120-12-7	POM							2.4E-06	2.4E-06	0.0E+00	2.4E-07	1.0E-06	4.7E-08	2.1E-07	1.87E-06	3.6E-06	9.1E-07	1.23E-06	2.5E-05	6.3E-06	8.5E-06
Arsenic	7440-38-2					1.1E-05	3.3E-02	0.0E+00	2.0E-04	2.0E-04	0.0E+00	2.0E-05	8.6E-05	3.9E-06	1.7E-05							1.0E-04
Benz(a)anthracene	56-55-3	POM							1.8E-06	1.8E-06	0.0E+00	1.8E-07	7.7E-07	3.5E-08	1.5E-07	1.68E-06	3.3E-06	8.2E-07	6.22E-07	1.3E-05	3.2E-06	4.9E-06
Benzene	71-43-2		1.2E-05	4.4E-02	1.9E-01	5.5E-05	1.7E-01	0.0E+00	2.1E-03	2.1E-03	0.0E+00	2.1E-04	9.0E-04	4.1E-05	1.8E-04	9.33E-04	1.8E-03	4.5E-04	7.76E-04	1.6E-02	4.0E-03	2.0E-01
Benzo(a)pyrene	50-32-8	POM							1.2E-06	1.2E-06	0.0E+00	1.2E-07	5.2E-07	2.4E-08	1.0E-07	1.88E-07	3.7E-07	9.2E-08	2.57E-07	5.3E-06	1.3E-06	2.0E-06
Benzo(b)fluoranthene	205-99-2	POM							1.8E-06	1.8E-06	0.0E+00	1.8E-07	7.7E-07	3.5E-08	1.5E-07	9.91E-08	1.9E-07	4.8E-08	1.11E-06	2.3E-05	5.7E-06	6.7E-06
Benzo(g,h,l)perylene	191-24-2	POM							1.2E-06	1.2E-06	0.0E+00	1.2E-07	5.2E-07	2.4E-08	1.0E-07	4.89E-07	9.5E-07	2.4E-07	5.56E-07	1.1E-05	2.9E-06	3.7E-06
Benzo(k)fluoranthene	205-82-3	POM							1.8E-06	1.8E-06	0.0E+00	1.8E-07	7.7E-07	3.5E-08	1.5E-07	1.55E-07	3.0E-07	7.6E-08	2.18E-07	4.5E-06	1.1E-06	2.1E-06
Bervllium	7440-41-7					3.1E-07	9.4E-04	0.0E+00	1.2E-05	1.2E-05	0.0E+00	1.2E-06	5.2E-06	2.4E-07	1.0E-06							6.2E-06
1,3-Butadiene	106-99-0		4.3E-07	1.6E-03	6.9E-03	1.6E-05	4.8E-02	0.0E+00								3.91E-05	7.6E-05	1.9E-05				6.9E-03
Cadmium	7440-43-7					4.8E-06	1.5E-02	0.0E+00	1.1E-03	1.1E-03	0.0E+00	1.1E-04	4.7E-04	2.2E-05	9.4E-05							5.7E-04
Chromium	7440-47-3					1.1E-05	3.3E-02	0.0E+00	1.4E-03	1.4E-03	0.0E+00	1.4E-04	6.0E-04	2.7E-05	1.2E-04							7.2E-04
Chrvsene	218-01-9	POM							1.8E-06	1.8E-06	0.0E+00	1.8E-07	7.7E-07	3.5E-08	1.5E-07	3.53E-07	6.9E-07	1.7E-07	1.53E-06	3.1E-05	7.9E-06	9.0E-06
Cobalt	7440-48-4								8.4E-05	8.3E-05	0.0E+00	8.2E-06	3.6E-05	1.6E-06	7.2E-06							4.3E-05
Dibenzo(a.h)anthracene	53-70-3	POM							1.2E-06	1.2E-06	0.0E+00	1.2E-07	5.2E-07	2.4E-08	1.0E-07	5.83E-07	1.1E-06	2.8E-07	3.46E-07	7.1E-06	1.8E-06	2.7E-06
Dichlorobenzene	25321-22-6								1.2E-03	1.2E-03	0.0E+00	1.2E-04	5.2E-04	2.4E-05	1.0E-04							6.2E-04
Ethyl benzene	100-41-4		3.2E-05	1.2E-01	5.1E-01																	5.1E-01
Fluoranthene	206-44-0	POM							3.0E-06	3.0E-06	0.0E+00	2.9E-07	1.3E-06	5.9E-08	2.6E-07	7.61E-06	1.5E-05	3.7E-06	4.03E-06	8.3E-05	2.1E-05	2.6E-05
Fluorene	86-73-7	POM							2.8E-06	2.8E-06	0.0E+00	2.7E-07	1.2E-06	5.5E-08	2.4E-07	2.92E-05	5.7E-05	1.4E-05	1.28E-05	2.6E-04	6.6E-05	8.1E-05
Formaldehvde	50-00-0		2.0E-04	7.4E-01	3.2E+00	2.8E-04	8.5E-01	0.0E+00	7.5E-02	7.4E-02	0.0E+00	7.4E-03	3.2E-02	1.5E-03	6.4E-03	1.18E-03	2.3E-03	5.8E-04	7.89E-05	1.6E-03	4.1E-04	3.3E+00
Hexane	110-54-3								1.8E+00	1.8E+00	0.0E+00	1.8E-01	7.7E-01	3.5E-02	1.5E-01							9.3E-01
Indeno(1,2,3-cd)pyrene	193-39-5	POM							1.8E-06	1.8E-06	0.0E+00	1.8E-07	7.7E-07	3.5E-08	1.5E-07	3.75E-07	7.3E-07	1.8E-07	4.14E-07	8.5E-06	2.1E-06	3.2E-06
Manganese	7439-96-5	1				7.9E-04	2.4E+00	0.0E+00	3.8E-04	3.7E-04	0.0E+00	3.7E-05	1.6E-04	7.5E-06	3.3E-05							2.0E-04
Mercurv	7439-97-6					1.2E-04	3.6E-03	0.0E+00	2.6E-04	2.6E-04	0.0E+00	2.5E-05	1.1E-04	5.1E-06	2.2E-05							1.3E-04
Naphthalene	91-20-3		1.3E-06	4.8E-03	2.1E-02	3.5E-05	1.1E-01	0.0E+00	6.1E-04	6.0E-04	0.0E+00	6.0E-05	2.6E-04	1.2E-05	5.2E-05	8.48E-05	1.7E-04	4.1E-05	1.30E-04	2.7E-03	6.7E-04	2.2E-02
Nickel	7440-02-0		1.32-00	4.02-03	2.12-02	4.6E-06	1.4E-01	0.0E+00	2.1E-04	2.1E-03	0.0E+00	2.1E-04	9.0E-04	4.1E-05	1.8E-04	0.402-03	1.7 -04	4.12-03	1.302-04	2.7 -03	0.7 2-04	1.1E-03
PAH	1440-02-0		2.2E-06	8.1E-03	3.5E-02	4.0E-00 4.0E-05	1.4E-02 1.2E-01	0.0E+00	2.12-03	2.12-03	0.0L+00	2.12-04	3.02-04	4.12-03	1.02-04							3.5E-02
Phenanathrene	85-01-8	POM	2.2E-00	0.1E-03	3.0E-02	4.00-00	1.201	0.02+00	1.7E-05	1.7E-05	0.0E+00	1.7E-06	7.3E-06	3.3E-07	1.5E-06	2.94E-05	5.7E-05	1.4E-05	4.08E-05	8.4E-04	2.1E-04	2.3E-02
Propylene	03-01-0	FOM							1.7 -03	1.7 -03	0.0L+00	1.7 -00	7.52-00	3.32-07	1.52-00	2.58E-03	5.0E-03	1.3E-03	2.79E-03	5.7E-02	1.4E-02	1.6E-02
Proplylene Oxide	75-56-9		2.9E-05	1.1E-01	4.7E-01											2.000-03	5.0E-03	1.3E-03	2.192-03	J./E-02	1.4E-0Z	4.7E-02
		DOM	2.9E-05	1.1E-01	4.7E-01				E 0E 06	4.05.06	0.0E+00	4.9E-07	2.1E-06	9.8E-08	4.3E-07	4 795 00	9.3E-06	2.3E-06	3.71E-06	7.65.05	1.9E-05	2.4E-05
Pyrene	129-00-0	POM				0.55.05	7.05.00	0.05.00	5.0E-06	4.9E-06		· · ·				4.78E-06	9.3E-06	2.3E-06	3.71E-06	7.6E-05	1.9E-05	
Selenium	7782-49-2		105.0	105.04	0.45.04	2.5E-05	7.6E-02	0.0E+00	2.4E-05	2.4E-05	0.0E+00	2.4E-06	1.0E-05	4.7E-07	2.1E-06		0.05.04	0.05.0		5.05.00	4.45.65	1.2E-05
Toluene	108-88-3		1.3E-04	4.8E-01	2.1E+00				3.4E-03	3.4E-03	0.0E+00	3.3E-04	1.5E-03	6.7E-05	2.9E-04	4.09E-04	8.0E-04	2.0E-04	2.81E-04	5.8E-03	1.4E-03	2.1E+00
Xylene	1330-20-7		6.4E-05	2.3E-01	1.0E+00											2.85E-04	5.6E-04	1.4E-04	1.93E-04	4.0E-03	9.9E-04	1.0E+00
		TOTAL		1.90	8.34		3.85	0.00		1.86	0.00	0.19	0.81	0.04	1.6E-01		1.3E-02	3.1E-03				9.33

(a) Emission factors for combustion turbines from AP-42 Section 3.1, Updated 2/2000. Formaldehyde emission factor from Sims Roy EPA Memo "Hazardous Air Pollutant (HAP) Emission Control Technology for New Stationary Combustion Turbines" 8/21/2001.

(b) Emission factors from AP-42 Section 1.4, Updated 7/1998

(c) Emission factors from AP-42 Section 3.3, Updated 10/1996 (d) Emission factors from AP-42 Section 3.4, Updated 10/1996

			Natural	Gas - Internal (ombustion	Fuel O	Fuel Oil - Internal Combustion Natural Gas- External Com											Fu	el Oil			1
			c	ombustion Tur	bine ^a	Co	ombustion Turbi	ne ^a	Emission Factor	Duct E	Burner ^b	Auxillar	y Boiler ^b	Natural Ga	s Heaters ^b	Emission Factor	Emergency Die	esel Fire Pump ^c	Emission Factor	Emergency Dies	el Generator ^d	Total
Chemical	CAS	POM?	lb/MMBtu	lb/hr	tpy	lb/MMBtu	lb/hr	tpy	lb/mmCF	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/mmCF	lb/hr	tpy	lb/MMBtu	lb/hr	tpy	tpy
Lead						1.4E-05	4.2E-02	0.0E+00	5.0E-04	4.9E-04	0.0E+00	4.9E-05	2.1E-04	9.8E-06	4.3E-05							2.6E-04
(a) Emission factors for combustion turbine			lated 2/2000. F	ormaldehyde er	nission factor from	Sims Roy EPA Me	mo "Hazardous A	ir Pollutant (HAP)	Emission Control Tech	nology for New	Stationary Com	bustion Turbine	s" 8/21/2001.			•						

(a) Emission factors for combustion turbines from AP-42 Section
 (b) Emission factors from AP-42 Section 1.4, Updated 7/1998
 (c) Emission factors from AP-42 Section 3.3, Updated 10/1996
 (d) Emission factors from AP-42 Section 3.4, Updated 10/1996

ours of Operation		
Combustion Turbine Natural Gas Hours =	0	hours per year
Combustion Turbine Fuel Oil Hours =	0	hours per year
Duct Burner =	8,760	hours per year
Auxillary Boiler =	8,760	hours per year
Natural Gas Heater =	8,760	hours per year
Emergency Diesel Fire Pump =	500	hours per year
Emergency Diesel Generator =	500	hours per year

-	mmBtu/hr	mmCF/hr	1,020 MMBtu/MMcf
Combustion Turbine (Natural Gas) =	3,665		
Combustion Turbine (Fuel Oil) =	3,021		
Duct Burner =	1,006	0.987	
Auxillary Boiler =	100.0	0.098	
Natural Gas Heater =	20.0	0.020	2 Natural Gas Heaters
Emergency Diesel Fire Pump =	1.95		
Emergency Diesel Generator =	20.6		

Total Facility: Hazardous Air Pollutants Emissions

	Maximum Potential Emissions
HAP	tpy
1st Maximum: Hexane	8.71
2nd Maximum: Formaldehyde	0.36
3rd Maximum: Toluene	0.02
All HAPs	9.16

			Natural	l Gas - Internal C	Combustion	Fuel O	Fuel Oil - Internal Combustion Natural Gas- External Comb					as- External C	ombustion			Fuel Oil						
	CAS		0	Combustion Tur	rbine ^a	Co	ombustion Turbi	neª	Emission Factor	Duct B	Burner ^b	Auxillar	y Boiler ^b	Natural Ga	as Heaters ^b	Emission Factor	Emergency Die	sel Fire Pump ^c	Emission Factor	Emergency Dies	el Generator ^d	^d Total
Chemical		POM?	lb/MMBtu	lb/hr	tpy	lb/MMBtu	lb/hr	tpy	lb/MMcf	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/MMBtu	lb/hr	tpy	lb/MMBtu	lb/hr	tpy	tpy
-Methvlnaphthalene	97-57-6	POM							2.4E-05	2.4E-05	1.0E-04	2.4E-06	1.0E-05	4.7E-07	2.1E-06						12	1.2E-04
Methylchloranthrene	56-49-5	POM							1.8E-06	1.8E-06	7.8E-06	1.8E-07	7.7E-07	3.5E-08	1.5E-07							8.7E-06
.12-Dimethylbenz(a)anthracene		POM							1.6E-05	1.6E-05	6.9E-05	1.6E-06	6.9E-06	3.1E-07	1.4E-06							7.7E-05
cenaphthene	83-32-9	POM							1.8E-06	1.8E-06	7.8E-06	1.8E-07	7.7E-07	3.5E-08	1.5E-07	1.42E-06	2.8E-06	6.9E-07	4.68E-06	9.6E-05	2.4E-05	3.3E-05
cenaphthylene	203-96-8	POM							1.8E-06	1.8E-06	7.8E-06	1.8E-07	7.7E-07	3.5E-08	1.5E-07	5.06E-06	9.9E-06	2.5E-06	9.23E-06	1.9E-04	4.7E-05	5.9E-0
cetaldehvde	75-07-0		4.0E-05	1.5E-01	0.0E+00								-			7.67E-04	1.5E-03	3.7E-04	2.52E-05	5.2E-04	1.3E-04	5.0E-0
crolein	107-02-8		6.4E-06	2.3E-02	0.0E+00											9.25E-05	1.8E-04	4.5E-05	7.88E-06	1.6E-04	4.0E-05	8.6E-0
nthracene	120-12-7	POM							2.4E-06	2.4E-06	1.0E-05	2.4E-07	1.0E-06	4.7E-08	2.1E-07	1.87E-06	3.6E-06	9.1E-07	1.23E-06	2.5E-05	6.3E-06	1.9E-0
rsenic	7440-38-2					1.1E-05	3.3E-02	0.0E+00	2.0E-04	2.0E-04	8.6E-04	2.0E-05	8.6E-05	3.9E-06	1.7E-05							9.7E-0
enz(a)anthracene	56-55-3	POM							1.8E-06	1.8E-06	7.8E-06	1.8E-07	7.7E-07	3.5E-08	1.5E-07	1.68E-06	3.3E-06	8.2E-07	6.22E-07	1.3E-05	3.2E-06	1.3E-0
enzene	71-43-2		1.2E-05	4.4E-02	0.0E+00	5.5E-05	1.7E-01	0.0E+00	2.1E-03	2.1E-03	9.1E-03	2.1E-04	9.0E-04	4.1E-05	1.8E-04	9.33E-04	1.8E-03	4.5E-04	7.76E-04	1.6E-02	4.0E-03	1.5E-0
enzo(a)pyrene	50-32-8	POM							1.2E-06	1.2E-06	5.2E-06	1.2E-07	5.2E-07	2.4E-08	1.0E-07	1.88E-07	3.7E-07	9.2E-08	2.57E-07	5.3E-06	1.3E-06	7.2E-0
Benzo(b)fluoranthene	205-99-2	POM							1.8E-06	1.8E-06	7.8E-06	1.8E-07	7.7E-07	3.5E-08	1.5E-07	9.91E-08	1.9E-07	4.8E-08	1.11E-06	2.3E-05	5.7E-06	1.4E-0
enzo(g,h,l)perylene	191-24-2	POM							1.2E-06	1.2E-06	5.2E-06	1.2E-07	5.2E-07	2.4E-08	1.0E-07	4.89E-07	9.5E-07	2.4E-07	5.56E-07	1.1E-05	2.9E-06	8.9E-0
enzo(k)fluoranthene	205-82-3	POM							1.8E-06	1.8E-06	7.8E-06	1.8E-07	7.7E-07	3.5E-08	1.5E-07	1.55E-07	3.0E-07	7.6E-08	2.18E-07	4.5E-06	1.1E-06	9.9E-0
ervllium	7440-41-7					3.1E-07	9.4E-04	0.0E+00	1.2E-05	1.2E-05	5.2E-05	1.2E-06	5.2E-06	2.4E-07	1.0E-06	11002 01	0.02 01	1.02 00	2.102 01			5.8E-0
.3-Butadiene	106-99-0		4.3E-07	1.6E-03	0.0E+00	1.6E-05	4.8E-02	0.0E+00	1.2E 00	1.2E 00	0.22 00	1.2E 00	0.2E 00	2.42 01	1.02 00	3.91E-05	7.6E-05	1.9E-05				1.9E-0
admium	7440-43-7		4.02 01	1.02 00	0.02.00	4.8E-06	1.5E-02	0.0E+00	1.1E-03	1.1E-03	4.8E-03	1.1E-04	4.7E-04	2.2E-05	9.4E-05	0.012.00	1.02.00	1.02 00				5.3E-0
hromium	7440-47-3					1.1E-05	3.3E-02	0.0E+00	1.4E-03	1.4E-03	6.0E-03	1.4E-04	6.0E-04	2.7E-05	1.2E-04							6.8E-0
Chrysene	218-01-9	POM				1.12-00	0.52-02	0.02.00	1.4E-05	1.8E-06	7.8E-06	1.8E-07	7.7E-07	3.5E-08	1.5E-07	3.53E-07	6.9E-07	1.7E-07	1.53E-06	3.1E-05	7.9E-06	1.7E-0
Cobalt	7440-48-4	POW							8.4E-05	8.3E-05	3.6E-04	8.2E-06	3.6E-05	1.6E-06	7.2E-06	3.33⊑-07	0.32-07	1.7 -07	1.552-00	3.1L-03	7.32-00	4.1E-04
libenzo(a.h)anthracene	53-70-3	POM							1.2E-06	1.2E-06	5.2E-04	1.2E-00	5.2E-07	2.4E-08	1.0E-07	5.83E-07	1.1E-06	2.8E-07	3.46E-07	7.1E-06	1.8E-06	7.9E-0
lichlorobenzene	25321-22-6	FOIVI							1.2E-00	1.2E-00 1.2E-03	5.2E-00	1.2E-07	5.2E-07	2.4E-08	1.0E-07	5.63E-07	1.1E-00	2.0E-07	3.40E-07	7.1E-00	1.0E-00	5.8E-0
	100-41-4		3.2E-05	1.2E-01	0.0E+00				1.2E-03	1.2E-03	5.2E-03	1.2E-04	5.2E-04	2.4E-00	1.0E-04							0.0E+0
thyl benzene Iuoranthene	206-44-0	POM	3.2E-05	1.2E-01	0.0E+00				3.0E-06	3.0E-06	1.3E-05	2.9E-07	1.3E-06	5.9E-08	2.6E-07	7.61E-06	1.5E-05	3.7E-06	4.03E-06	8.3E-05	2.1E-05	3.9E-0
	86-73-7	POM							2.8E-06	2.8E-06	1.2E-05	2.9E-07 2.7E-07	1.3E-06	5.9E-08	2.6E-07 2.4E-07	2.92E-05	5.7E-05	3.7E-06 1.4E-05	4.03E-06 1.28E-05	2.6E-04	6.6E-05	9.4E-0
luorene ormaldehvde	50-00-0	POM	2.0E-04	7.4E-01	0.0E+00	2.8E-04	8.5E-01	0.0E+00	2.6E-06 7.5E-02	2.6E-06 7.4E-02	3.2E-05	2.7E-07 7.4E-03	3.2E-00	1.5E-08	6.4E-03	2.92E-05	2.3E-03	5.8E-04	7.89E-05	2.6E-04 1.6E-03	4.1E-04	9.4E-0 3.6E-0
/	110-54-3		2.0E-04	7.4⊑-01	0.0E+00	2.0E-04	0.5E-01	0.0E+00	1.8E+00	1.8E+00	7.8E+00	1.8E-01	7.7E-02	3.5E-03	0.4E-03	1.10E-03	2.3E-03	5.0E-04	7.09E-05	1.0E-03	4.1E-04	3.6E-0 8.7E+0
exane Ideno(1.2.3-cd)pyrene	193-39-5	POM							1.8E+00	1.8E+00	7.8E+00 7.8E-06	1.8E-07	7.7E-01 7.7E-07	3.5E-02 3.5E-08	1.5E-01 1.5E-07	3.75E-07	7.3E-07	1.8E-07	4.14E-07	8.5E-06	2.1E-06	0.7E+0
() / - /]		POM			-	7.05.04	0.45.00	0.05.00								3.75E-07	7.3E-07	1.0E-07	4.14E-07	0.5E-00	2.1E-00	
langanese	7439-96-5					7.9E-04	2.4E+00	0.0E+00	3.8E-04	3.7E-04	1.6E-03	3.7E-05	1.6E-04	7.5E-06	3.3E-05							1.8E-0
lercury	7439-97-6					1.2E-06	3.6E-03	0.0E+00	2.6E-04	2.6E-04	1.1E-03	2.5E-05	1.1E-04	5.1E-06	2.2E-05							1.3E-0
aphthalene	91-20-3		1.3E-06	4.8E-03	0.0E+00	3.5E-05	1.1E-01	0.0E+00	6.1E-04	6.0E-04	2.6E-03	6.0E-05	2.6E-04	1.2E-05	5.2E-05	8.48E-05	1.7E-04	4.1E-05	1.30E-04	2.7E-03	6.7E-04	3.7E-0
lickel	7440-02-0					4.6E-06	1.4E-02	0.0E+00	2.1E-03	2.1E-03	9.1E-03	2.1E-04	9.0E-04	4.1E-05	1.8E-04							1.0E-02
AH			2.2E-06	8.1E-03	0.0E+00	4.0E-05	1.2E-01	0.0E+00														0.0E+0
henanathrene	85-01-8	POM							1.7E-05	1.7E-05	7.3E-05	1.7E-06	7.3E-06	3.3E-07	1.5E-06	2.94E-05	5.7E-05	1.4E-05	4.08E-05	8.4E-04	2.1E-04	3.1E-04
ropylene																2.58E-03	5.0E-03	1.3E-03	2.79E-03	5.7E-02	1.4E-02	1.6E-02
roplylene Oxide	75-56-9		2.9E-05	1.1E-01	0.0E+00																	0.0E+0
lyrene	129-00-0	POM							5.0E-06	4.9E-06	2.2E-05	4.9E-07	2.1E-06	9.8E-08	4.3E-07	4.78E-06	9.3E-06	2.3E-06	3.71E-06	7.6E-05	1.9E-05	4.6E-05
elenium	7782-49-2					2.5E-05	7.6E-02	0.0E+00	2.4E-05	2.4E-05	1.0E-04	2.4E-06	1.0E-05	4.7E-07	2.1E-06							1.2E-0
oluene	108-88-3		1.3E-04	4.8E-01	0.0E+00				3.4E-03	3.4E-03	1.5E-02	3.3E-04	1.5E-03	6.7E-05	2.9E-04	4.09E-04	8.0E-04	2.0E-04	2.81E-04	5.8E-03	1.4E-03	1.8E-0
ylene	1330-20-7		6.4E-05	2.3E-01	0.0E+00											2.85E-04	5.6E-04	1.4E-04	1.93E-04	4.0E-03	9.9E-04	1.1E-03
•		TOTAL		1.90	0.00		3.85	0.00		1.86	8.16	0.19	0.81	0.04	1.6E-01		1.3E-02	3.1E-03				9.16

(a) Emission factors for combustion turbines from AP-42 Section 3.1, Updated 2/2000. Formaldehyde emission factor from Sims Roy EPA Memo "Hazardous Air Pollutant (HAP) Emission Control Technology for New Stationary Combustion Turbines" 8/21/2001.

(b) Emission factors from AP-42 Section 1.4, Updated 7/1998

(c) Emission factors from AP-42 Section 3.3, Updated 10/1996 (d) Emission factors from AP-42 Section 3.4, Updated 10/1996

			Natural	Gas - Internal C	Combustion	Fuel O	il - Internal Com	bustion			Natural G	ias- External C	ombustion			Fuel Oil								
			c	Combustion Turbine ^a		Combustion Turbine ^a			Combustion Turbine ^a			Duct E	Duct Burner ^b		Auxillary Boiler ^b		Natural Gas Heaters ^b						tor Emergency Diesel Generator ^d	
Chemical	CAS	POM?	lb/MMBtu	lb/hr	tpy	lb/MMBtu	lb/hr	tpy	lb/mmCF	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/mmCF	lb/hr	tpy	lb/MMBtu	lb/hr	tpy	tpy		
Lead						1.4E-05	4.2E-02	0.0E+00	5.0E-04	4.9E-04	2.2E-03	4.9E-05	2.1E-04	9.8E-06	4.3E-05							2.4E-03		
(a) Emission factors for combustion turbines			lated 2/2000. F	ormaldehyde en	nission factor from	Sims Roy EPA Me	mo "Hazardous A	Air Pollutant (HAP)	Emission Control Tech	nology for New	Stationary Com	bustion Turbine	s" 8/21/2001.				-		-			-		

(a) Emission factors for combustion turbines from AP-42 Section
 (b) Emission factors from AP-42 Section 1.4, Updated 7/1998
 (c) Emission factors from AP-42 Section 3.3, Updated 10/1996
 (d) Emission factors from AP-42 Section 3.4, Updated 10/1996

ours of Operation		
Combustion Turbine Natural Gas Hours =	0	hours per year
Combustion Turbine Fuel Oil Hours =	500	hours per year
Duct Burner =	8,260	hours per year
Auxillary Boiler =	8,760	hours per year
Natural Gas Heater =	8,760	hours per year
Emergency Diesel Fire Pump =	500	hours per year
Emergency Diesel Generator =	500	hours per year

tural Gas Usage	mmBtu/hr	mmCF/hr	1,020 MMBtu/MMcf
Combustion Turbine (Natural Gas) =	3.665		
Combustion Turbine (Fuel Oil) =	3.021		
Duct Burner =	1,006	0.987	
Auxillary Boiler =	100.0	0.098	
Natural Gas Heater =	20.0	0.020	2 Natural Gas Heaters
Emergency Diesel Fire Pump =	1.95		
Emergency Diesel Generator =	20.6		

Total Facility: Hazardous Air Pollutants Emissions

	Potential Emissions
HAP	tpy
1st Maximum: Hexane	8.26
2nd Maximum: Manganese	0.60
3rd Maximum: Formaldehyde	0.56
All HAPs	9.65

			Natural	Gas - Internal C	Combustion	Fuel C	il - Internal Com	bustion			Natural G	as- External C	ombustion			Fuel Oil						
	CAS			Combustion Tur	bine ^a	C	ombustion Turbi	ne ^a	Emission Factor	Duct E	Burner ^b	Auxillar	y Boiler ^b	Natural G	as Heaters ^b	Emission Factor	Emergency Die	sel Fire Pump ^c	Emission Factor	Emergency Dies	sel Generator ^d	^d Total
Chemical		POM?	lb/MMBtu	lb/hr	tpv	lb/MMBtu	lb/hr	tpy	lb/MMcf	lb/hr	tpv	lb/hr	tpv	lb/hr	tpv	lb/MMBtu	lb/hr	tpy	lb/MMBtu	lb/hr	tpy	tpv
-Methylnaphthalene	97-57-6	POM		-	17		-	17	2.4E-05	2.4E-05	9.8E-05	2.4E-06	1.0E-05	4.7E-07	2.1E-06			17				1.1E-04
Methylchloranthrene	56-49-5	POM							1.8E-06	1.8E-06	7.3E-06	1.8E-07	7.7E-07	3.5E-08	1.5E-07							8.3E-06
12-Dimethylbenz(a)anthracene		POM							1.6E-05	1.6E-05	6.5E-05	1.6E-06	6.9E-06	3.1E-07	1.4E-06							7.3E-0
cenaphthene	83-32-9	POM							1.8E-06	1.8E-06	7.3E-06	1.8E-07	7.7E-07	3.5E-08	1.5E-07	1.42E-06	2.8E-06	6.9E-07	4.68E-06	9.6E-05	2.4E-05	3.3E-0
cenaphthylene	203-96-8	POM							1.8E-06	1.8E-06	7.3E-06	1.8E-07	7.7E-07	3.5E-08	1.5E-07	5.06E-06	9.9E-06	2.5E-06	9.23E-06	1.9E-04	4.7E-05	5.8E-0
cetaldehvde	75-07-0	-	4.0E-05	1.5E-01	0.0E+00											7.67E-04	1.5E-03	3.7E-04	2.52E-05	5.2E-04	1.3E-04	5.0E-04
crolein	107-02-8		6.4E-06	2.3E-02	0.0E+00											9.25E-05	1.8E-04	4.5E-05	7.88E-06	1.6E-04	4.0E-05	8.6E-0
nthracene	120-12-7	POM							2.4E-06	2.4E-06	9.8E-06	2.4E-07	1.0E-06	4.7E-08	2.1E-07	1.87E-06	3.6E-06	9.1E-07	1.23E-06	2.5E-05	6.3E-06	1.8E-05
rsenic	7440-38-2					1.1E-05	3.3E-02	8.3E-03	2.0E-04	2.0E-04	8.1E-04	2.0E-05	8.6E-05	3.9E-06	1.7E-05							9.2E-03
enz(a)anthracene	56-55-3	POM							1.8E-06	1.8E-06	7.3E-06	1.8E-07	7.7E-07	3.5E-08	1.5E-07	1.68E-06	3.3E-06	8.2E-07	6.22E-07	1.3E-05	3.2E-06	1.2E-05
enzene	71-43-2		1.2E-05	4.4E-02	0.0E+00	5.5E-05	1.7E-01	4.2E-02	2.1E-03	2.1E-03	8.6E-03	2.1E-04	9.0E-04	4.1E-05	1.8E-04	9.33E-04	1.8E-03	4.5E-04	7.76E-04	1.6E-02	4.0E-03	5.6E-02
enzo(a)pyrene	50-32-8	POM							1.2E-06	1.2E-06	4.9E-06	1.2E-07	5.2E-07	2.4E-08	1.0E-07	1.88E-07	3.7E-07	9.2E-08	2.57E-07	5.3E-06	1.3E-06	6.9E-06
enzo(b)fluoranthene	205-99-2	POM							1.8E-06	1.8E-06	7.3E-06	1.8E-07	7.7E-07	3.5E-08	1.5E-07	9.91E-08	1.9E-07	4.8E-08	1.11E-06	2.3E-05	5.7E-06	1.4E-05
enzo(g,h,l)perylene	191-24-2	POM							1.2E-06	1.2E-06	4.9E-06	1.2E-07	5.2E-07	2.4E-08	1.0E-07	4.89E-07	9.5E-07	2.4E-07	5.56E-07	1.1E-05	2.9E-06	8.6E-06
enzo(k)fluoranthene	205-82-3	POM							1.8E-06	1.8E-06	7.3E-06	1.8E-07	7.7E-07	3.5E-08	1.5E-07	1.55E-07	3.0E-07	7.6E-08	2.18E-07	4.5E-06	1.1E-06	9.5E-06
ervllium	7440-41-7	-				3.1E-07	9.4E-04	2.3E-04	1.2E-05	1.2E-05	4.9E-05	1.2E-06	5.2E-06	2.4E-07	1.0E-06							2.9E-04
.3-Butadiene	106-99-0		4.3E-07	1.6E-03	0.0E+00	1.6E-05	4.8E-02	1.2E-02								3.91E-05	7.6E-05	1.9E-05				1.2E-02
admium	7440-43-7					4.8E-06	1.5E-02	3.6E-03	1.1E-03	1.1E-03	4.5E-03	1.1E-04	4.7E-04	2.2E-05	9.4E-05							8.7E-03
hromium	7440-47-3					1.1E-05	3.3E-02	8.3E-03	1.4E-03	1.4E-03	5.7E-03	1.4E-04	6.0E-04	2.7E-05	1.2E-04							1.5E-02
Chrysene	218-01-9	POM							1.8E-06	1.8E-06	7.3E-06	1.8E-07	7.7E-07	3.5E-08	1.5E-07	3.53E-07	6.9E-07	1.7E-07	1.53E-06	3.1E-05	7.9E-06	1.6E-05
Cobalt	7440-48-4								8.4E-05	8.3E-05	3.4E-04	8.2E-06	3.6E-05	1.6E-06	7.2E-06							3.9E-04
ibenzo(a.h)anthracene	53-70-3	POM							1.2E-06	1.2E-06	4.9E-06	1.2E-07	5.2E-07	2.4E-08	1.0E-07	5.83E-07	1.1E-06	2.8E-07	3.46E-07	7.1E-06	1.8E-06	7.6E-06
Dichlorobenzene	25321-22-6	1.011							1.2E-03	1.2E-03	4.9E-03	1.2E-04	5.2E-04	2.4E-05	1.0E-04	0.002 01		2.02 01	0.102 01	1112 00	1.02 00	5.5E-03
thyl benzene	100-41-4		3.2E-05	1.2E-01	0.0E+00					1.22 00		1.22 01	0.22 01	2.12.00								0.0E+00
Juoranthene	206-44-0	POM	0.22 00		0.02 00				3.0E-06	3.0E-06	1.2E-05	2.9E-07	1.3E-06	5.9E-08	2.6E-07	7.61E-06	1.5E-05	3.7E-06	4.03E-06	8.3E-05	2.1E-05	3.8E-05
luorene	86-73-7	POM							2.8E-06	2.8E-06	1.1E-05	2.7E-07	1.2E-06	5.5E-08	2.4E-07	2.92E-05	5.7E-05	1.4E-05	1.28E-05	2.6E-04	6.6E-05	9.3E-05
ormaldehvde	50-00-0	1.011	2.0E-04	7.4E-01	0.0E+00	2.8E-04	8.5E-01	2.1E-01	7.5E-02	7.4E-02	3.1E-01	7.4E-03	3.2E-02	1.5E-03	6.4E-03	1.18E-03	2.3E-03	5.8E-04	7.89E-05	1.6E-03	4.1E-04	5.6E-01
lexane	110-54-3		2.02 01		0.02.00	2.02 01	0.02 01	2.12.01	1.8E+00	1.8E+00	7.3E+00	1.8E-01	7.7E-01	3.5E-02	1.5E-01		2.02.00	0.02 01	1.002.00	1.02 00		8.3E+00
ndeno(1,2,3-cd)pyrene	193-39-5	POM							1.8E-06	1.8E-06	7.3E-06	1.8E-07	7.7E-07	3.5E-08	1.5E-07	3.75E-07	7.3E-07	1.8E-07	4.14E-07	8.5E-06	2.1E-06	1.1E-05
langanese	7439-96-5					7.9E-04	2.4E+00	6.0E-01	3.8E-04	3.7E-04	1.5E-03	3.7E-05	1.6E-04	7.5E-06	3.3E-05	0.102 01	1.02 01	1.02 01		0.02 00	2.12.00	6.0E-01
lercury	7439-97-6					1.2E-04	3.6E-03	9.1E-04	2.6E-04	2.6E-04	1.1E-03	2.5E-05	1.1E-04	5.1E-06	2.2E-05							2.1E-03
laphthalene	91-20-3		1.3E-06	4.8E-03	0.0E+00	3.5E-05	1.1E-01	2.6E-02	6.1E-04	6.0E-04	2.5E-03	6.0E-05	2.6E-04	1.2E-05	5.2E-05	8.48E-05	1.7E-04	4.1E-05	1.30E-04	2.7E-03	6.7E-04	3.0E-02
lickel	7440-02-0		1.3⊑=00	4.02-03	0.02100	4.6E-06	1.4E-02	3.5E-03	2.1E-03	2.1E-03	8.6E-03	2.1E-04	9.0E-04	4.1E-05	1.8E-04	0.402-03	1.7 -04	4.12-03	1.302-04	2.72-03	0.7 -04	1.3E-02
AH	7440-02-0		2.2E-06	8.1E-03	0.0E+00	4.0E-05	1.4E-02	3.0E-02	2.12-03	2.12-03	0.02-03	2.12-04	9.02-04	4.1L-03	1.02-04							3.0E-02
henanathrene	85-01-8	POM	2.20-00	0.12-03	0.02+00	4.0E-00	1.20-01	3.0E-02	1.7E-05	1.7E-05	6.9E-05	1.7E-06	7.3E-06	3.3E-07	1.5E-06	2.94E-05	5.7E-05	1.4E-05	4.08E-05	8.4E-04	2.1E-04	3.0E-02
ropylene	00-01-0	FON							1.7 -03	1.7 -03	0.32-03	1.7 -00	7.3L-00	5.5L=07	1.52-00	2.58E-03	5.0E-03	1.3E-03	2.79E-03	5.7E-02	1.4E-02	1.6E-02
roplylene Oxide	75-56-9		2.9E-05	1.1E-01	0.0E+00											2.30E-03	3.0E-03	1.52-03	2.19E-03	5.7E-02	1.4E-02	0.0E+0
	129-00-0	POM	2.9E-05	1.12-01	0.02+00				5.0E-06	4.9E-06	2.0E-05	4.9E-07	2.15.00	9.8E-08	4.3E-07	4.78E-06	9.3E-06	2.3E-06	3.71E-06	7.6E-05	1.9E-05	4.4E-05
yrene		POM				0.55.05	7.05.00	4.05.00					2.1E-06			4.78E-06	9.3E-06	2.3E-06	3.71E-06	7.0E-05	1.9E-05	
elenium	7782-49-2		105.01	105.01	0.05.00	2.5E-05	7.6E-02	1.9E-02	2.4E-05	2.4E-05	9.8E-05	2.4E-06	1.0E-05	4.7E-07	2.1E-06	1005.0	0.05.04	0.05.0	0.045.0		1 15 05	1.9E-02
oluene	108-88-3		1.3E-04	4.8E-01	0.0E+00				3.4E-03	3.4E-03	1.4E-02	3.3E-04	1.5E-03	6.7E-05	2.9E-04	4.09E-04	8.0E-04	2.0E-04	2.81E-04	5.8E-03	1.4E-03	1.7E-02
ylene	1330-20-7		6.4E-05	2.3E-01	0.0E+00											2.85E-04	5.6E-04	1.4E-04	1.93E-04	4.0E-03	9.9E-04	1.1E-03
		ΤΟΤΑ		1.90	0.00		3.85	0.96		1.86	7.69	0.19	0.81	0.04	1.6E-01		1.3E-02	3.1E-03				9.65

(a) Emission factors for combustion turbines from AP-42 Section 3.1, Updated 2/2000. Formaldehyde emission factor from Sims Roy EPA Memo "Hazardous Air Pollutant (HAP) Emission Control Technology for New Stationary Combustion Turbines" 8/21/2001.

(b) Emission factors from AP-42 Section 1.4, Updated 7/1998

(c) Emission factors from AP-42 Section 3.3, Updated 10/1996 (d) Emission factors from AP-42 Section 3.4, Updated 10/1996

	Natural Gas - Internal Combustion				Combustion	Fuel O	il - Internal Com	bustion	Natural Gas- External Combustion							Fuel Oil						
			Combustion Turbine ^a		Combustion Turbine ^a		Combustion Turbine ^a		Emission Factor	ission Factor Duct Burner ^b		Auxillary Boiler ^b		Natural Gas Heaters ^b		Emission Factor	Emergency Die	sel Fire Pump ^c		Emergency Diese	l Generator ^d	Total
Chemical	CAS	POM?	lb/MMBtu	lb/hr	tpy	lb/MMBtu	lb/hr	tpy	lb/mmCF	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/mmCF	lb/hr	tpy	lb/MMBtu	lb/hr	tpy	tpy
Lead						1.4E-05	4.2E-02	1.1E-02	5.0E-04	4.9E-04	2.0E-03	4.9E-05	2.1E-04	9.8E-06	4.3E-05							2.3E-03
(a) Emission factors for combustion turbines from AP-42 Section 3.1, Updated 2/2000. Formaldehyde emission factor from Sims Roy EPA Memo "Hazardous Air Pollutant (HAP) Emission Control Technology for New Stationary Combustion Turbines" 8/21/2001.																						

(a) Emission factors for combustion turbines from AP-42 Section
 (b) Emission factors from AP-42 Section 1.4, Updated 7/1998
 (c) Emission factors from AP-42 Section 3.3, Updated 10/1996
 (d) Emission factors from AP-42 Section 3.4, Updated 10/1996

South Shore Energy, LLC - Nemadji Trail Energy Center Combined Cycle HAPs Emissions - New Emission Sources

Hours of Operation		
Combustion Turbine Natural Gas Hours =	8,260	hours per year
Combustion Turbine Fuel Oil Hours =	500	hours per year
Duct Burner =	0	hours per year
Auxillary Boiler =	8,760	hours per year
Natural Gas Heater =	8,760	hours per year
Emergency Diesel Fire Pump =	500	hours per year
Emergency Diesel Generator =	500	hours per year

atural Gas Usage			
_	mmBtu/hr	mmCF/hr	1,020 MMBtu/MMcf
Combustion Turbine (Natural Gas) =	3,665		
Combustion Turbine (Fuel Oil) =	3,021		
Duct Burner =	1,006	0.987	
Auxillary Boiler =	100.0	0.098	
Natural Gas Heater =	20.0	0.020	2 Natural Gas Heaters
Emergency Diesel Fire Pump =	1.95		
Emergency Diesel Generator =	20.6		

				Natura	l Gas - Internal C	Combustion	Fuel C	il - Internal Com	bustion			Natural (Gas- External C	Combustion					Fue	el Oil			1
Total		CAS			Combustion Tur	bine ^a	C	ombustion Turbi	neª	Emission Factor	Duct I	Burner ^b	Auxilla	ry Boiler ^ь	Natural G	as Heaters ^b	Emission Factor	Emergency Die	esel Fire Pump ^c	Emission Factor	Emergency Die	sel Generator ^d	Total
A	Observised		POM?		16.00	4	lb/MMBtu	11- /1		lb/MMcf	11- /1	4	11- /1		11- /1	4	lb/MMBtu	16.05.0		lb/MMBtu	11- /1		/
tpy	Chemical	07.57.0		lb/MMBtu	lb/hr	tpy	Ib/MMBtu	lb/hr	tpy		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	ID/WIWIBtu	lb/hr	tpy	ID/IVIIVIBTU	lb/hr	tpy	tpy
1.2367E-05 9.2753E-07	2-Methylnaphthalene	97-57-6	POM POM							2.4E-05 1.8E-06	2.4E-05	0.0E+00	2.4E-06 1.8E-07	1.0E-05	4.7E-07 3.5E-08	2.1E-06 1.5E-07							1.2E-05 9.3E-07
9.2753E-07 8.2447E-06	3-Methylchloranthrene 7.12-Dimethylbenz(a)anthracene	56-49-5	POM							1.6E-06	1.8E-06 1.6E-05	0.0E+00 0.0E+00	1.6E-07	7.7E-07 6.9E-06	3.1E-07	1.5E-07 1.4E-06							9.3E-07 8.2E-06
2.5663E-05	Acenaphthene	83-32-9	POM							1.8E-06	1.8E-06	0.0E+00	1.8E-07	7.7E-07	3.5E-08	1.4E-00 1.5E-07	1.42E-06	2.8E-06	6.9E-07	4.68E-06	9.6E-05	2.4E-05	2.6E-05
5.0813E-05	Acenaphthylene	203-96-8	POM							1.8E-06	1.8E-06	0.0E+00	1.8E-07	7.7E-07	3.5E-08	1.5E-07	5.06E-06	9.9E-06	2.5E-06	9.23E-06	9.0E-03	4.7E-05	5.1E-05
0.60594777	Acetaldehvde	75-07-0	FOM	4.0E-05	1.5E-01	6.1E-01				1.02-00	1.02-00	0.02700	1.02-07	7.7L=07	3.3L-00	1.52-07	7.67E-04	1.5E-03	3.7E-00	2.52E-00	5.2E-04	1.3E-04	6.1E-01
0.09695668	Acrolein	107-02-8		6.4E-06	2.3E-02	9.7E-02											9.25E-05	1.8E-04	4.5E-05	7.88E-06	1.6E-04	4.0E-05	9.7E-02
8.4675E-06		120-12-7	POM	0.42-00	2.3L=02	9.7 L=02				2.4E-06	2.4E-06	0.0E+00	2.4E-07	1.0E-06	4.7E-08	2.1E-07	1.87E-06	3.6E-06	9.1E-07	1.23E-06	2.5E-05	6.3E-06	8.5E-06
0.00841054	Arsenic	7440-38-2					1.1E-05	3.3E-02	8.3E-03	2.0E-04	2.0E-04	0.0E+00	2.0E-05	8.6E-05	3.9E-06	1.7E-05		0.02 00	0.12 01	1.202 00	2.02.00	0.02 00	8.4E-03
4.9421E-06	Benz(a)anthracene	56-55-3	POM				1.12-03	0.5L-02	0.52-05	1.8E-06	1.8E-06	0.0E+00	1.8E-07	7.7E-07	3.5E-00	1.5E-07	1.68E-06	3.3E-06	8.2E-07	6.22E-07	1.3E-05	3.2E-06	4.9E-06
0.2286944	Benzene	71-43-2	1.011	1.2E-05	4.4E-02	1.8E-01	5.5E-05	1.7E-01	4.2E-02	2.1E-03	2.1E-03	0.0E+00	2.1E-04	9.0E-04	4.1E-05	1.8E-04	9.33E-04	1.8E-03	4.5E-04	7.76E-04	1.6E-02	4.0E-03	2.3E-01
2.0303E-06	Benzo(a)pyrene	50-32-8	POM	1.22 00	4.42 02	1.02 01	0.02 00	1.7 2 01	4.22 02	1.2E-06	1.2E-06	0.0E+00	1.2E-07	5.2E-07	2.4E-08	1.0E-07	1.88E-07	3.7E-07	9.2E-08	2.57E-07	5.3E-06	1.3E-06	2.0E-06
6.6785E-06	Benzo(b)fluoranthene	205-99-2	POM							1.8E-06	1.8E-06	0.0E+00	1.8E-07	7.7E-07	3.5E-08	1.5E-07	9.91E-08	1.9E-07	4.8E-08	1.11E-06	2.3E-05	5.7E-06	6.7E-06
3.7132E-06	Benzo(g,h,I)perylene	191-24-2	POM							1.2E-06	1.2E-06	0.0E+00	1.2E-07	5.2E-07	2.4E-08	1.0E-07	4.89E-07	9.5E-07	2.4E-07	5.56E-07	1.1E-05	2.9E-06	3.7E-06
	Benzo(k)fluoranthene	205-82-3	POM							1.8E-06	1.8E-06	0.0E+00	1.8E-07	7.7E-07	3.5E-08	1.5E-07	1.55E-07	3.0E-07	7.6E-08	2.18E-07	4.5E-06	1.1E-06	2.1E-06
0.0002403	Beryllium	7440-41-7	1.011				3.1E-07	9.4E-04	2.3E-04	1.2E-05	1.2E-05	0.0E+00	1.2E-06	5.2E-06	2.4E-07	1.0E-06	1.00E 01	0.02 01	1.02.00	2.102 01	4.02 00	1.12.00	2.4E-04
0.0186112	1.3-Butadiene	106-99-0		4.3E-07	1.6E-03	6.5E-03	1.6E-05	4.8E-02	1.2E-02	1.22 00	1122 00	0.02.00	1.22 00	0.22 00	2.12 01	1.02 00	3.91E-05	7.6E-05	1.9E-05				1.9E-02
0.00419191	Cadmium	7440-43-7		1.02 01	1.02 00	0.02 00	4.8E-06	1.5E-02	3.6E-03	1.1E-03	1.1E-03	0.0E+00	1.1E-04	4.7E-04	2.2E-05	9.4E-05	0.012 00	1.02 00	1.02 00				4.2E-03
0.0090289	Chromium	7440-47-3					1.1E-05	3.3E-02	8.3E-03	1.4E-03	1.4E-03	0.0E+00	1.4E-04	6.0E-04	2.7E-05	1.2E-04							9.0E-03
8.96E-06	Chrysene	218-01-9	POM					0.02 02	0.02 00	1.8E-06	1.8E-06	0.0E+00	1.8E-07	7.7E-07	3.5E-08	1.5E-07	3.53E-07	6.9E-07	1.7E-07	1.53E-06	3.1E-05	7.9E-06	9.0E-06
4.3285E-05	Cobalt	7440-48-4								8.4E-05	8.3E-05	0.0E+00	8.2E-06	3.6E-05	1.6E-06	7.2E-06	0.002 01	0.02 01	1.1 2 01	11002 00	0.12 00	1.02 00	4.3E-05
2.6801E-06	Dibenzo(a.h)anthracene	53-70-3	POM							1.2E-06	1.2E-06	0.0E+00	1.2E-07	5.2E-07	2.4E-08	1.0E-07	5.83E-07	1.1E-06	2.8E-07	3.46E-07	7.1E-06	1.8E-06	2.7E-06
0.00061835	Dichlorobenzene	25321-22-6	1.011							1.2E-03	1.2E-00	0.0E+00	1.2E-04	5.2E-04	2.4E-05	1.0E-04	0.002 01	1.12 00	2.02.01	0.402 01	1.12 00	1.02 00	6.2E-04
0.48435551	Ethyl benzene	100-41-4		3.2E-05	1.2E-01	4.8E-01				1.2E 00	1.22 00	0.02.00	1.22 04	0.22 04	2.42 00	1.02 04							4.8E-01
2.596E-05	Fluoranthene	206-44-0	POM	0.22 00	T.ZE OT	4.02.01				3.0E-06	3.0E-06	0.0E+00	2.9E-07	1.3E-06	5.9E-08	2.6E-07	7.61E-06	1.5E-05	3.7E-06	4.03E-06	8.3E-05	2.1E-05	2.6E-05
8.1438E-05	Fluorene	86-73-7	POM							2.8E-06	2.8E-06	0.0E+00	2.7E-07	1.2E-06	5.5E-08	2.4E-07	2.92E-05	5.7E-05	1.4E-05	1.28E-05	2.6E-04	6.6E-05	8.1E-05
3.30858509	Formaldehvde	50-00-0		2.0E-04	7.4E-01	3.1E+00	2.8E-04	8.5E-01	2.1E-01	7.5E-02	7.4E-02	0.0E+00	7.4E-03	3.2E-02	1.5E-03	6.4E-03	1.18E-03	2.3E-03	5.8E-04	7.89E-05	1.6E-03	4.1E-04	3.3E+00
0.92752941	Hexane	110-54-3								1.8E+00	1.8E+00	0.0E+00	1.8E-01	7.7E-01	3.5E-02	1.5E-01							9.3E-01
3.2373E-06	Indeno(1.2.3-cd)pyrene	193-39-5	POM							1.8E-06	1.8E-06	0.0E+00	1.8E-07	7.7E-07	3.5E-08	1.5E-07	3.75E-07	7.3E-07	1.8E-07	4.14E-07	8.5E-06	2.1E-06	3.2E-06
0.59682427	Manganese	7439-96-5					7.9E-04	2.4E+00	6.0E-01	3.8E-04	3.7E-04	0.0E+00	3.7E-05	1.6E-04	7.5E-06	3.3E-05							6.0E-01
0.00104025	Mercury	7439-97-6					1.2E-06	3.6E-03	9.1E-04	2.6E-04	2.6E-04	0.0E+00	2.5E-05	1.1E-04	5.1E-06	2.2E-05							1.0E-03
0.04713339	Naphthalene	91-20-3		1.3E-06	4.8E-03	2.0E-02	3.5E-05	1.1E-01	2.6E-02	6.1E-04	6.0E-04	0.0E+00	6.0E-05	2.6E-04	1.2E-05	5.2E-05	8.48E-05	1.7E-04	4.1E-05	1.30E-04	2.7E-03	6.7E-04	4.7E-02
0.00455616	Nickel	7440-02-0		1.02 00	4.02 00	2.02 02	4.6E-06	1.4E-02	3.5E-03	2.1E-03	2.1E-03	0.0E+00	2.1E-04	9.0E-04	4.1E-05	1.8E-04	0.402 00	1.7 2 04	4.12.00	1.002 04	2.12.00	0.7 2 04	4.6E-03
0.06350848	PAH	1440 02-0		2.2E-06	8.1E-03	3.3E-02	4.0E-05	1.2E-01	3.0E-02	2.12.00	2.12.00	0.02.00	2.12.04	0.02 04	4.12.00	1.02 04							6.4E-02
0.0002327	Phenanathrene	85-01-8	POM	2.22 00	0.12 00	0.02		1.22 01	0.52 02	1.7E-05	1.7E-05	0.0E+00	1.7E-06	7.3E-06	3.3E-07	1.5E-06	2.94E-05	5.7E-05	1.4E-05	4.08E-05	8.4E-04	2.1E-04	2.3E-04
0.01559138	Propylene									2 00	2 00	0.02.00		1.02.00	0.0E 01		2.58E-03	5.0E-03	1.3E-03	2.79E-03	5.7E-02	1.4E-02	1.6E-02
0.43894718	Proplylene Oxide	75-56-9		2.9E-05	1.1E-01	4.4E-01											2.002.00	0.02.00		202.00	0.12.02		4.4E-01
2.3967E-05	Pyrene	129-00-0	POM	2.02.00	1.12 01	7.72 01				5.0E-06	4.9E-06	0.0E+00	4.9E-07	2.1E-06	9.8E-08	4.3E-07	4.78E-06	9.3E-06	2.3E-06	3.71E-06	7.6E-05	1.9E-05	2.4E-01
0.01889301	Selenium	7782-49-2					2.5E-05	7.6E-02	1.9E-02	2.4E-05	2.4E-05	0.0E+00	2.4E-06	1.0E-05	4.7E-07	2.1E-06	4.70⊑-00	3.32-00	2.02-00	0.71⊑-00	7.02-03	1.02-05	1.9E-02
1.971089301	Toluene	108-88-3		1.3E-04	4.8E-01	2.0E+00	2.32-03	7.02-02	1.32-02	2.4E-03	3.4E-03	0.0E+00	3.3E-04	1.5E-03	6.7E-05	2.9E-04	4.09E-04	8.0E-04	2.0E-04	2.81E-04	5.8E-03	1.4E-03	2.0E+00
0.9698415	Xvlene	1330-20-7		6.4E-05	2.3E-01	2.0E+00 9.7E-01				3.4E-03	3.4⊑-03	0.02700	3.3⊑-04	1.5E-03	0.7 E-03	2.90-04	2.85E-04	5.6E-04	2.0E-04	2.01E-04 1.93E-04	4.0E-03	9.9E-04	9.7E-01
0.9090415	Луюне	1330-20-7	TOTAL			• · · = • ·		2.95	0.96		1.96	0.00	0.10	0.91	0.04	1.65.01	2.00E-04			1.950-04	4.00-03	9.90-04	•=•.
			IUIAL	-	1.90	7.86		3.85	0.90		1.86	0.00	0.19	0.81	0.04	1.6E-01		1.3E-02	3.1E-03				9.82

(a) Emission factors for combustion turbines from AP-42 Section 3.1, Updated 2/2000. Formaldehyde emission factor from Sims Roy EPA Memo "Hazardous Air Pollutant (HAP) Emission Control Technology for New Stationary Combustion Turbines" 8/21/2001.

(b) Emission factors from AP-42 Section 1.4, Updated 7/1998

Total tpy (c) Emission factors from AP-42 Section 3.3, Updated 10/1996 0.00025765 (d) Emission factors from AP-42 Section 3.4, Updated 10/1996

			Natural G	as - Internal (Combustion	Fuel C	Dil - Internal Com	bustion			Natural G	ias- External C	ombustion					Fu	el Oil			·
Combustion T		mbustion Tu	rbine ^a	Combustion Turbine ^a		Emission Factor	Emission Factor Duct Burner ^b		Auxillary Boiler ^b		Natural Gas Heaters ^b		Emission Factor Emergency Diesel Fire Pump		esel Fire Pump ^c	Pump ^c Emission Factor Emergency Diesel Ger		el Generator ^d	Total			
Chemical	CAS	POM?	lb/MMBtu	lb/hr	tpy	lb/MMBtu	lb/hr	tpy	lb/mmCF	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/mmCF	lb/hr	tpy	lb/MMBtu	lb/hr	tpy	tpy
Lead						1.4E-05	4.2E-02	1.1E-02	5.0E-04	4.9E-04	0.0E+00	4.9E-05	2.1E-04	9.8E-06	4.3E-05							2.6E-04

(a) Emission factors for combustion turbines from AP-42 Section 3.1, Updated 2/2000. Formaldehyde emission factor from Sims Roy EPA Memo "Hazardous Air Pollutant (HAP) Emission Control Technology for New Stationary Combustion Turbines" 8/21/2001. (b) Emission factors from AP-42 Section 1.4, Updated 7/1998 (c) Emission factors from AP-42 Section 3.3, Updated 10/1996

(d) Emission factors from AP-42 Section 3.4, Updated 10/1996

Total Facility: Hazardous Air Pollutants Emissions

	Potential Emissions
HAP	tpy
1st Maximum: Formaldehyde	3.31
2nd Maximum: Toluene	1.97
3rd Maximum: Xylene	0.97
All HAPs	9.82

South Shore Energy, LLC - Nemadji Trail Energy Center Q/D Analysis for Federal Class I Areas

Nemadji River Site

		Fuel Oil Duct Firing Operation	Natural Gas Duct Firing Operation
		Q/D (Based on max	Q/D (Based on max
		24-hr for 365 days per	24-hr for 365 days per
Class I Area	D (km)	year)	year)
Rainbow Lake Wilderness	60	9.9	7.3
Boundary Waters Canoe Area Wilderness	126	4.7	3.5
Voyageurs National Park	182	3.3	2.4
Isle Royale National Park	237	2.5	1.9
Forest County Potawatomi Community	261	2.3	1.7

	Fuel Oil Duct Firing 2	4-hr Max Emissions	Natural Gas Duct firi	ng 24-hr Max Emissions
	Max Emissions in		Max Emissions in	
	24-hr period	Max 24-hour for 365	24-hr period	Max 24-hour for 365 Days
Pollutant	(lb/24-hr period) ^ª	Days Per Year (tpy)	(lb/24-hr period) ^ª	Per Year (tpy)
NO _x	1,569.0	286.3	1,109.3	202.4
PM ₁₀	1,322.3	241.3	901.9	164.6
SO2	145.8	26.6	156.1	28.5
H ₂ SO ₄	222.9	40.7	236.8	43.2
	Q duct firing fuel of	594.9	Q natural gas duct firing=	438.7

Scenario 1: Worst-Case Fuel Oil Turbine Operation With Duct firing

Pollutant	Turbine Fuel Oil Duct Firing (lb/24-hour period) ^a	Auxiliary Boiler (Ib/24-hour period) ^b	Haul Road Fugitives Cooling Tower (Ib/24-hour period)	Natural Gas Heater #1 or #2 (Ib/24-hour period) ^c
NO _x	1,555.0	2.20	0.00	11.76
PM ₁₀	1,308.3	1.49	10.74	1.79
SO2	145.6	0.12	0.00	0.14
H ₂ SO ₄	222.8	0.02	0.00	0.02

(a) Turbine NOx emissions will be monitored via NOx CEMs and will not exceed 1,555 lb/24-hr while duct firing and combusting fuel oil. In addition, fuel oil is limited to fuel consumption equivalent of 500 hours per year, however emissions are based on 8,760 hours per

year. (b) The auxiliary boiler will operate maximum 2 hours in a 24-hr period when fuel oil duct firing occurs

(c) One natural gas heater will operate at a time (one is back-up)

Scenario 2: Worst-Case Natural Gas Turbine Operation With Duct firing

Pollutant	Turbine Natural Gas Duct Firing (Ib/24-hour period) ^a	Auxiliary Boiler (Ib/24-hour period)	Haul Road Fugitives Cooling Tower (Ib/24-hour period)	Natural Gas Heater #1 or #2 (Ib/24-hour period) ^b
NO _x	1,071.1	26.40	0.00	11.76
PM ₁₀	871.5	17.88	10.74	1.79
SO2	154.5	1.41	0.00	0.14
H ₂ SO ₄	236.6	0.22	0.00	0.02

(a) Includes one start-up per day.

(b) One natural gas heater will operate at a time (one is back-up)

lb/hr emissions

Pollutant	Turbine Fuel Oil Duct Firing (Ib/hr)	Turbine Natural Gas Duct Firing (Ib/hr)	Auxiliary Boiler (lb/hr)	Haul Road Fugitives (Ib/hr)	Natural Gas Heater (Ib/hr)
NO _x	a	33.5	1.1	0.00	0.5
PM ₁₀	54.5	36.3	0.7	0.45	0.07
SO2	6.1	6.4	0.06	0.00	5.9E-03
H_2SO_4	9.3	9.9	9.0E-03	0.00	9.0E-04

(a) 24-hr emissions will be less than 1,555 lbs for the combustion turbine while combusting fuel oil and duct firing.

Ib/start-up emissions

Pollutant	Fuel Oil Start-up Emissions (Ib/cold start) ^{a,b}	Natural Gas Start-up Emissions (Ib/cold start) ^{a,b}
NO _x	860.0	335.0
PM ₁₀	78.9	43.6
SO2	9.2	10.2
H ₂ SO ₄	14.0	15.6

(a) Start-up emissions based on vendor load and start-up profiles

(b) Start-up emissions are 2 hours.

South Shore Energy, LLC - Nemadji Trail Energy Center NR 445 Analysis

Pollutant	Stack E _{Unobstructed}		4x(E _{Obstructed} + E _{Fugitive})		E _{Total}		NR 445 Thresholds		In compliance with NR 445 Thresholds?		
Foliutant	Height Class	lb/hr	lb/yr	avg. Ib/hr	lb/yr	avg. lb/hr	lb/yr	1-hr/24-hr avg.	Annual	1-hr/24-hr avg.	Annual
Benzene (71-43-2)	<25				141		141		228		Yes
Benzene (71-43-2)	25<40				333		333		936		Yes
Ethylbenzene (100-41-4)	<25			0.018	124	0.018	124	23.3	177,688	Yes	Yes
Eurybenzene (100-41-4)	25<40			0.7	333	0.7	333	90.6	730,000	Yes	Yes
Hexane (110-54-3)	<25			0.034	263	0.034	263	9.47	35,538	Yes	Yes
Hexalle (110-54-5)	25<40			0.7	333	0.7	333	36.8	146,000	Yes	Yes
Toluene (108-88-3)	<25			0.034	263	0.034	263	10.1	17,075	Yes	Yes
Toluerie (100-00-3)	25<40			0.7	333	0.7	333	39.3	292,000	Yes	Yes
Xulana (1220-20-7)	<25			0.060		0.060		23.3		Yes	
Xylene (1330-20-7)	25<40			0.7		0.7		90.6		Yes	
Ammonia (7664-41-7)	>75	62	543,120			62	543,120	28.2	612,587	No	Yes

Sources:

WDNR Memo. Chapter NR 445 Compliance Demonstration Method for Non-exempt Potential Emissions from Non-vertical or Obstructed Stacks and Non-exempt Potential Fugitive Emissions. October 20, 2005.

NR 445, Wis. Adm. Code - Control of Hazardous Pollutants

E _{Fugitive} Emissions from Piping Fugitives Breakdown										
	VOC	VOC								
	(lb/hr)	(lb/yr)								
	lb/hr	lb/yr								
Natural Gas	0.64	5,609								
Fuel Oil	1.73	15,153								
		E _{Fugitive}		E _{Fugitive}			Total	E _{Fugitive}	4x (E	Ξ _{Fugitive})
Pollutant		Natural Gas	5	Fuel Oil			Fuel Oil +	Natural Gas	Fuel Oil +	Natural Gas
Foliutant	wt%	lb/hr	lb/yr	wt%	lb/hr	lb/yr	lb/hr	lb/yr	lb/hr	lb/yr
Benzene (71-43-2)	0.08%	0.00051	4.5	0.2%	0.003	30	0.004	35	0.016	139
Ethylbenzene (100-41-4)				0.2%	0.003	30	0.003	30.306	0.014	121
Hexane (110-54-3)	0.08%	0.00051	4.5	0.4%	0.01	60.61	0.01	65	0.030	260
Toluene (108-88-3)	0.08%	0.00051	4.5	0.4%	0.01	61	0.01	65	0.030	260
Xylene (1330-20-7)				0.8%	0.01	121	0.01	121	0.055	485

EPA Storage Tanks Program Calculations

TANKS 4.P.P

issions Report - Detail ForP at P Tank InPentification anP Physical CharacteristicsP

IPentificationP User IdenF on:F CFy:F SF e:F CompFny:F Type oFTFnk:F DesFr pFon:F	NTEC Turb ne D esel TFnkF DulufhF W sFons nF NTECF VerF IF xed RooFTFnkF 180,000 gFllon bF kup Fuel F nk for furb nesF
Tank DiP ensionsP Shell He ghF(F):F DF meFer (F):F L qu d He ghF(F) :F Avg. L qu d He ghF(F):F Volume (gFllons):F Turnovers:F NeFThroughpuf{gFl/yr):F Is TFnk HeF ed (y/n):F	30.00F 33.00F 28.14F 14.07F 180.042.51F 59.94F 10,791,747.84F NF
aint CharacteristicsP Shell Color/ShFde:F Shell CondFonF RooFColor/ShFde:F RooFCondFon:F	WhFe/WhFeF GoodF WhFe/WhFeF GoodF
Roof CharacteristicsP Type:F He ghF(F)F Slope (F/F) (Cone RoofJF	ConeF 5.00F 0.30F
Breather Vent SettingsP VF uum SeF ngs (ps g):F Pressure SeF ngs (ps g)F	-0.03F 0.03F

MeFerologF IDF used n Em ss ons CFI uIF ons: DuluFh, M nnesoF (Avg A mospherF Pressure = 13.98 psF)F

TANKS 4.P.P issions Report - Detail ForP at P LiquiP Contents of Storage TankP

NTPC Turbine Diesel Tank - Vertical FixeP Roof TankP Duluth, WisconsinP

,			ly L qu d Su berF ure (de		L qu dF BulkF TempF	VFpo	r Pressure (psF)F	VFporF Mol.F	L qu dF MFssF	VFporF MFssF	Mol.F	BFs s for VFpor PressureF
M xFure/ComponenF	Mon hF	Avg.F	Mn.F	MFx.F	(deg F)F	Avg.F	M n.F	MFx.F	We gh .F	rF .F	rF.F	We ghF	CFIFuIF onsF
D sFIFe uel o I no. 2F	AllF	40.03F	35.22F	44.84F	38.46F	0.0031F	0.0031F	0.0038F	130.0000F			188.00F	OpFon 1: VP40 = .0031 VP50 = .0045F

TANKS 4.P.P issions Report - Detail ForP at P Detail Calculations (AP-42)P

NTPC Turbine Diesel Tank - Vertical FixeP Roof TankP Duluth, WisconsinP

AnnuFI Em ss on CFIF uIF onsF	
SF nd ng Losses (lb):F VFpor SpF e Volume (Fu F):F	14.1127F
VFpor DensFy (lb/Fu F):F	15,050.4043F 0.0001F
VFpor SpF e ExpFns on F or:F	0.0342F
Ven ed VFpor SF urF on F or:F	0.9971F
TFnk VFpor SpF e Volume:F	45 050 40405
VFpor SpF e Volume (Fu F):F	15,050.4043F
TFnk DF me er (F):F VFpor SpF e OuF ge (F):F	33.0000F 17.5967F
TFnk Shell He gh (F):F	30.0000F
AverFge L qu d He gh (F):F	14.0700F
Roo OuF ge (F):F	1.6667F
Roo OuF ge (Cone Roo)F	
Roo OuF ge (F):F	1.6667F
Roo Hegh (F):F	5.0000F
Roo Slope (F/F):F	0.3000F
Shell RFd us (F):F	16.5000F
VFpor DensFyF	
VFpor DensFy (lb/Fu F):F	0.0001F
VFpor MoleFulFr We gh (lb/lb-mole):F	130.0000F
VFpor Pressure F DF ly AverFge L qu dF	
SurF e TemperF ure (psF):F	0.0031F
DF ly Avg. L qu d SurF e Temp. (deg. R):F	499.7017F
DF ly AverFge Amb en Temp. (deg. F):F	38.4417F
IdeFI GFs ConsF n RF (psF FuF / (lb-mol-deg R)):F	10.731E
L qu d Bulk TemperF ure (deg. R):F	498.1317F
TFnk PFn SolFr AbsorpF nFe (Shell):F	0.1700F
TFnk PF n SolFr AbsorpF nFe (Roo):F	0.1700F
DF ly ToF I SolFr InsulF onF	
F or (B u/sqF dFy):F	1,175.5647F
VFpor SpF e ExpFns on F orF	
VFpor SpF e ExpFns on F orF VFpor SpF e ExpFns on F or:F	0.0342F
DF ly VFpor TemperF ure RFnge (deg. R):F	19.2277F
DF ly VFpor Pressure RFnge (psF):F	0.0007F
BreF her Ven Press. SeF ng RFnge(psF):F	0.0600F
VFpor Pressure F DF ly AverFge L qu dF	
SurF e TemperFure (psF):F VFpor Pressure F DFlyMn mum L qu dF	0.0031F
SurF e TemperF ure (psF):F	0.0031F
VFpor Pressure F DF ly MFx mum L qu dF	0.00011
SurF e TemperF ure (psF):F	0.0038F
DF ly Avg. L qu d SurF e Temp. (deg R):F DF ly M n. L qu d SurF e Temp. (deg R):F DF ly MFx. L qu d SurF e Temp. (deg R):F	499.7017F
DF ly M n. L qu d SurF e Temp. (deg R):F	494.8947F
DF ly MFx. L qu d SurF e Temp. (deg R):F	504.5086F
DF ly Amb en Temp. RFnge (deg. R):F	18.9333F
Ven ed VFpor SF urF on F orF Ven ed VFpor SF urF on F or:F VFpor Pressure F DF ly AverFge L gu d:F	
Ven ed VFpor SF urF on F or:F	0.9971F
SurF e TemperF ure (psF):F	0.0031F
VFpor SpF e OuF ge (F):F	17.5967F
Work ng Losses (lb):F	69.1835F
VFpor MoleFulFr We gh (lb/lb-mole):F	130.0000F
VFpor Pressure F DF ly AverFge L qu dF	
SurF e TemperF ure (psF):F	0.0031F
AnnuFl Ne Throughpu (gFl/yr.):F	10,791,747.8413F
AnnuFl Turnovers:F Turnover F or:F	59.9400F 0.6672F
MFx mum L qu d Volume (gFl):F	180,042.5065F
MFx mum L qu d Hegh (F):F	28.1400F
TFnk DF me er (F):F	33.0000F
Work ng Loss ProduF F or:F	1.0000F
ToF I Losses (Ib):F	83.2962F

TANKS 4.P.P issions Report - Detail ForP at P InPiviPual Tank P ission TotalsP

Losses(lbs)F

BreF h ng LossF

14.11F

issions Report for: Annual P

NTPC Turbine Diesel Tank - Vertical FixeP Roof TankP Duluth, WisconsinP

Componen FsF D sFIIF e uel o I no. 2F Work ng LossF 69.18F ToF I Em ss onsF 83.30F

TANKS 4.P.P

issions Report - Detail ForP at P Tank InPentification anP Physical CharacteristicsP

IPentificationP User IdenD on:D CDy:D SD e:D CompDny:D Type o TDnk:D esD pDon:D	NTEC F re Pump TDnkD Super orD W sDons nD NTECD Hor zonDI TDnkD 350 gDllon d esel DnkD
Tank DiP ensionsP Shell Leng h (D):D me er (D):D Volume (gDlons):D Turnovers:D Ne Throughpu (gDl/yr):D Is TDnk HeDed (y/n):D Is TDnk Underground (y/n):D	5.00D 3.45D 350.00D 20.83D 7,291.55D ND ND
aint CharacteristicsP Shell Color/ShDde:D Shell CondDonD	WhDe/WhDeD GoodD
Breather Vent SettingsP VD uum SeDngs (ps g):D Pressure SeDngs (ps g)D	-0.03D 0.03D

Me erologD I D used n Em ss ons CDI ulD ons: Dulu h, M nnesoD (Avg A mospherD Pressure = 13.98 psD)D

TANKS 4.P.P issions Report - Detail ForP at P LiquiP Contents of Storage TankP

NTPC Fire PuP p Tank - Horizontal TankP Superior, WisconsinP

		/LqudSur.D erDure (degF)D	L qu dD BulkD TempD	V po	Pressure (psD)D	V porD Mol.D	L qu dD M ssD	V porD M ssD	Mol.D	B s s or VDpor PressureD
M x ure/ComponenD	Mon hD Avg.D	Mn.D Mx.D	(deg F)D	Avg.D	M n.D	M x.D	We gh .D	FrD .D	FrD .D	We ghD	C I uID onsD
s IIDe uel o I no. 2	AIID 40.03D	35.22 44.84D	38.46D	0.0031D	0.0031D	0.0038D	130.0000D			188.00D	OpDon 1: VP40 = .0031 VP50 = .0045D

TANKS 4.P.P issions Report - Detail ForP at P Detail Calculations (AP-42)P

NTPC Fire PuP p Tank - Horizontal TankP Superior, WisconsinP

AnnuDI Em ss on CDID uID onsD	
SDnd ng Losses (Ib):D	0.0280D
	29.8059D
VDpor SpD e Volume (Du D):D	0.0001D
VDpor DensDy (lb/Du D):D	
VDpor SpD e ExpDns on FD or:D	0.0342
Ven ed VDpor SD urD on FD or:D	0.9997D
TDnk VDpor SpD e Volume:D	
VDpor SpD e Volume (Du D):D	29.8059D
TDnk D me er (D):D	3.4520D
EDeD ve D me er (D):D	4.6891D
VDpor SpD e OuD ge (D):D	1.7260D
TDnk Shell Leng h (D):D	5.0000D
VDpor DensDyD	
VDpor DensDy (lb/Du D):D	0.0001D
VDpor MoleDuIDr We gh (lb/lb-mole):D	130.0000D
VDpor Pressure D D Iy AverDge L qu dD	100.00000
	0.0031D
SurD e TemperDure (psD):D	499.7017D
D ly Avg. L qu d SurD e Temp. (deg. R):D	
D ly AverDge Amb en Temp. (deg. F):D IdeDI GDs ConsDn RD	38.4417D
(psD DuD/ (lb-mol-deg R)):D	10.731D
L qu d Bulk TemperDure (deg. R):D	498.1317D
TDnk PDn SolDr AbsorpDn e (Shell):D	0.1700D
D ly ToDI SolDr InsulD onD	
FD or (B u/sqD dDy):D	1,175.5647D
V por SpD e ExpDns on FD orD	
VDpor SpD e ExpDns on FD or:D	0.0342
D ly VDpor TemperDure RDnge (deg. R):D	19.2277D
D ly VDpor Pressure RDnge (psD):D	0.0007D
BreDher Ven Press. SeDng RDnge(psD):D	0.0600D
VDpor Pressure D D IV AverDge L gu dD	0.00000
SurD e TemperDure (psD):D	0.0031D
VDpor Pressure D D I ly M n mum L qu dD	0.0031D
SurD e TemperDure (psD):D	0.0031D
	0.0031D
VDpor Pressure D D Iy MDx mum L qu dD	0.0000
SurD e TemperDure (psD):D	0.0038D
D ly Avg. L qu d SurD e Temp. (deg R):D	499.7017D
D ly M n. L qu d SurD e Temp. (deg R):D	494.8947D
D ly MDx. L qu d SurD e Temp. (deg R):D	504.5086D
D ly Amb en Temp. RDnge (deg. R):D	18.9333D
Ven ed VDpor SD urD on FD orD	
Ven ed VDpor SD urD on FD or:D	0.9997D
VDpor Pressure D D Iy AverDge L qu d:D	
SurD e TemperDure (psD):D	0.0031D
VDpor SpD e OuD ge (D):D	1.7260D
Work ng Losses (lb):D	0.0701D
VDpor MoleDuIDr We gh (Ib/Ib-mole):D	130.000D
VDpor Pressure D D Iy AverDge L qu dD	
SurD e TemperDure (psD):D	0.0031D
AnnuD Ne Throughpu (gDl/yr.):D	7,291.5500D
AnnuD Turnovers:D	20.8330D
Turnover FD or:D	1.0000D
TDnk D me er (D):D	3.4520D
Work ng Loss ProduD FD or:D	1.0000D
ToDI Losses (lb):D	0.0981D
1001 20303 (10).0	0.0901D

TANKS 4.P.P issions Report - Detail ForP at P InPiviPual Tank P ission TotalsP

issions Report for: Annual P

NTPC Fire PuP p Tank - Horizontal TankP Superior, WisconsinP

		Losses(lbs)D	
Componen sD	Work ng LossD	BreDh ng LossD	ToDI Em ss onsD
sDIDe uel ol no. 2	0.07D	0.03D	0.10D

TANKS 4.P.P

issions Report - Detail ForP at P Tank InPentification anP Physical CharacteristicsP

IPentificationP User Iden1 on:1 C1y:1 S1 e:1 Comp1ny:1 Type o1T1nk:1 Des1r p1on:1	NTEC Gen T1nk1 Super or1 W s1ons n1 NTEC1 Hor zon1 I T1nk1 ,700 g1llon d esel 1 nk1
Tank DiP ensionsP Shell Leng h (1):1 D1 me'ter (1):1 Volume (g1)Ions):1 Turnovers:1 Ne1Throughpu'(g1l/yr):1 Is T1nk He1 ed (y/n):1 Is T1nk Underground (y/n):1	8.041 6.001 ,700.001 20.801 35,360.001 N1 N1
aint CharacteristicsP Shell Color/Sh1de:1 Shell Cond1 on1	Wh1e/Wh1e1 Good1
Breather Vent SettingsP V uum Se1 ngs (ps g):1 Pressure Se1 ngs (ps g)1	-0.031 0.031

Me1erolog1 ID1 used n Em ss ons C1I ul1 ons: Dulu1h, M nneso1 (Avg A mospher1 Pressure = 13.98 ps1)1

TANKS 4.P.P issions Report - Detail ForP at P LiquiP Contents of Storage TankP

NTPC Gen Tank - Horizontal TankP Superior, WisconsinP

			ly L qu d Su per1 ure (de		L qu d1 Bulk1 Temp1	V pc	r Pressure	(ps1)1	V por1 Mol.1	Lqud1 Mss1	V por1 M ss1	Mol.1	B s s for V por Pressure1
M x1ure/Componen1	Mon h1	Avg.1	M n.1	M x.1	(deg F)1	Avg.1	M n.1	M x.1	We gh11	Fr1 .1	Fr1 .1	We gh1	C ul1 ons1
Ds1ll1 e uel ol no. 21	All1	40.031	35.221	44.841	38.461	0.0031	0.0031	0.00381	30.00001			88.001	Op1on 1: VP40 = .0031 VP50 = .00451

TANKS 4.P.P issions Report - Detail ForP at P Detail Calculations (AP-42)P

NTPC Gen Tank - Horizontal TankP Superior, WisconsinP

Annu1I Em ss on C1I1 ul1 ons1	
S1 nd ng Losses (lb):1	0.1361
V por Sp1 e Volume (1u 1):1	44.75741
V por Dens1y (lb/1u 1):1	0.0001
V por Sp1 e Exp1ns on F1 or:1	0.03421
Ven ed V por S1 ur1 on F1 or:1	0.99951
T1nk V por Sp1 e Volume:1	
V por Sp1 e Volume (1u 1):1	44.75741
T1nk D1 me er (1):1	6.00001
E1e1 ve D1 me er (1):1	7.83821
V por Sp1 e Ou1 ge (1):1	3.00001
T1nk Shell Leng h (1):1	8.03801
V por Dens1y1	
V por Dens1v (lb/1u 1):1	0.0001
V por Dens1y (lb/1u 1):1 V por Mole1uI1r We gh (lb/lb-mole):1	30.00001
V por Pressure 1 D1 ly Aver1ge L qu d1	
Sur1 e Temper1 ure (ps1):1	0.0031
D1 ly Avg. L qu d Sur1 e Temp. (deg. R):1	499.70171
D1 ly Aver1ge Amb en Temp. (deg. F):1	38.44171
Ide1I G1s Cons1 n R1	30.44171
(ps1 1u1 / (lb-mol-deg R)):1	0.731
L qu d Bulk Temper1 ure (deg. R):1	498.13171
T1nk P1 n Sol1r Absorp1 n1e (Shell):1 D1 ly To1 I Sol1r Insul1 on1	0.17001
F1 or (B u/sq1 d1y):1	,175.56471
V por Sp1 e Exp1ns on F1 or1	0.00404
V por Sp1 e Exp1ns on F1 or:1	0.03421
D1 ly V por Temper1 ure R1nge (deg. R):1	9.22771
D1 ly V por Pressure R1nge (ps1):1	0.00071
Bre1 her Ven Press. Se1 ng R1nge(ps1):1	0.06001
V por Pressure 1 D1 ly Aver1ge L qu d1	0.0004
Sur1 e Temper1 ure (ps1):1	0.0031
V por Pressure 1 D1 ly M n mum L qu d1	
Sur1 e Temper1 ure (ps1):1	0.0031
V por Pressure 1 D1 ly M1x mum L qu d1	
Sur1 e Temper1 ure (ps1):1	0.00381
D1 ly Avg. L qu d Sur1 e Temp. (deg R):1	499.70171
D1 ly M n. L qu d Sur1 e Temp. (deg R):1	494.89471
D1 ly M1x. L qu d Sur1 e Temp. (deg R):1	504.50861
D1 ly Amb en Temp. R1nge (deg. R):1	8.93331
Ven ed V por S1 ur1 on F1 or1	
Ven ed V por S1 ur1 on F1 or:1	0.99951
V por Pressure 1 D1 ly Aver1ge L qu d:1	
Sur1 e Temper1 ure (ps1):1	0.0031
V por Sp1 e Ou1 ge (1):1	3.00001
Work ng Losses (lb):1	0.33981
V por Mole1ul1r We gh (lb/lb-mole):1	30.00001
V por Pressure 1 D1 ly Aver1ge L qu d1	
Sur1 e Temper1 ure (ps1):1	0.0031
Annu1l Ne Throughpu (g1l/yr.):1	35,360.00001
Annu1l Turnovers:1	20.80001
Turnover F1 or:1	.00001
T1nk D1 me er (1):1	6.00001
Work ng Loss Produ1 F1 or:1	.00001
To1 I Losses (lb):1	0.47581
- (/	21.11001

TANKS 4.P.P issions Report - Detail ForP at P InPiviPual Tank P ission TotalsP

issions Report for: Annual P

NTPC Gen Tank - Horizontal TankP Superior, WisconsinP

		Losses(lbs)1	
Componen 1s1	Work ng Loss1	Bre1 h ng Loss1	To1 I Em ss ons1
D s1ll1 e 1uel ol no. 21	0.341	0.141	0.481

APPENDIX D – RBLC TABLES

RBLC ID	Facility Name	Company Name	Permit Date 1		Units	Controls	Emission Limit Units	Туре	Turbine Model
			Nitrogen Oxides		r.	1	- <u>-</u>		
	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011		MW	SCR/DLN	160 lb/hr	BACT	
	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011		MW	SCR/DLN	160 lb/hr	BACT	
MI-0423	INDECK NILES, LLC	INDECK NILES, LLC	1/4/2017		MMBtu/hr	SCR/DLN	0.034 lb/MMBtu	BACT	
	RENAISSANCE POWER LLC	LS POWER DEVELOPMENT LLC	11/1/2013		MMBtu/hr	SCR/DLN	0.082 lb/MMBtu	BACT	
	ARSENAL HILL POWER PLANT	SOUTHWEST ELECTRIC POWER COMPANY (SWEPCO)	3/20/2008	2,110	MMBtu/hr	GCP	0.190 lb/MMBtu	BACT	
	APPLIED ENERGY LLC	APPLIED ENERGY LLC	3/20/2009		MMBtu/hr	SCR	2.0 ppm	BACT	
	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154		SCR	2.0 ppm	BACT	
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154	MW	SCR	2.0 ppm	BACT	
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154	MW	SCR	2.0 ppm	BACT	
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154	MW	SCR	2.0 ppm	BACT	
CA-1192	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011	180	MW	SCR/DLN	2.0 ppm	BACT	
CA-1192	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011		MW	SCR/DLN	2.0 ppm	BACT	
CA-1192	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011	180	MW	SCR/DLN	2.0 ppm	BACT	
CA-1192	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011	180	MW	SCR/DLN	2.0 ppm	BACT	
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011	172	MW	SCR/DLN	2.0 ppm	BACT	
CA-1212	PALMDALE HYBRID POWER PROJECT	CITY OF PALMDALE	10/18/2011	154	MW	SCR/DLN	2.0 ppm	BACT	
FL-0303	FPL WEST COUNTY ENERGY CENTER UNIT 3	FLORIDA POWER AND LIGHT COMPANY (FP&L)	7/30/2008	2,333	MMBtu/hr	SCR/DLN	2.0 ppm	BACT	
FL-0304	CANE ISLAND POWER PARK	FLORIDA MUNICIPAL POWER AGENCY (FMPA	9/8/2008	1,860	MMBtu/hr	SCR	2.0 ppm	BACT	GE 7241 FA CTG
	POLK POWER STATION	TAMPA ELECTRIC COMPANY	10/14/2012	1,160		SCR/DLN	2.0 ppm	BACT	
FL-0356	OKEECHOBEE CLEAN ENERGY CENTER	FLORIDA POWER & LIGHT	3/9/2016	3,096	MMBtu/hr	SCR/DLN/WI	2.0 ppm	BACT	GE 7HA.02
IA-0107	MARSHALLTOWN GENERATING STATION	INTERSTATE POWER AND LIGHT	4/14/2014	2,258	MMBtu/hr	SCR/DLN	2.0 ppm	BACT	
IA-0107	MARSHALLTOWN GENERATING STATION	INTERSTATE POWER AND LIGHT	4/14/2014	2,258	MMBtu/hr	SCR/LNB	2.0 ppm	BACT	Siemens SGT6-5000F
ID-0018	LANGLEY GULCH POWER PLANT	IDAHO POWER COMPANY	6/25/2010	2,375	MMBtu/hr	SCR/DLN/GCP	2.0 ppm	BACT	Siemens SGT6-5000F
	ST. JOSEPH ENEGRY CENTER, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012		MMBtu/hr	SCR/DLN	2.0 ppm	BACT	
			1-1-2	/		,		-	SGT-8000H VERSION 1.4-
MD-0045	MATTAWOMAN ENERGY CENTER	MATTAWOMAN ENERGY, LLC	11/13/2015	286	MW	SCR/DLN/GCP	2.0 ppm	BACT	OPTIMIZED
	KEYS ENERGY CENTER	KEYS ENERGY CENTER, LLC	10/31/2014	235	MW	SCR/DLN/GCP	2.0 ppm	BACT	SGT6-500FEE
	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013	2,486		SCR/DLN	2.0 ppm	BACT	5010 500122
	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013	2,237		SCR/DLN	2.0 ppm	BACT	
	RENAISSANCE POWER LLC	LS POWER DEVELOPMENT LLC	11/1/2013	2,147		SCR/DLN	2.0 ppm	BACT	
MI-0406	RENAISSANCE POWER LLC	LS POWER DEVELOPMENT LLC	11/1/2013	2,807	MMBtu/hr	SCR/DLN	2.0 ppm	BACT	
1111 0400	RENAISSANCE FOWER EEC		11/1/2015	2,007	www.bca/m	Schuben	2.0 ppm	brief	Mitsubishi M501 GAC units or
04-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	5 5 70	MMBtu/hr	SCR/DLN	2.0 ppm	BACT	2 Siemens SGT-8000H
011 0552	OREGON CLEAN ENERGY CENTER	ARCADIS, 03, INC.	0/10/2013	5,575	www.bca/m	Schuben	2.0 ppm	brief	Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	5 5 70	MMBtu/hr	SCR/DLN	2.0 ppm	BACT	2 Siemens SGT-8000H
011-0332	OREGON CLEAN ENERGY CENTER	ARCADIS, 03, INC.	0/10/2013	3,373	IVIIVIDtu/III	JCIYDEN	2.0 ppm	DACI	Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	6 004	MMBtu/hr	SCR/DLN	2.0 ppm	BACT	2 Siemens SGT-8000H
01-0332	OREGON CLEAN ENERGY CENTER	ARCADIS, 03, INC.	0/18/2013	0,004	IVIIVIBLU/III	3CR/DLN	2.0 ppm	BACI	Mitsubishi M501 GAC units or
011 0252	ORECON CLEAN ENERCY CENTER		6/18/2013	700	MW	SCR/DLN	2.0	BACT	2 Siemens SGT-8000H
	OREGON CLEAN ENERGY CENTER CHOUTEAU POWER PLANT	ARCADIS, US, INC. ASSOCIATED ELECTRIC COOPERATIVE INC	1/23/2009	799	MMBtu/hr	SCR/DLN SCR/DLN	2.0 ppm 2.0 ppm	BACT	SIEMENS V84.3A
	MOORELAND GENERATING STA	WESTERN FARMERS ELECTRIC COOPERATIVE	7/2/2013	360	MW	SCR/DLN SCR/DLN	2.0 ppm 2.0 ppm	BACT	
	MOORELAND GENERATING STA	WESTERN FARMERS ELECTRIC COOPERATIVE	7/2/2013		MW	SCR/DLN SCR/DLN	2.0 ppm 2.0 ppm	BACT	Siemens SGT6-5000F5 Siemens SGT6-5000F5
									Siemens 3010-3000F3
		PORTLAND GENERAL ELECTRIC	12/29/2010		MMBtu/hr	SCR	2.0 ppm	BACT	Miteubiebi MEC1 CAC
	TROUTDALE ENERGY CENTER, LLC	TROUTDALE ENERGY CENTER, LLC	3/5/2014		MMBtu/hr	DLN/WI	2.0 ppm	BACT	Mitsubishi M501-GAC
	MOXIE LIBERTY LLC/ASYLUM POWER PL T	MOXIE ENERGY LLC	10/10/2012	3,277	MMBtu/hr	SCR/DLN	2.0 ppm	BACT	G or HA
	MOXIE ENERGY LLC/PATRIOT GENERATION PLT		1/31/2013	472	NANAD: "	SCR	2.0 ppm	BACT	╀─────┤
TN-0162	JOHNSONVILLE COGENERATION	TENNESSEE VALLEY AUTHORITY	4/19/2016	1,339	MMBtu/hr	SCR/GCP	2.0 ppm	BACT	
TV 05 45			6/17/2005						GE 7FA, GE 7FB, AND SIEMENS
IX-0546	PATTILLO BRANCH POWER PLANT	PATTILLO BRANCH POWER COMPANY LLC	6/17/2009	350	MW	SCR	2.0 ppm	BACT	SGT6-5000F.
			a /a a /a a / -						GE 7FAS OR 250 MW
	NATURAL GAS-FIRED POWER GENERATION FACILITY	LAMAR POWER PARTNERS II LLC	6/22/2009	250		SCR	2.0 ppm	BACT	MITSUBISHI 501GS
	MADISON BELL ENERGY CENTER	MADISON BELL PARTNERS LP	8/18/2009	275		SCR	2.0 ppm	BACT	GE PG7121(EA
TX-0600	THOMAS C. FERGUSON POWER PLANT	LOWER COLORADO RIVER AUTHORITY	9/1/2011		MW	SCR/DLN	2.0 ppm	BACT	GE 7FA
	ES JOSLIN POWER PLANT	CALHOUN PORT AUTHORITY	9/12/2012		MW	SCR	2.0 ppm	BACT	GE 7FA
TX-0678	FREEPORT LNG PRETREATMENT FACILITY	FREEPORT LNG DEVELOPMENT LP	7/16/2014	87	MW	SCR	2.0 ppm	BACT	ļ
								1	Siemens Model F5, GE7Fa, and
TX-0689	CEDAR BAYOU ELECTRIC GENERATION STATION	NRG TEXAS POWER	8/29/2014	225	MW	SCR/DLN	2.0 ppm	BACT	Mitsubishi Heavy Industry G

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре	Turbine Model
										GE 7FA.04; (2 Siemens SGT6-
										5000F(4; or (3 Siemens SGT6-
TX-0708	LA PALOMA ENERGY CENTER	LA PALOMA ENERGY CENTER, LLC	2/7/2013	650	MW	SCR	2.0	ppm	BACT	5000F(5.
TX-0709	SAND HILL ENERGY CENTER	CITY OF AUSTIN	9/13/2013	174	MW	SCR	2.0	ppm	BACT	GE 7FA
TX-0710	VICTORIA POWER STATION	VICTORIA WLE L.P.	12/1/2014	197	MW	SCR	2.0	ppm	BACT	GE 7FA.04
TX-0712	TRINIDAD GENERATING FACILITY	SOUTHERN POWER COMPANY	11/20/2014	497	MW	SCR	2.0	ppm	BACT	MHI J model
TX-0713	TENASKA BROWNSVILLE GENERATING STATION	TENASKA BROWNSVILLE PARTNERS, LLC	4/29/2014	274	MW	SCR	2.0	ppm	BACT	
TX-0714	S R BERTRON ELECTRIC GENERATING STATION	NRG TEXAS POWER LLC	12/19/2014	240	MW	SCR	2.0	ppm	BACT	Siemens Model F5 (SF5
TX-0730	COLORADO BEND ENERGY CENTER	COLORADO BEND II POWER, LLC	4/1/2015	1,100	MW	SCR/OxCat	2.0	ppm	BACT	GE Model 7HA.02
										Siemens SCC6-5000 CTGs and
										a SST6-5000 ST, or two GE 7FA
TX-0767	LON C. HILL POWER STATION	LON C. HILL, L.P.	10/2/2015	195	MW	SCR	2.0	ppm	BACT	CTGs and a D-11 ST.
TX-0773	FGE EAGLE PINES PROJECT	FGE EAGLE PINES, LLC	11/4/2015	321	MW	SCR	2.0	ppm	BACT	Alstom GT36
TX-0788	NECHES STATION	APEX TEXAS POWER LLC	3/24/2016	231	MW	SCR	2.0	ppm	BACT	Siemens or GE
TX-0789	DECORDOVA STEAM ELECTRIC STATION	DECORDOVA II POWER COMPANY LLC	3/8/2016	231	MW	SCR		ppm	BACT	Siemens or GE
TX-0819	GAINES COUNTY POWER PLANT	SOUTHWESTERN PUBLIC SERVICE COMPANY	4/28/2017	426	MW	SCR/DLN	2.0	ppm	BACT	Siemens SGT6-5000F5
VA-0315	WARREN COUNTY POWER PLANT - DOMINION	VIRGINIA ELECTRIC AND POWER COMPANY	12/17/2010	2,996	MMBtu/hr	SCR/DLN	2.0	ppm	BACT	MHI M501 GAC
WV-0025	MOUNDSVILLE COMBINED CYCLE POWER PLANT	MOUNDSVILLE POWER, LLC	11/21/2014	2,420	MMBtu/hr	SCR/DLN		ppm	BACT	GE Frame 7FA.04
CA-1209	HIGH DESERT POWER PROJECT	HIGH DESERT POWER PROJECT LLC	3/11/2010	190		SCR/DLN		ppm	BACT	
GA-0138	LIVE OAKS POWER PLANT	LIVE OAKS COMPANY, LLC	4/8/2010	600		SCR/DLN		ppm	BACT	SGT6-5000F.
MI-0410	THETFORD GENERATING STATION	CONSUMERS ENERGY COMPANY	7/25/2013	2,587	MMBtu/hr	SCR/LNB		ppm	BACT	
MI-0412	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	HOLLAND BOARD OF PUBLIC WORKS	12/4/2013		MMBtu/hr	SCR/DLN		ppm	BACT	
MI-0424	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET		12/5/2016	554	MMBtu/hr	SCR/DLN		ppm	BACT	
MI-0427	FILER CITY STATION	FILER CITY STATION LIMITED PARTNERSHIP	11/17/2017	1,935		SCR/DLN		ppm	BACT	
OH-0356	DUKE ENERGY HANGING ROCK ENERGY	DUKE ENERGY HANGING ROCK, LLC	12/18/2012	1,555		SCR/DLN		ppm	BACT	GE 7FA
OH-0356	DUKE ENERGY HANGING ROCK ENERGY	DUKE ENERGY HANGING ROCK, LLC	12/18/2012	172		SCR/DLN		ppm	BACT	GE 7FA
LA-0224	ARSENAL HILL POWER PLANT	SOUTHWEST ELECTRIC POWER COMPANY (SWEPCO)	3/20/2008		MMBtu/hr	SCR/LNB		ppm	BACT	GE 7FA
AK-00224	INTERNATIONAL STATION POWER PLANT	CHUGACH ELECTRIC ASSOCIATION	12/20/2008		MW	SCR/LINB SCR/DLN		ppm	BACT	
LA-0136	PLAQUEMINE COGENERATION FACILITY	THE DOW CHEMICAL COMPANY	7/23/2008		MMBtu/hr	SCR/DLN SCR/DLN		ppm	BACT	GE FRAME 7 FA
LA-0136 LA-0308	MORGAN CITY POWER PLANT	LOUISIANA ENERGY AND POWER AUTHORITY (LEPA)	9/26/2013	2,876	MMBtu/hr	SCR/DLN SCR/WI			BACT	GE FRAIVIE 7 FA
	BAYPORT COMPLEX		9/26/2013	90				ppm	BACT	CE 754
TX-0698		AIR LIQUIDE LARGE INDUSTRIES U.S., L.P.				DLN, CLEC		ppm		GE 7EA
MI-0402	SUMPTER POWER PLANT	WOLVERINE POWER SUPPLY COOPERATIVE INC.	11/17/2011	130	MW	LNB		ppm	BACT	
LA-0313	ST. CHARLES POWER STATION	ENTERGY LOUISIANA, LLC	8/31/2016	3,625		SCR/DLN		ppm	BACT	
LA-0313	ST. CHARLES POWER STATION	ENTERGY LOUISIANA, LLC	8/31/2016	3,625		SCR/DLN		ppm	BACT	
MI-0410	THETFORD GENERATING STATION	CONSUMERS ENERGY COMPANY	7/25/2013	2,587	MMBtu/hr	SCR/LNB	78.4		BACT	
PA-0296	BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE	BERKS HOLLOW ENERGY ASSOC LLC	12/17/2013		MMBtu/hr	SCR	131.6	tpy	BACT	
	I		Carbon Monox					r .		1
MI-0423	INDECK NILES, LLC	INDECK NILES, LLC	1/4/2017		MMBtu/hr	OxCat/GCP		lb/MMBtu	BACT	
PA-0296	BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE	BERKS HOLLOW ENERGY ASSOC LLC	12/17/2013		MMBtu/hr	OxCat	0.016	- 1	BACT	
MI-0410	THETFORD GENERATING STATION	CONSUMERS ENERGY COMPANY	7/25/2013	2,587		OxCat/GCP	0.061	lb/MMBtu	BACT	
OK-0169	PSO COMANCHE POWER STATION	PUBLIC SERVICE COMPANY OF OKLAHOMA	10/8/2015	1,250		DLN	0.079	lb/MMBtu	BACT	
MI-0406	RENAISSANCE POWER LLC	LS POWER DEVELOPMENT LLC	11/1/2013	2,147	MMBtu/hr	OxCat	0.213	lb/MMBtu	BACT	
MI-0412	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	HOLLAND BOARD OF PUBLIC WORKS	12/4/2013	647	MMBtu/hr	OxCat/GCP	0.382	lb/MMBtu	BACT	
MI-0424	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	HOLLAND BOARD OF PUBLIC WORKS	12/5/2016	554	MMBtu/hr	OxCat/GCP	0.446	lb/MMBtu	BACT	
LA-0224	ARSENAL HILL POWER PLANT	SOUTHWEST ELECTRIC POWER COMPANY (SWEPCO)	3/20/2008	2,110	MMBtu/hr	GCP	0.747	lb/MMBtu	BACT	
MI-0405	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013	2,237	MMBtu/hr	GCP	1.396		BACT	
CT-0161	KILLINGLY ENERGY CENTER	NTE CONNECTICUT, LLC	6/30/2017	2,639	MMBtu/hr	OxCat	1.700	lb/MMBtu	BACT	
CT-0151	KLEEN ENERGY SYSTEMS, LLC	KLEEN ENERGY SYSTEMS, LLC	2/25/2008	2,142	MMBtu/hr	OxCat	0.9	ppm	BACT	SIEMENS SGT6-5000F
CT-0157	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015	2,420	MMBtu/hr	OxCat	0.9	ppm	BACT	GE 7HA.01
CT-0158	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015	2,420	MMBtu/hr	OxCat	0.9	ppm	BACT	GE 7HA.01
CT-0161	KILLINGLY ENERGY CENTER	NTE CONNECTICUT, LLC	6/30/2017	2,969	MMBtu/hr	OxCat	0.9	ppm	BACT	Mitsubishi M501JAC
NJ-0082	WEST DEPTFORD ENERGY STATION	WEST DEPTFORD ENERGY ASSOCIATES	7/18/2014	2,362	MMBtu/hr	OxCat/GCP/Fuel		ppm	BACT	Siemens F
			, , , ,-	,	,	,,	1	ľ.		Never built. Proposed Model
			1				1		D 4 67	
CA-1192	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011	180	MW	OxCat	1.5	ppm	BACI	GE /241 FA
CA-1192	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011	180	MW	OxCat	1.5	ppm	BACT	GE 7241 FA Never built. Proposed Model

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Emission Limit	t Units	Туре	Turbine Model
										Never built. In 2011, proposed
										turbines were GE. Currently
CL 4242			10/10/2014	45.4		0.01			D 4 67	proposed turbines are Siemens
-	PALMDALE HYBRID POWER PROJECT	CITY OF PALMDALE	10/18/2011		MW	OxCat		ppm	BACT	STG6-5000F
NJ-0082	WEST DEPTFORD ENERGY STATION WARREN COUNTY POWER PLANT - DOMINION	WEST DEPTFORD ENERGY ASSOCIATES VIRGINIA ELECTRIC AND POWER COMPANY	7/18/2014 12/17/2010		MMBtu/hr MMBtu/hr	OxCat/GCP/Fuel OxCat/GCP		ppm ppm	BACT BACT	Siemens F MHI M501 GAC
GA-0127	PLANT MCDONOUGH COMBINED CYCLE	SOUTHERN COMPANY/GEORGIA POWER	1/7/2010		MW	OxCat/GCP		ppm	BACT	MITSUBISHI MODEL M501G
	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010		MW	OxCat		ppm	BACT	WITSOBISHI WODEL WISDIG
CA-1191 CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010		MW	OxCat		ppm	BACT	
CA-1191	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011		MW	OxCat		ppm	BACT	
CA-1192	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011		MW	OxCat		ppm	BACT	
GA-0138	LIVE OAKS POWER PLANT	LIVE OAKS COMPANY, LLC	4/8/2010		MW	OxCat/GCP		ppm	BACT	SGT6-5000F.
IA-0107	MARSHALLTOWN GENERATING STATION	INTERSTATE POWER AND LIGHT	4/14/2014		MMBtu/hr	OxCat		ppm	BACT	
IA-0107	MARSHALLTOWN GENERATING STATION	INTERSTATE POWER AND LIGHT	4/14/2014	2,258	MMBtu/hr	OxCat		ppm	BACT	Siemens SGT6-5000F
ID-0018	LANGLEY GULCH POWER PLANT	IDAHO POWER COMPANY	6/25/2010	2,375	MMBtu/hr	OxCat, DLN, GCP	2.0	ppm	BACT	Siemens SGT6-5000F
IN-0158	ST. JOSEPH ENEGRY CENTER, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012	2,300	MMBtu/hr	OxCat		ppm	BACT	
LA-0313	ST. CHARLES POWER STATION	ENTERGY LOUISIANA, LLC	8/31/2016	3,625	MMBtu/hr	OxCat, DLN, GCP	2.0	ppm	BACT	
LA-0313	ST. CHARLES POWER STATION	ENTERGY LOUISIANA, LLC	8/31/2016	3,625	MMBtu/hr	OxCat, DLN, GCP	2.0	ppm	BACT	
MD-0041	CPV ST. CHARLES	CPV MARYLAND, LLC	4/23/2014	725	MW	OxCat/GCP	2.0	ppm	BACT	GE F class
										SGT-8000H VERSION 1.4-
	MATTAWOMAN ENERGY CENTER	MATTAWOMAN ENERGY, LLC	11/13/2015		MW	OxCat/GCP		ppm	BACT	OPTIMIZED
MD-0046	KEYS ENERGY CENTER	KEYS ENERGY CENTER, LLC	10/31/2014		MW	OxCat/GCP		ppm	BACT	SGT6-500FEE
MI-0406	RENAISSANCE POWER LLC	LS POWER DEVELOPMENT LLC	11/1/2013		MMBtu/hr	OxCat		ppm	BACT	
MI-0406	RENAISSANCE POWER LLC	LS POWER DEVELOPMENT LLC	11/1/2013		MMBtu/hr	OxCat		ppm	BACT	
NJ-0074	WEST DEPTFORD ENERGY	LS POWER	5/6/2009		MMBtu/hr	OxCat		ppm	BACT	
-	WOODBRIDGE ENERGY CENTER	CPV SHORE, LLC	7/25/2012		MMBtu/hr	OxCat/GCP		ppm	BACT	GE
NJ-0079	WOODBRIDGE ENERGY CENTER	CPV SHORE, LLC	7/25/2012		MMBtu/hr	OxCat/GCP/Fuel		ppm	BACT	GE 7FA
NJ-0080	HESS NEWARK ENERGY CENTER	HESS NEWARK ENERGY CENTER, LLC	11/1/2012			OxCat/GCP/Fuel		ppm	BACT	GE
NJ-0080	HESS NEWARK ENERGY CENTER	HESS NEWARK ENERGY CENTER, LLC	11/1/2012	4,595	MMBtu/hr	OxCat	2.0	ppm	BACT	GE
										GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3,923	MMBtu/hr	OxCat/GCP/Fuel	2.0	ppm	BACT	5000F
			- /= /							GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3,923	MMBtu/hr	OxCat, GCP, Fuel	2.0	ppm	BACT	5000F
			2/7/2014						5.4.CT	GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3,923	MMBtu/hr	OxCat, GCP, Fuel	2.0	ppm	BACT	5000F
NU 0001			2/7/2014	2 0 2 2	1 41 4D+/h	Outert CCD Fuel	2.0		DACT	GE7FA.05 OR Siemens SGT6
NJ-0081 NJ-0085	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014 7/19/2016		MMBtu/hr	OxCat, GCP, Fuel		ppm	BACT BACT	5000F
NJ-0085	MIDDLESEX ENERGY CENTER, LLC MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC STONEGATE POWER, LLC	7/19/2016		MW MW	OxCat/GCP OxCat/GCP		ppm ppm	BACT	GE 7HA.02 GE 7HA.02
NY-0104	CPV VALLEY ENERGY CENTER	CPV VALLEY LLC	8/1/2013		MMBtu/hr	OxCat/GCP		ppm	BACT	GE /HA.02
111-0104			0/1/2015	2,234	wilvibtu/iii	Uxcat/ UCF	2.0	ppin	DACI	Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	5 579	MMBtu/hr	OxCat	2.0	ppm	BACT	2 Siemens SGT-8000H
011-0332		Ancadis, 03, inc.	0/10/2013	3,375	wilvibtu/iii	UNCAL	2.0	ppin	DACI	Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	5 579	MMBtu/hr	OxCat	2.0	ppm	BACT	2 Siemens SGT-8000H
011 0352		Anendis, 63, inc.	0/10/2015	3,373	www.bcu/m	Oxeat	2.0	ppm	bhei	Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	6 004	MMBtu/hr	OxCat	2.0	ppm	BACT	2 Siemens SGT-8000H
011 0002			0/10/2010	0,001	initio cu / ini	oxeat	2.0	ppm	5,101	Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	799	MW	OxCat	2.0	ppm	BACT	2 Siemens SGT-8000H
	MOORELAND GENERATING STA	WESTERN FARMERS ELECTRIC COOPERATIVE	7/2/2013		MW	OxCat/GCP		ppm	BACT	Siemens SGT6-5000F5
OK-0154	MOORELAND GENERATING STA	WESTERN FARMERS ELECTRIC COOPERATIVE	7/2/2013		MW	OxCat/GCP		ppm	BACT	Siemens SGT6-5000F5
PA-0278	MOXIE LIBERTY LLC/ASYLUM POWER PL T	MOXIE ENERGY LLC	10/10/2012		MMBtu/hr	OxCat		ppm	BACT	F Class
PA-0286	MOXIE ENERGY LLC/PATRIOT GENERATION PLT	MOXIE ENERGY LLC	1/31/2013	472		OxCat		ppm	BACT	
TN-0162	JOHNSONVILLE COGENERATION	TENNESSEE VALLEY AUTHORITY	4/19/2016		MMBtu/hr	OxCat/GCP		ppm	BACT	
										GE 7FA, GE 7FB, AND SIEMENS
TX-0546	PATTILLO BRANCH POWER PLANT	PATTILLO BRANCH POWER COMPANY LLC	6/17/2009	350	MW	OxCat	2.0	ppm	BACT	SGT6-5000F.
										SGT6-5000F CTGs or four GE
TX-0590	KING POWER STATION	PONDERA CAPITAL MANAGEMENT GP INC	8/5/2010	1,350	MW	OxCat/GCP	2.0	ppm	BACT	Frame 7FA CTGs

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре	Turbine Model
										Siemens Model F5, GE7Fa, and
TX-0689	CEDAR BAYOU ELECTRIC GENERATION STATION	NRG TEXAS POWER	8/29/2014	225	MW	OxCat	2.0	ppm	BACT	Mitsubishi Heavy Industry G
										GE 7FA.04; (2 Siemens SGT6-
										5000F(4; or (3 Siemens SGT6-
TX-0708	LA PALOMA ENERGY CENTER	LA PALOMA ENERGY CENTER, LLC	2/7/2013	650	MW	OxCat	2.0	ppm	BACT	5000F(5.
TX-0709	SAND HILL ENERGY CENTER	CITY OF AUSTIN	9/13/2013	174	MW	OxCat	2.0	ppm	BACT	GE 7FA
TX-0713	TENASKA BROWNSVILLE GENERATING STATION	TENASKA BROWNSVILLE PARTNERS, LLC	4/29/2014	274	MW	OxCat	2.0	ppm	BACT	
										Siemens SCC6-5000 CTGs and
										a SST6-5000 ST, or two GE 7FA
TX-0767	LON C. HILL POWER STATION	LON C. HILL, L.P.	10/2/2015	195	MW	OxCat	2.0	ppm	BACT	CTGs and a D-11 ST.
TX-0773	FGE EAGLE PINES PROJECT	FGE EAGLE PINES, LLC	11/4/2015	321	MW	OxCat	2.0	ppm	BACT	Alstom GT36
TX-0819	GAINES COUNTY POWER PLANT	SOUTHWESTERN PUBLIC SERVICE COMPANY	4/28/2017	426		SCR/DLN		ppm	BACT	Siemens SGT6-5000F5
WV-0025	MOUNDSVILLE COMBINED CYCLE POWER PLANT	MOUNDSVILLE POWER, LLC	11/21/2014	2,420	MMBtu/hr	r OxCat/GCP		ppm	BACT	GE 7FA.04
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154	MW	OxCat	3.0	ppm	BACT	
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010		MW	OxCat		ppm	BACT	
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011			OxCat		ppm	BACT	
LA-0254	NINEMILE POINT ELECTRIC GENERATING PLANT	ENTERGY LOUISIANA LLC	8/16/2011	7,146				ppm	BACT	
OR-0050	TROUTDALE ENERGY CENTER. LLC	TROUTDALE ENERGY CENTER, LLC	3/5/2014	2,988	-			ppm	BACT	Mitsubishi M501-GAC
CA-1209	HIGH DESERT POWER PROJECT	HIGH DESERT POWER PROJECT LLC	3/11/2010		MW	OxCat		ppm	BACT	
MI-0410	THETFORD GENERATING STATION	CONSUMERS ENERGY COMPANY	7/25/2013	2,587				ppm	BACT	
MI-0412	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	HOLLAND BOARD OF PUBLIC WORKS	12/4/2013	647	MMBtu/hr	OxCat/GCP		ppm	BACT	
MI-0424		HOLLAND BOARD OF PUBLIC WORKS	12/5/2016					ppm	BACT	
MI-0427	FILER CITY STATION	FILER CITY STATION LIMITED PARTNERSHIP	11/17/2017	1,935	MMBtu/hr			ppm	BACT	
TX-0600	THOMAS C. FERGUSON POWER PLANT	LOWER COLORADO RIVER AUTHORITY	9/1/2011		MW	OxCat/GCP		ppm	BACT	GE 7FA
TX-0618	CHANNEL ENERGY CENTER LLC	CHANNEL ENERGY CENTER LLC	10/15/2012		MW	GCP		ppm	BACT	Siemens 501F
17-0010			10/13/2012	100	10100	UCr	4.0	ppm	DACI	Siemens 501
TX-0619	DEER PARK ENERGY CENTER	DEER PARK ENERGY CENTER LLC	9/26/2012	180	MW	GCP	4.0	ppm	BACT	Siemens/Westinghouse 501F
TX-0619	ES JOSLIN POWER PLANT	CALHOUN PORT AUTHORITY	9/12/2012		MW	GCP		ppm	BACT	GE 7FA
TX-0678	FREEPORT LNG PRETREATMENT FACILITY	FREEPORT LNG DEVELOPMENT LP	7/16/2012		MW	OxCat		ppm	BACT	GE /FA
TX-0678 TX-0710	VICTORIA POWER STATION	VICTORIA WLE L.P.	12/1/2014		MW	OxCat			BACT	GE 7FA.04
TX-0710 TX-0712	TRINIDAD GENERATING FACILITY	SOUTHERN POWER COMPANY	12/1/2014			OxCat		ppm ppm	BACT	MHI J model
TX-0712 TX-0714	S R BERTRON ELECTRIC GENERATING STATION	NRG TEXAS POWER LLC	12/19/2014		MW	OxCat		ppm	BACT	Siemens Model F5 (SF5
TX-0714 TX-0730	COLORADO BEND ENERGY CENTER	COLORADO BEND II POWER, LLC		1,100		SCR/OxCat			BACT	-
TX-0730	NECHES STATION	APEX TEXAS POWER LLC	4/1/2015 3/24/2016		MW	OxCat		ppm	BACT	GE Model 7HA.02
TX-0788	DECORDOVA STEAM ELECTRIC STATION	DECORDOVA II POWER COMPANY LLC	3/8/2016	231		OxCat		ppm ppm	BACT	Siemens or GE
FL-0356										Siemens or GE
	OKEECHOBEE CLEAN ENERGY CENTER	FLORIDA POWER & LIGHT	3/9/2016	3,096				ppm	BACT	GE 7HA.02
FL-0303	FPL WEST COUNTY ENERGY CENTER UNIT 3	FLORIDA POWER AND LIGHT COMPANY (FP&L)	7/30/2008		MMBtu/hr			ppm	BACT	CE 7244 EA CTC
FL-0304	CANE ISLAND POWER PARK	FLORIDA MUNICIPAL POWER AGENCY (FMPA	9/8/2008		MMBtu/hr	GCP		ppm	BACT	GE 7241 FA CTG
OH-0356	DUKE ENERGY HANGING ROCK ENERGY	DUKE ENERGY HANGING ROCK, LLC	12/18/2012		MW	GCP/Fuel		ppm	BACT	GE 7FA
OH-0356	DUKE ENERGY HANGING ROCK ENERGY	DUKE ENERGY HANGING ROCK, LLC	12/18/2012	172		GCP/Fuel		ppm	BACT	GE 7FA
OK-0129	CHOUTEAU POWER PLANT	ASSOCIATED ELECTRIC COOPERATIVE INC	1/23/2009	,				ppm	BACT	SIEMENS V84.3A
MI-0405	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013		MMBtu/hr			ppm	BACT	
GA-0127	PLANT MCDONOUGH COMBINED CYCLE	SOUTHERN COMPANY/GEORGIA POWER	1/7/2008	254		OxCat		ppm	BACT	
LA-0224	ARSENAL HILL POWER PLANT	SOUTHWEST ELECTRIC POWER COMPANY (SWEPCO)	3/20/2008		MMBtu/hr			ppm	BACT	
MI-0405	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013	2,486	MMBtu/hr	r GCP	10.5	ppm	BACT	
TV			c / 2 = / 2 =						5.4.CT	GE 7FAS OR 250 MW
TX-0547	NATURAL GAS-FIRED POWER GENERATION FACILITY	LAMAR POWER PARTNERS II LLC	6/22/2009		MW	GCP		ppm	BACT	MITSUBISHI 501GS
TX-0698	BAYPORT COMPLEX	AIR LIQUIDE LARGE INDUSTRIES U.S., L.P.	9/5/2013		MW	DLN, CLEC		ppm	BACT	GE 7EA
TX-0727	CEDAR BAYOU ELECTRIC GENERATING STATION	NRG TEXAS POWER LLC	3/31/2015		MW	OxCat		ppm	BACT	
TX-0548	MADISON BELL ENERGY CENTER	MADISON BELL PARTNERS LP	8/18/2009	275		GCP	17.5	ppm	BACT	GE PG7121(EA
LA-0136	PLAQUEMINE COGENERATION FACILITY	THE DOW CHEMICAL COMPANY	7/23/2008	2,876	MMBtu/hr	r GCP	25.0	ppm	BACT	GE FRAME 7 FA
			1	1						Never built. Proposed Model
CA-1192	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011	180	MW	Fuel	11.8	lb/hr	BACT	GE 7241 FA
1			1	1	1				1	Never built. No turbine
			1	1						specified in Application for
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154	MW	Fuel	12.0	lb/hr	BACT	Certification of Project
				1						Never built. No turbine
								1		
										specified in Application for

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре	Turbine Model
	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011		MW	Fuel		lb/hr	BACT	GE 7FA
0/1211			0/11/2011	2/2			10.0		5,101	Never built. No turbine
										specified in Application for
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154	MW	Fuel	18.0	lb/hr	BACT	Certification of Project
CA-1151			3/11/2010	154		i dei	10.0	10/111	DACI	Never built. No turbine
										specified in Application for
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154	MW	Fuel	19.0	lb/hr	BACT	Certification of Project
	ES JOSLIN POWER PLANT	CALHOUN PORT AUTHORITY	9/12/2010		MW	GCP/Fuel		lb/hr	BACT	GE 7FA
TX-0620 TX-0618	CHANNEL ENERGY CENTER LLC	CHANNEL ENERGY CENTER LLC	10/15/2012		MW	GCP/Fuel	27.0	,	BACT	-
17-0019			10/15/2012	160		GCP/Fuel	27.0	10/11	BACI	Siemens 501F
TV 0610			0/20/2012	100		CCD/Fuel	27.0	11- /1	DACT	
	DEER PARK ENERGY CENTER	DEER PARK ENERGY CENTER LLC	9/26/2012		MW	GCP/Fuel		lb/hr	BACT	Siemens/Westinghouse 501F
	THE EMPIRE DISTRICT ELECTRIC COMPANY	THE EMPIRE DISTRICT ELECTRIC COMPANY	7/14/2015		MW	DLN	30.2	lb/hr	BACT	
TX-0730	COLORADO BEND ENERGY CENTER	COLORADO BEND II POWER, LLC	4/1/2015	1,100		GCP		lb/hr	BACT	GE Model 7HA.02
MI-0423	INDECK NILES, LLC	INDECK NILES, LLC	1/4/2017	8,322	MMBtu/hr	GCP/Fuel/Inlet Air Filter	0.0012	lb/MMBtu	BACT	
										GE7FA.05 OR Siemens SGT6
	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014		MMBtu/hr	Fuel	0.0022		BACT	5000F
		FILER CITY STATION LIMITED PARTNERSHIP	11/17/2017			GCP/Fuel/Inlet Air Filter	0.0025	lb/MMBtu	BACT	
NJ-0082	WEST DEPTFORD ENERGY STATION	WEST DEPTFORD ENERGY ASSOCIATES	7/18/2014	2,362	MMBtu/hr	Fuel	0.0025	lb/MMBtu	BACT	Siemens
										GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3,923	MMBtu/hr	Fuel	0.0027	lb/MMBtu	BACT	5000F
										GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3,923	MMBtu/hr	Fuel	0.0027	lb/MMBtu	BACT	5000F
MI-0410	THETFORD GENERATING STATION	CONSUMERS ENERGY COMPANY	7/25/2013	2,587	MMBtu/hr	Fuel	0.0033	lb/MMBtu	BACT	
MI-0405	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013	2,486	MMBtu/hr	GCP	0.0040	lb/MMBtu	BACT	
PA-0278	MOXIE LIBERTY LLC/ASYLUM POWER PL T	MOXIE ENERGY LLC	10/10/2012	3,277	MMBtu/hr	Fuel	0.0040	lb/MMBtu	BACT	
MI-0406	RENAISSANCE POWER LLC	LS POWER DEVELOPMENT LLC	11/1/2013		MMBtu/hr	GCP	0.0042	lb/MMBtu	BACT	
	PALMDALE HYBRID POWER PROJECT	CITY OF PALMDALE	10/18/2011		MW	Fuel	0.0048	lb/MMBtu	BACT	
	WEST DEPTFORD ENERGY STATION	WEST DEPTFORD ENERGY ASSOCIATES	7/18/2014		MMBtu/hr	Fuel	0.0048		BACT	Siemens
-	CPV ST. CHARLES	CPV MARYLAND, LLC	4/23/2014		MW	GCP/Fuel	0.0050	lb/MMBtu	BACT	GE F class
	JOHNSONVILLE COGENERATION	TENNESSEE VALLEY AUTHORITY	4/19/2016		MMBtu/hr	OxCat/GCP	0.0050		BACT	021 01055
MI-0405	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013	,	MMBtu/hr	GCP	0.0060	lb/MMBtu	BACT	
		HOLLAND BOARD OF PUBLIC WORKS	12/4/2013	,	MMBtu/hr	GCP/Fuel	0.0070	lb/MMBtu	BACT	+
MI-0412 MI-0424	HOLLAND BOARD OF PUBLIC WORKS - EAST STH STREET		12/5/2016		MMBtu/hr	GCP/Fuel	0.0070		BACT	+
MI-0424 MI-0406	RENAISSANCE POWER LLC	LS POWER DEVELOPMENT LLC	11/1/2013		MMBtu/hr	GCP	0.0070	lb/MMBtu	BACT	+
	CPV VALLEY ENERGY CENTER			,			0.0073	lb/MMBtu	BACT	
		CPV VALLEY LLC	8/1/2013 12/3/2012		MMBtu/hr	Fuel		,		
IN-0158	ST. JOSEPH ENEGRY CENTER, LLC	ST. JOSEPH ENERGY CENTER, LLC		,	MMBtu/hr	GCP/Fuel	0.0078	lb/MMBtu	BACT	C
IA-0107	MARSHALLTOWN GENERATING STATION	INTERSTATE POWER AND LIGHT	4/14/2014	2,258	MMBtu/hr	None	0.0100	lb/MMBtu	BACT	Siemens SGT6-5000F
IA-0107	MARSHALLTOWN GENERATING STATION		4/14/2014		MMBtu/hr	None	0.0100	lb/MMBtu	BACT	+
LA-0224	ARSENAL HILL POWER PLANT	SOUTHWEST ELECTRIC POWER COMPANY (SWEPCO)	3/20/2008		MMBtu/hr	GCP/Fuel	0.0115	lb/MMBtu	BACT	
DE-0024	GARRISON ENERGY CENTER	GARRISON ENERGY CENTER, LLC/ CALPINE CORPORATION	1/30/2013		MMBtu/hr	Fuel	0.0122	lb/MMBtu	BACT	
			le Organic Con						1	
		CASTLETON COMMODITIES INTERNATIONAL (CCI) CORPU	6/19/2015		MMBtu/hr	GCP/Fuel		LB/100 SCF	BACT	+
	DUKE ENERGY HANGING ROCK ENERGY	DUKE ENERGY HANGING ROCK, LLC	12/18/2012		MW	GCP	3.2		BACT	GE 7FA
	DUKE ENERGY HANGING ROCK ENERGY	DUKE ENERGY HANGING ROCK, LLC	12/18/2012		MW	GCP	7.3	lb/hr	BACT	GE 7FA
	WARREN COUNTY POWER PLANT - DOMINION	VIRGINIA ELECTRIC AND POWER COMPANY	12/17/2010		MMBtu/hr	OxCat/GCP	0.0009		BACT	MHI M501 GAC
		MIDLAND COGENERATION VENTURE	4/23/2013		MMBtu/hr	GCP	0.0018	lb/MMBtu	BACT	<u> </u>
	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013	2,486	MMBtu/hr	GCP	0.0040	lb/MMBtu	BACT	1
	ST. CHARLES POWER STATION	ENTERGY LOUISIANA, LLC	8/31/2016		MMBtu/hr	OxCat, DLN, GCP	0.0169	lb/MMBtu	BACT	<u> </u>
	ST. CHARLES POWER STATION	ENTERGY LOUISIANA, LLC	8/31/2016		MMBtu/hr	OxCat, DLN, GCP	0.0169	lb/MMBtu	BACT	<u> </u>
LA-0224	ARSENAL HILL POWER PLANT	SOUTHWEST ELECTRIC POWER COMPANY (SWEPCO)	3/20/2008	2,110	MMBtu/hr	GCP	0.1015	lb/MMBtu	BACT	<u> </u>
MI-0412	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	HOLLAND BOARD OF PUBLIC WORKS	12/4/2013	647	MMBtu/hr	OxCat/GCP	0.3074	lb/MMBtu	BACT	
OK-0129	CHOUTEAU POWER PLANT	ASSOCIATED ELECTRIC COOPERATIVE INC	1/23/2009	1,882	MMBtu/hr	GCP	0.3	ppm	BACT	SIEMENS V84.3A
CT-0161	KILLINGLY ENERGY CENTER	NTE CONNECTICUT, LLC	6/30/2017	2,969	MMBtu/hr	OxCat	0.7	ppm	BACT	Mitsubishi M501JAC
CT-0157	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015	2,420	MMBtu/hr	OxCat	1.0	ppm	BACT	
CT-0158	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015	2,420	MMBtu/hr	OxCat		ppm	BACT	
	OKEECHOBEE CLEAN ENERGY CENTER	FLORIDA POWER & LIGHT	3/9/2016		MMBtu/hr	GCP		ppm	BACT	GE 7HA.02
FL-0364	SEMINOLE GENERATING STATION	SEMINOLE ELECTRIC COOPERATIVE, INC.	3/21/2018		MMBtu/hr	OxCat		ppm	BACT	GE 7HA.02
IA-0107	MARSHALLTOWN GENERATING STATION	INTERSTATE POWER AND LIGHT	4/14/2014	,	MMBtu/hr	OxCat		ppm	BACT	Siemens SGT6-5000F
IA-0107	MARSHALLTOWN GENERATING STATION	INTERSTATE POWER AND LIGHT	4/14/2014	,	MMBtu/hr	None		ppm	BACT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		ST. JOSEPH ENERGY CENTER, LLC	12/3/2012		MMBtu/hr	OxCat		ppm	BACT	+
			12/ 3/ 2012	2,500		Uncar	1.0	166	SACI	1

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре	Turbine Model
										Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	799	MW	OxCat	1.0	ppm	BACT	2 Siemens SGT-8000H
PA-0286	MOXIE ENERGY LLC/PATRIOT GENERATION PLT	MOXIE ENERGY LLC	1/31/2013	472		OxCat	1.0	ppm	BACT	
-		NRG TEXAS POWER LLC	12/19/2014		MW	OxCat		ppm	BACT	Siemens Model F5 (SF5
	FPL WEST COUNTY ENERGY CENTER UNIT 3	FLORIDA POWER AND LIGHT COMPANY (FP&L)	7/30/2008	,	MMBtu/hr	None		ppm	BACT	
	POLK POWER STATION	TAMPA ELECTRIC COMPANY	10/14/2012	1,160		Fuel		ppm	BACT	
LA-0254	NINEMILE POINT ELECTRIC GENERATING PLANT	ENTERGY LOUISIANA LLC	8/16/2011		MMBtu/hr	GCP		ppm	BACT	
CT-0161	KILLINGLY ENERGY CENTER	NTE CONNECTICUT, LLC	6/30/2017	2,639	MMBtu/hr	OxCat	1.6	ppm	BACT	
										Mitsubishi M501 GAC units or
	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	6,004	MMBtu/hr	OxCat		ppm	BACT	2 Siemens SGT-8000H
	APPLIED ENERGY LLC	APPLIED ENERGY LLC	3/20/2009			OxCat		ppm	BACT	
	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011		MW	None		ppm	BACT	0070 50005
	LIVE OAKS POWER PLANT	LIVE OAKS COMPANY, LLC	4/8/2010		MW	OxCat/GCP		ppm	BACT	SGT6-5000F.
	LANGLEY GULCH POWER PLANT RENAISSANCE POWER LLC		6/25/2010		MMBtu/hr	OxCat, DLN, GCP OxCat		ppm	BACT BACT	Siemens SGT6-5000F
	RENAISSANCE POWER LLC RENAISSANCE POWER LLC	LS POWER DEVELOPMENT LLC LS POWER DEVELOPMENT LLC	11/1/2013 11/1/2013		MMBtu/hr MMBtu/hr	OxCat		ppm ppm	BACT	
IVII-0406	RENAISSANCE POWER LLC		11/1/2013	2,807	IVIIVIBLU/III	UXCal	2.0	ppm	BACI	Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	E E 70	MMBtu/hr	OxCat	2.0	ppm	BACT	2 Siemens SGT-8000H
01-0332	OREGON CLEAN ENERGY CENTER	ARCADIS, 03, INC.	0/18/2013	3,375	IVIIVIBLU/III	UXCal	2.0	ppin	BACI	Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	5,579	MMBtu/hr	OxCat	2.0	ppm	BACT	2 Siemens SGT-8000H
	TROUTDALE ENERGY CENTER, LLC	TROUTDALE ENERGY CENTER, LLC	3/5/2014		MMBtu/hr	OxCat/GCP		ppm	BACT	Mitsubishi M501-GAC
011-0030	INCOTOREE ENERGY CENTER, EEC		3/3/2014	2,500	IVIIVID(U/III	Uxcat/ UCF	2.0	ppin	BACI	GE 7FA, GE 7FB, AND SIEMENS
TX-0546	PATTILLO BRANCH POWER PLANT	PATTILLO BRANCH POWER COMPANY LLC	6/17/2009	350	MW	OxCat	2.0	ppm	BACT	SGT6-5000F.
	THOMAS C. FERGUSON POWER PLANT	LOWER COLORADO RIVER AUTHORITY	9/1/2011		MW	OxCat/GCP		ppm	BACT	GE 7FA
	CHANNEL ENERGY CENTER LLC	CHANNEL ENERGY CENTER LLC	10/15/2012		MW	GCP		ppm	BACT	Siemens 501F
								P P		
TX-0619	DEER PARK ENERGY CENTER	DEER PARK ENERGY CENTER LLC	9/26/2012	180	MW	GCP/Fuel	2.0	ppm	BACT	Siemens/Westinghouse 501F
	ES JOSLIN POWER PLANT	CALHOUN PORT AUTHORITY	9/12/2012		MW	GCP/Fuel		ppm	BACT	GE 7FA
	FREEPORT LNG PRETREATMENT FACILITY	FREEPORT LNG DEVELOPMENT LP	7/16/2014	87	MW	OxCat	2.0	ppm	BACT	
										GE 7FA.04; (2 Siemens SGT6-
										5000F(4; or (3 Siemens SGT6-
TX-0708	LA PALOMA ENERGY CENTER	LA PALOMA ENERGY CENTER, LLC	2/7/2013	650	MW	OxCat	2.0	ppm	BACT	5000F(5.
TX-0709	SAND HILL ENERGY CENTER	CITY OF AUSTIN	9/13/2013	174	MW	None	2.0	ppm	BACT	GE 7FA
TX-0713	TENASKA BROWNSVILLE GENERATING STATION	TENASKA BROWNSVILLE PARTNERS, LLC	4/29/2014	274	MW	OxCat	2.0	ppm	BACT	
										Siemens SCC6-5000 CTGs and
										a SST6-5000 ST, or two GE 7FA
TX-0767	LON C. HILL POWER STATION	LON C. HILL, L.P.	10/2/2015		MW	OxCat		ppm	BACT	CTGs and a D-11 ST.
	FGE EAGLE PINES PROJECT	FGE EAGLE PINES, LLC	11/4/2015		MW	OxCat		ppm	BACT	Alstom GT36
	NECHES STATION	APEX TEXAS POWER LLC	3/24/2016		MW	OxCat		ppm	BACT	Siemens or GE
	DECORDOVA STEAM ELECTRIC STATION	DECORDOVA II POWER COMPANY LLC	3/8/2016		MW	OxCat		ppm	BACT	Siemens or GE
	MOUNDSVILLE COMBINED CYCLE POWER PLANT	MOUNDSVILLE POWER, LLC	11/21/2014		MMBtu/hr	OxCat/GCP		ppm	BACT	GE Frame 7FA.04
	MADISON BELL ENERGY CENTER	MADISON BELL PARTNERS LP	8/18/2009		MW	GCP		ppm	BACT	GE PG7121(EA
TX-0819	GAINES COUNTY POWER PLANT	SOUTHWESTERN PUBLIC SERVICE COMPANY	4/28/2017		MW	OxCat/GCP		ppm	BACT	Siemens SGT6-5000F5
MI-0412 MI-0423	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET INDECK NILES. LLC		12/4/2013		MMBtu/hr	OxCat/GCP		ppm	BACT	
MI-0423	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET		1/4/2017 12/5/2016		MMBtu/hr MMBtu/hr	OxCat/GCP OxCat/GCP		ppm	BACT BACT	
IVII-0424	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	HOLLAND BOARD OF PUBLIC WORKS	12/5/2016	554	IVIIVIBtu/nr	UXCat/GCP	4.0	ppm	BACI	GE 7FAS OR 250 MW
TX-0547	NATURAL GAS-FIRED POWER GENERATION FACILITY	LAMAR POWER PARTNERS II LLC	6/22/2009	250	MW	GCP	1.0	ppm	BACT	MITSUBISHI 501GS
TX-0347	VICTORIA POWER STATION	VICTORIA WLE L.P.	12/1/2014		MW	OxCat		ppm	BACT	GE 7FA.04
TX-0710 TX-0712	TRINIDAD GENERATING FACILITY	SOUTHERN POWER COMPANY	11/20/2014		MW	OxCat		ppm	BACT	MHI J model
	COLORADO BEND ENERGY CENTER	COLORADO BEND II POWER, LLC	4/1/2015	1,100	MW	SCR/OxCat		ppm	BACT	GE Model 7HA.02
	ARSENAL HILL POWER PLANT	SOUTHWEST ELECTRIC POWER COMPANY (SWEPCO)	3/20/2008		MMBtu/hr	GCP		ppm	BACT	
CT-0151	KLEEN ENERGY SYSTEMS, LLC	KLEEN ENERGY SYSTEMS, LLC	2/25/2008		MMBtu/hr	OxCat		ppm	BACT	SIEMENS SGT6-5000F
	MOORELAND GENERATING STA	WESTERN FARMERS ELECTRIC COOPERATIVE	7/2/2013		MW	OxCat/GCP		ppm	BACT	Siemens SGT6-5000F5
	MOORELAND GENERATING STA	WESTERN FARMERS ELECTRIC COOPERATIVE	7/2/2013	360		OxCat/GCP		ppm	BACT	Siemens SGT6-5000F5
	ST. JOSEPH ENEGRY CENTER, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2013		MMBtu/hr	None		tpy	BACT	
			PM10	2,500			1 22		1-200	1
FL-0304	CANE ISLAND POWER PARK	FLORIDA MUNICIPAL POWER AGENCY (FMPA	9/8/2008	1,860	MMBtu/hr	Fuel	2.0	GR S/100 SCF	BACT	GE 7241 FA CTG
		FLORIDA POWER & LIGHT	3/9/2016	,	MMBtu/hr	Fuel		GR S/100 SCF	BACT	
			-, 5, 2010	5,550			2.0		1	1

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре	Turbine Model
										Never built. Proposed Model
CA-1192	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011	180	MW	Fuel	8.9	lb/hr	BACT	GE 7241 FA
										Never built. Proposed Model
	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011		MW	Fuel		lb/hr	BACT	GE 7241 FA
	MORRO BAY POWER PLANT	DYNERGY MORRO BAY LLC	9/25/2008		MW	Fuel		lb/hr	BACT	GE Frame 7, Model PG7241
	MORRO BAY POWER PLANT	DYNERGY MORRO BAY LLC	9/25/2008		MW	Fuel		lb/hr	BACT	GE Frame 7, Model PG7241
MD-0046	KEYS ENERGY CENTER	KEYS ENERGY CENTER, LLC	10/31/2014	235	MW	GCP/Fuel	11.0	lb/hr	BACT	SGT6-500FEE
TV 0500		DONIDEDA CADITAL MANIA CENTENT OD INC	8/5/2010	1,350		Fuel	11.1	11- /1	BACT	SGT6-5000F CTGs or four GE
	KING POWER STATION MIDDLESEX ENERGY CENTER, LLC	PONDERA CAPITAL MANAGEMENT GP INC STONEGATE POWER, LLC		,	MW	Fuel Fuel		lb/hr	BACT	Frame 7FA CTGs GE 7HA.02
NJ-0085	MIDDLESEX ENERGY CENTER, LLC	STUNEGATE POWER, LLC	7/19/2016	663	IVI VV	Fuel	11./	id/nr	BACI	
CA-1192	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011	190	MW	Fuel	11.0	lb/hr	BACT	Never built. Proposed Model GE 7241 FA
CA-1192	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	0/21/2011	160		ruei	11.8	юлт	BACT	Never built. Proposed Model
CA-1192	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011	180	MW	Fuel	11.8	lb/hr	BACT	GE 7241 FA
CA-1192	AVENAL ENERGY PROJECT	AVENAL FOWER CENTER LLC	0/21/2011	100		ruei	11.0	10/11	BACT	Mitsubishi M501 GAC units or
04-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	700	MW	Fuel	13.2	lb/hr	BACT	2 Siemens SGT-8000H
	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011		MW	Fuel	13.5		BACT	GE 7FA
	DUKE ENERGY HANGING ROCK ENERGY	DUKE ENERGY HANGING ROCK, LLC	12/18/2012		MW	Fuel		lb/hr	BACT	GE 7FA
011 0350			12/10/2012	1/2		i uci	15.0	10/11	BACT	Siemens SCC6-5000 CTGs and
										a SST6-5000 ST, or two GE 7FA
TX-0767	LON C. HILL POWER STATION	LON C. HILL, L.P.	10/2/2015	195	MW	GCP/Fuel	16.0	lb/hr	BACT	CTGs and a D-11 ST.
17-0707	LON C. HILL FOWER STATION		10/2/2015	155		Geryidei	10.0	15/11	DACI	SGT-8000H VERSION 1.4-
MD-0045	MATTAWOMAN ENERGY CENTER	MATTAWOMAN ENERGY, LLC	11/13/2015	286	MW	GCP/Fuel	17 9	lb/hr	BACT	OPTIMIZED
	ES JOSLIN POWER PLANT	CALHOUN PORT AUTHORITY	9/12/2012		MW	GCP/Fuel	18.0		BACT	GE 7FA
	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016		MW	None		lb/hr	BACT	GE 7HA.02
	NECHES STATION	APEX TEXAS POWER LLC	3/24/2016		MW	GCP/Fuel		lb/hr	BACT	Siemens or GE
	DUKE ENERGY HANGING ROCK ENERGY	DUKE ENERGY HANGING ROCK, LLC	12/18/2012		MW	Fuel	19.9	lb/hr	BACT	GE 7FA
	FGE EAGLE PINES PROJECT	FGE EAGLE PINES, LLC	11/4/2015		MW	None		lb/hr	BACT	Alstom GT36
	CHANNEL ENERGY CENTER LLC	CHANNEL ENERGY CENTER LLC	10/15/2012		MW	GCP/Fuel	27.0		BACT	Siemens 501F
TX-0619	DEER PARK ENERGY CENTER	DEER PARK ENERGY CENTER LLC	9/26/2012	180	MW	GCP/Fuel	27.0	lb/hr	BACT	Siemens/Westinghouse 501F
	THE EMPIRE DISTRICT ELECTRIC COMPANY	THE EMPIRE DISTRICT ELECTRIC COMPANY	7/14/2015		MW	DLN		lb/hr	BACT	
	EAGLE MOUNTAIN STEAM ELECTRIC STATION	EAGLE MOUNTAIN POWER COMPANY LLC	6/18/2015		MW	None	35.5		BACT	Siemens or GE
TX-0789	DECORDOVA STEAM ELECTRIC STATION	DECORDOVA II POWER COMPANY LLC	3/8/2016	231	MW	GCP/Fuel	35.5	lb/hr	BACT	Siemens or GE
	TROUTDALE ENERGY CENTER, LLC	TROUTDALE ENERGY CENTER, LLC	3/5/2014		MMBtu/hr	Fuel	42.3	lb/hr	BACT	Mitsubishi M501-GAC
TX-0730	COLORADO BEND ENERGY CENTER	COLORADO BEND II POWER, LLC	4/1/2015	1,100		GCP	43.0	lb/hr	BACT	GE Model 7HA.02
										Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	5,579	MMBtu/hr	Fuel	0.0018	lb/MMBtu	BACT	2 Siemens SGT-8000H
										Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	5,579	MMBtu/hr	Fuel	0.0020	lb/MMBtu	BACT	2 Siemens SGT-8000H
										Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	6,004	MMBtu/hr	Fuel	0.0023	lb/MMBtu	BACT	2 Siemens SGT-8000H
MI-0423	INDECK NILES, LLC	INDECK NILES, LLC	1/4/2017	8,322	MMBtu/hr	GCP/Fuel/Inlet Air Filter	0.0024	lb/MMBtu	BACT	
VA-0315	WARREN COUNTY POWER PLANT - DOMINION	VIRGINIA ELECTRIC AND POWER COMPANY	12/17/2010	2,996	MMBtu/hr	Fuel	0.0027	lb/MMBtu	BACT	MHI M501 GAC
										GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3,923	MMBtu/hr	Fuel	0.0032	lb/MMBtu	BACT	5000F
										GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3,923	MMBtu/hr	Fuel	0.0033	lb/MMBtu	BACT	5000F
										GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3,923	MMBtu/hr	Fuel	0.0036	lb/MMBtu	BACT	5000F
LA-0254	NINEMILE POINT ELECTRIC GENERATING PLANT	ENTERGY LOUISIANA LLC	8/16/2011	7,146	MMBtu/hr	GCP/Fuel	0.0037	lb/MMBtu	BACT	
										GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3,923	MMBtu/hr	Fuel	0.0037	lb/MMBtu	BACT	5000F
	WOODBRIDGE ENERGY CENTER	CPV SHORE, LLC	7/25/2012	4,692	MMBtu/hr	GCP/Fuel	0.0041	lb/MMBtu	BACT	GE
MI-0406	RENAISSANCE POWER LLC	LS POWER DEVELOPMENT LLC	11/1/2013	2,147	MMBtu/hr	GCP	0.0042	lb/MMBtu	BACT	
	WEST DEPTFORD ENERGY STATION	WEST DEPTFORD ENERGY ASSOCIATES	7/18/2014	2,362	MMBtu/hr	Fuel	0.0042	lb/MMBtu	BACT	Siemens
CA-1212	PALMDALE HYBRID POWER PROJECT	CITY OF PALMDALE	10/18/2011	154	MW	Fuel	0.0048	lb/MMBtu	BACT	
CT-0161				2,639	MW MMBtu/hr MMBtu/hr	Fuel GCP GCP	0.0050	lb/MMBtu lb/MMBtu lb/MMBtu	BACT BACT BACT	

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре	Turbine Model
										GE Energy 7F Series 5 Rapid
MA-0039	SALEM HARBOR STATION REDEVELOPMENT	FOOTPRINT POWER SALEM HARBOR DEVELOPMENT LP	1/30/2014	2,449	MMBtu/hr	None	0.0062	lb/MMBtu	BACT	Response
MI-0410	THETFORD GENERATING STATION	CONSUMERS ENERGY COMPANY	7/25/2013	2,587	MMBtu/hr	Fuel	0.0066	lb/MMBtu	BACT	
MI-0427		FILER CITY STATION LIMITED PARTNERSHIP	11/17/2017	1,935		GCP/Fuel/Inlet Air Filter	0.0066		BACT	
NJ-0082	WEST DEPTFORD ENERGY STATION	WEST DEPTFORD ENERGY ASSOCIATES	7/18/2014		MMBtu/hr	Fuel		lb/MMBtu	BACT	Siemens
		LS POWER DEVELOPMENT LLC	11/1/2013		MMBtu/hr	GCP	0.0073		BACT	
-	CPV ST. CHARLES	CPV MARYLAND, LLC	4/23/2014	725	MW	GCP/Fuel	0.0080		BACT	GE F-class advanced
MI-0405	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013	2,486		GCP	0.0080		BACT	
CO-0073	PUEBLO AIRPORT GENERATING STATION	BLACK HILLS ELECTRIC GENERATION, LLC	7/22/2010		MMBtu/hr	GCP/Fuel	0.0115		BACT	
MI-0412	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	HOLLAND BOARD OF PUBLIC WORKS	12/4/2013		MMBtu/hr	GCP/Fuel	0.0140		BACT	
MI-0424	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET		12/5/2016		MMBtu/hr	GCP/Fuel		lb/MMBtu	BACT	
CT-0161	KILLINGLY ENERGY CENTER	NTE CONNECTICUT, LLC	6/30/2017		MMBtu/hr	GCP	0.0440	lb/MMBtu	BACT	
51 0007			A10 (filterable		N 414/	CCD	2.0	CD 6/100 505	DACT	
			10/14/2012	1,160		GCP		GR S/100 SCF	BACT	GE
NJ-0080 OR-0048	HESS NEWARK ENERGY CENTER	HESS NEWARK ENERGY CENTER, LLC	11/1/2012 12/29/2010	4,595 2,866	MMBtu/hr MMBtu/hr	Fuel	0.0024		BACT	GE
						Fuel			BACT	65
NJ-0080	HESS NEWARK ENERGY CENTER	HESS NEWARK ENERGY CENTER, LLC BERKS HOLLOW ENERGY ASSOC LLC	11/1/2012 12/17/2013	4,595 3,046	MMBtu/hr MMBtu/hr	Fuel None	0.0029		BACT BACT	GE
PA-0296 LA-0313	BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE ST. CHARLES POWER STATION	ENTERGY LOUISIANA, LLC	8/31/2013	3,046	MMBtu/hr		0.0036		BACT	
				- /		GCP/Fuel			-	
LA-0313	ST. CHARLES POWER STATION	ENTERGY LOUISIANA, LLC	8/31/2016	3,625		GCP/Fuel None	0.0048	lb/MMBtu lb/MMBtu	BACT	
CT-0151 AK-0073	KLEEN ENERGY SYSTEMS, LLC INTERNATIONAL STATION POWER PLANT	KLEEN ENERGY SYSTEMS, LLC CHUGACH ELECTRIC ASSOCIATION	2/25/2008	2,142 45			0.0051		BACT BACT	SIEMENS SGT6-5000F
IN-0158	ST. JOSEPH ENEGRY CENTER, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/20/2010		MMBtu/hr	Fuel GCP/Fuel	0.0066		BACT	
			12/3/2012					-,	-	
LA-0136 LA-0308	PLAQUEMINE COGENERATION FACILITY MORGAN CITY POWER PLANT	THE DOW CHEMICAL COMPANY LOUISIANA ENERGY AND POWER AUTHORITY (LEPA)	7/23/2008 9/26/2013		MMBtu/hr MMBtu/hr	Fuel GCP/Fuel	0.0116	lb/MMBtu lb/MMBtu	BACT BACT	GE FRAME 7 FA
LA-0308	MORGAN CITY POWER PLANT	LOUISIANA ENERGY AND POWER AUTHORITY (LEPA)	9/26/2013 PM2.5 (total	607	WIWBtu/nr	GCP/Fuel	0.0198	ID/IVIIVIBTU	BACI	
EL 02E6	OKEECHOBEE CLEAN ENERGY CENTER	FLORIDA POWER & LIGHT	3/9/2016	2 006	MMBtu/hr	Fuel	20	GR S/100 SCF	BACT	GE 7HA.02
FL=0330	OREECHOBEE CLEAN ENERGY CENTER	FLORIDA FOWER & EIGHT	3/9/2010	3,090	IVIIVIBLU/III	Fuel	2.0	GK 3/100 3CF	BACI	SGT6-5000F CTGs or four GE
TX-0590	KING POWER STATION	PONDERA CAPITAL MANAGEMENT GP INC	8/5/2010	1,350	NA14/	Fuel	11.1	lb/hr	BACT	Frame 7FA CTGs
NJ-0085	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016		MW	Fuel		lb/hr	BACT	GE 7HA.02
NJ-0085	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016	005		Fuel	11.7	15/11	BACI	Never built. No turbine
										specified in Application for
CA-1101	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154	MW	Fuel	12.0	lb/hr	BACT	Certification of Project
CA-1151	VICTORVILLE 2 INDIG FOWER FROSECT		5/11/2010	154		Tuer	12.0	10/11	BACI	Never built. No turbine
										specified in Application for
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154	MW	Fuel	12.0	lb/hr	BACT	Certification of Project
	FREEPORT LNG PRETREATMENT FACILITY	FREEPORT LNG DEVELOPMENT LP	7/16/2014		MW	None		lb/hr	BACT	GE 7EA
1/ 00/0			7/10/2014	07		None	15.2	10/11	BACI	Siemens SCC6-5000 CTGs and
										a SST6-5000 ST, or two GE 7FA
TX-0767	LON C. HILL POWER STATION	LON C. HILL, L.P.	10/2/2015	195	MW	GCP/Fuel	16.0	lb/hr	BACT	CTGs and a D-11 ST.
			10/2/2015	155		001/1001	10.0		5/101	
										SIEMENS H-CLASS (SGT-8000H
MD-0045	MATTAWOMAN ENERGY CENTER	MATTAWOMAN ENERGY, LLC	11/13/2015	286	MW	GCP/Fuel	17.9	lb/hr	BACT	VERSION 1.4-OPTIMIZED
			, , ,					-1	-	Never built. No turbine
										specified in Application for
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154	MW	Fuel	18.0	lb/hr	BACT	Certification of Project
								-7	-	Never built. No turbine
										specified in Application for
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154	MW	Fuel	18.0	lb/hr	BACT	Certification of Project
TX-0620	ES JOSLIN POWER PLANT	CALHOUN PORT AUTHORITY	9/12/2012		MW	None		lb/hr	BACT	GE 7FA
	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016		MW	None		lb/hr	BACT	GE 7HA.02
	NECHES STATION	APEX TEXAS POWER LLC	3/24/2016		MW	GCP/Fuel		lb/hr	BACT	Siemens or GE
	FGE EAGLE PINES PROJECT	FGE EAGLE PINES, LLC	11/4/2015		MW	None		lb/hr	BACT	Alstom GT36
TX-0773		WESTERN FARMERS ELECTRIC COOPERATIVE	7/2/2013		MW	GCP/Fuel		lb/hr	BACT	Siemens SGT6-5000F5
0K-0154	MOORELAND GENERATING STA	WESTERN FARIVIERS ELECTRIC COOPERATIVE								
	MOORELAND GENERATING STA MOORELAND GENERATING STA	WESTERN FARMERS ELECTRIC COOPERATIVE		360	MW	GCP/Fuel	22.2	lb/hr	BACT	Siemens SGT6-5000F5
OK-0154			7/2/2013		MW MW	GCP/Fuel GCP/Fuel		lb/hr lb/hr	BACT BACT	Siemens SGT6-5000F5 Siemens 501F
OK-0154 OK-0154	MOORELAND GENERATING STA	WESTERN FARMERS ELECTRIC COOPERATIVE	7/2/2013							
OK-0154 OK-0154	MOORELAND GENERATING STA	WESTERN FARMERS ELECTRIC COOPERATIVE	7/2/2013	180			27.0			Siemens 501F
OK-0154 OK-0154 TX-0618	MOORELAND GENERATING STA CHANNEL ENERGY CENTER LLC	WESTERN FARMERS ELECTRIC COOPERATIVE CHANNEL ENERGY CENTER LLC	7/2/2013 10/15/2012	180 180	MW	GCP/Fuel	27.0	lb/hr	BACT	

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре	Turbine Model
TX-0789	DECORDOVA STEAM ELECTRIC STATION	DECORDOVA II POWER COMPANY LLC	3/8/2016	231	MW	GCP/Fuel	35.5	lb/hr	BACT	Siemens or GE
TX-0730	COLORADO BEND ENERGY CENTER	COLORADO BEND II POWER, LLC	4/1/2015	1,100	MW	GCP	43.0	lb/hr	BACT	GE Model 7HA.02
MI-0423	INDECK NILES, LLC	INDECK NILES, LLC	1/4/2017	8,322	MMBtu/hr	GCP/Fuel/Inlet Air Filter	0.0024	lb/MMBtu	BACT	
VA-0315	WARREN COUNTY POWER PLANT - DOMINION	VIRGINIA ELECTRIC AND POWER COMPANY	12/17/2010	2,996	MMBtu/hr	Fuel	0.0027	lb/MMBtu	BACT	MHI M501 GAC
PA-0296	BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE	BERKS HOLLOW ENERGY ASSOC LLC	12/17/2013	3,046	MMBtu/hr	None	0.0036	lb/MMBtu	BACT	
LA-0254	NINEMILE POINT ELECTRIC GENERATING PLANT	ENTERGY LOUISIANA LLC	8/16/2011	7,146	MMBtu/hr	GCP/Fuel	0.0037	lb/MMBtu	BACT	1
WV-0025	MOUNDSVILLE COMBINED CYCLE POWER PLANT	MOUNDSVILLE POWER, LLC	11/21/2014	2,420	MMBtu/hr	GCP/Fuel/Inlet Air Filter	0.0037	lb/MMBtu	BACT	GE Frame 7FA.04
	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015	2,420		None			BACT	
CT-0158	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015	2,420		None	0.0040	lb/MMBtu	BACT	1
MI-0406	RENAISSANCE POWER LLC	LS POWER DEVELOPMENT LLC	11/1/2013	2,147	MMBtu/hr	GCP	0.0042	lb/MMBtu	BACT	
NJ-0082	WEST DEPTFORD ENERGY STATION	WEST DEPTFORD ENERGY ASSOCIATES	7/18/2014	2,362	MMBtu/hr	Fuel	0.0042	lb/MMBtu	BACT	Siemens
CT-0161	KILLINGLY ENERGY CENTER	NTE CONNECTICUT, LLC	6/30/2017	2,969	MMBtu/hr	GCP	0.0044	lb/MMBtu	BACT	
CA-1212	PALMDALE HYBRID POWER PROJECT	CITY OF PALMDALE	10/18/2011	154	MW	Fuel	0.0048	lb/MMBtu	BACT	
CT-0161	KILLINGLY ENERGY CENTER	NTE CONNECTICUT, LLC	6/30/2017	2,639	MMBtu/hr	GCP	0.0050	lb/MMBtu	BACT	
MI-0405	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013	2,237	MMBtu/hr	GCP	0.0060	lb/MMBtu	BACT	1
										GE Energy 7F Series 5 Rapid
MA-0039	SALEM HARBOR STATION REDEVELOPMENT	FOOTPRINT POWER SALEM HARBOR DEVELOPMENT LP	1/30/2014	2,449	MMBtu/hr	None	0.0062	lb/MMBtu	BACT	Response
	SUMPTER POWER PLANT	WOLVERINE POWER SUPPLY COOPERATIVE INC.	11/17/2011		MW	None		lb/MMBtu	BACT	1
	THETFORD GENERATING STATION	CONSUMERS ENERGY COMPANY	7/25/2013	2,587		Fuel		lb/MMBtu	BACT	1
	FILER CITY STATION	FILER CITY STATION LIMITED PARTNERSHIP	11/17/2017	1,935		GCP/Fuel/Inlet Air Filter		- 1	BACT	1
NJ-0082	WEST DEPTFORD ENERGY STATION	WEST DEPTFORD ENERGY ASSOCIATES	7/18/2014	2,362	MMBtu/hr	Fuel	0.0069	lb/MMBtu	BACT	Siemens
	RENAISSANCE POWER LLC	LS POWER DEVELOPMENT LLC	11/1/2013	2,807		GCP	0.0073	lb/MMBtu	BACT	1
MI-0405	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013	2,486	MMBtu/hr	GCP	0.0080	lb/MMBtu	BACT	-
		HOLLAND BOARD OF PUBLIC WORKS	12/4/2013		MMBtu/hr	GCP/Fuel		lb/MMBtu	BACT	1
		HOLLAND BOARD OF PUBLIC WORKS	12/5/2016		MMBtu/hr	GCP/Fuel		lb/MMBtu	BACT	
			12.5 (filterable							•
			1	- <i>II</i>						GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3.923	MMBtu/hr	Fuel	0.0025	lb/MMBtu	ВАСТ	5000F
	ST. CHARLES POWER STATION	ENTERGY LOUISIANA, LLC	8/31/2016		MMBtu/hr	GCP/Fuel		lb/MMBtu	BACT	
	ST. CHARLES POWER STATION	ENTERGY LOUISIANA, LLC	8/31/2016		MMBtu/hr	GCP/Fuel	0.0048	lb/MMBtu	BACT	
	ST. JOSEPH ENEGRY CENTER, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012		MMBtu/hr	GCP/Fuel	0.0078		BACT	1
	MORGAN CITY POWER PLANT	LOUISIANA ENERGY AND POWER AUTHORITY (LEPA)	9/26/2013		MMBtu/hr	GCP/Fuel		lb/MMBtu	BACT	
		Gre	enhouse Gases							
CT-0158	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015		MMBtu/hr	None	809	lb/MW-hr	BACT	GE HA.01
TX-0761	SR BERTRON ELECTRIC GENERATING STATION	NRG TEXAS POWER	9/15/2015	301	MMBtu/hr	None	825	lb/MW-hr	BACT	GE 7HA, GE7FA, MHI510G, SF5
TX-0762	CEDAR BAYOU ELECTRIC GENERATING STATION	NRG TEXAS POWER	9/15/2015	301	MMBtu/hr	None	825	lb/MW-hr	BACT	GE 7HA, GE7FA, MHI510G, SF5
MD-0046	KEYS ENERGY CENTER	KEYS ENERGY CENTER, LLC	10/31/2014	235	MW	None	869	lb/MW-hr	BACT	SGT6-500FEE
TX-0730	COLORADO BEND ENERGY CENTER	COLORADO BEND II POWER, LLC	4/1/2015	1,100	MW	GCP	879	lb/MW-hr	BACT	GE Model 7HA.02
TX-0632	DEER PARK ENERGY CENTER LLC	CALPIINE CO - DEER PARK ENERGY CENTER(DPEC) LLC	11/29/2012	180	MW	None	920	lb/MW-hr	BACT	Siemens Model FD3
TX-0632	DEER PARK ENERGY CENTER LLC	CALPIINE CO - DEER PARK ENERGY CENTER(DPEC) LLC	11/29/2012	180	MW	None	920	lb/MW-hr	BACT	Siemens Model FD3
TX-0633	CHANNEL ENERGY ENERGY CENTER, LLC	CALPINE CORPORATION-CHANNEL ENERGY CENTER, LLC	11/29/2012	180	MW	None	920	lb/MW-hr	BACT	Siemens Model FD2
TX-0633	CHANNEL ENERGY ENERGY CENTER, LLC	CALPINE CORPORATION-CHANNEL ENERGY CENTER, LLC	11/29/2012	180	MW	None	920	lb/MW-hr	BACT	Siemens Model FD2
										Siemens SGT6-5000F or GE
TX-0664	LON C. HILL POWER STATION	LON C. HILL, LP	10/28/2014	700	MW	None	920	lb/MW-hr	BACT	7FA.04
										GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3,923	MMBtu/hr	None	925	lb/MW-hr	BACT	5000F
										GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3,923	MMBtu/hr	None	925	lb/MW-hr	BACT	5000F
IA-0107	MARSHALLTOWN GENERATING STATION	INTERSTATE POWER AND LIGHT	4/14/2014	2,258	MMBtu/hr	None	951	lb/MW-hr	BACT	Siemens SGT6-5000F
IA-0107	MARSHALLTOWN GENERATING STATION	INTERSTATE POWER AND LIGHT	4/14/2014	2,258	MMBtu/hr	None	951	lb/MW-hr	BACT	Siemens SGT6-5000F
PA-0296	BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE	BERKS HOLLOW ENERGY ASSOC LLC	12/17/2013	3,046	MMBtu/hr	None	1,000	lb/MW-hr	BACT	GE H class
			use Gase - CO2	Equivalents						
MD-0041	CPV ST. CHARLES	CPV MARYLAND, LLC	4/23/2014	725	MW	None	7,109	BTU/KW-HR	BACT	GE F class
CT-0161	KILLINGLY ENERGY CENTER	NTE CONNECTICUT, LLC	6/30/2017	2,969	MMBtu/hr	Fuel	7,273	BTU/KW-HR	BACT	Mitsubishi J Class
IN-0158	ST. JOSEPH ENEGRY CENTER, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012	2,300	MMBtu/hr	GCP	7,646	BTU/KW-HR	BACT	Siemens SGT6-5000F
										Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	6,004	MMBtu/hr	GCP	53.04	lb/MMBtu	BACT	2 Siemens SGT-8000H

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре	Turbine Model
										Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	5,579	MMBtu/hr	GCP	57.07	lb/MMBtu	BACT	2 Siemens SGT-8000H
										Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	5.579	MMBtu/hr	GCP	57.07	lb/MMBtu	BACT	2 Siemens SGT-8000H
MI-0423	INDECK NILES, LLC	INDECK NILES, LLC	1/4/2017		MMBtu/hr	GCP	57.53		BACT	H Class?
	THOMAS C. FERGUSON POWER PLANT	LOWER COLORADO RIVER AUTHORITY	11/10/2011		MMBtu/hr	GCP	87.85		BACT	GE 7FA
DE-0024	GARRISON ENERGY CENTER	GARRISON ENERGY CENTER, LLC/ CALPINE CORPORATION	1/30/2013		MMBtu/hr	Fuel	101.66		BACT	GE 7FA
PA-0278	MOXIE LIBERTY LLC/ASYLUM POWER PL T	MOXIE ENERGY LLC	10/10/2012		MMBtu/hr	GCP	103.12		BACT	F Class
PA-0296	BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE	BERKS HOLLOW ENERGY ASSOC LLC	12/17/2013	,	MMBtu/hr	None	103.50		BACT	GE H class
MI-0427	FILER CITY STATION	FILER CITY STATION LIMITED PARTNERSHIP	11/17/2017		MMBtu/hr	GCP	117.10		BACT	
MI-0412	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET		12/4/2013		MMBtu/hr	GCP	119.67		BACT	
MI-0412	THETFORD GENERATING STATION	CONSUMERS ENERGY COMPANY	7/25/2013		MMBtu/hr	None	122.34		BACT	
MI-0424		HOLLAND BOARD OF PUBLIC WORKS	12/5/2016		MMBtu/hr	GCP	128.71		BACT	
IA-0107	MARSHALLTOWN GENERATING STATION	INTERSTATE POWER AND LIGHT	4/14/2014		MMBtu/hr	None	133.33	lb/MMBtu	BACT	Siemens SGT6-5000F
IA-0107	MARSHALLTOWN GENERATING STATION	INTERSTATE POWER AND LIGHT	4/14/2014	,	MMBtu/hr	None		lb/MMBtu	BACT	Siemens SGT6-5000F
IA-0107	MARSHALLTOWN GENERATING STATION		4/14/2014	2,238	IVIIVIBLU/III	None	155.55	ID/ WIWBLU	BACT	Siemens SGT0-S000F
										Nover built in 2011 prepared
										Never built. In 2011, proposed
										turbines were GE. Currently
										proposed turbines are Siemens
CA-1212	PALMDALE HYBRID POWER PROJECT	CITY OF PALMDALE	10/18/2011		MW	None		lb/MW-hr	BACT	STG6-5000F
WV-0025	MOUNDSVILLE COMBINED CYCLE POWER PLANT	MOUNDSVILLE POWER, LLC	11/21/2014	2,420	MMBtu/hr	Fuel	792	lb/MW-hr	BACT	GE Frame 7FA.04
										GE Energy 7F Series 5 Rapid
MA-0039	SALEM HARBOR STATION REDEVELOPMENT	FOOTPRINT POWER SALEM HARBOR DEVELOPMENT LP	1/30/2014	2,449	MMBtu/hr	None	825	lb/MW-hr	BACT	Response
										Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013		MW	GCP		lb/MW-hr	BACT	2 Siemens SGT-8000H
FL-0356	OKEECHOBEE CLEAN ENERGY CENTER	FLORIDA POWER & LIGHT	3/9/2016	3,096	MMBtu/hr	Fuel	850	lb/MW-hr	BACT	GE 7HA.02
										SGT-8000H VERSION 1.4-
MD-0045	MATTAWOMAN ENERGY CENTER	MATTAWOMAN ENERGY, LLC	11/13/2015		MW	None		lb/MW-hr	BACT	OPTIMIZED
TX-0791	ROCKWOOD ENERGY CENTER	ROCKWOOD ENERGY CENTER, LLC	3/18/2016	1,127		GCP		lb/MW-hr	BACT	GE 7FA.0
TX-0773	FGE EAGLE PINES PROJECT	FGE EAGLE PINES, LLC	11/4/2015	321	MW	GCP/Fuel	886	lb/MW-hr	BACT	Alstom GT36
NJ-0080	HESS NEWARK ENERGY CENTER	HESS NEWARK ENERGY CENTER, LLC	11/1/2012	4,595	MMBtu/hr	GCP	887	lb/MW-hr	BACT	GE
NJ-0085	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016	663	MW	Fuel	888	lb/MW-hr	BACT	GE 7HA.02
NJ-0085	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016	663	MW	Fuel	888	lb/MW-hr	BACT	GE 7HA.02
TX-0748	FGE POWER, FGE TEXAS PROJECT	FGE POWER, LLC	4/28/2014	231	MW	None	889	lb/MW-hr	BACT	Alstom GT24
TX-0791	ROCKWOOD ENERGY CENTER	ROCKWOOD ENERGY CENTER, LLC	3/18/2016	889	MW	GCP	901	lb/MW-hr	BACT	GE 7FA.0
TX-0805	EAGLE MOUNTAIN STEAM ELECTRIC STATION	EAGLE MOUNTAIN POWER COMPANY	7/19/2016	462	MW	GCP	917	lb/MW-hr	BACT	
TX-0788	NECHES STATION	APEX TEXAS POWER LLC	3/24/2016	231	MW	GCP	924	lb/MW-hr	BACT	Siemens or GE
NJ-0079	WOODBRIDGE ENERGY CENTER	CPV SHORE, LLC	7/25/2012	4,692	MMBtu/hr	GCP	925	lb/MW-hr	BACT	GE
TX-0791	ROCKWOOD ENERGY CENTER	ROCKWOOD ENERGY CENTER, LLC	3/18/2016	889	MW	GCP	929	lb/MW-hr	BACT	MHI 501GAC
TX-0791	ROCKWOOD ENERGY CENTER	ROCKWOOD ENERGY CENTER, LLC	3/18/2016	889	MW	GCP	929	lb/MW-hr	BACT	MHI 501GAC
TX-0743	AUSTIN ENERGY, SAND HILL ENERGY CENTER	CITY OF AUSTIN	9/29/2014		MW	None	930		BACT	GE 7FA.04
TX-0787	TRINIDAD GENERATING FACILITY	SOUTHERN POWER	3/1/2016		MW	GCP	937		BACT	
TX-0791	ROCKWOOD ENERGY CENTER	ROCKWOOD ENERGY CENTER, LLC	3/18/2016		MW	GCP	944		BACT	GE 7FA.0
NJ-0082	WEST DEPTFORD ENERGY STATION	WEST DEPTFORD ENERGY ASSOCIATES	7/18/2014		MMBtu/hr	GCP/Fuel	947	.,	BACT	Siemens
MI-0402	SUMPTER POWER PLANT	WOLVERINE POWER SUPPLY COOPERATIVE INC.	11/17/2011	,	MW	None	954	-1	BACT	Sichiens
TX-0819	GAINES COUNTY POWER PLANT	SOUTHWESTERN PUBLIC SERVICE COMPANY	4/28/2017		MW	Fuel	960		BACT	Siemens SGT6-5000F5
TX-0791	ROCKWOOD ENERGY CENTER	ROCKWOOD ENERGY CENTER, LLC	3/18/2016		MW	GCP	965		BACT	Siemens SCC6-8000H(1.4
TX-0810	DECORDOVA STEAM ELECTRIC STATION (DECORDOVA ST		10/4/2016		MW	GCP/Fuel		lb/MW-hr	BACT	GE 7FA
MI-0405	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013		MMBtu/hr	GCP/Fuel	995		BACT	GE /1A
MI-0405	RENAISSANCE POWER LLC	LS POWER DEVELOPMENT LLC	4/23/2013			GCP/Fuel	1,000		BACT	
		LS POWER DEVELOPMENT LLC	11/1/2013		MMBtu/hr MMBtu/hr	GCP			BACT	1
MI-0406	RENAISSANCE POWER LLC			,		GCP	1,000			Sigmons SCT6 E000EE
OK-0154	MOORELAND GENERATING STA	WESTERN FARMERS ELECTRIC COOPERATIVE	7/2/2013		MW		1,000		BACT	Siemens SGT6-5000F5
OK-0154	MOORELAND GENERATING STA	WESTERN FARMERS ELECTRIC COOPERATIVE	7/2/2013		MW	GCP	1,000		BACT	Siemens SGT6-5000F5
OR-0050	TROUTDALE ENERGY CENTER, LLC	TROUTDALE ENERGY CENTER, LLC	3/5/2014		MMBtu/hr	GCP/Fuel	1,000		BACT	Mitsubishi M501-GAC
MI-0405	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013		MMBtu/hr	GCP/Fuel	1,071		BACT	
TN-0162	JOHNSONVILLE COGENERATION	TENNESSEE VALLEY AUTHORITY	4/19/2016		MMBtu/hr	OxCat/GCP	1,800		BACT	
TX-0766	GOLDEN PASS LNG EXPORT TERMINAL	GOLDEN PASS PRODUCTS, LLC	9/11/2015		MW	GCP	614,533	tpy	BACT	GE Frame 7
KS-0029	THE EMPIRE DISTRICT ELECTRIC COMPANY	THE EMPIRE DISTRICT ELECTRIC COMPANY	7/14/2015		MW	None	1,022,756	tpy	BACT	
			Sulfuric Acid N							1
TX-0714	S R BERTRON ELECTRIC GENERATING STATION	NRG TEXAS POWER LLC	12/19/2014	240	MW	None	0.50	GR S/100 SCF	BACT	Siemens Model F5 (SF5

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре	Turbine Model
IN-0158	ST. JOSEPH ENEGRY CENTER, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012	2,300	MMBtu/hr	Fuel	0.75	GR S/100 SCF	BACT	
TX-0788	NECHES STATION	APEX TEXAS POWER LLC	3/24/2016	231	MW	GCP/Fuel	1.00	GR S/100 SCF	BACT	Siemens or GE
FL-0356	OKEECHOBEE CLEAN ENERGY CENTER	FLORIDA POWER & LIGHT	3/9/2016	3,096	MMBtu/hr	Fuel	2.00	GR S/100 SCF	BACT	GE 7HA.02
TX-0730	COLORADO BEND ENERGY CENTER	COLORADO BEND II POWER, LLC	4/1/2015	1,100	MW	GCP	2.00	GR S/100 SCF	BACT	GE Model 7HA.02
TX-0789	DECORDOVA STEAM ELECTRIC STATION	DECORDOVA II POWER COMPANY LLC	3/8/2016	231	MW	GCP/Fuel	5.00	GR S/100 SCF	BACT	Siemens or GE
OH-0356	DUKE ENERGY HANGING ROCK ENERGY	DUKE ENERGY HANGING ROCK, LLC	12/18/2012	172	MW	Fuel	0.18	lb/hr	BACT	GE 7FA
OH-0356	DUKE ENERGY HANGING ROCK ENERGY	DUKE ENERGY HANGING ROCK, LLC	12/18/2012	172	MW	Fuel	0.23	lb/hr	BACT	GE 7FA
MD-0041	CPV ST. CHARLES	CPV MARYLAND, LLC	4/23/2014	725	MW	Fuel	2.20	lb/hr	BACT	GE F class
TX-0773	FGE EAGLE PINES PROJECT	FGE EAGLE PINES, LLC	11/4/2015	321	MW	Fuel	2.37	lb/hr	BACT	Alstom GT36
NJ-0085	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016	663	MW	Fuel	3.61	lb/hr	BACT	GE 7HA.02
NJ-0085	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016	663	MW	Fuel	4.26	lb/hr	BACT	GE 7HA.02
										SGT-8000H VERSION 1.4-
MD-0045	MATTAWOMAN ENERGY CENTER	MATTAWOMAN ENERGY, LLC	11/13/2015	286	MW	None	4.60	lb/hr	BACT	OPTIMIZED
TX-0600	THOMAS C. FERGUSON POWER PLANT	LOWER COLORADO RIVER AUTHORITY	9/1/2011	390	MW	Fuel	13.68	lb/hr	BACT	GE 7FA
TX-0751	EAGLE MOUNTAIN STEAM ELECTRIC STATION	EAGLE MOUNTAIN POWER COMPANY LLC	6/18/2015	210	MW	None	15.56	lb/hr	BACT	Siemens or GE
VA-0315	WARREN COUNTY POWER PLANT - DOMINION	VIRGINIA ELECTRIC AND POWER COMPANY	12/17/2010	2,996	MMBtu/hr	Fuel	0.00030	lb/MMBtu	BACT	MHI M501 GAC
LA-0313	ST. CHARLES POWER STATION	ENTERGY LOUISIANA, LLC	8/31/2016	3,625	MMBtu/hr	Fuel	0.00033	lb/MMBtu	BACT	
LA-0313	ST. CHARLES POWER STATION	ENTERGY LOUISIANA, LLC	8/31/2016	3,625	MMBtu/hr	Fuel	0.00033	lb/MMBtu	BACT	
CT-0161	KILLINGLY ENERGY CENTER	NTE CONNECTICUT, LLC	6/30/2017	2,969	MMBtu/hr	Fuel	0.00050	lb/MMBtu	BACT	
MI-0423	INDECK NILES, LLC	INDECK NILES, LLC	1/4/2017		MMBtu/hr	GCP/Fuel	0.00055	lb/MMBtu	BACT	
				,						GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3,923	MMBtu/hr	Fuel	0.00070	lb/MMBtu	BACT	5000F
NY-0104	CPV VALLEY ENERGY CENTER	CPV VALLEY LLC	8/1/2013	2,234	MMBtu/hr	Fuel	0.00070	lb/MMBtu	BACT	
				·						GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3,923	MMBtu/hr	Fuel	0.00071	lb/MMBtu	BACT	5000F
			0,1,2021	0,010						GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3 923	MMBtu/hr	Fuel	0 00071	lb/MMBtu	BACT	5000F
10 0001			0,7,2011	0,020		140	0.00071	10,1111010	5,101	GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3 923	MMBtu/hr	Fuel	0.00075	lb/MMBtu	BACT	5000F
	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015		MMBtu/hr	None		lb/MMBtu	BACT	50001
	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015	,	MMBtu/hr	Fuel	0.00087	lb/MMBtu	BACT	
	ARSENAL HILL POWER PLANT	SOUTHWEST ELECTRIC POWER COMPANY (SWEPCO)	3/20/2008		MMBtu/hr	SCR/Fuel	0.00088	lb/MMBtu	BACT	
DIGLET			5/20/2000	2,110	initio cuy ini	bergraer	0.00000	10,1111010	5,101	GE Energy 7F Series 5 Rapid
MA-0039	SALEM HARBOR STATION REDEVELOPMENT	FOOTPRINT POWER SALEM HARBOR DEVELOPMENT LP	1/30/2014	2 449	MMBtu/hr	None	0.00100	lb/MMBtu	BACT	Response
IA-0107	MARSHALLTOWN GENERATING STATION	INTERSTATE POWER AND LIGHT	4/14/2014		MMBtu/hr	None	0.00320	lb/MMBtu	BACT	Siemens SGT6-5000F
IA-0107	MARSHALLTOWN GENERATING STATION	INTERSTATE POWER AND LIGHT	4/14/2014		MMBtu/hr	None	0.00320		BACT	
DE-0024	GARRISON ENERGY CENTER	GARRISON ENERGY CENTER, LLC/ CALPINE CORPORATION	1/30/2013	,	MMBtu/hr	None	0.01075	lb/MMBtu	BACT	
DE 0024	GARRISON ENERGY CENTER	GARRISON ENERGY CENTER, EEG/ CAEI INE CONFORTION	PM10	2,200	www.bcu/m	None	0.01075	15/1111510	BACT	
FL-0304	CANE ISLAND POWER PARK	FLORIDA MUNICIPAL POWER AGENCY (FMPA	9/8/2008	1.860	MMBtu/hr	Fuel	2.0	GR S/100 SCF	BACT	GE 7241 FA CTG
FL-0356	OKEECHOBEE CLEAN ENERGY CENTER	FLORIDA POWER & LIGHT	3/9/2016		MMBtu/hr	Fuel		GR S/100 SCF	BACT	
			0,0,2010	3,030	initio cuy ini	140	2.0	011 0/ 200 00.	5,101	Never built. Proposed Model
CA-1192	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011	180	MW	Fuel	8.9	lb/hr	BACT	GE 7241 FA
0,11102			0/21/2011	100		140	0.5		5,101	Never built. Proposed Model
CA-1192	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011	180	MW	Fuel	89	lb/hr	BACT	GE 7241 FA
CA-1192	MORRO BAY POWER PLANT	DYNERGY MORRO BAY LLC	9/25/2008		MW	Fuel	11.0		BACT	GE Frame 7, Model PG7241
CA-1198	MORRO BAY POWER PLANT	DYNERGY MORRO BAY LLC	9/25/2008		MW	Fuel	-	lb/hr	BACT	GE Frame 7, Model PG7241 GE Frame 7, Model PG7241
	KEYS ENERGY CENTER	KEYS ENERGY CENTER, LLC	10/31/2014		MW	GCP/Fuel	11.0		BACT	SGT6-500FEE
1110 0040			10/01/2014	200		001/1001	11.0		5.101	SGT6-5000F CTGs or four GE
TX-0590	KING POWER STATION	PONDERA CAPITAL MANAGEMENT GP INC	8/5/2010	1,350	MW	Fuel	11 1	lb/hr	BACT	Frame 7FA CTGs
	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016		MW	Fuel	11.1	lb/hr	BACT	GE 7HA.02
10.0003			,,13,2010	005		1 401	11./	~/ ***	SACI	Never built. Proposed Model
CA-1102	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011	120	MW	Fuel	11 9	lb/hr	BACT	GE 7241 FA
CA-1192			0/21/2011	100		1 461	11.0	15/11	UNCI	Never built. Proposed Model
CA-1192	AVENAL ENERGY PROJECT	AVENAL POWER CENTER LLC	6/21/2011	100	MW	Fuel	11.0	lb/hr	BACT	GE 7241 FA
CA-1192			0/21/2011	180	IVIVV	ruei	11.8	וווקטו	DACI	GE 7241 FA Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER		6/18/2013	700	MW	Fuel	12.2	lh/hr	BACT	2 Siemens SGT-8000H
	COLUSA GENERATING STATION	ARCADIS, US, INC. PACIFIC GAS & ELECTRIC COMPANY	3/11/2011		MW	Fuel		lb/hr lb/hr	BACT	GE 7FA
					MW					GE 7FA GE 7FA
UH-0356	DUKE ENERGY HANGING ROCK ENERGY	DUKE ENERGY HANGING ROCK, LLC	12/18/2012	1/2	IVIVV	Fuel	15.0	lb/hr	BACT	GE /FA

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Emission Limit	t Units	Туре	Turbine Model
			. crime Date	Bubat	0	controlo	2111001011 21111	0	.,,,,,	Siemens SCC6-5000 CTGs and
										a SST6-5000 ST, or two GE 7FA
TX-0767	LON C. HILL POWER STATION	LON C. HILL, L.P.	10/2/2015	195	MW	GCP/Fuel	16.0	lb/hr	BACT	CTGs and a D-11 ST.
11 0/0/			10/2/2015	155		Geryraei	10.0	15/11	brei	SGT-8000H VERSION 1.4-
MD-0045	MATTAWOMAN ENERGY CENTER	MATTAWOMAN ENERGY, LLC	11/13/2015	286	MW	GCP/Fuel	17.9	lb/hr	BACT	OPTIMIZED
	ES JOSLIN POWER PLANT	CALHOUN PORT AUTHORITY	9/12/2012		MW	GCP/Fuel		lb/hr	BACT	GE 7FA
	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016		MW	None		lb/hr	BACT	GE 7HA.02
	NECHES STATION	APEX TEXAS POWER LLC	3/24/2016		MW	GCP/Fuel		lb/hr	BACT	Siemens or GE
OH-0356	DUKE ENERGY HANGING ROCK ENERGY	DUKE ENERGY HANGING ROCK, LLC	12/18/2012		MW	Fuel		lb/hr	BACT	GE 7FA
TX-0773	FGE EAGLE PINES PROJECT	FGE EAGLE PINES, LLC	11/4/2015		MW	None		lb/hr	BACT	Alstom GT36
TX-0773	CHANNEL ENERGY CENTER LLC	CHANNEL ENERGY CENTER LLC	10/15/2012		MW	GCP/Fuel		lb/hr	BACT	Siemens 501F
11/ 0010			10/15/2012	100		Geryraei	27.0	10/111	brei	Sichiens Soll
TX-0619	DEER PARK ENERGY CENTER	DEER PARK ENERGY CENTER LLC	9/26/2012	180	MW	GCP/Fuel	27.0	lb/hr	BACT	Siemens/Westinghouse 501F
KS-0029	THE EMPIRE DISTRICT ELECTRIC COMPANY	THE EMPIRE DISTRICT ELECTRIC COMPANY	7/14/2015		MW	DLN		lb/hr	BACT	Siemens/ Westinghouse 5011
TX-0751	EAGLE MOUNTAIN STEAM ELECTRIC STATION	EAGLE MOUNTAIN POWER COMPANY LLC	6/18/2015		MW	None		lb/hr	BACT	Siemens or GE
TX-0731 TX-0789	DECORDOVA STEAM ELECTRIC STATION	DECORDOVA II POWER COMPANY LLC	3/8/2015		MW	GCP/Fuel		lb/hr	BACT	Siemens or GE
OR-0050	TROUTDALE ENERGY CENTER, LLC	TROUTDALE ENERGY CENTER, LLC	3/5/2010		MMBtu/hr	Fuel		lb/hr	BACT	Mitsubishi M501-GAC
	COLORADO BEND ENERGY CENTER	COLORADO BEND II POWER, LLC	4/1/2015	1,100		GCP		lb/hr	BACT	GE Model 7HA.02
11-0730	COEORADO BEND ENERGI CENTER	COEORADO BEND II FOWER, EEC	4/1/2013	1,100		GCF	43.0	ID/11	BACI	Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	F F70	MMBtu/hr	Fuel	0.0018	lb/MMBtu	BACT	2 Siemens SGT-8000H
08-0552	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	0/18/2013	5,579	IVIIVIBLU/III	ruei	0.0018	ID/ WIWBLU	BACI	
011 0353	ODECON CLEAN ENERCY CENTER		C/10/2012	F F70	N 40 4 D to . /b	E v al	0.0000		DACT	Mitsubishi M501 GAC units or
0H-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	5,579	MMBtu/hr	Fuel	0.0020	lb/MMBtu	BACT	2 Siemens SGT-8000H
011 0050			c /4 0 /2 0 4 2	c			0.0000		B.4.67	Mitsubishi M501 GAC units or
	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013		MMBtu/hr	Fuel		lb/MMBtu	BACT	2 Siemens SGT-8000H
	INDECK NILES, LLC	INDECK NILES, LLC	1/4/2017			GCP/Fuel/Inlet Air Filter		lb/MMBtu	BACT	
VA-0315	WARREN COUNTY POWER PLANT - DOMINION	VIRGINIA ELECTRIC AND POWER COMPANY	12/17/2010	2,996	MMBtu/hr	Fuel	0.0027	lb/MMBtu	BACT	MHI M501 GAC
										GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3,923	MMBtu/hr	Fuel	0.0032	lb/MMBtu	BACT	5000F
										GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3,923	MMBtu/hr	Fuel	0.0033	lb/MMBtu	BACT	5000F
										GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014		MMBtu/hr	Fuel		lb/MMBtu	BACT	5000F
LA-0254	NINEMILE POINT ELECTRIC GENERATING PLANT	ENTERGY LOUISIANA LLC	8/16/2011	7,146	MMBtu/hr	GCP/Fuel	0.0037	lb/MMBtu	BACT	
										GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014		MMBtu/hr	Fuel		lb/MMBtu	BACT	5000F
	WOODBRIDGE ENERGY CENTER	CPV SHORE, LLC	7/25/2012		MMBtu/hr	GCP/Fuel		lb/MMBtu	BACT	GE
MI-0406	RENAISSANCE POWER LLC	LS POWER DEVELOPMENT LLC	11/1/2013		MMBtu/hr	GCP		lb/MMBtu	BACT	
NJ-0082	WEST DEPTFORD ENERGY STATION	WEST DEPTFORD ENERGY ASSOCIATES	7/18/2014		MMBtu/hr	Fuel		lb/MMBtu	BACT	Siemens
CA-1212	PALMDALE HYBRID POWER PROJECT	CITY OF PALMDALE	10/18/2011		MW	Fuel		lb/MMBtu	BACT	
CT-0161	KILLINGLY ENERGY CENTER	NTE CONNECTICUT, LLC	6/30/2017		MMBtu/hr	GCP		lb/MMBtu	BACT	
MI-0405	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013	2,237	MMBtu/hr	GCP	0.0060	lb/MMBtu	BACT	
										GE Energy 7F Series 5 Rapid
	SALEM HARBOR STATION REDEVELOPMENT	FOOTPRINT POWER SALEM HARBOR DEVELOPMENT LP	1/30/2014		MMBtu/hr	None		lb/MMBtu	BACT	Response
	THETFORD GENERATING STATION	CONSUMERS ENERGY COMPANY	7/25/2013		MMBtu/hr	Fuel		lb/MMBtu	BACT	
MI-0427	FILER CITY STATION	FILER CITY STATION LIMITED PARTNERSHIP	11/17/2017	1,935	MMBtu/hr	GCP/Fuel/Inlet Air Filter	0.0066	lb/MMBtu	BACT	
NJ-0082	WEST DEPTFORD ENERGY STATION	WEST DEPTFORD ENERGY ASSOCIATES	7/18/2014		MMBtu/hr	Fuel	0.0069	lb/MMBtu	BACT	Siemens
MI-0406	RENAISSANCE POWER LLC	LS POWER DEVELOPMENT LLC	11/1/2013	2,807	MMBtu/hr	GCP		lb/MMBtu	BACT	
MD-0041	CPV ST. CHARLES	CPV MARYLAND, LLC	4/23/2014	725	MW	GCP/Fuel	0.0080	lb/MMBtu	BACT	GE F-class advanced
MI-0405	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013	2,486	MMBtu/hr	GCP	0.0080	lb/MMBtu	BACT	
CO-0073	PUEBLO AIRPORT GENERATING STATION	BLACK HILLS ELECTRIC GENERATION, LLC	7/22/2010	373	MMBtu/hr	GCP/Fuel	0.0115	lb/MMBtu	BACT	
MI-0412	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	HOLLAND BOARD OF PUBLIC WORKS	12/4/2013	647	MMBtu/hr	GCP/Fuel	0.0140	lb/MMBtu	BACT	
MI-0424	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	HOLLAND BOARD OF PUBLIC WORKS	12/5/2016	554	MMBtu/hr	GCP/Fuel	0.0140	lb/MMBtu	BACT	
CT-0161	KILLINGLY ENERGY CENTER	NTE CONNECTICUT, LLC	6/30/2017		MMBtu/hr	GCP		lb/MMBtu	BACT	
	•	,	110 (filterable	,					•	
FL-0337	POLK POWER STATION	TAMPA ELECTRIC COMPANY	10/14/2012	1,160	MW	GCP	2.0	GR S/100 SCF	BACT	
NJ-0080	HESS NEWARK ENERGY CENTER	HESS NEWARK ENERGY CENTER, LLC	11/1/2012		MMBtu/hr	Fuel		lb/MMBtu	BACT	GE
OR-0048	CARTY PLANT	PORTLAND GENERAL ELECTRIC	12/29/2010		MMBtu/hr	Fuel		lb/MMBtu	BACT	
NJ-0080	HESS NEWARK ENERGY CENTER	HESS NEWARK ENERGY CENTER, LLC	11/1/2012		MMBtu/hr	Fuel		lb/MMBtu	BACT	GE
PA-0296	BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE	BERKS HOLLOW ENERGY ASSOC LLC	12/17/2013		MMBtu/hr	None		lb/MMBtu	BACT	<u> </u>
	ST. CHARLES POWER STATION	ENTERGY LOUISIANA, LLC	8/31/2016		MMBtu/hr	GCP/Fuel		lb/MMBtu	BACT	1
2.3313			0,01/2010	5,025		00.71401	0.0040			1

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре	Turbine Model
LA-0313	ST. CHARLES POWER STATION	ENTERGY LOUISIANA, LLC	8/31/2016	3,625		GCP/Fuel	0.0048		BACT	
CT-0151	KLEEN ENERGY SYSTEMS, LLC	KLEEN ENERGY SYSTEMS, LLC	2/25/2008	2,142	MMBtu/hr	None	0.0051	lb/MMBtu	BACT	SIEMENS SGT6-5000F
AK-0073	INTERNATIONAL STATION POWER PLANT	CHUGACH ELECTRIC ASSOCIATION	12/20/2010	45		Fuel	0.0066	lb/MMBtu	BACT	
IN-0158	ST. JOSEPH ENEGRY CENTER, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012		MMBtu/hr	GCP/Fuel	0.0078	lb/MMBtu	BACT	
LA-0136	PLAQUEMINE COGENERATION FACILITY	THE DOW CHEMICAL COMPANY	7/23/2008		MMBtu/hr	Fuel		lb/MMBtu	BACT	GE FRAME 7 FA
	MORGAN CITY POWER PLANT	LOUISIANA ENERGY AND POWER AUTHORITY (LEPA)	9/26/2013	,	MMBtu/hr	GCP/Fuel		lb/MMBtu	BACT	
			PM2.5 (total)					1	
FL-0356	OKEECHOBEE CLEAN ENERGY CENTER	FLORIDA POWER & LIGHT	3/9/2016	3.096	MMBtu/hr	Fuel	2.0	GR S/100 SCF	BACT	GE 7HA.02
			-,-,	-,						SGT6-5000F CTGs or four GE
TX-0590	KING POWER STATION	PONDERA CAPITAL MANAGEMENT GP INC	8/5/2010	1,350	MW	Fuel	11.1	lb/hr	BACT	Frame 7FA CTGs
	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016		MW	Fuel	11.7		BACT	GE 7HA.02
			1 - 1							Never built. No turbine
										specified in Application for
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154	MW	Fuel	12.0	lb/hr	BACT	Certification of Project
			-, ,	-	1				-	Never built. No turbine
										specified in Application for
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154	MW	Fuel	12.0	lb/hr	BACT	Certification of Project
TX-0678	FREEPORT LNG PRETREATMENT FACILITY	FREEPORT LNG DEVELOPMENT LP	7/16/2014		MW	None	15.2		BACT	GE 7EA
			.,,							Siemens SCC6-5000 CTGs and
										a SST6-5000 ST, or two GE 7FA
TX-0767	LON C. HILL POWER STATION	LON C. HILL, L.P.	10/2/2015	195	MW	GCP/Fuel	16.0	lb/hr	BACT	CTGs and a D-11 ST.
										SIEMENS H-CLASS (SGT-8000H
MD-0045	MATTAWOMAN ENERGY CENTER	MATTAWOMAN ENERGY, LLC	11/13/2015	286	MW	GCP/Fuel	17.9	lb/hr	BACT	VERSION 1.4-OPTIMIZED
1110 0010			11, 10, 2010	200		001/1001	17.05	,	5,101	Never built. No turbine
										specified in Application for
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154	MW	Fuel	18.0	lb/hr	BACT	Certification of Project
			0,, _0_0							Never built. No turbine
										specified in Application for
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154	MW	Fuel	18.0	lb/hr	BACT	Certification of Project
TX-0620	ES JOSLIN POWER PLANT	CALHOUN PORT AUTHORITY	9/12/2012		MW	None	18.0		BACT	GE 7FA
NJ-0085	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016		MW	None	18.3		BACT	GE 7HA.02
TX-0788	NECHES STATION	APEX TEXAS POWER LLC	3/24/2016		MW	GCP/Fuel	19.4		BACT	Siemens or GE
TX-0773	FGE EAGLE PINES PROJECT	FGE EAGLE PINES, LLC	11/4/2015		MW	None	21.4		BACT	Alstom GT36
OK-0154	MOORELAND GENERATING STA	WESTERN FARMERS ELECTRIC COOPERATIVE	7/2/2013		MW	GCP/Fuel	22.1		BACT	Siemens SGT6-5000F5
OK-0154	MOORELAND GENERATING STA	WESTERN FARMERS ELECTRIC COOPERATIVE	7/2/2013		MW	GCP/Fuel	22.2		BACT	Siemens SGT6-5000F5
TX-0618	CHANNEL ENERGY CENTER LLC	CHANNEL ENERGY CENTER LLC	10/15/2012		MW	GCP/Fuel	27.0		BACT	Siemens 501F
							-		-	
TX-0619	DEER PARK ENERGY CENTER	DEER PARK ENERGY CENTER LLC	9/26/2012	180	MW	None	27.0	lb/hr	BACT	Siemens/Westinghouse 501F
TX-0600	THOMAS C. FERGUSON POWER PLANT	LOWER COLORADO RIVER AUTHORITY	9/1/2011	390	MW	Fuel	33.4	lb/hr	BACT	GE 7FA
TX-0751	EAGLE MOUNTAIN STEAM ELECTRIC STATION	EAGLE MOUNTAIN POWER COMPANY LLC	6/18/2015	210	MW	None	35.5	lb/hr	BACT	Siemens or GE
TX-0789	DECORDOVA STEAM ELECTRIC STATION	DECORDOVA II POWER COMPANY LLC	3/8/2016	231	MW	GCP/Fuel	35.5	lb/hr	BACT	Siemens or GE
TX-0730	COLORADO BEND ENERGY CENTER	COLORADO BEND II POWER, LLC	4/1/2015	1,100	MW	GCP	43.0	lb/hr	BACT	GE Model 7HA.02
MI-0423	INDECK NILES, LLC	INDECK NILES, LLC	1/4/2017	8,322	MMBtu/hr	GCP/Fuel/Inlet Air Filter	0.0024	lb/MMBtu	BACT	
VA-0315	WARREN COUNTY POWER PLANT - DOMINION	VIRGINIA ELECTRIC AND POWER COMPANY	12/17/2010	2,996	MMBtu/hr	Fuel	0.0027	lb/MMBtu	BACT	MHI M501 GAC
PA-0296	BERKS HOLLOW ENERGY ASSOC LLC/ONTELAUNEE	BERKS HOLLOW ENERGY ASSOC LLC	12/17/2013	3,046	MMBtu/hr	None	0.0036	lb/MMBtu	BACT	
LA-0254	NINEMILE POINT ELECTRIC GENERATING PLANT	ENTERGY LOUISIANA LLC	8/16/2011	7,146	MMBtu/hr	GCP/Fuel	0.0037	lb/MMBtu	BACT	
WV-0025	MOUNDSVILLE COMBINED CYCLE POWER PLANT	MOUNDSVILLE POWER, LLC	11/21/2014	2,420	MMBtu/hr	GCP/Fuel/Inlet Air Filter	0.0037	lb/MMBtu	BACT	GE Frame 7FA.04
CT-0157	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015	2,420	MMBtu/hr	None	0.0040	lb/MMBtu	BACT	
CT-0158	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015	2,420	MMBtu/hr	None	0.0040	lb/MMBtu	BACT	
MI-0406	RENAISSANCE POWER LLC	LS POWER DEVELOPMENT LLC	11/1/2013	2,147	MMBtu/hr	GCP	0.0042	lb/MMBtu	BACT	
NJ-0082	WEST DEPTFORD ENERGY STATION	WEST DEPTFORD ENERGY ASSOCIATES	7/18/2014	2,362	MMBtu/hr	Fuel	0.0042	lb/MMBtu	BACT	Siemens
CT-0161	KILLINGLY ENERGY CENTER	NTE CONNECTICUT, LLC	6/30/2017	2,969	MMBtu/hr	GCP	0.0044	lb/MMBtu	BACT	
CA-1212	PALMDALE HYBRID POWER PROJECT	CITY OF PALMDALE	10/18/2011	154	MW	Fuel	0.0048	lb/MMBtu	BACT	
CT-0161	KILLINGLY ENERGY CENTER	NTE CONNECTICUT, LLC	6/30/2017	2,639	MMBtu/hr	GCP	0.0050	lb/MMBtu	BACT	
		MIDLAND COGENERATION VENTURE	4/23/2013	2,237	MMBtu/hr	GCP	0.0060	lb/MMBtu	BACT	
MI-0405	MIDLAND COGENERATION VENTURE	WIDEAUD COGENERATION VENTONE								
MI-0405	MIDLAND COGENERATION VENTURE									GE Energy 7F Series 5 Rapid
MI-0405 MA-0039	MIDLAND COGENERATION VENTURE SALEM HARBOR STATION REDEVELOPMENT	FOOTPRINT POWER SALEM HARBOR DEVELOPMENT LP	1/30/2014	2,449	MMBtu/hr	None	0.0062	lb/MMBtu	BACT	GE Energy 7F Series 5 Rapid Response
			1/30/2014 11/17/2011	,	MMBtu/hr MW	None None	0.0062		BACT BACT	

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре	Turbine Model
MI-0427	FILER CITY STATION	FILER CITY STATION LIMITED PARTNERSHIP	11/17/2017	1,935	MMBtu/hr	GCP/Fuel/Inlet Air Filter	0.0066	lb/MMBtu	BACT	
NJ-0082	WEST DEPTFORD ENERGY STATION	WEST DEPTFORD ENERGY ASSOCIATES	7/18/2014	2,362	MMBtu/hr	Fuel	0.0069	lb/MMBtu	BACT	Siemens
MI-0406	RENAISSANCE POWER LLC	LS POWER DEVELOPMENT LLC	11/1/2013	2,807	MMBtu/hr	GCP	0.0073	lb/MMBtu	BACT	
MI-0405	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013	2,486	MMBtu/hr	GCP	0.0080	lb/MMBtu	BACT	
MI-0412	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	HOLLAND BOARD OF PUBLIC WORKS	12/4/2013	647	MMBtu/hr	GCP/Fuel	0.0140	lb/MMBtu	BACT	
MI-0424	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	HOLLAND BOARD OF PUBLIC WORKS	12/5/2016	554	MMBtu/hr	GCP/Fuel	0.0140	lb/MMBtu	BACT	
		PN	12.5 (filterable	only)						
										GE7FA.05 OR Siemens SGT6
NJ-0081	PSEG FOSSIL LLC SEWAREN GENERATING STATION	PSEG FOSSIL LLC	3/7/2014	3,923	MMBtu/hr	Fuel	0.0025	lb/MMBtu	BACT	5000F
LA-0313	ST. CHARLES POWER STATION	ENTERGY LOUISIANA, LLC	8/31/2016	3,625	MMBtu/hr	GCP/Fuel	0.0048	lb/MMBtu	BACT	
LA-0313	ST. CHARLES POWER STATION	ENTERGY LOUISIANA, LLC	8/31/2016	3,625	MMBtu/hr	GCP/Fuel	0.0048	lb/MMBtu	BACT	
IN-0158	ST. JOSEPH ENEGRY CENTER, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012	2,300	MMBtu/hr	GCP/Fuel	0.0078	lb/MMBtu	BACT	
LA-0308	MORGAN CITY POWER PLANT	LOUISIANA ENERGY AND POWER AUTHORITY (LEPA)	9/26/2013	607	MMBtu/hr	GCP/Fuel	0.0198	lb/MMBtu	BACT	
			Opacity							
IA-0107	MARSHALLTOWN GENERATING STATION	INTERSTATE POWER AND LIGHT	4/14/2014	2,258	MMBtu/hr	None	0	% OPACITY	BACT	Siemens SGT6-5000F
MI-0405	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013	2,237	MMBtu/hr	GCP	5	% OPACITY	BACT	
MI-0405	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013	2,486	MMBtu/hr	GCP	5	% OPACITY	BACT	
FL-0303	FPL WEST COUNTY ENERGY CENTER UNIT 3	FLORIDA POWER AND LIGHT COMPANY (FP&L)	7/30/2008	2,333	MMBtu/hr	None	10	% OPACITY	BACT	
										Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	5,579	MMBtu/hr	Fuel	10	% OPACITY	BACT	2 Siemens SGT-8000H
										Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	5,579	MMBtu/hr	Fuel	10	% OPACITY	BACT	2 Siemens SGT-8000H
										Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	6,004	MMBtu/hr	Fuel	10	% OPACITY	BACT	2 Siemens SGT-8000H
										Mitsubishi M501 GAC units or
OH-0352	OREGON CLEAN ENERGY CENTER	ARCADIS, US, INC.	6/18/2013	799	MW	Fuel	10	% OPACITY	BACT	2 Siemens SGT-8000H

Table D-1a Addendum: RBLC Tables for Combined Cycle Turbines (Natural Gas) UPDATED DATA: November 2018 to October 2021

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls ^A	Emission Limit Units	Туре	Turbine Model
				Nitroger	n Oxides				
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020	576	MMBtu/hr	DLN/GCP	17 PPMV @ 15% O2	BACT	
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020	431	MMBtu/hr	DLN/GCP	17 PPMV @ 15% O2	BACT	
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020	386	MMBtu/hr	DLN/GCP	15 PPMV @ 15% O2	BACT	
*AL-0328	PLANT BARRY	ALABAMA POWER COMPANY	11/09/2020	744	MW	SCR	2 PPM	BACT	
LA-0364	FG LA COMPLEX	FG LA LLC	01/06/2020	2222	mm btu/h	DLN/SCR	2 PPMVD	BACT	
*LA-0365	BIG CAJUN I POWER PLANT	LOUISIANA GENERATING, LLC	06/27/2019	1679	MM BTU/hr	DLN/WI	23 PPMV	BACT	
*LA-0365	BIG CAJUN I POWER PLANT	LOUISIANA GENERATING, LLC	06/27/2019	1679	MM BTU/hr	DLN/WI	23 PPMV	BACT	
MI-0439	JACKSON GENERATING STATION	CONSUMERS ENERGY COMPANY	04/02/2019	420	MW	SI/GCP/CBF	25 PPM	BACT	
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018	667	MMBTU/H	DLN/SCR	3 PPM	BACT	
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018	667	MMBTU/H	DLN/GCP	25 PPM	BACT	
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018		MMBTU/H	DLN/SCR	3 PPM	BACT	
MI-0442	THOMAS TOWNSHIP ENERGY, LLC	THOMAS TOWNSHIP ENERGY, LLC	08/21/2019	625	MW	DLN/SCR/GCP	2 PPM	BACT	
	INDECK NILES, LLC	INDECK NILES, LLC	11/26/2019	3421	MMBTU/H	DLN/SCR	2 PPM	BACT	
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021		MMBTU/H	DLN/GCP	25 PPM	BACT	
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021		MMBTU/H	DLN/SCR	60 LB/H	BACT	
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021		MMBTU/H	DLN/SCR	60 LB/H	BACT	
NJ-0088	COGEN TECH LINDEN VENTURE LP	COGEN TECH LINDEN VENTURE LP	07/30/2019		MMCubic ft/yr	SCR/DLN/CBF	18.3 LB/H	BACT	
	NEWMAN POWER STATION	EL PASO ELECTRIC COMPANY	08/27/2021		MW	DLN/SCR	2.5 PPMVD	BACT	
	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019		MMCF/YR	DLN/SCR	2 PPMVD 15% O2	BACT	
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019		MMCF/YR	DLN/SCR	703 LB/TURBINE/CAL. DAY	BACT	
	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019		MMCF/YR	DLN/SCR	60 LB/TURBINE/EVENT	BACT	
	DOMINION ENERGY - BRUNSWICK	VIRGINIA ELECTRIC AND POWER COMPANY	12/01/2020		MMBTU/H	DLN/SCR	604 LBS	BACT	
	DOMINION ENERGY - BRUNSWICK	VIRGINIA ELECTRIC AND POWER COMPANY	12/01/2020		MMBTU/H	DLN/SCR	604 LBS	BACT	
VN 0554	Bommon Energy Bhonswick		12/01/2020		Ionoxide	BENJOCH	004 203	BACI	
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020		MMBtu/hr	OxCat/GCP	5 PPMV @ 15% O2	BACT	
	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020		MMBtu/hr	OxCat/GCP	5 PPMV @ 15% O2	BACT	
	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020		MMBtu/hr	GCP/CBF	15 PPMV @ 15% 02	BACT	
	PLANT BARRY	ALABAMA POWER COMPANY	11/09/2020		MW	OxCat	23.8 LB/HR	BACT	
	JACKSON ENERGY CENTER	JACKSON GENERATION, LLC	12/31/2018		mmBtu/hr	OxCat	2 PPMV	BACT	
	FG LA COMPLEX	FG LA LLC	01/06/2020		mm btu/h	CBP/catalytic oxidation	4 PPMVD	BACT	
	BIG CAJUN I POWER PLANT	LOUISIANA GENERATING, LLC	06/27/2019		MM BTU/hr		25 PPMV	BACT	
	BIG CAJUN I POWER PLANT	LOUISIANA GENERATING, LLC	06/27/2019		MM BTU/hr		25 PPMV	BACT	-
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018		MMBTU/H	OxCat/GCP	4 PPM	BACT	
MI-0441	LBWL-ERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018		MMBTU/H	DLN/GCP	9 LB/H	BACT	
MI-0441 MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018		MMBTU/H	OxCat/GCP	4 PPM	BACT	
	THOMAS TOWNSHIP ENERGY, LLC	THOMAS TOWNSHIP ENERGY, LLC	08/21/2019		MW	OxCat/GCP OxCat/GCP	2 PPM	BACT	
	INDECK NILES, LLC	INDECK NILES, LLC	11/26/2019		MMBTU/H	OxCat/GCP OxCat/GCP	4 PPM	BACT	<u>├</u> ───┤
MI-0445	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021		MMBTU/H	DLN/GCP	9 LB/H	BACT	<u> </u>
	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021		MMBTU/H	OxCat/GCP	4 PPM	BACT	<u>├</u> ───┤
	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021		MMBTU/H	OxCat/GCP OxCat/GCP	4 PPM 4 PPM	BACT	ł
-	NEWMAN POWER STATION	EL PASO ELECTRIC COMPANY	01/07/2021 08/27/2021		MW	OxCat/GCP OxCat	3 PPMVD	BACT	
*TX-0908	UNIT 5		03/17/2021	230	11111	OxCat	4 PPMVD	BACT	<u> </u>
		NRG CEDAR BAYOU LLC	03/17/2021	14552520	MMBTU/YR	OxCat OxCat	3.5 PPMVD	BACT	<u> </u>
		NRG CEDAR BAYOU LLC							
	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019		MMCF/YR	OxCat/GCP	1 PPMVD @ 15% O2	BACT	l
VA-0332	CHICKAHOMINY POWER LLC		06/24/2019		MMCF/YR	OxCat/GCP	214 LB/TURBINE/DAY	BACT	
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019		MMCF/YR	OxCat/GCP	444 LB/TURBINE/EVENT	BACT	<u>├</u> ───┤
	DOMINION ENERGY - BRUNSWICK	VIRGINIA ELECTRIC AND POWER COMPANY	12/01/2020		MMBTU/H	OxCat/GCP	416 LBS	BACT	ļ
*VA-0334	DOMINION ENERGY - BRUNSWICK	VIRGINIA ELECTRIC AND POWER COMPANY	12/01/2020	3442	MMBTU/H	OxCat/GCP	416 LBS	BACT	1

(a) SCR = selective catalytic reduction, DLN = dry, low-NOx burners, WI = water injection, GCP = good combustion practices, CBF = clean burning fuels, OxCat = oxidation catalyst

Table D-1a Addendum: RBLC Tables for Combined Cycle Turbines (Natural Gas) UPDATED DATA: November 2018 to October 2021

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls ^A	Emission Limit	Units	Туре	Turbine Model
		• • • • • • • • • • • • • • • • • • •	١	Volatile Organ	ic Compounds			•		
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020	576	MMBtu/hr	OxCat/GCP	0.0022	LB/MMBTU	BACT	
	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020		MMBtu/hr	OxCat/GCP	0.0022	lb/MMBTU	BACT	
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020	386	MMBtu/hr	GCP/CBF	0.0022	LB/MMBTU	BACT	
*AL-0328	PLANT BARRY	ALABAMA POWER COMPANY	11/09/2020	744	MW	OxCat	13.6	LB/HR	BACT	
LA-0364	FG LA COMPLEX	FG LA LLC	01/06/2020		mm btu/h	OxCat/GCP	4	PPMVD	BACT	
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018	667	MMBTU/H	OxCat/GCP	3	PPM	BACT	
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018	667	MMBTU/H	GCP	5	LB/H	BACT	
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018	667	MMBTU/H	OxCat/GCP	3	PPM	BACT	
MI-0442	THOMAS TOWNSHIP ENERGY, LLC	THOMAS TOWNSHIP ENERGY, LLC	08/21/2019	625	MW	OxCat/GCP	0.004	LB/MMBTU	BACT	
*MI-0445	INDECK NILES, LLC	INDECK NILES, LLC	11/26/2019	3421	MMBTU/H	GCP/CBF/Inlet Air Conditioning	4	PPM	BACT	
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021	667	MMBTU/H	GCP	5	LB/H	BACT	
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021	667	MMBTU/H	OxCat/GCP	3	PPM	BACT	
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021	667	MMBTU/H	OxCat/GCP	3	PPM	BACT	
*TX-0908	NEWMAN POWER STATION	EL PASO ELECTRIC COMPANY	08/27/2021	230	MW	OxCat/GCP/CBF	2	PPMVD	BACT	
*TX-0915	UNIT 5	NRG CEDAR BAYOU LLC	03/17/2021	0		OxCat	1	PPMVD	BACT	
*TX-0915	UNIT 5	NRG CEDAR BAYOU LLC	03/17/2021	14552539	MMBTU/YR	OxCat	1.5	PPMVD	BACT	
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	35000	MMCF/YR	OxCat/GCP	0.7	PPMVD @ 15% O2	BACT	
		CHICKAHOMINY POWER LLC	06/24/2019		MMCF/YR	OxCat/GCP		LB/TURBINE/EVENT	BACT	
					(total)					
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020	576	MMBtu/hr	GCP/CBF	0.0063	LB/MMBTU	BACT	
	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020		MMBtu/hr	GCP/CBF		LB/MMBTU	BACT	
	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020		MMBtu/hr	GCP/CBF	0.007	LB/MMBTU	BACT	
	PLANT BARRY	ALABAMA POWER COMPANY	11/09/2020		MW			LB/MMBTU	BACT	
		FG LA LLC	01/06/2020		mm btu/h	GCP/CBF	12.46		BACT	
	BIG CAJUN I POWER PLANT	LOUISIANA GENERATING, LLC	06/27/2019		MM BTU/hr	Good Combustion Controls		LB/HR	BACT	
	BIG CAJUN I POWER PLANT	LOUISIANA GENERATING, LLC	06/27/2019		MM BTU/hr	Good Combustion Controls		LB/HR	BACT	
MI-0439	JACKSON GENERATING STATION	CONSUMERS ENERGY COMPANY	04/02/2019		MW	Inlet Air Filters/GCP/CBF		LB/H	BACT	
MI-0435	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018		MMBTU/H	inlet air conditioning/CBF/GCP	6.02		BACT	
	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018		MMBTU/H	inlet air conditioning/CBF/GCP		LB/H	BACT	
	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018		MMBTU/H	inlet air conditioning/CBF/GCP		LB/H	BACT	
		THOMAS TOWNSHIP ENERGY, LLC	08/21/2019		MW	GCP/CBF		LB/MMBTU	BACT	
	INDECK NILES, LLC	INDECK NILES, LLC	11/26/2019		MMBTU/H	inlet air conditioning/CBF/GCP		LB/H	BACT	
	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021		MMBTU/H	inlet air conditioning/CBF/GCP		LB/H	BACT	
	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021		MMBTU/H	inlet air conditioning/CBF/GCP		LB/H	BACT	
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021		MMBTU/H	inlet air conditioning/CBF/GCP		,	BACT	
	COGEN TECH LINDEN VENTURE LP	COGEN TECH LINDEN VENTURE LP	07/30/2019		MMCubic ft/yr	CBF	11.58	,	BACT	-
		CHICKAHOMINY POWER LLC	06/24/2019		MMCF/YR	GCP/CBF		LB/MMBTU	BACT	
VA-0332		CHICKAHOMINT FOWER LEC	00/24/2015	PM ₁₀ (filte			0.0032		DACI	L
*TX-0915	UNIT 5	NRG CEDAR BAYOU LLC	03/17/2021	0		CBF	0		BACT	
	UNIT 5	NRG CEDAR BAYOU LLC	03/17/2021	14552539	MMBTU/YR	CBF	0		BACT	
17 0515	01115		03/17/2021		(total)			l	BACT	-
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020		MMBtu/hr	GCP/CBF	0.0063	LB/MMBTU	BACT	
	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020		MMBtu/hr	GCP/CBF		LB/MMBTU	BACT	
	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020		MMBtu/hr	GCP/CBF		LB/MMBTU	BACT	
	FG LA COMPLEX	FG LA LLC	01/06/2020		mm btu/h	GCP/CBF	12.46	,	BACT	-
MI-0439	JACKSON GENERATING STATION	CONSUMERS ENERGY COMPANY	04/02/2019		MW	Inlet Air Filters/GCP/CBF		LB/HR	BACT	
	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2019		MMBTU/H	inlet air conditioning/CBF/GCP		LB/HK LB/H	BACT	├
-	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018		MMBTU/H	inlet air conditioning/CBF/GCP		LB/H LB/H	BACT	<u>├</u> ───┤
-	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018		MMBTU/H	inlet air conditioning/CBF/GCP		LB/H	BACT	┢───┤
-					MW	GCP/CBF			BACT	├
	INDECK NILES, LLC	THOMAS TOWNSHIP ENERGY, LLC INDECK NILES, LLC	08/21/2019 11/26/2019		MMBTU/H	inlet air conditioning/CBF/GCP		LB/MIMBTU	BACT	<u>├</u>
MI-0445	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021		MMBTU/H	inlet air conditioning/CBF/GCP		LB/H LB/H	BACT	┢───┤
MI-0447 MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021		MMBTU/H	inlet air conditioning/CBF/GCP	6.02	LB/H LB/H	BACT	<u> </u>
MI-0447 MI-0447		LANSING BOARD OF WATER AND LIGHT					6.02			<u> </u>
MI-0447 NJ-0088	LBWLERICKSON STATION COGEN TECH LINDEN VENTURE LP	LANSING BOARD OF WATER AND LIGHT COGEN TECH LINDEN VENTURE LP	01/07/2021		MMBTU/H MMCubic ft/yr	inlet air conditioning/CBF/GCP	6.02	LB/H LB/H	BACT BACT	<u> </u>
	COGEN TECH LINDEN VENTURE LP CHICKAHOMINY POWER LLC	COGEN TECH LINDEN VENTORE LP CHICKAHOMINY POWER LLC	07/30/2019 06/24/2019		MMCF/YR	CBF GCP/CBF		lb/h lb/MMBTU	BACT	<u> </u>
		CHICKAHOMINY POWER LLC	00/24/2019	35000	IVIIVICE/YK	GCP/CBF	0.0052		DACI	

(a) SCR = selective catalytic reduction, DLN = dry, low-NOx burners, WI = water injection, GCP = good combustion practices, CBF = clean burning fuels, OxCat = oxidation catalyst

Table D-1a Addendum: RBLC Tables for Combined Cycle Turbines (Natural Gas) UPDATED DATA: November 2018 to October 2021

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls ^A	Emission Limit	Units	Type	Turbine Model
KBEC ID	racinty Name	company Name	I ennit Date	PM _{2.5} (filte		Controls	Linit	Onits	Type	Woder
*AL-0328	PLANT BARRY	ALABAMA POWER COMPANY	11/09/2020		MW		0.004	LB/MMBTU	BACT	
	NEWMAN POWER STATION	EL PASO ELECTRIC COMPANY	08/27/2021		MW	GCP/CBF	0	1	BACT	
*TX-0915	UNIT 5	NRG CEDAR BAYOU LLC	03/17/2021	0		CBF	0		BACT	
*TX-0915		NRG CEDAR BAYOU LLC	03/17/2021	14552539	MMBTU/YR	CBF	0		BACT	
	•			Greenhouse	Gases - CO ₂		•	•	•	
*AL-0328	PLANT BARRY	ALABAMA POWER COMPANY	11/09/2020	744	MW	Efficient Design	1000	lb/MWH	BACT	
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018	667	MMBTU/H	CBF/GCP/energy efficiency measures.	1000	LB/MW-H	BACT	
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018		MMBTU/H	CBF/GCP/energy efficiency measures.	1000	LB/MW-H	BACT	
			Gree	enhouse Gases	- CO ₂ Equivalen	ts				
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020	576	MMBtu/hr	GCP/CBF	117.1	lb/mmbtu	BACT	
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020	431	MMBtu/hr	GCP/CBF	117.1	LB/MMBTU	BACT	
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020	386	MMBtu/hr	GCP/CBF	117.1	LB/MMBTU	BACT	
IL-0130	JACKSON ENERGY CENTER	JACKSON GENERATION, LLC	12/31/2018	3864	mmBtu/hr	GCP	4733910	TONS/YEAR	BACT	
LA-0364	FG LA COMPLEX	FG LA LLC	01/06/2020	2222	mm btu/h	CBF/GCP/energy-efficient design options	1096666	TONS/YR	BACT	
MI-0439	JACKSON GENERATING STATION	CONSUMERS ENERGY COMPANY	04/02/2019	420	MW	CBF/GCP/energy efficiency measures	1000257	T/YR	BACT	
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018	667	MMBTU/H	CBF/GCP/energy efficiency measures	430349	T/YR	BACT	
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018	667	MMBTU/H	CBF/GCP/energy efficiency measures	430349	T/YR	BACT	
MI-0442	THOMAS TOWNSHIP ENERGY, LLC	THOMAS TOWNSHIP ENERGY, LLC	08/21/2019	625	MW	Energy efficiency measures	2739722	T/YR	BACT	
*MI-0445	INDECK NILES, LLC	INDECK NILES, LLC	11/26/2019	3421	MMBTU/H	GCP/CBF/Inlet Air Conditioning	1911481	T/YR	BACT	
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021	667	MMBTU/H	CBF/GCP/energy efficiency measures	430349	T/YR	BACT	
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021	667	MMBTU/H	CBF/GCP/energy efficiency measures	430349	T/YR	BACT	
*TX-0908	NEWMAN POWER STATION	EL PASO ELECTRIC COMPANY	08/27/2021	230	MW	GCP/CBF	0		BACT	
*TX-0915	UNIT 5	NRG CEDAR BAYOU LLC	03/17/2021	0		CBF	0		BACT	
*TX-0915	UNIT 5	NRG CEDAR BAYOU LLC	03/17/2021	14552539	MMBTU/YR	CBF	0		BACT	
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	35000	MMCF/YR	Energy efficient combustion practices/CBF	812	LB/CO2E/MW-H	BACT	
				Sulfuric A	Acid Mist					
IL-0130	JACKSON ENERGY CENTER	JACKSON GENERATION, LLC	12/31/2018	3864	mmBtu/hr		5	POUNDS/HOUR	BACT	
MI-0442	THOMAS TOWNSHIP ENERGY, LLC	THOMAS TOWNSHIP ENERGY, LLC	08/21/2019	625	MW	CBF	0.0013	LB/MMBTU	BACT	
*MI-0445	INDECK NILES, LLC	INDECK NILES, LLC	11/26/2019	3421	MMBTU/H	GCP/CBF	4.6	LB/H	BACT	
NJ-0088	COGEN TECH LINDEN VENTURE LP	COGEN TECH LINDEN VENTURE LP	07/30/2019		MMCubic ft/yr	CBF	3.45	LB/H	BACT	
*TX-0908	NEWMAN POWER STATION	EL PASO ELECTRIC COMPANY	08/27/2021		MW	GCP/CBF	0		BACT	
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	35000	MMCF/YR	CBF	0.0012	LB/MMBTU	BACT	
				Opa						
MI-0439	JACKSON GENERATING STATION	CONSUMERS ENERGY COMPANY	04/02/2019	420	MW	Inlet Air Filters/GCP/CBF	10	%	BACT	

(a) SCR = selective catalytic reduction, DLN = dry, low-NOx burners, WI = water injection, GCP = good combustion practices, CBF = clean burning fuels, OxCat = oxidation catalyst

_										
							Emission		_	
RBLC ID	Facility Name	Company Name	Permit Date		Units	Controls	Limit	Units	Туре	Turbine Model
		1		Nitroger		r	1		1	1
						WATER INJECTION AND SELECTIVE				
CT-0151	KLEEN ENERGY SYSTEMS, LLC	KLEEN ENERGY SYSTEMS, LLC	2/25/2008	15,119	GAL/H	CATALYTIC REDUCTION	48.4	LB/H	LAER	SIEMENS SGT6-5000F
NJ-0085	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016	720	H/YR	Selective catalytic Reduction Systems and Dry Low NOx	4	PPMVD@15% O2	LAER	GE 7HA.02
NY-0104	CPV VALLEY ENERGY CENTER	CPV VALLEY LLC	8/1/2013	-		Water injection and selective catalytic reduction.	6	PPMVD @ 15% O2	LAER	F Class
				Carbon N	lonoxide					
CT-0151	KLEEN ENERGY SYSTEMS, LLC	KLEEN ENERGY SYSTEMS, LLC	2/25/2008		MMBtu/hr	OxCat	1.8	ppm	BACT	SIEMENS SGT6-5000F
	KILLINGLY ENERGY CENTER	NTE CONNECTICUT, LLC	6/30/2017		MMBtu/hr			ppm	BACT	Mitsubishi M501JAC
	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015	805		OxCat		ppm	BACT	GE 7HA.01
CT-0158	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015	805	MW	OxCat	2	ppm	BACT	GE 7HA.01
NJ-0085	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016	663	MW	OXCAT/GCP	2	ppm	BACT	GE 7HA.02
NY-0104	CPV VALLEY ENERGY CENTER	CPV VALLEY LLC	8/1/2013	2,234	MMBtu/hr	OXCAT/GCP	2	ppm	BACT	F class
GA-0127	PLANT MCDONOUGH COMBINED CYCLE	SOUTHERN COMPANY/GEORGIA POWER	1/7/2008	254	MW	OxCat	9	ppm	BACT	Mitsubishi MHI 501-GI
		•		Greenhou	use Gases	•		•		
NJ-0085	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016	663	MW	Fuel	888	lb/MW-hr	BACT	GE 7HA.02
				Sulfuric A	Acid Mist					-
CT-0157	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015	805	MW	Fuel	2.31	lb/hr	BACT	
CT-0158	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015	805	MW	Fuel	2.31	lb/hr	BACT	
NJ-0085	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016	663	MW	Fuel	4.27	lb/hr	BACT	GE 7HA.02
CT-0161	KILLINGLY ENERGY CENTER	NTE CONNECTICUT, LLC	6/30/2017	2,639	MMBtu/hr	Fuel	0.0005	lb/MMBtu	BACT	
NY-0104	CPV VALLEY ENERGY CENTER	CPV VALLEY LLC	8/1/2013	2,234	MMBtu/hr	Fuel	0.0005	lb/MMBtu	BACT	
				Particulat	te Matter					
NJ-0085	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016	663	MW	Fuel	34.3	lb/hr	BACT	GE 7HA.02
NY-0104	CPV VALLEY ENERGY CENTER	CPV VALLEY LLC	8/1/2013	2,234	MMBtu/hr	Fuel	0.0368	lb/MMBtu	BACT	
				PN	110					
NJ-0085	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016	663	MW	Fuel	72	lb/hr	BACT	GE 7HA.02
CT-0161	KILLINGLY ENERGY CENTER	NTE CONNECTICUT, LLC	6/30/2017	2,639	MMBtu/hr	GCP	0.0168	lb/MMBtu	BACT	
CT-0151	KLEEN ENERGY SYSTEMS, LLC	KLEEN ENERGY SYSTEMS, LLC	2/25/2008	2,117	MMBtu/hr	None	0.02692	lb/MMBtu	BACT	SIEMENS SGT6-5000F
				PM	2.5					
CT-0158	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015	805		None		lb/hr	BACT	
NJ-0085	MIDDLESEX ENERGY CENTER, LLC	STONEGATE POWER, LLC	7/19/2016	663		Fuel		lb/hr	BACT	GE 7HA.02
	KILLINGLY ENERGY CENTER	NTE CONNECTICUT, LLC	6/30/2017		MMBtu/hr	GCP		lb/MMBtu	BACT	
CT-0157	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015	805	MW	None	42.6	lb/hr	BACT	
				Volatile Organ						
	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015	805		OxCat	2	ppm	BACT	GE 7HA.01
	CPV TOWANTIC, LLC	CPV TOWANTIC, LLC	11/30/2015	805		OxCat	2	ppm	BACT	GE 7HA.01
CT-0161	KILLINGLY ENERGY CENTER	NTE CONNECTICUT, LLC	6/30/2017		MMBtu/hr		2	ppm	BACT	Mitsubishi M501JAC
CT-0151	KLEEN ENERGY SYSTEMS, LLC	KLEEN ENERGY SYSTEMS, LLC	2/25/2008	2,117	MMBtu/hr	OxCat	3.6	ppm	BACT	SIEMENS SGT6-5000F

Table D-1b Addendum: RBLC Tables for Combined Cycle Turbines (Fuel Oil) UPDATED DATA: November 2018 to October 2021

From December 2021 Application

							Emission			Turbine
RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Limit	Units	Туре	Model
			Carbon I	Monoxide						
NJ-0088	COGEN TECH LINDEN VENTURE LP	COGEN TECH LINDEN VENTURE LP	07/30/2019	14.78	MMGAL/YR	OxCat/CBF	18.4	LB/H	BACT	
	PM ₁₀ (total)									
NJ-0088	COGEN TECH LINDEN VENTURE LP	COGEN TECH LINDEN VENTURE LP	07/30/2019	14.78	MMGAL/YR	CBF	49.17	LB/H	BACT	
			PM _{2.5}	(total)						
NJ-0088	COGEN TECH LINDEN VENTURE LP	COGEN TECH LINDEN VENTURE LP	07/30/2019	14.78	MMGAL/YR	CBF	49.17	LB/H	BACT	
			Sulfuric	Acid Mist						
NJ-0088	COGEN TECH LINDEN VENTURE LP	COGEN TECH LINDEN VENTURE LP	07/30/2019	14.78	MMGAL/YR	CBF	4.8	LB/H	BACT	

(a) SCR = selective catalytic reduction, DLN = dry, low-NOx burners, WI = water injection, GCP = good combustion practices, CBF = clean burning fuels, OxCat = oxidation catalyst

							Emission			
RBLC ID	Facility Name	Company Name		Throughput	Units	Controls	Limit	Units	Туре	Turbine Model
	l .	Nitrogen	Oxides - Startup	/Shutdown			1	1		
										SGT-8000H VERSION 1.4-
MD-0045	MATTAWOMAN ENERGY CENTER	MATTAWOMAN ENERGY, LLC	11/13/2015	286		SCR/DLN		lb/event	BACT	OPTIMIZED
MI-0427	FILER CITY STATION	FILER CITY STATION LIMITED PARTNERSHIP	11/17/2017	,	MMBtu/hr	SCR/DLN	32		BACT	
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010			SCR	40		BACT	
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154		SCR		lb/event	BACT	
MI-0412	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	HOLLAND BOARD OF PUBLIC WORKS	12/4/2013		MMBtu/hr	SCR/DLN	44		BACT	
MI-0424	HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	HOLLAND BOARD OF PUBLIC WORKS	12/5/2016		MMBtu/hr	SCR/DLN		lb/event	BACT	
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010			SCR	57		BACT	
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010		MW	SCR	57		BACT	
CA-1212	PALMDALE HYBRID POWER PROJECT	CITY OF PALMDALE	10/18/2011		MMBtu/hr	SCR/DLN	57	lb/event	BACT	
MD-0046	KEYS ENERGY CENTER	KEYS ENERGY CENTER, LLC	10/31/2014	235		SCR/DLN	60		BACT	SGT6-500FEE
MD-0046	KEYS ENERGY CENTER	KEYS ENERGY CENTER, LLC	10/31/2014	235		SCR/DLN/GCP	71	lb/event	BACT	SGT6-500FEE
MD-0046	KEYS ENERGY CENTER	KEYS ENERGY CENTER, LLC	10/31/2014	235		SCR/DLN/GCP	83	lb/event	BACT	SGT6-500FEE
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154		SCR	96	lb/event	BACT	
CA-1212	PALMDALE HYBRID POWER PROJECT	CITY OF PALMDALE	10/18/2011	154	MW	SCR/DLN	96	lb/event	BACT	
CA-1209	HIGH DESERT POWER PROJECT	HIGH DESERT POWER PROJECT LLC	3/11/2010	190	MW	SCR/DLN	97	lb/event	BACT	
										SGT-8000H VERSION 1.4-
MD-0045	MATTAWOMAN ENERGY CENTER	MATTAWOMAN ENERGY, LLC	11/13/2015	286	MW	SCR/DLN/GCP	105	lb/event	BACT	OPTIMIZED
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011	172	MW	SCR/DLN	115	lb/event	BACT	
										SGT-8000H VERSION 1.4-
MD-0045	MATTAWOMAN ENERGY CENTER	MATTAWOMAN ENERGY, LLC	11/13/2015	286	MW	SCR/DLN/GCP	132	lb/event	BACT	OPTIMIZED
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154	MW	SCR	142	lb/event	BACT	
										SGT-8000H VERSION 1.4-
MD-0045	MATTAWOMAN ENERGY CENTER	MATTAWOMAN ENERGY, LLC	11/13/2015	286	MW	SCR/DLN/GCP	153	lb/event	BACT	OPTIMIZED
MI-0405	MIDLAND COGENERATION VENTURE	MIDLAND COGENERATION VENTURE	4/23/2013	2,237	MMBtu/hr	SCR/DLN	186	lb/event	BACT	
MD-0046	KEYS ENERGY CENTER	KEYS ENERGY CENTER, LLC	10/31/2014		MW	SCR/DLN/GCP	245	lb/event	BACT	SGT6-500FEE
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011	172	MW	SCR/DLN	260	lb/event	BACT	
IN-0158	ST. JOSEPH ENEGRY CENTER, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012		MMBtu/hr	None	443	lb/event	BACT	
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011		MW	SCR/DLN	456	lb/event	BACT	
OK-0129	CHOUTEAU POWER PLANT	ASSOCIATED ELECTRIC COOPERATIVE INC	1/23/2009	1,882	MMBtu/hr	DLN	568	lb/event	BACT	SIEMENS V84.3A
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011		MW	SCR/DLN	779	lb/event	BACT	
CA-1209	HIGH DESERT POWER PROJECT	HIGH DESERT POWER PROJECT LLC	3/11/2010	190		SCR/DLN	3,541	lb/event	BACT	
0,1 1205			onoxide - Startu			0011/0211	0,011	is, event	5,101	
MD-0046	KEYS ENERGY CENTER	KEYS ENERGY CENTER, LLC	10/31/2014	235	MW	OxCat/GCP	60	lb/event	BACT	SGT6-500FEE
1010 0040			10/51/2014	233		Oxedity dei	00	ib/event	brief	SGT-8000H VERSION 1.4-
MD-0045	MATTAWOMAN ENERGY CENTER	MATTAWOMAN ENERGY, LLC	11/13/2015	286	MM	OxCat/GCP	156	lb/event	ВАСТ	OPTIMIZED
	HIGH DESERT POWER PROJECT	HIGH DESERT POWER PROJECT LLC	3/11/2010	190		OxCat	183	lb/event	BACT	
CA-1209	HIGH DESERT POWER PROJECT	HIGH DESERT POWER PROJECT LLC	3/11/2010	190		OxCat	239	lb/event	BACT	
MD-0046	KEYS ENERGY CENTER	KEYS ENERGY CENTER, LLC	10/31/2014	235		OxCat/GCP	239	lb/event	BACT	SGT6-500FEE
MD-0046	KEYS ENERGY CENTER	KEYS ENERGY CENTER, LLC	10/31/2014		MW		311		BACT	SGT6-500FEE
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154		OxCat/GCP OxCat	311	lb/event lb/event	BACT	SG16-SUUFEE
CA-1191 CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154			329		BACT	
CA-1191 CA-1191				154		OxCat		lb/event		
	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010			OxCat	337	lb/event	BACT	
CA-1212	PALMDALE HYBRID POWER PROJECT		10/18/2011		MMBtu/hr	OxCat	337	lb/event	BACT	
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT		3/11/2010		MW	OxCat	410	lb/event	BACT	
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT		3/11/2010	154		OxCat	410	lb/event	BACT	
CA-1212	PALMDALE HYBRID POWER PROJECT	CITY OF PALMDALE	10/18/2011	154		OxCat	410	lb/event	BACT	+
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011	172		OxCat	484	lb/event	BACT	
CA-1191	VICTORVILLE 2 HYBRID POWER PROJECT	CITY OF VICTORVILLE	3/11/2010	154		OxCat	674	lb/event	BACT	+
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011			OxCat	680	lb/event	BACT	
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011	172		OxCat	791	lb/event	BACT	
MD-0046	KEYS ENERGY CENTER	KEYS ENERGY CENTER, LLC	10/31/2014	235	MW	OxCat/GCP	1,064	lb/event	BACT	SGT6-500FEE
										SGT-8000H VERSION 1.4-
	MATTAWOMAN ENERGY CENTER	MATTAWOMAN ENERGY, LLC	11/13/2015	286		OxCat/GCP	1,216	lb/event	BACT	OPTIMIZED
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011	172	MW	OxCat	1,356	lb/event	BACT	
										SGT-8000H VERSION 1.4-
	MATTAWOMAN ENERGY CENTER	MATTAWOMAN ENERGY, LLC	11/13/2015	286		OxCat/GCP	1,461	lb/event	BACT	OPTIMIZED
	FILER CITY STATION	FILER CITY STATION LIMITED PARTNERSHIP	11/17/2017	1 0 2 5	MMBtu/hr	OxCat/GCP	1 5 9 0	lb/event	BACT	

							Emission		_	
RBLC ID	Facility Name	Company Name		Throughput		Controls	Limit	Units	Туре	Turbine Model
OK-0129	CHOUTEAU POWER PLANT	ASSOCIATED ELECTRIC COOPERATIVE INC	1/23/2009	1,882	MMBtu/hr	GCP	1,596	lb/event	BACT	SIEMENS V84.3A
OK-0157	CHOUTEAU POWER PLANT	ASSOCIATED ELECTRIC COOPERATIVE INC	9/5/2013	182	MMBtu/hr	None	1,750	lb/event	BACT	
										SGT-8000H VERSION 1.4-
MD-0045	MATTAWOMAN ENERGY CENTER	MATTAWOMAN ENERGY, LLC	11/13/2015	286	MW	OxCat/GCP	1,772	lb/event	BACT	OPTIMIZED
IN-0158	ST. JOSEPH ENEGRY CENTER, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012	2,300	MMBtu/hr	None	2,125	lb/event	BACT	
OK-0157	CHOUTEAU POWER PLANT	ASSOCIATED ELECTRIC COOPERATIVE INC	9/5/2013	178	MW	GCP	4,500	lb/event	BACT	
		Particulate N	latter - Startu	p/Shutdown						
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011	172	MW	Fuel	6.0	lb/event	BACT	
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011	172	MW	Fuel	12.8	lb/event	BACT	
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011	172	MW	Fuel	30.8	lb/event	BACT	
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011	172	MW	Fuel	48.8	lb/event	BACT	
		PM10	-Startup/Shut	down						
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011	172	MW	Fuel	6.0	lb/event	BACT	
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011	172	MW	Fuel	12.8	lb/event	BACT	
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011	172	MW	Fuel	30.8	lb/event	BACT	
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011	172	MW	Fuel	48.0	lb/event	BACT	
		Volatile Organic C	ompounds -S	tartup/Shutdo	wn					
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011	172	MW	None	23.9	lb/event	BACT	
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011	172	MW	None	38.0	lb/event	BACT	
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011	172	MW	None	47.4	lb/event	BACT	
CA-1211	COLUSA GENERATING STATION	PACIFIC GAS & ELECTRIC COMPANY	3/11/2011	172	MW	None	106.7	lb/event	BACT	

Table D-1c Addendum: RBLC Tables for Combined Cycle Turbines (Startup/Shutdown) UPDATED DATA: November 2018 to October 2021

From December 2021 Application

							Emission			Turbine
RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Limit	Units	Туре	Model
		Ν	litrogen Oxid	es						
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	35000	MMCF/YR	DLN/SCR	60	LB/TURBINE/EVENT	BACT	
		Ca	arbon Monoxi	de						
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	35000	MMCF/YR	OxCat/GCP	444	LB/TURBINE/EVENT	BACT	
		Volatile	e Organic Com	pounds						
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	35000	MMCF/YR	OxCat/GCP	216	LB/TURBINE/EVENT	BACT	

(a) SCR = selective catalytic reduction, DLN = dry, low-NOx burners, WI = water injection, GCP = good combustion practices, CBF = clean burning fuels, OxCat = oxidation catalyst

RBLC ID	Facility Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
		Car	bon Monoxide		•			
OK-0168	Seminole Generating Station	5/5/2015	40.4	MMBtu/hr	GCP	0.0075	lb/MMBtu	BACT-PSD
IA-0107	Marshalltown Generating Station	4/14/2014	60.1	MMBtu/hr	Ox Cat	0.0164	lb/MMBtu	BACT-PSD
MD-0040	CPV St Charles	11/12/2008	93	MMBtu/hr	None	0.0200	lb/MMBtu	BACT-PSD
MD-0041	CPV St. Charles	4/23/2014	93	MMBtu/hr	GCP	0.0200	lb/MMBtu	BACT-PSD
NJ-0080	Hess Newark Energy Center	11/1/2012	100	MMBtu/hr	Clean Fuels	0.0245	lb/MMBtu	BACT-PSD
IN-0263	Midwest Fertilizer Company LLC	3/23/2017	218.6	MMBtu/hr	GCP	0.0354	lb/MMBtu	BACT-PSD
IN-0173	Midwest Fertilizer Corporation	6/4/2014	218.6	MMBtu/hr	GCP	0.0354	lb/MMBtu	BACT-PSD
IN-0180	Midwest Fertilizer Corporation	6/4/2014	218.6	MMBtu/hr	GCP	0.0354	lb/MMBtu	BACT-PSD
IN-0179	Ohio Valley Resources, LLC	9/25/2013	218	MMBtu/hr	GCP	0.0354	lb/MMBtu	BACT-PSD
OH-0354	Kraton Polymers U.S. LLC	1/15/2013	249	MMBtu/hr	GCP, Clean fuels	0.0360	lb/MMBtu	BACT-PSD
WI-0259	Manitowoc Public Utilities	4/16/2012	33	MMBtu/hr	None	0.0360	lb/MMBtu	BACT-PSD
NJ-0084	PSEG Fossil LLC Sewaren Generating Station	3/10/2016	80	MMBtu/hr	GCP, Clean fuels	0.0360	lb/MMBtu	BACT-PSD
MI-0406	Renaissance Power LLC	11/1/2013	40	MMBtu/hr	GCP	0.0360	lb/MMBtu	BACT-PSD
AR-0121	El Dorado Chemical Company	11/18/2013	240	MMBtu/hr	GCP	0.0370	lb/MMBtu	BACT-PSD
LA-0240	Flopam Inc.	6/14/2010	25.1	MMBtu/hr	GCP	0.0370	lb/MMBtu	BACT-PSD
FL-0318	Highlands Ethanol Facility	12/10/2009	198	MMBtu/hr	None	0.0370	lb/MMBtu	BACT-PSD
LA-0314	Indorama Lake Charles Facility	8/3/2016	229	MMBtu/hr	GCP	0.0370	lb/MMBtu	BACT-PSD
MD-0045	Mattawoman Energy Center	11/13/2015	42	MMBtu/hr	GCP	0.0370	lb/MMBtu	BACT-PSD
TX-0681	Olefins Plant	8/8/2014			GCP	0.0370	lb/MMBtu	BACT-PSD
GA-0127	Plant Mcdonough Combined Cycle	1/7/2008	200	MMBtu/hr	None	0.0370	lb/MMBtu	BACT-PSD
	S R Bertron Electric Generating Station	12/19/2014	80	MMBtu/hr	LNB	0.0370	lb/MMBtu	BACT-PSD
NJ-0085	Middlesex Energy Center, LLC	7/19/2016	97.5	MMBtu/hr	GCP, Clean fuels	0.0370	lb/MMBtu	BACT-PSD
WY-0075	Cheyenne Prairie Generating Station	7/16/2014	25.06	MMBtu/hr	GCP	0.0375	lb/MMBtu	BACT-PSD
NY-0103	Cricket Valley Energy Center	2/3/2016	60	MMBtu/hr	GCP	0.0375	lb/MMBtu	BACT-PSD
	Woodbridge Energy Center	7/25/2012		MMBtu/hr	GCP, Clean fuels		lb/MMBtu	BACT-PSD
LA-0248	Direct Reduction Iron Plant	1/27/2011	201	MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
LA-0248	Direct Reduction Iron Plant	1/27/2011		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
	Suwannee Mill	9/5/2012		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
	Filer City Station	11/17/2017		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
	Indeck Niles, LLC	1/4/2017	182	MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
	Moundsville Combined Cycle Power Plant	11/21/2014		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
AL-0286	Mount Vernon Mill	3/25/2010		MMBtu/hr	None		lb/MMBtu	BACT-PSD
OK-0137	Ponca City Refinery	2/9/2009	95	MMBtu/hr	Ultra LNB, GCP	0.0400	lb/MMBtu	BACT-PSD
	Republic Steel	7/18/2012		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
	Thyssenkrupp Stainless USA, LLC	3/25/2010		MMBtu/hr	None		lb/MMBtu	BACT-PSD
	Troutdale Energy Center, LLC	3/5/2014		MMBtu/hr	LNB, FGR		lb/MMBtu	BACT-PSD
	Ammonia Production Facility	3/27/2013		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
	Oregon Clean Energy Center	6/18/2013		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
AR-0138	Nucor Corporation - Nucor Steel, Arkansas	2/17/2012	50.4	MMBtu/hr	GCP	0.0610	lb/MMBtu	BACT-PSD

RBLC ID	Facility Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
SC-0112	Nucor Steel - Berkeley	5/5/2008	50.21	MMBtu/hr	GCP, Clean fuels	0.0610	lb/MMBtu	BACT-PSD
NY-0104	CPV Valley Energy Center	8/1/2013	73.5	MMBtu/hr	GCP	0.0721	lb/MMBtu	BACT-PSD
OK-0148	Buffalo Creek Processing Plant	9/12/2012	11.04	MMBtu/hr	None	0.0740	lb/MMBtu	BACT-PSD
OH-0336	Campbell Soup Company	12/14/2010			None	0.0750	lb/MMBtu	BACT-PSD
IA-0108	Iowa State University Power Plant	11/7/2013	213.6	MMBtu/hr	None	0.0750	lb/MMBtu	BACT-PSD
MI-0410	Thetford Generating Station	7/25/2013	100	MMBtu/hr	GCP	0.0750	lb/MMBtu	BACT-PSD
MI-0412	Holland Board of Public Works - East 5th Street	12/4/2013	55	MMBtu/hr	GCP	0.0770	lb/MMBtu	BACT-PSD
MI-0424	Holland Board of Public Works - East 5th Street	12/5/2016	83.5	MMBtu/hr	GCP	0.0770	lb/MMBtu	BACT-PSD
MI-0412	Holland Board of Public Works - East 5th Street	12/4/2013	95	MMBtu/hr	GCP	0.0770	lb/MMBtu	BACT-PSD
AL-0307	Alloys Plant	10/9/2015	17.5	MMBtu/hr	GCP	0.0800	lb/MMBtu	BACT-PSD
AL-0307	Alloys Plant	10/9/2015	24.59	MMBtu/hr	GCP	0.0800	lb/MMBtu	BACT-PSD
MD-0046	Keys Energy Center	10/31/2014	93	MMBtu/hr	GCP	0.0800	lb/MMBtu	BACT-PSD
	Okeechobee Clean Energy Center	3/9/2016	99.8	MMBtu/hr	GCP	0.0800	lb/MMBtu	BACT-PSD
OH-0323	Titan Tire Corporation of Bryan	6/5/2008	50.4	MMBtu/hr	None	0.0800	lb/MMBtu	BACT-PSD
LA-0314	Indorama Lake Charles Facility	8/3/2016	248	MMBtu/hr	GCP	0.0820	lb/MMBtu	BACT-PSD
AR-0140	Big River Steel LLC	9/18/2013	24.5	MMBtu/hr	GCP, Clean fuels	0.0824	lb/MMBtu	BACT-PSD
AR-0140	Big River Steel LLC	9/18/2013	51.2	MMBtu/hr	GCP, Clean fuels	0.0824	lb/MMBtu	BACT-PSD
AR-0140	Big River Steel LLC	9/18/2013	67	MMBtu/hr	GCP, Clean fuels	0.0824	lb/MMBtu	BACT-PSD
OK-0135	Pryor Plant Chemical	2/23/2009	80	MMBtu/hr	GCP	0.0825	lb/MMBtu	BACT-PSD
IN-0158	St. Joseph Energy Center, LLC	12/3/2012	80	MMBtu/hr	GCP	0.0830	lb/MMBtu	BACT-PSD
OH-0315	New Steel International, Inc., Haverhill	5/6/2008	50.4	MMBtu/hr	None	0.0839	lb/MMBtu	BACT-PSD
OH-0310	American Municipal Power Generating Station	10/8/2009	150	MMBtu/hr	None	0.0840	lb/MMBtu	BACT-PSD
TX-0576	Pipe Manufacturing Steel Mini Mill	4/19/2010	40	MMBtu/hr	GCP	0.0842	lb/MMBtu	BACT-PSD
CA-1192	Avenal Energy Project	6/21/2011	37.4	MMBtu/hr	Ultra LNB, GCP, Clean fuels	50.0000	ppm	BACT-PSD
TX-0731	Corpus Christi Terminal Condensate Splitter	4/10/2015	129	MMBtu/hr	GCP	50.0000	ppm	BACT-PSD
TX-0751	Eagle Mountain Steam Electric Station	6/18/2015	73.3	MMBtu/hr	None	50.0000	ppm	BACT-PSD
AK-0083	Kenai Nitrogen Operations	1/6/2015	50	MMBtu/hr	None	50.0000	ppm	BACT-PSD
AK-0083	Kenai Nitrogen Operations	1/6/2015	243	MMBtu/hr	None	50.0000	ppm	BACT-PSD
CA-1212	Palmdale Hybrid Power Project	10/18/2011	40	MMBtu/hr	None	50.0000	ppm	BACT-PSD
CA-1212	Palmdale Hybrid Power Project	10/18/2011	110	MMBtu/hr	None	50.0000	ppm	BACT-PSD
TX-0772	Port of Beaumont Petroleum Transload Terminal (PBPTT)	11/6/2015	13.2	MMBtu/hr	GCP	50.0000	ppm	BACT-PSD
TX-0772	Port of Beaumont Petroleum Transload Terminal (PBPTT)	11/6/2015	40	MMBtu/hr	GCP	50.0000	ppm	BACT-PSD
TX-0772	Port of Beaumont Petroleum Transload Terminal (PBPTT)	11/6/2015		MMBtu/hr	GCP	50.0000		BACT-PSD
	Victorville 2 Hybrid Power Project	3/11/2010		MMBtu/hr	None	50.0000	ppm	BACT-PSD
	Victorville 2 Hybrid Power Project	3/11/2010		MMBtu/hr	None		ppm	BACT-PSD
TX-0708	La Paloma Energy Center	2/7/2013	150	MMBtu/hr	GCP	75.0000	ppm	BACT-PSD

RBLC ID	Facility Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
	•	Greenhouse	Gases - Carbo	n Dioxide			-	
IN-0263	Midwest Fertilizer Company LLC	3/23/2017	218.6	MMBtu/hr	GCP	0.0568	lb/MMBtu	BACT-PSD
IN-0173	Midwest Fertilizer Corporation	6/4/2014	218.6	MMBtu/hr	GCP	116.8824	lb/MMBtu	BACT-PSD
IN-0180	Midwest Fertilizer Corporation	6/4/2014	218.6	MMBtu/hr	GCP	116.8824	lb/MMBtu	BACT-PSD
AR-0140	Big River Steel LLC	9/18/2013	24.5	MMBtu/hr	GCP	117.0000	lb/MMBtu	BACT-PSD
AR-0140	Big River Steel LLC	9/18/2013	51.2	MMBtu/hr	GCP	117.0000	lb/MMBtu	BACT-PSD
AR-0121	El Dorado Chemical Company	11/18/2013	240	MMBtu/hr	GCP	117.0000	lb/MMBtu	BACT-PSD
NY-0116	Fab 8, Luther Forest Technology Campus	3/29/2013			GCP, Clean fuels	118.0000	lb/MMBtu	BACT-PSD
NY-0116	Fab 8, Luther Forest Technology Campus	3/29/2013			GCP, Clean fuels	160.0000	lb/MMBtu	BACT-PSD
IN-0179	Ohio Valley Resources, LLC	9/25/2013	218	MMBtu/hr	GCP	546.8807	lb/MMBtu	BACT-PSD
	Gree	enhouse Gases	- Carbon Diox	ide Equivale	nts			
KS-0029	The Empire District Electric Company	7/14/2015	18.6	MMBtu/hr	None	116.8741	lb/MMBtu	BACT-PSD
AR-0140	Big River Steel LLC	9/18/2013	67	MMBtu/hr	GCP	117.0000	lb/MMBtu	BACT-PSD
OK-0148	Buffalo Creek Processing Plant	9/12/2012	11.04	MMBtu/hr	None	117.0000	lb/MMBtu	BACT-PSD
OR-0050	Troutdale Energy Center, LLC	3/5/2014	39.8	MMBtu/hr	Clean Fuels	117.0000	lb/MMBtu	BACT-PSD
OR-0050	Troutdale Energy Center, LLC	3/5/2014	39.8	MMBtu/hr	Clean Fuels	117.0000	lb/MMBtu	BACT-PSD
TX-0814	Ammonia And Urea Plant	1/5/2017	240	MMBtu/hr	GCP	117.0653	lb/MMBtu	BACT-PSD
MI-0427	Filer City Station	11/17/2017	182	MMBtu/hr	GCP	117.0982	lb/MMBtu	BACT-PSD
MI-0423	Indeck Niles, LLC	1/4/2017	182	MMBtu/hr	GCP, Clean fuels	117.0982	lb/MMBtu	BACT-PSD
WY-0075	Cheyenne Prairie Generating Station	7/16/2014	25.06	MMBtu/hr	GCP	117.1162	lb/MMBtu	BACT-PSD
AR-0121	El Dorado Chemical Company	11/18/2013	240	MMBtu/hr	GCP	117.4001	lb/MMBtu	BACT-PSD
MI-0424	Holland Board of Public Works - East 5th Street	12/5/2016	83.5	MMBtu/hr	GCP	118.3469	lb/MMBtu	BACT-PSD
MI-0412	Holland Board of Public Works - East 5th Street	12/4/2013	95	MMBtu/hr	GCP	118.3634	lb/MMBtu	BACT-PSD
MI-0412	Holland Board of Public Works - East 5th Street	12/4/2013	55	MMBtu/hr	GCP	118.3645	lb/MMBtu	BACT-PSD
TX-0772	Port of Beaumont Petroleum Transload Terminal (PBPTT)	11/6/2015	13.2	MMBtu/hr	GCP	118.4793	lb/MMBtu	BACT-PSD
TX-0772	Port of Beaumont Petroleum Transload Terminal (PBPTT)	11/6/2015	40	MMBtu/hr	GCP	118.4817	lb/MMBtu	BACT-PSD
NY-0103	Cricket Valley Energy Center	2/3/2016	60	MMBtu/hr	GCP, Clean fuels	119.0000	lb/MMBtu	BACT-PSD
MA-0039	Salem Harbor Station Redevelopment	1/30/2014	80	MMBtu/hr	None	119.0000	lb/MMBtu	BACT-PSD
TX-0812	Crude Oil Processing Facility	10/31/2016	104	MMBtu/hr	GCP	120.3021	lb/MMBtu	BACT-PSD
WV-0025	Moundsville Combined Cycle Power Plant	11/21/2014	100	MMBtu/hr	Clean Fuels	120.8100	lb/MMBtu	BACT-PSD
IA-0108	Iowa State University Power Plant	11/7/2013	213.6	MMBtu/hr	None	121.3723	lb/MMBtu	BACT-PSD
AK-0083	Kenai Nitrogen Operations	1/6/2015	243	MMBtu/hr	None	490.6173	lb/MMBtu	BACT-PSD
AK-0083	Kenai Nitrogen Operations	1/6/2015	50	MMBtu/hr	None	2,384.4000	lb/MMBtu	BACT-PSD

RBLC ID	Facility Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
			furic Acid Mist			•		
IA-0107	Marshalltown Generating Station	4/14/2014	60.1	MMBtu/hr	None	0.0001	lb/MMBtu	BACT-PSD
MD-0040	CPV St Charles	11/12/2008	93	MMBtu/hr	None	0.0001	lb/MMBtu	BACT-PSD
OH-0352	Oregon Clean Energy Center	6/18/2013	99	MMBtu/hr	Clean Fuels	0.0001	lb/MMBtu	BACT-PSD
NJ-0085	Middlesex Energy Center, LLC	7/19/2016	97.5	MMBtu/hr	Clean Fuels	0.0001	lb/MMBtu	BACT-PSD
	Cricket Valley Energy Center	2/3/2016	60	MMBtu/hr	Clean Fuels	0.0001	lb/MMBtu	BACT-PSD
	CPV Valley Energy Center	8/1/2013	73.5	MMBtu/hr	Clean Fuels	0.0002	lb/MMBtu	BACT-PSD
NJ-0084	PSEG Fossil LLC Sewaren Generating Station	3/10/2016	80	MMBtu/hr	Clean Fuels	0.0003	lb/MMBtu	BACT-PSD
	Salem Harbor Station Redevelopment	1/30/2014	80	MMBtu/hr	None	0.0009	lb/MMBtu	BACT-PSD
MD-0045	Mattawoman Energy Center	11/13/2015	42	MMBtu/hr	GCP, Clean fuels	0.0040	lb/MMBtu	BACT-PSD
	•	Nit	rogen Dioxide			•		
LA-0248	Direct Reduction Iron Plant	1/27/2011	201	MMBtu/hr	SCR, LNB	0.0032	lb/MMBtu	BACT-PSD
LA-0248	Direct Reduction Iron Plant	1/27/2011	201	MMBtu/hr	SCR, LNB	0.0032	lb/MMBtu	BACT-PSD
TX-0731	Corpus Christi Terminal Condensate Splitter	4/10/2015	129	MMBtu/hr	SCR	0.0060	lb/MMBtu	BACT-PSD
CA-1206	Stockton Cogen Company	9/16/2011	178	MMBtu/hr	None	0.0085	lb/MMBtu	BACT-PSD
AK-0083	Kenai Nitrogen Operations	1/6/2015	243	MMBtu/hr	Ultra LNB	0.0100	lb/MMBtu	BACT-PSD
MD-0046	Keys Energy Center	10/31/2014	93	MMBtu/hr	Ultra LNB, GCP, Clean fuels	0.0100	lb/MMBtu	BACT-PSD
MD-0045	Mattawoman Energy Center	11/13/2015	42	MMBtu/hr	Ultra LNB, GCP, Clean fuels	0.0100	lb/MMBtu	BACT-PSD
TX-0681	Olefins Plant	8/8/2014			SCR, LNG, FGR	0.0100	lb/MMBtu	BACT-PSD
NV-0049	Harrah's Operating Company, Inc.	8/20/2009	24	MMBtu/hr	LNB	0.0108	lb/MMBtu	BACT-PSD
MD-0040	CPV St Charles	11/12/2008	93	MMBtu/hr	LNB, FGR	0.0110	lb/MMBtu	BACT-PSD
TX-0772	Port of Beaumont Petroleum Transload Terminal (PBPTT)	11/6/2015	95.7	MMBtu/hr	LNB, FGR	0.0110	lb/MMBtu	BACT-PSD
IA-0107	Marshalltown Generating Station	4/14/2014	60.1	MMBtu/hr	None	0.0130	lb/MMBtu	BACT-PSD
LA-0305	Lake Charles Methanol Facility	6/30/2016	225	MMBtu/hr	SCR	0.0150	lb/MMBtu	BACT-PSD
WY-0075	Cheyenne Prairie Generating Station	7/16/2014	25.06	MMBtu/hr	Ultra LNB, FGR	0.0175	lb/MMBtu	BACT-PSD
AR-0121	El Dorado Chemical Company	11/18/2013	240	MMBtu/hr	LNB, FGR	0.0180	lb/MMBtu	BACT-PSD
MI-0389	Karn Weadock Generating Complex	12/29/2009	220	MMBtu/hr	LNB	0.0180	lb/MMBtu	BACT-PSD
IN-0263	Midwest Fertilizer Company LLC	3/23/2017	218.6	MMBtu/hr	LNB, FGR, GCP	0.0194	lb/MMBtu	BACT-PSD
IN-0173	Midwest Fertilizer Corporation	6/4/2014	218.6	MMBtu/hr	LNB, FGR	0.0194	lb/MMBtu	BACT-PSD
IN-0180	Midwest Fertilizer Corporation	6/4/2014	218.6	MMBtu/hr	LNB, FGR	0.0194	lb/MMBtu	BACT-PSD
IN-0179	Ohio Valley Resources, LLC	9/25/2013	218	MMBtu/hr	Ultra LNB, FGR	0.0194	lb/MMBtu	BACT-PSD
TX-0708	La Paloma Energy Center	2/7/2013	150	MMBtu/hr	LNB	0.0200	lb/MMBtu	BACT-PSD
WV-0025	Moundsville Combined Cycle Power Plant	11/21/2014	100	MMBtu/hr	Ultra LNB, FGR, GCP	0.0200	lb/MMBtu	BACT-PSD
	Oregon Clean Energy Center	6/18/2013	99	MMBtu/hr	LNB, FGR	0.0200	lb/MMBtu	BACT-PSD
NV-0049	Harrah's Operating Company, Inc.	8/20/2009	16.8	MMBtu/hr	LNB, FGR	0.0300	lb/MMBtu	BACT-PSD
NV-0049	Harrah's Operating Company, Inc.	8/20/2009	31.38	MMBtu/hr	LNB	0.0306	lb/MMBtu	BACT-PSD
	St. Joseph Energy Center, LLC	12/3/2012	80	MMBtu/hr	LNB, FGR	0.0320	lb/MMBtu	BACT-PSD
AR-0140	Big River Steel LLC	9/18/2013	24.5	MMBtu/hr	LNB, Clean Fuels, GCP	0.0350	lb/MMBtu	BACT-PSD
AR-0140	Big River Steel LLC	9/18/2013	67	MMBtu/hr	LNB, Clean Fuels, GCP	0.0350	lb/MMBtu	BACT-PSD

RBLC ID	Facility Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
AR-0140	Big River Steel LLC	9/18/2013	51.2	MMBtu/hr	LNB, GCP, Clean fuels	0.0350	lb/MMBtu	BACT-PSD
NV-0049	Harrah's Operating Company, Inc.	8/20/2009	35.4	MMBtu/hr	LNB	0.0350	lb/MMBtu	BACT-PSD
AL-0286	Mount Vernon Mill	3/25/2010	70	MMBtu/hr	LNB, FGR	0.0350	lb/MMBtu	BACT-PSD
SC-0112	Nucor Steel - Berkeley	5/5/2008	50.21	MMBtu/hr	Ultra LNB	0.0350	lb/MMBtu	BACT-PSD
MI-0406	Renaissance Power LLC	11/1/2013	40	MMBtu/hr	GCP	0.0350	lb/MMBtu	BACT-PSD
AL-0300	Thyssenkrupp Stainless USA, LLC	3/25/2010	28.6	MMBtu/hr	LNB, FGR	0.0350	lb/MMBtu	BACT-PSD
OR-0050	Troutdale Energy Center, LLC	3/5/2014	39.8	MMBtu/hr	LNB, FGR	0.0350	lb/MMBtu	BACT-PSD
	Ray Compressor Station	10/14/2010	12.25	MMBtu/hr	LNB	0.0351	lb/MMBtu	BACT-PSD
	Harrah's Operating Company, Inc.	8/20/2009	14.34	MMBtu/hr	LNB, FGR	0.0353	lb/MMBtu	BACT-PSD
SC-0116	Cytec Carbon Fibers, LLC	4/30/2008	50	MMBtu/hr	None	0.0360	lb/MMBtu	BACT-PSD
OK-0137	Ponca City Refinery	2/9/2009	95	MMBtu/hr	Ultra LNB	0.0360	lb/MMBtu	BACT-PSD
TX-0772	Port of Beaumont Petroleum Transload Terminal (PBPTT)	11/6/2015	40	MMBtu/hr	LNB	0.0360	lb/MMBtu	BACT-PSD
TX-0714	S R Bertron Electric Generating Station	12/19/2014	80	MMBtu/hr	LNB	0.0360	lb/MMBtu	BACT-PSD
FL-0335	Suwannee Mill	9/5/2012	46	MMBtu/hr	LNB, FGR	0.0360	lb/MMBtu	BACT-PSD
AL-0307	Alloys Plant	10/9/2015	17.5	MMBtu/hr	LNB, FGR, GCP	0.0366	lb/MMBtu	BACT-PSD
NV-0049	Harrah's Operating Company, Inc.	8/20/2009	21	MMBtu/hr	LNB	0.0366	lb/MMBtu	BACT-PSD
AL-0307	Alloys Plant	10/9/2015	24.59	MMBtu/hr	LNB, FGR, GCP	0.0366	lb/MMBtu	BACT-PSD
NV-0049	Harrah's Operating Company, Inc.	8/20/2009	33.48	MMBtu/hr	LNB	0.0367	lb/MMBtu	BACT-PSD
MI-0427	Filer City Station	11/17/2017	182	MMBtu/hr	LNB, FGR	0.0400	lb/MMBtu	BACT-PSD
MI-0423	Indeck Niles, LLC	1/4/2017	182	MMBtu/hr	LNB, FGR, GCP	0.0400	lb/MMBtu	BACT-PSD
LA-0295	Westlake Facility	7/12/2016	63	MMBtu/hr	GCP, FGR	0.0437	lb/MMBtu	BACT-PSD
OK-0148	Buffalo Creek Processing Plant	9/12/2012	11.04	MMBtu/hr	LNB	0.0450	lb/MMBtu	BACT-PSD
OH-0323	Titan Tire Corporation of Bryan	6/5/2008	50.4	MMBtu/hr	None	0.0476	lb/MMBtu	BACT-PSD
NV-0049	Harrah's Operating Company, Inc.	8/20/2009	16.7	MMBtu/hr	LNB	0.0490	lb/MMBtu	BACT-PSD
OR-0048	Carty Plant	12/29/2010	91	MMBtu/hr	LNB	0.0495	lb/MMBtu	BACT-PSD
LA-0272	Ammonia Production Facility	3/27/2013	217.5	MMBtu/hr	LNG, FGR, GCP	0.0500	lb/MMBtu	BACT-PSD
MI-0412	Holland Board of Public Works - East 5th Street	12/4/2013	95	MMBtu/hr	LNB, FGR, GCP	0.0500	lb/MMBtu	BACT-PSD
MI-0424	Holland Board of Public Works - East 5th Street	12/5/2016	83.5	MMBtu/hr	LNB, FGR, GCP	0.0500	lb/MMBtu	BACT-PSD
MI-0412	Holland Board of Public Works - East 5th Street	12/4/2013	55	MMBtu/hr	LNB, GCP	0.0500	lb/MMBtu	BACT-PSD
OH-0315	New Steel International, Inc., Haverhill	5/6/2008	50.4	MMBtu/hr	LNB	0.0500	lb/MMBtu	BACT-PSD
FL-0356	Okeechobee Clean Energy Center	3/9/2016	99.8	MMBtu/hr	LNB	0.0500	lb/MMBtu	BACT-PSD
MI-0410	Thetford Generating Station	7/25/2013	100	MMBtu/hr	LNB, FGR		lb/MMBtu	BACT-PSD
LA-0314	Indorama Lake Charles Facility	8/3/2016	229	MMBtu/hr	Ultra LNB, GCP, Clean fuels	0.0600	lb/MMBtu	BACT-PSD
LA-0314	Indorama Lake Charles Facility	8/3/2016	248	MMBtu/hr	Ultra LNB, GCP, Clean fuels	0.0600	lb/MMBtu	BACT-PSD
OK-0129	Chouteau Power Plant	1/23/2009	33.5	MMBtu/hr	LNB	0.0700	lb/MMBtu	BACT-PSD
TX-0576	Pipe Manufacturing Steel Mini Mill	4/19/2010	40	MMBtu/hr	GCP	0.1000	lb/MMBtu	BACT-PSD
TX-0772	Port of Beaumont Petroleum Transload Terminal (PBPTT)	11/6/2015	13.2	MMBtu/hr	None	0.1000	lb/MMBtu	BACT-PSD
TX-0732	Waste Heat Boiler No. 36	6/5/2015		MMBtu/hr	GCP	0.1100	lb/MMBtu	BACT-PSD

RBLC ID	Facility Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
OH-0310	American Municipal Power Generating Station	10/8/2009	150	MMBtu/hr	None	0.1333	lb/MMBtu	BACT-PSD
OK-0135	Pryor Plant Chemical	2/23/2009	80	MMBtu/hr	LNB, GCP	0.2000	lb/MMBtu	BACT-PSD
AL-0249	Evonik Degussa Corporation	1/7/2010	212.6	MMBtu/hr	SNCR	0.2780	lb/MMBtu	BACT-PSD
SC-0122	Cytec Carbon Fibers, LLC	4/30/2008	50	MMBtu/hr	None	0.3600	lb/MMBtu	BACT-PSD
AK-0083	Kenai Nitrogen Operations	1/6/2015	50	MMBtu/hr	SCR	7.0000	ppm	BACT-PSD
CA-1192	Avenal Energy Project	6/21/2011	37.4	MMBtu/hr	Ultra LNB, GCP, Clean fuels	9.0000	ppm	BACT-PSD
CA-1212	Palmdale Hybrid Power Project	10/18/2011	40	MMBtu/hr	None	9.0000	ppm	BACT-PSD
CA-1212	Palmdale Hybrid Power Project	10/18/2011	110	MMBtu/hr	None	9.0000	ppm	BACT-PSD
TX-0713	Tenaska Brownsville Generating Station	4/29/2014	90	MMBtu/hr	Ultra LNB	9.0000	ppm	BACT-PSD
TX-0712	Trinidad Generating Facility	11/20/2014	110	MMBtu/hr	Ultra LNB	9.0000	ppm	BACT-PSD
CA-1191	Victorville 2 Hybrid Power Project	3/11/2010	40	MMBtu/hr	None	9.0000	ppm	BACT-PSD
CA-1191	Victorville 2 Hybrid Power Project	3/11/2010	35	MMBtu/hr	None	9.0000	ppm	BACT-PSD
TN-0160	Volkswagen Group of America, Chattanooga Operations	10/10/2008	24	MMBtu/hr	LNB, FGR	30.0000	nnm	BACT-PSD
111 0100			iculate Matte			30.0000	PPIII	B/(CT 1 3B
FL-0356	Okeechobee Clean Energy Center	3/9/2016		MMBtu/hr	Clean Fuels	10 0000	% opacity	BACT-PSD
	Victorville 2 Hybrid Power Project	3/11/2010			Clean Fuels		gr/100 cf	BACT-PSD
	Victorville 2 Hybrid Power Project	3/11/2010			Clean Fuels		gr/100 cf	BACT-PSD
	Avenal Energy Project	6/21/2011					gr/100 cf	BACT-PSD
	Suwannee Mill	9/5/2012		MMBtu/hr	GCP		gr/100 cf	BACT-PSD
	Big River Steel LLC	9/18/2013		MMBtu/hr			lb/MMBtu	BACT-PSD
	Big River Steel LLC	9/18/2013		MMBtu/hr	-		lb/MMBtu	BACT-PSD
	Big River Steel LLC	9/18/2013		MMBtu/hr	GCP, Clean fuels		lb/MMBtu	BACT-PSD
	Holland Board of Public Works - East 5th Street	12/4/2013		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
	Holland Board of Public Works - East 5th Street	12/4/2013		MMBtu/hr	GCP		, lb/MMBtu	BACT-PSD
	Holland Board of Public Works - East 5th Street	12/5/2016		MMBtu/hr	GCP		, lb/MMBtu	BACT-PSD
MI-0410	Thetford Generating Station	7/25/2013	100	MMBtu/hr	GCP, Clean fuels	0.0018	lb/MMBtu	BACT-PSD
	Midwest Fertilizer Company LLC	3/23/2017	218.6	MMBtu/hr	GCP	0.0018	lb/MMBtu	BACT-PSD
IN-0173	Midwest Fertilizer Corporation	6/4/2014	218.6	MMBtu/hr	GCP	0.0018	lb/MMBtu	BACT-PSD
IN-0180	Midwest Fertilizer Corporation	6/4/2014	218.6	MMBtu/hr	GCP	0.0018	lb/MMBtu	BACT-PSD
IN-0179	Ohio Valley Resources, LLC	9/25/2013	218	MMBtu/hr	GCP	0.0018	lb/MMBtu	BACT-PSD
NJ-0085	Middlesex Energy Center, LLC	7/19/2016	97.5	MMBtu/hr	Clean Fuels	0.0019	lb/MMBtu	BACT-PSD
MD-0045	Mattawoman Energy Center	11/13/2015	42	MMBtu/hr	GCP, Clean fuels	0.0019	lb/MMBtu	BACT-PSD
NJ-0084	PSEG Fossil LLC Sewaren Generating Station	3/10/2016	80	MMBtu/hr	Clean Fuels	0.0033	lb/MMBtu	BACT-PSD
	CPV St Charles	11/12/2008	93	MMBtu/hr	None	0.0050	lb/MMBtu	BACT-PSD
MD-0041	CPV St. Charles	4/23/2014	93	MMBtu/hr	GCP, Clean fuels	0.0050	lb/MMBtu	BACT-PSD
NY-0103	Cricket Valley Energy Center	2/3/2016	60	MMBtu/hr	GCP, Clean fuels	0.0050	lb/MMBtu	BACT-PSD
	Filer City Station	11/17/2017	182	MMBtu/hr	GCP	0.0050	lb/MMBtu	BACT-PSD
LA-0240	Flopam Inc.	6/14/2010	25.1	MMBtu/hr	GCP, Clean fuels		lb/MMBtu	BACT-PSD
MI-0423	Indeck Niles, LLC	1/4/2017	182	MMBtu/hr	GCP	0.0050	lb/MMBtu	BACT-PSD

RBLC ID	Facility Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
MI-0406	Renaissance Power LLC	11/1/2013	40	MMBtu/hr	GCP	0.0050	lb/MMBtu	BACT-PSD
KS-0029	The Empire District Electric Company	7/14/2015	18.6	MMBtu/hr	None	0.0050	lb/MMBtu	BACT-PSD
NY-0104	CPV Valley Energy Center	8/1/2013	73.5	MMBtu/hr	Clean Fuels	0.0063	lb/MMBtu	BACT-PSD
NY-0112	Westrock-Solvay LLC	11/2/2012			LNB, GCP	0.0070	lb/MMBtu	BACT-PSD
CA-1212	Palmdale Hybrid Power Project	10/18/2011	110	MMBtu/hr	Clean Fuels	0.0073	lb/MMBtu	BACT-PSD
AK-0083	Kenai Nitrogen Operations	1/6/2015	50	MMBtu/hr	None	0.0074	lb/MMBtu	BACT-PSD
AK-0083	Kenai Nitrogen Operations	1/6/2015	243	MMBtu/hr	None	0.0074	lb/MMBtu	BACT-PSD
AL-0249	Evonik Degussa Corporation	1/7/2010	212.6	MMBtu/hr	GCP	0.0074	lb/MMBtu	BACT-PSD
MD-0046	Keys Energy Center	10/31/2014	93	MMBtu/hr	GCP, Clean fuels	0.0075	lb/MMBtu	BACT-PSD
CA-1212	Palmdale Hybrid Power Project	10/18/2011	40	MMBtu/hr	Clean Fuels	0.0075	lb/MMBtu	BACT-PSD
OK-0135	Pryor Plant Chemical	2/23/2009	80	MMBtu/hr	None	0.0075	lb/MMBtu	BACT-PSD
IN-0158	St. Joseph Energy Center, LLC	12/3/2012	80	MMBtu/hr	GCP, Clean fuels	0.0075	lb/MMBtu	BACT-PSD
AL-0300	Thyssenkrupp Stainless USA, LLC	3/25/2010	28.6	MMBtu/hr	None	0.0076	lb/MMBtu	BACT-PSD
OH-0315	New Steel International, Inc., Haverhill	5/6/2008	50.4	MMBtu/hr	Clean Fuels	0.0077	lb/MMBtu	BACT-PSD
IA-0107	Marshalltown Generating Station	4/14/2014	60.1	MMBtu/hr	None	0.0080	lb/MMBtu	BACT-PSD
WY-0075	Cheyenne Prairie Generating Station	7/16/2014	25.06	MMBtu/hr	GCP	0.0175	lb/MMBtu	BACT-PSD
MO-0079	American Energy Producers, Inc.	1/25/2008		MMBtu/hr	None		lb/MMBtu	BACT-PSD
MO-0081	American Energy Producers, Inc.	1/22/2009		MMBtu/hr	None	0.0236	lb/MMBtu	BACT-PSD
			10- Filterable	-			-	-
	Carty Plant	12/29/2010		MMBtu/hr	Clean Fuels		lb/MMBtu	BACT-PSD
	Hess Newark Energy Center	11/1/2012		MMBtu/hr	Clean Fuels		lb/MMBtu	BACT-PSD
	CPV St Charles	11/12/2008		MMBtu/hr	None		lb/MMBtu	BACT-PSD
	Highlands Ethanol Facility	12/10/2009		MMBtu/hr	Fabric Filter*		lb/MMBtu	BACT-PSD
	American Municipal Power Generating Station	10/8/2009		MMBtu/hr	None		lb/MMBtu	BACT-PSD
	Evonik Degussa Corporation	1/7/2010		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
	St. Joseph Energy Center, LLC	12/3/2012		MMBtu/hr	GCP, Clean fuels		lb/MMBtu	BACT-PSD
	Harrah's Operating Company, Inc.	8/20/2009		MMBtu/hr			lb/MMBtu	BACT-PSD
	Nucor Steel - Berkeley	5/5/2008		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
	Direct Reduction Iron Plant	1/27/2011		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
LA-0248	Direct Reduction Iron Plant	1/27/2011	201	MMBtu/hr	GCP	0.0118	lb/MMBtu	BACT-PSD
			M10- Total		•			
	Avenal Energy Project	6/21/2011		MMBtu/hr	Clean Fuels		gr/100 cf	BACT-PSD
	Suwannee Mill	9/5/2012		MMBtu/hr	GCP		gr/100 cf	BACT-PSD
	Big River Steel LLC	9/18/2013			GCP, Clean fuels		lb/MMBtu	BACT-PSD
	Big River Steel LLC	9/18/2013			GCP, Clean fuels		lb/MMBtu	BACT-PSD
	Big River Steel LLC	9/18/2013			GCP, Clean fuels		lb/MMBtu	BACT-PSD
	CPV St. Charles	4/23/2014			GCP, Clean fuels		lb/MMBtu	BACT-PSD
	Flopam Inc.	6/14/2010		MMBtu/hr			lb/MMBtu	BACT-PSD
	PSEG Fossil LLC Sewaren Generating Station	3/10/2016		MMBtu/hr	Clean Fuels		lb/MMBtu	BACT-PSD
MI-0406	Renaissance Power LLC	11/1/2013	40	MMBtu/hr	GCP	0.0050	lb/MMBtu	BACT-PSD

RBLC ID	Facility Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
MA-0039	Salem Harbor Station Redevelopment	1/30/2014	80	MMBtu/hr	None	0.0050	lb/MMBtu	BACT-PSD
KS-0029	The Empire District Electric Company	7/14/2015	18.6	MMBtu/hr	None	0.0050	lb/MMBtu	BACT-PSD
NJ-0085	Middlesex Energy Center, LLC	7/19/2016	97.5	MMBtu/hr	Clean Fuels	0.0050	lb/MMBtu	BACT-PSD
OK-0135	Pryor Plant Chemical	2/23/2009	80	MMBtu/hr	None	0.0063	lb/MMBtu	BACT-PSD
MI-0412	Holland Board of Public Works - East 5th Street	12/4/2013	55	MMBtu/hr	GCP	0.0070	lb/MMBtu	BACT-PSD
MI-0412	Holland Board of Public Works - East 5th Street	12/4/2013	95	MMBtu/hr	GCP	0.0070	lb/MMBtu	BACT-PSD
MI-0424	Holland Board of Public Works - East 5th Street	12/5/2016	83.5	MMBtu/hr	GCP	0.0070	lb/MMBtu	BACT-PSD
LA-0314	Indorama Lake Charles Facility	8/3/2016	229	MMBtu/hr	GCP, Clean fuels	0.0070	lb/MMBtu	BACT-PSD
LA-0314	Indorama Lake Charles Facility	8/3/2016	248	MMBtu/hr	GCP, Clean fuels	0.0070	lb/MMBtu	BACT-PSD
MI-0410	Thetford Generating Station	7/25/2013	100	MMBtu/hr	GCP, Clean fuels	0.0070	lb/MMBtu	BACT-PSD
IN-0263	Midwest Fertilizer Company LLC	3/23/2017	218.6	MMBtu/hr	GCP	0.0072	lb/MMBtu	BACT-PSD
IN-0173	Midwest Fertilizer Corporation	6/4/2014	218.6	MMBtu/hr	GCP	0.0072	lb/MMBtu	BACT-PSD
IN-0180	Midwest Fertilizer Corporation	6/4/2014	218.6	MMBtu/hr	GCP	0.0072	lb/MMBtu	BACT-PSD
IN-0179	Ohio Valley Resources, LLC	9/25/2013	218	MMBtu/hr	GCP	0.0072	lb/MMBtu	BACT-PSD
CA-1212	Palmdale Hybrid Power Project	10/18/2011	110	MMBtu/hr	Clean Fuels	0.0073	lb/MMBtu	BACT-PSD
AK-0083	Kenai Nitrogen Operations	1/6/2015	50	MMBtu/hr	None	0.0074	lb/MMBtu	BACT-PSD
AK-0083	Kenai Nitrogen Operations	1/6/2015	243	MMBtu/hr	None	0.0074	lb/MMBtu	BACT-PSD
MI-0423	Indeck Niles, LLC	1/4/2017	182	MMBtu/hr	GCP	0.0075	lb/MMBtu	BACT-PSD
MI-0427	Filer City Station	11/17/2017	182	MMBtu/hr	GCP	0.0075	lb/MMBtu	BACT-PSD
MD-0046	Keys Energy Center	10/31/2014	93	MMBtu/hr	GCP, Clean fuels	0.0075	lb/MMBtu	BACT-PSD
MD-0045	Mattawoman Energy Center	11/13/2015	42	MMBtu/hr	GCP, Clean fuels	0.0075	lb/MMBtu	BACT-PSD
CA-1212	Palmdale Hybrid Power Project	10/18/2011		MMBtu/hr	Clean Fuels	0.0075	lb/MMBtu	BACT-PSD
TX-0576	Pipe Manufacturing Steel Mini Mill	4/19/2010	40	MMBtu/hr	GCP	0.0075	lb/MMBtu	BACT-PSD
OH-0352	Oregon Clean Energy Center	6/18/2013	99	MMBtu/hr	Clean Fuels	0.0080	lb/MMBtu	BACT-PSD
LA-0272	Ammonia Production Facility	3/27/2013	217.5	MMBtu/hr	GCP	0.0089	lb/MMBtu	BACT-PSD
	Northstar Agri Ind Enid	7/31/2013	95	MMBtu/hr	GCP	0.0130	lb/MMBtu	BACT-PSD
MO-0081	American Energy Producers, Inc.	1/22/2009	95	MMBtu/hr	None	0.0164	lb/MMBtu	BACT-PSD
MO-0079	American Energy Producers, Inc.	1/25/2008		MMBtu/hr	None	0.0164	lb/MMBtu	BACT-PSD
MA-0037	Central Heating Plant: Amherst Campus	10/29/2008		MMBtu/hr	None	0.0200	lb/MMBtu	BACT-PSD
			M2.5- Total	-			-	_
	Renaissance Power LLC	11/1/2013			GCP		lb/MMBtu	BACT-PSD
	Evonik Degussa Corporation	1/7/2010			GCP		lb/MMBtu	BACT-PSD
	St. Joseph Energy Center, LLC	12/3/2012			GCP, Clean fuels		lb/MMBtu	BACT-PSD
	Victorville 2 Hybrid Power Project	3/11/2010		MMBtu/hr	None		gr/100 cf	BACT-PSD
	Victorville 2 Hybrid Power Project	3/11/2010		MMBtu/hr	None		gr/100 cf	BACT-PSD
	Suwannee Mill	9/5/2012		MMBtu/hr	GCP		gr/100 cf	BACT-PSD
	Big River Steel LLC	9/18/2013		-	GCP, Clean fuels		lb/MMBtu	BACT-PSD
	Big River Steel LLC	9/18/2013			GCP, Clean fuels		lb/MMBtu	BACT-PSD
	Big River Steel LLC	9/18/2013					lb/MMBtu	BACT-PSD
WV-0025	Moundsville Combined Cycle Power Plant	11/21/2014	100	MMBtu/hr	GCP, Clean fuels	0.0050	lb/MMBtu	BACT-PSD

RBLC ID	Facility Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
NJ-0084	PSEG Fossil LLC Sewaren Generating Station	3/10/2016	80	MMBtu/hr	Clean Fuels	0.0050	lb/MMBtu	BACT-PSD
MA-0039	Salem Harbor Station Redevelopment	1/30/2014	80	MMBtu/hr	None	0.0050	lb/MMBtu	BACT-PSD
KS-0029	The Empire District Electric Company	7/14/2015	18.6	MMBtu/hr	None	0.0050	lb/MMBtu	BACT-PSD
NJ-0085	Middlesex Energy Center, LLC	7/19/2016	97.5	MMBtu/hr	Clean Fuels	0.0050	lb/MMBtu	BACT-PSD
MI-0412	Holland Board of Public Works - East 5th Street	12/4/2013	55	MMBtu/hr	GCP	0.0070	lb/MMBtu	BACT-PSD
MI-0412	Holland Board of Public Works - East 5th Street	12/4/2013	95	MMBtu/hr	GCP	0.0070	lb/MMBtu	BACT-PSD
MI-0424	Holland Board of Public Works - East 5th Street	12/5/2016	83.5	MMBtu/hr	GCP	0.0070	lb/MMBtu	BACT-PSD
LA-0314	Indorama Lake Charles Facility	8/3/2016	229	MMBtu/hr	GCP, Clean fuels	0.0070	lb/MMBtu	BACT-PSD
LA-0314	Indorama Lake Charles Facility	8/3/2016	248	MMBtu/hr	GCP, Clean fuels	0.0070	lb/MMBtu	BACT-PSD
MI-0410	Thetford Generating Station	7/25/2013	100	MMBtu/hr	GCP, Clean fuels	0.0070	lb/MMBtu	BACT-PSD
IN-0263	Midwest Fertilizer Company LLC	3/23/2017	218.6	MMBtu/hr	GCP	0.0072	lb/MMBtu	BACT-PSD
IN-0179	Ohio Valley Resources, LLC	9/25/2013	218	MMBtu/hr	GCP	0.0072	lb/MMBtu	BACT-PSD
CA-1212	Palmdale Hybrid Power Project	10/18/2011	110	MMBtu/hr	Clean Fuels	0.0073	lb/MMBtu	BACT-PSD
AK-0083	Kenai Nitrogen Operations	1/6/2015	50	MMBtu/hr	None	0.0074	lb/MMBtu	BACT-PSD
AK-0083	Kenai Nitrogen Operations	1/6/2015	243	MMBtu/hr	None	0.0074	lb/MMBtu	BACT-PSD
MI-0423	Indeck Niles, LLC	1/4/2017	182	MMBtu/hr	GCP	0.0075	lb/MMBtu	BACT-PSD
OK-0148	Buffalo Creek Processing Plant	9/12/2012	11.04	MMBtu/hr	None	0.0075	lb/MMBtu	BACT-PSD
MI-0427	Filer City Station	11/17/2017	182	MMBtu/hr	GCP	0.0075	lb/MMBtu	BACT-PSD
MD-0045	Mattawoman Energy Center	11/13/2015	42	MMBtu/hr	GCP, Clean fuels	0.0075	lb/MMBtu	BACT-PSD
CA-1212	Palmdale Hybrid Power Project	10/18/2011	40	MMBtu/hr	Clean Fuels	0.0075	lb/MMBtu	BACT-PSD
LA-0272	Ammonia Production Facility	3/27/2013		MMBtu/hr	GCP	0.0089	lb/MMBtu	BACT-PSD
OK-0156	Northstar Agri Ind Enid	7/31/2013		MMBtu/hr	GCP	0.0126	lb/MMBtu	BACT-PSD
			Organic Compo					
TX-0813	Odessa Petrochemical Plant	11/22/2016	223	MMBtu/hr	GCP	0.0005	lb/MMBtu	BACT-PSD
MO-0079	American Energy Producers, Inc.	1/25/2008	190	MMBtu/hr	GCP	0.0010	lb/MMBtu	BACT-PSD
	Karn Weadock Generating Complex	12/29/2009		MMBtu/hr	GCP	0.0013	lb/MMBtu	BACT-PSD
FL-0318	Highlands Ethanol Facility	12/10/2009		MMBtu/hr	None	0.0015	lb/MMBtu	BACT-PSD
	Cheyenne Prairie Generating Station	7/16/2014		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
	Nucor Steel - Berkeley	5/5/2008	50.21	MMBtu/hr	GCP, Clean fuels		lb/MMBtu	BACT-PSD
	Olefins Plant	8/8/2014			GCP		lb/MMBtu	BACT-PSD
	Suwannee Mill	9/5/2012	46	MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
LA-0295	Westlake Facility	7/12/2016			Ox Cat, GCP	0.0033	lb/MMBtu	BACT-PSD
	Perdue Grain And Oilseed, LLC	7/12/2017		MMBtu/hr	None		lb/MMBtu	BACT-PSD
	El Dorado Chemical Company	11/18/2013		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
	Indeck Niles, LLC	1/4/2017		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
	Ray Compressor Station	10/14/2010		MMBtu/hr	None		lb/MMBtu	BACT-PSD
IA-0107	Marshalltown Generating Station	4/14/2014		MMBtu/hr	None		lb/MMBtu	BACT-PSD
	Renaissance Power LLC	11/1/2013		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
IN-0158	St. Joseph Energy Center, LLC	12/3/2012		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
IN-0239	Subaru of Indiana Automotive, Inc.	2/18/2016	38	MMBtu/hr	None	0.0050	lb/MMBtu	BACT-PSD

RBLC ID	Facility Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
OR-0050	Troutdale Energy Center, LLC	3/5/2014	39.8	MMBtu/hr	LNB, FGR	0.0050	lb/MMBtu	BACT-PSD
OH-0310	American Municipal Power Generating Station	10/8/2009	150	MMBtu/hr	None	0.0052	lb/MMBtu	BACT-PSD
IN-0263	Midwest Fertilizer Company LLC	3/23/2017	218.6	MMBtu/hr	GCP	0.0052	lb/MMBtu	BACT-PSD
IN-0173	Midwest Fertilizer Corporation	6/4/2014	218.6	MMBtu/hr	GCP	0.0052	lb/MMBtu	BACT-PSD
IN-0180	Midwest Fertilizer Corporation	6/4/2014	218.6	MMBtu/hr	GCP	0.0052	lb/MMBtu	BACT-PSD
IN-0179	Ohio Valley Resources, LLC	9/25/2013	218	MMBtu/hr	GCP	0.0052	lb/MMBtu	BACT-PSD
OH-0323	Titan Tire Corporation of Bryan	6/5/2008	50.4	MMBtu/hr	None	0.0054	lb/MMBtu	BACT-PSD
OH-0350	Republic Steel	7/18/2012	65	MMBtu/hr	GCP	0.0054	lb/MMBtu	BACT-PSD
LA-0272	Ammonia Production Facility	3/27/2013	217.5	MMBtu/hr	GCP, FGR	0.0054	lb/MMBtu	BACT-PSD
AL-0312	Belk Chip-N-Saw Facility	5/26/2016	60	MMBtu/hr	GCP	0.0054	lb/MMBtu	BACT-PSD
AR-0140	Big River Steel LLC	9/18/2013	24.5	MMBtu/hr	GCP, Clean fuels	0.0054	lb/MMBtu	BACT-PSD
AR-0140	Big River Steel LLC	9/18/2013	51.2	MMBtu/hr	GCP, Clean fuels	0.0054	lb/MMBtu	BACT-PSD
OK-0148	Buffalo Creek Processing Plant	9/12/2012	11.04	MMBtu/hr	None	0.0054	lb/MMBtu	BACT-PSD
LA-0314	Indorama Lake Charles Facility	8/3/2016	229	MMBtu/hr	GCP	0.0054	lb/MMBtu	BACT-PSD
LA-0314	Indorama Lake Charles Facility	8/3/2016	248	MMBtu/hr	GCP	0.0054	lb/MMBtu	BACT-PSD
AK-0083	Kenai Nitrogen Operations	1/6/2015	50	MMBtu/hr	None	0.0054	lb/MMBtu	BACT-PSD
AK-0083	Kenai Nitrogen Operations	1/6/2015	243	MMBtu/hr	None	0.0054	lb/MMBtu	BACT-PSD
AL-0282	Lenzing Fibers, Inc.	1/22/2014	100	MMBtu/hr	GCP	0.0054	lb/MMBtu	BACT-PSD
TX-0576	Pipe Manufacturing Steel Mini Mill	4/19/2010	40	MMBtu/hr	GCP	0.0054	lb/MMBtu	BACT-PSD
SC-0160	US8 Facility	12/13/2012	33.6	MMBtu/hr	None	0.0054	lb/MMBtu	BACT-PSD
IA-0096	Verasun Charles City, LLC	11/18/2008	50	MMBtu/hr	None	0.0054	lb/MMBtu	BACT-PSD
MO-0082	Archer Daniels Midland-Mexico	10/5/2010	85.6	MMBtu/hr	GCP	0.0055	lb/MMBtu	BACT-PSD
AL-0286	Mount Vernon Mill	3/25/2010	70	MMBtu/hr	None	0.0055	lb/MMBtu	BACT-PSD
AL-0300	Thyssenkrupp Stainless USA, LLC	3/25/2010	28.6	MMBtu/hr	None	0.0055	lb/MMBtu	BACT-PSD
OH-0315	New Steel International, Inc., Haverhill	5/6/2008	50.4	MMBtu/hr	None	0.0056	lb/MMBtu	BACT-PSD
LA-0248	Direct Reduction Iron Plant	1/27/2011	201	MMBtu/hr	GCP	0.0059	lb/MMBtu	BACT-PSD
AL-0307	Alloys Plant	10/9/2015	17.5	MMBtu/hr	GCP	0.0060	lb/MMBtu	BACT-PSD
AL-0307	Alloys Plant	10/9/2015	24.59	MMBtu/hr	GCP	0.0060	lb/MMBtu	BACT-PSD
WV-0025	Moundsville Combined Cycle Power Plant	11/21/2014	100	MMBtu/hr	GCP, Clean fuels	0.0060	lb/MMBtu	BACT-PSD
OK-0156	Northstar Agri Ind Enid	7/31/2013	95	MMBtu/hr	GCP	0.0060	lb/MMBtu	BACT-PSD
OH-0352	Oregon Clean Energy Center	6/18/2013	99	MMBtu/hr	GCP	0.0060	lb/MMBtu	BACT-PSD
OK-0135	Pryor Plant Chemical	2/23/2009	80	MMBtu/hr	None	0.0063	lb/MMBtu	BACT-PSD
LA-0248	Direct Reduction Iron Plant	1/27/2011	201	MMBtu/hr	GCP	0.0078	lb/MMBtu	BACT-PSD
MI-0412	Holland Board of Public Works - East 5th Street	12/4/2013	55	MMBtu/hr	GCP	0.0080	lb/MMBtu	BACT-PSD
MI-0412	Holland Board of Public Works - East 5th Street	12/4/2013		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
MI-0424	Holland Board of Public Works - East 5th Street	12/5/2016	83.5	MMBtu/hr	GCP	0.0080	lb/MMBtu	BACT-PSD
MI-0410	Thetford Generating Station	7/25/2013	100	MMBtu/hr	GCP, Clean fuels	0.0080	lb/MMBtu	BACT-PSD
OK-0129	Chouteau Power Plant	1/23/2009	33.5	MMBtu/hr	GCP	0.0161	lb/MMBtu	BACT-PSD
MO-0081	American Energy Producers, Inc.	1/22/2009	95	MMBtu/hr	None	0.0164	lb/MMBtu	BACT-PSD

RBLC ID	Facility Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
		•		Nitrogen Dioxide		• •		· ··
*AL-0328	PLANT BARRY	11/09/2020	90.5	MMBtu/hr		0.011 LB/N	1MBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	88.7	MMBTU/HR	CBF/GCP/LNB	0.035 LB/N	IMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	0		CBF/GCP/LNB	0.095 LB/N	IMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	53.7	MMBTU/HR	CBF/GCP/LNB	0.035 LB/N	1MBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	53.7	MMBTU/HR	CBF/GCP/LNB	0.035 LB/N	1MBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	78.2	MMBTU/HR	SCR/CBF/GCP/LNB	0.035 LB/N	1MBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	85.15	MMBTU/HR	CBF/GCP/LNB	0.1 LB/N	IMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP/LNB	0.097 LB/N	IMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP/LNB	0.095 LB/N	IMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP/LNB	0.035 LB/N	1MBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		SCR/CBF/GCP/LNB	0.035 LB/N	IMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP/LNB	0.035 LB/N	IMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP/LNB	0.08 LB/N	IMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP/LNB	0.035 LB/N	IMBTU	BACT
AR-0167	LION OIL COMPANY	12/01/2020	75	MMBtu/hr	Ultra-LNB/GCP	3.5 LB/H		BACT
AR-0167	LION OIL COMPANY	12/01/2020	56	MMBtu/hr	GCP	2.8 LB/H	R	BACT
AR-0167	LION OIL COMPANY	12/01/2020		MMBtu/hr		12.7 LB/H		BACT
AR-0167	LION OIL COMPANY	12/01/2020		MMBtu/hr	GCP	5.3 LB/H		BACT
AR-0167	LION OIL COMPANY	12/01/2020		MMBtu/hr	Ultra-LNB/GCP	6.5 LB/H		BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021		MMBtu/hr	CBF/GCP/LNB		IMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021		MMBtu/hr	CBF/GCP/LNB		IMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021		MMBtu/hr	CBF/GCP/LNB		IMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021		MMBtu/hr	CBF/GCP/LNB	0.1 LB/N		BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	0	,	GCP/Energy efficient burners/CBF	0.05 LB/N		BACT
AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	128	MMBTU/hr	LNB/SCR/SNCR		IMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	50.4	MMBTU/hr	LNB		IMBTU	BACT
*AR-0172	NUCOR STEEL ARKANSAS	09/01/2021	0		LNB		IMBTU	BACT
*AR-0172	NUCOR STEEL ARKANSAS	09/01/2021	0		LNB	-	IMBTU	BACT
*AR-0172	NUCOR STEEL ARKANSAS	09/01/2021	0		LNB/SCR/SNCR	0.0075 LB/N		BACT
IL-0130	JACKSON ENERGY CENTER	12/31/2018	96	mmBtu/hr	Ultra-LNB/FGR/GCP	0.01 LB/N		LAER
KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020		MMBtu/hr	LNB/GCP	158 LB/N		BACT
KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	60	MMBtu/hr, combined	LNB/GCP		1MSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr	LNB/GCP	35 LB/N		BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr	LNB/GCP	7.5 LB/N		BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	104.3	MMBtu/hr	LNB/GCP	70 LB/N	1MSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	65.5	MMBtu/hr	LNB/GCP	70 LB/N	1MSCF	BACT
LA-0364	FG LA COMPLEX	01/06/2020	0		LNB	-	IMBTU	BACT
LA-0364	FG LA COMPLEX	01/06/2020	94	mm btu/h	SCR/LNB	14.41 LB/H		BACT
MI-0441	LBWLERICKSON STATION	12/21/2018	99	MMBTU/H	LNB or FGR/GCP	30 PPM		BACT
MI-0442	THOMAS TOWNSHIP ENERGY, LLC	08/21/2019		MMBTU/H	GCP/LNB		1MBTU	BACT
MI-0447	LBWLERICKSON STATION	01/07/2021	50	MMBTU/H	LNB or FGR/GCP	30 PPM		BACT
OH-0379	PETMIN USA INCORPORATED	02/06/2019	0		Direct Evacuation Control	1.4 LB/T		BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019		MMBTU/H	CBF/LNB/GCP	6.16 LB/H		BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019		MMBTU/H	CBF/LNB/GCP	7.84 LB/H		BACT
TX-0851	;	12/17/2018		MMBTU/HR	LNB/GCP	- /	IMBTU	BACT
	RIO BRAVO PIPELINE FACILITY							
TX-0888	RIO BRAVO PIPELINE FACILITY ORANGE POLYETHYLENE PLANT		0		SCR/CEMS	0.015 LB/N	1MBTU	BACT
TX-0888 TX-0888	ORANGE POLYETHYLENE PLANT	04/23/2020	°	MMBtu	SCR/CEMS GCP/LNB	0.015 LB/N 0.04 LB/N	1MBTU 1MBTU	BACT
	ORANGE POLYETHYLENE PLANT	04/23/2020 04/23/2020	°	MMBtu		0.04 LB/N		-
TX-0888	ORANGE POLYETHYLENE PLANT ORANGE POLYETHYLENE PLANT	04/23/2020	100	MMBtu	GCP/LNB	0.04 LB/N	1MBTU 1MBTU	BACT

RBLC ID	Facility Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
				Carbon Monoxide				
*AL-0328	PLANT BARRY	11/09/2020	90.5	MMBtu/hr		0.03	7 LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	88.7	MMBTU/HR	CBF/GCP	0.0824	1 LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	0		CBF/GCP	0.0824	1 LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	53.7	MMBTU/HR	CBF/GCP	0.0824	1 LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	53.7	MMBTU/HR	CBF/GCP	0.0824	1 LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	78.2	MMBTU/HR	CBF/GCP	0.082	1 LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	85.15	MMBTU/HR	CBF/GCP	0.082	1 LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.082	1 LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0824	1 LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0824	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0824	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.082	1 LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.082	1 LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.082	1 LB/MMBTU	BACT
AR-0167	LION OIL COMPANY	12/01/2020	142.2	MMBtu/hr	GCP	7.4	1 LB/HR	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	117.9	MMBtu/hr	CBF/GCP	0.082	1 LB/MMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021		MMBtu/hr	CBF/GCP	0.082	1 LB/MMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	64	MMBtu/hr	CBF/GCP	0.0824	1 LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	128	MMBTU/hr	GCP	0.084	1 LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	50.4	MMBTU/hr	GCP	0.07	5 LB/MMBTU	BACT
*AR-0172	NUCOR STEEL ARKANSAS	09/01/2021	0		GCP	0.084	1 LB/MMBTU	BACT
*AR-0172	NUCOR STEEL ARKANSAS	09/01/2021	0		GCP	0.084	1 LB/MMBTU	BACT
IL-0130	JACKSON ENERGY CENTER	12/31/2018	96	mmBtu/hr	GCP	0.03	7 LB/MMBTU	BACT
KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	54	MMBtu/hr	GCP	84	LB/MMSCF	BACT
KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	60	MMBtu/hr, combined	GCP	84	LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	50.4	MMBtu/hr	GCP	6	L LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	94	MMBtu/hr	GCP	84	LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr	GCP	84	LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	65.5	MMBtu/hr	GCP	84	LB/MMSCF	BACT
	FG LA COMPLEX	01/06/2020	0		GCP	0.03	7 LB/MMBTU	BACT
LA-0364	FG LA COMPLEX	01/06/2020		mm btu/h	GCP/OxCat	26.2	l lb/H	BACT
MI-0441	LBWLERICKSON STATION	12/21/2018	99	MMBTU/H	GCP	50	PPM	BACT
	THOMAS TOWNSHIP ENERGY, LLC	08/21/2019	80	MMBTU/H	GCP	0.03	7 LB/MMBTU	BACT
MI-0447	LBWLERICKSON STATION	01/07/2021		MMBTU/H	GCP		PPM	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	88	MMBTU/H	CBF/baffle burners/GCP		5 LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	112	MMBTU/H	CBF/baffle burners/GCP		1 LB/H	BACT
	CANFOR SOUTHERN PINE - CONWAY MILL	05/21/2019	0		Work Practice Standards		5 LB/MMBTU	BACT
	RIO BRAVO PIPELINE FACILITY	12/17/2018	71.3	MMBTU/HR	CBF/GCP		2 LB/MMBTU	BACT
	ORANGE POLYETHYLENE PLANT	04/23/2020	0		GCP/proper design		PPMVD	BACT
	ORANGE POLYETHYLENE PLANT	04/23/2020	100	MMBtu	GCP/proper design		PPMVD	BACT
	ORANGE POLYETHYLENE PLANT	04/23/2020	0		CBF/GCP		5 LB/MMBTU	BACT
*WI-0291	GRAYMONT WESTERN LIME-EDEN	01/28/2019	0		CBF/GCP		B LB/HR	BACT
*WI-0291	GRAYMONT WESTERN LIME-EDEN	01/28/2019	0		GCP	45.	3 LB/HR	BACT

RBLC ID	Facility Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
			Va	olatile Organic Compoun	ds			
*AL-0328	PLANT BARRY	11/09/2020	90.5	MMBtu/hr		0.004	LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	88.7	MMBTU/HR	CBF/GCP	0.0054	lb/mmbtu	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	0		CBF/GCP	0.0054	lb/mmbtu	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	53.7	MMBTU/HR	CBF/GCP	0.0054	LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	53.7	MMBTU/HR	CBF/GCP	0.054	LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	78.2	MMBTU/HR	CBF/GCP	0.0054	lb/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	85.15	MMBTU/HR	CBF/GCP	0.0054	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0054	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0054	lb/mmbtu	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0054	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0054	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0054	lb/mmbtu	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0054	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0054	LB/MMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	117.9	MMBtu/hr	CBF/GCP	0.0054	lb/mmbtu	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	58	MMBtu/hr	CBF/GCP	0.0054	LB/MMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	66	MMBtu/hr	CBF/GCP	0.0054	LB/MMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	64	MMBtu/hr	CBF/GCP	0.0054	lb/mmbtu	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	0		GCP/Energy efficient burners/CBF	0.0054	LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	128	MMBTU/hr	GCP	0.0055	LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	50.4	MMBTU/hr	GCP	0.0026	LB/HR	BACT
*AR-0172	NUCOR STEEL ARKANSAS	09/01/2021	0		GCP	0.0055	LB/MMBTU	BACT
*AR-0172	NUCOR STEEL ARKANSAS	09/01/2021	0		GCP	0.0055	lb/MMBTU	BACT
KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	54	MMBtu/hr	GCP	5.5	LB/MMSCF	BACT
KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	60	MMBtu/hr, combined	GCP	5.5	LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	50.4	MMBtu/hr	GCP	5.5	LB/MMSCF	BACT
	NUCOR STEEL GALLATIN, LLC	04/19/2021	94	MMBtu/hr	GCP		LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	104.3	MMBtu/hr	GCP	5.5	LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	65.5	MMBtu/hr	GCP	5.5	LB/MMSCF	BACT
	FG LA COMPLEX	01/06/2020	0		GCP		LB/H	BACT
	FG LA COMPLEX	01/06/2020		mm btu/h	OxCat/GCP	13.37	lb/H	BACT
MI-0441	LBWLERICKSON STATION	12/21/2018	99	MMBTU/H	GCP	0.5	LB/H	BACT
	THOMAS TOWNSHIP ENERGY, LLC	08/21/2019		MMBTU/H	GCP		lb/MMBTU	BACT
MI-0447	LBWLERICKSON STATION	01/07/2021	50	MMBTU/H	GCP		lb/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	88	MMBTU/H	CBF/GCP	0.48	LB/H	BACT
	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	112	MMBTU/H	CBF/GCP	0.62	LB/H	BACT
	CANFOR SOUTHERN PINE - CONWAY MILL	05/21/2019	0		Work Practice Standards		lb/MMBTU	BACT
	RIO BRAVO PIPELINE FACILITY	12/17/2018	71.3	MMBTU/HR	CBF/GCP		lb/mmbtu	BACT
	SWEENY REFINERY	01/08/2020	0		CBF/GCP		lb/MMBTU	LAER
	ORANGE POLYETHYLENE PLANT	04/23/2020	0		GCP/proper design		lb/mmbtu	BACT
	ORANGE POLYETHYLENE PLANT	04/23/2020		MMBtu	GCP/proper design		lb/mmbtu	BACT
*WI-0289	GEORGIA-PACIFIC CONSUMER PRODUCTS LLC	04/01/2019	95	mmBTU/hr	GCP	0.0055	lb/mmbtu	BACT

RBLC ID	Facility Name	Permit Date	Throughput	Units	Controls	Emission Limit Units	Туре
				PM ₁₀ (total)			
AR-0155	BIG RIVER STEEL LLC	11/07/2018	0		CBF/GCP	0.0075 LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	-	MMBTU/HR	CBF/GCP	0.0019 LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018		MMBTU/HR	CBF/GCP	6.8 X10^-4 LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018		MMBTU/HR	CBF/GCP	0.0075 LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0075 LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0019 LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0012 LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0019 LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0075 LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0007 LB/MMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	117.9	MMBtu/hr	CBF/GCP	0.0075 LB/MMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	58	MMBtu/hr	CBF/GCP	0.013 LB/MMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	66	MMBtu/hr	CBF/GCP	0.013 LB/MMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	64	MMBtu/hr	CBF/GCP	0.013 LB/MMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	0		Mist eliminator/GCP	0.003 GR/DSCF	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	0		GCP/Energy efficient burners/CBF	0.0075 LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	128	MMBTU/hr	GCP	0.0076 LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	50.4	MMBTU/hr	GCP	0.0076 LB/MMBTU	BACT
*AR-0172	NUCOR STEEL ARKANSAS	09/01/2021	0		GCP	0.0076 LB/MMBTU	BACT
*AR-0172	NUCOR STEEL ARKANSAS	09/01/2021	0		GCP	0.0076 GR/DSCF	BACT
*AR-0172	NUCOR STEEL ARKANSAS	09/01/2021	0		Wet Scrubber System with mist eliminator	0.0013 LB/MMBTU	BACT
KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	54	MMBtu/hr	GCP	7.6 LB/MMSCF	BACT
KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020		MMBtu/hr, combined	GCP	7.6 LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr	GCP	7.6 LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr	GCP	7.6 LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr	GCP	7.6 LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	65.5	MMBtu/hr	GCP	7.6 LB/MMSCF	BACT
LA-0364	FG LA COMPLEX	01/06/2020	0		CBF/GCP	0.03 LB/H	BACT
LA-0364	FG LA COMPLEX	01/06/2020		mm btu/h	CBF/GCP	0.61 LB/H	BACT
MI-0441	LBWLERICKSON STATION	12/21/2018		MMBTU/H	GCP	0.74 LB/H	BACT
MI-0442	THOMAS TOWNSHIP ENERGY, LLC	08/21/2019		MMBTU/H	CBF/GCP	7.6 LB/MMSCF	BACT
MI-0447	LBWLERICKSON STATION	01/07/2021		MMBTU/H	GCP	0.74 LB/H	BACT
OH-0379	PETMIN USA INCORPORATED	02/06/2019	0		Control Efficiency	0.074 LB/T	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019		MMBTU/H	CBF/GCP	0.88 LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019		MMBTU/H	CBF/GCP	1.12 LB/H	BACT
TX-0851	RIO BRAVO PIPELINE FACILITY	12/17/2018		MMBTU/HR	CBF/GCP	0.0075 LB/MMBTU	BACT
*VA-0333	NORFOLK NAVAL SHIPYARD	12/09/2020	/6.6	MMBtu/hr		0.0078 LB	BACT
* 41, 0000		44 /00 /0000	00.5	PM ₁₀ (filterable only)			DAGT
*AL-0328		11/09/2020		MMBtu/hr		0.0075 LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018		MMBTU/HR	CBF/GCP	9.38 X10^-4 LB/MMBTU	BACT
AR-0155 AR-0159	BIG RIVER STEEL LLC BIG RIVER STEEL LLC	11/07/2018	/8.2	MMBTU/HR	CBF/GCP CBF/GCP	0.0012 LB/MMBTU	BACT
AR-0159 TX-0888	ORANGE POLYETHYLENE PLANT	04/05/2019 04/23/2020	0		CBF/GCP CBF/GCP	0.0075 LB/MMBTU 0.0075 LB/MMBTU	BACT
TX-0888 TX-0888			100	MMBtu	CBF/GCP CBF/GCP	0.0075 LB/MMBTU	BACT
TX-0888 TX-0888	ORANGE POLYETHYLENE PLANT ORANGE POLYETHYLENE PLANT	04/23/2020 04/23/2020	100		CBF/GCP CBF/GCP	0.0075 LB/MMBTU	BACT
1 A-U00Ö	UNANGE POLITETITILENE PLAINT	04/23/2020	0	1		0.0073 LB/IVIIVIBTO	DACI

RBLC ID	Facility Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
				PM ₂₅ (total)				
AR-0155	BIG RIVER STEEL LLC	11/07/2018	88.7	MMBTU/HR	CBF/GCP	9.38	X10^-4 LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018		MMBTU/HR	CBF/GCP		LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018		MMBTU/HR	CBF/GCP		X10^-4 LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018		MMBTU/HR	CBF/GCP		LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	85.15	MMBTU/HR	CBF/GCP	0.0075	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0075	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0019	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0012	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0019	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0075	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	0.0007	LB/MMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	117.9	MMBtu/hr	CBF/GCP	0.0075	LB/MMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	58	MMBtu/hr	CBF/GCP	0.013	LB/MMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	66	MMBtu/hr	CBF/GCP	0.013	LB/MMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	64	MMBtu/hr	CBF/GCP	0.013	LB/MMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	0		Mist eliminator/GCP	0.03	GR/DSCF	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	0		GCP/Energy efficient burners/CBF	0.0075	LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	128	MMBTU/hr	GCP	0.0076	LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	50.4	MMBTU/hr	GCP	0.0076	LB/MMBTU	BACT
*AR-0172	NUCOR STEEL ARKANSAS	09/01/2021	0		GCP	0.0076	lb/MMBTU	BACT
*AR-0172	NUCOR STEEL ARKANSAS	09/01/2021	0		GCP		GR/DSCF	BACT
*AR-0172	NUCOR STEEL ARKANSAS	09/01/2021	0		Wet Scrubber System with mist eliminator	0.0012	GR/DSCF	BACT
KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	54	MMBtu/hr	GCP	7.6	LB/MMSCF	BACT
KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020		MMBtu/hr, combined	GCP	7.6	LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr	GCP		LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr	GCP		LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr	GCP		LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr	GCP		LB/MMSCF	BACT
LA-0364	FG LA COMPLEX	01/06/2020	0		CBF/GCP		LB/H	BACT
LA-0364	FG LA COMPLEX	01/06/2020		mm btu/h	CBF/GCP		LB/H	BACT
MI-0441	LBWLERICKSON STATION	12/21/2018		MMBTU/H	GCP		LB/H	BACT
MI-0442	THOMAS TOWNSHIP ENERGY, LLC	08/21/2019		MMBTU/H	CBF/GCP		LB/MMSCF	BACT
MI-0447	LBWLERICKSON STATION	01/07/2021		MMBTU/H	GCP	-	LB/H	BACT
OH-0379	PETMIN USA INCORPORATED	02/06/2019	0		Control Efficiency	0.0061	LB/T	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019		MMBTU/H	CBF/GCP		LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019		MMBTU/H	CBF/GCP		LB/H	BACT
TX-0851	RIO BRAVO PIPELINE FACILITY	12/17/2018		MMBTU/HR	CBF/GCP		LB/MMBTU	BACT
*VA-0333	NORFOLK NAVAL SHIPYARD	12/09/2020	76.6	MMBtu/hr	l	0.0078	LB	BACT
		<i></i>		PM _{2.5} (filterable only)				- In the second
*AL-0328	PLANT BARRY	11/09/2020		MMBtu/hr			LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	0		CBF/GCP		LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP		LB/MMBTU	BACT
TX-0888	ORANGE POLYETHYLENE PLANT	04/23/2020	0		CBF/GCP		LB/MMBTU	BACT
TX-0888	ORANGE POLYETHYLENE PLANT	04/23/2020	100	MMBtu	CBF/GCP		LB/MMBTU	BACT
TX-0888	ORANGE POLYETHYLENE PLANT	04/23/2020	0		CBF/GCP	0.0075	lb/mmbtu	BACT

RBLC ID	Facility Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
				Greenhouse Gases - CO ₂				
AR-0155	BIG RIVER STEEL LLC	11/07/2018	88.7	MMBTU/HR	GCP/Minimum Boiler Efficiency	117	lb/mmbtu	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	C		CBF/GCP	117	LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	53.7	MMBTU/HR	GCP/Minimum Boiler Efficiency	117	lb/mmbtu	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	53.7	MMBTU/HR	GCP/Minimum Boiler Efficiency	117	LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	78.2	MMBTU/HR	GCP	117	LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	85.15	MMBTU/HR	GCP	117	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	C)	GCP	117	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		GCP/Minimum Boiler Efficiency	117	lb/mmbtu	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		GCP	117	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	C)	GCP/Minimum Boiler Efficiency	117	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	C)	GCP		LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		GCP/Minimum Boiler Efficiency	117	lb/mmbtu	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	117.9	MMBtu/hr	GCP	117	lb/mmbtu	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	66	MMBtu/hr	GCP	117	LB/MMBTU	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	64	MMBtu/hr	GCP	117	lb/mmbtu	BACT
	•		Greer	nhouse Gases - CO ₂ equiv	alents			
*AL-0328	PLANT BARRY	11/09/2020	90.5	MMBtu/hr		46416	TPY	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	C)	GCP	117	lb/mmbtu	BACT
AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	128	MMBTU/hr	GCP	121	LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	50.4	MMBTU/hr	GCP	121	lb/mmbtu	BACT
*AR-0172	NUCOR STEEL ARKANSAS	09/01/2021	C)	GCP	121	LB/MMBTU	BACT
*AR-0172	NUCOR STEEL ARKANSAS	09/01/2021	C)	GCP	121	lb/mmbtu	BACT
IL-0130	JACKSON ENERGY CENTER	12/31/2018	96	mmBtu/hr	GCP	11250	TONS/YEAR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	54	MMBtu/hr	GCP	27991	TON/YR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	60	MMBtu/hr, combined	GCP	31101	TON/YR	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	50.4	MMBtu/hr	GCP	26125	TONS/YR	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	94	MMBtu/hr	GCP	48725	TONS/YR	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	104.3	MMBtu/hr	GCP	54065	TONS/YR	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	65.5	MMBtu/hr	GCP	33952	TONS/YR	BACT
LA-0364	FG LA COMPLEX	01/06/2020	C)	GCP	5858	TONS/YR	BACT
LA-0364	FG LA COMPLEX	01/06/2020	94	mm btu/h	CBF/energy-efficient design options/GCP	455475	T/YR	BACT
MI-0441	LBWLERICKSON STATION	12/21/2018	99	MMBTU/H	CBF/GCP/energy efficiency measures	50776	T/YR	BACT
MI-0442	THOMAS TOWNSHIP ENERGY, LLC	08/21/2019	80	MMBTU/H	Energy efficiency	41031	T/YR	BACT
MI-0447	LBWLERICKSON STATION	01/07/2021	50	MMBTU/H	CBF/GCP/energy efficiency measures	25644	1	BACT
OH-0379	PETMIN USA INCORPORATED	02/06/2019	C		GCP	186.41	LB/T	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019		MMBTU/H	CBF/energy efficient design	10283.06		BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019		MMBTU/H	CBF/energy efficient design	13087.2	LB/H	BACT
*VA-0333	NORFOLK NAVAL SHIPYARD	12/09/2020	76.6	MMBtu/hr		117.1	LB	BACT
				Sulfuric Acid Mist				
IL-0130	JACKSON ENERGY CENTER	12/31/2018	96	mmBtu/hr	GCP	0.1	POUNDS/HOUR	BACT

RBLC ID	Facility Name	Permit Date	Throughput	Units	Controls	Emission Limit Units	Туре
	· · ·			Opacity		· · ·	
AR-0155	BIG RIVER STEEL LLC	11/07/2018	88.7	MMBTU/HR	CBF/GCP	5 %	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	0		CBF/GCP	5 %	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	53.7	MMBTU/HR	CBF/GCP	5 %	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	53.7	MMBTU/HR	CBF/GCP	5 %	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	78.2	MMBTU/HR	CBF/GCP	5 %	BACT
AR-0155	BIG RIVER STEEL LLC	11/07/2018	85.15	MMBTU/HR	CBF/GCP	5 %	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	5 %	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	5 %	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	5 %	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	5 %	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	5 %	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	5 %	BACT
AR-0159	BIG RIVER STEEL LLC	04/05/2019	0		CBF/GCP	5 %	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	117.9	MMBtu/hr	CBF/GCP	5 %	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	58	MMBtu/hr	CBF/GCP	5 %	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	66	MMBtu/hr	CBF/GCP	5 %	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	64	MMBtu/hr	CBF/GCP	5 %	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	0		Mist eliminator/GCP	5 %	BACT
AR-0168	BIG RIVER STEEL LLC	03/17/2021	0		GCP/Energy efficient burners/CBF	5 %	BACT
AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	128	MMBTU/hr	GCP	5 %	BACT
AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	50.4	MMBTU/hr	GCP	5 %	BACT
*AR-0172	NUCOR STEEL ARKANSAS	09/01/2021	0		GCP	5 %	BACT
*AR-0172	NUCOR STEEL ARKANSAS	09/01/2021	0		GCP	5 %	BACT
*AR-0172	NUCOR STEEL ARKANSAS	09/01/2021	0		Wet Scrubber System with mist eliminator	10 %	BACT
*WI-0291	GRAYMONT WESTERN LIME-EDEN	01/28/2019	0			15 %	BACT
*WI-0291	GRAYMONT WESTERN LIME-EDEN	01/28/2019	0			15 %	BACT

Table D-3 RemovedCooling Tower removed from Application

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
		Carbo	on Monoxide		•				
OK-0168	Seminole Generating Station	O G AND E	5/5/2015	40.4	MMBtu/hr	GCP	0.0075	lb/MMBtu	BACT-PSD
IA-0106	CF Industries Nitrogen, LLC - Port Neal Nitrogen Complex	CF INDUSTRIES NITROGEN, LLC	7/12/2013	58.8	MMBtu/hr	GCP, clean fuels	0.0194	lb/MMBtu	BACT-PSD
		MIDWEST FERTILIZER							
IN-0263	Midwest Fertilizer Company LLC	COMPANY LLC	3/23/2017	70	MMBtu/hr	GCP	0.0365	lb/MMBtu	BACT-PSD
IN-0285	Whiting Clean Energy, Inc.	WHITING CLEAN ENERGY, INC.	8/2/2017	0		None	0.0380	lb/MMBtu	BACT-PSD
		INTERSTATE POWER AND							
IA-0107	Marshalltown Generating Station	LIGHT	4/14/2014	13.32	MMBtu/hr	None	0.0410	lb/MMBtu	BACT-PSD
		DYNO NOBEL LOUISIANA							
LA-0272	Ammonia Production Facility	AMMONIA, LLC	3/27/2013	59.4	MMBtu/hr	GCP	0.0500	lb/MMBtu	BACT-PSD
		LAKE CHARLES							
LA-0231	Lake Charles Gasification Facility	COGENERATION, LLC	6/22/2009	35	MMBtu/hr	GCP	0.0560	lb/MMBtu	BACT-PSD
SC-0114	GP Allendale LP	GP ALLENDALE LP	11/25/2008	20.89	MMBtu/hr	None	0.0799	lb/MMBtu	BACT-PSD
		COMPETITIVE POWER							
		VENTURES, INC./CPV							
MD-0040	CPV St Charles	MARYLAND, LLC	11/12/2008		MMBtu/hr	None	0.0800	lb/MMBtu	BACT-PSD
MS-0092	Emberclear GTL MS	EMBERCLEAR GTL MS LLC	5/8/2014	12	MMBtu/hr	None	0.0800	lb/MMBtu	BACT-PSD
	Emberclear GTL MS	EMBERCLEAR GTL MS LLC	5/8/2014		MMBtu/hr	None			BACT-PSD
SC-0114	GP Allendale LP	GP ALLENDALE LP	11/25/2008		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
MI-0421	Grayling Particleboard	ARAUCO NORTH AMERICA	8/26/2016		MMBtu/hr	GCP			BACT-PSD
MI-0425	Grayling Particleboard	ARAUCO NORTH AMERICA	5/9/2017		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
MI-0423	Indeck Niles, LLC	INDECK NILES, LLC	1/4/2017	27	MMBtu/hr	GCP	0.0822	lb/MMBtu	BACT-PSD
LA-0311	Donaldsonville Nitrogen Complex	CF INDUSTRIES NITROGEN, LLC	7/15/2013		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
OK-0153	Rose Valley Plant	SEMGAS LP	3/1/2013		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
OK-0153	Rose Valley Plant	SEMGAS LP	3/1/2013	5.61	MMBtu/hr	GCP	0.0824	lb/MMBtu	BACT-PSD
		LAKE CHARLES							
LA-0231	Lake Charles Gasification Facility	COGENERATION, LLC	6/22/2009	56.9	MMBtu/hr	GCP	0.0824	lb/MMBtu	BACT-PSD
		LAKE CHARLES							
LA-0231	Lake Charles Gasification Facility	COGENERATION, LLC	6/22/2009	34.2	MMBtu/hr	GCP	0.0825	lb/MMBtu	BACT-PSD
		PRYOR PLANT CHEMICAL							
OK-0134	Pryor Plant Chemical	COMPANY	2/23/2009	20	MMBtu/hr	GCP	0.0825	lb/MMBtu	BACT-PSD
		PRYOR PLANT CHEMICAL							
OK-0134	Pryor Plant Chemical	COMPANY	2/23/2009	20	MMBtu/hr	GCP	0.0825	lb/MMBtu	BACT-PSD
		PRYOR PLANT CHEMICAL	0 /00 /000						
OK-0135	Pryor Plant Chemical		2/23/2009	20	MMBtu/hr	GCP	0.0825	lb/MMBtu	BACT-PSD
0 / 0 / TT		COMMERCIAL METALS		-					
	CMC Steel Oklahoma		1/19/2016	0		Clean fuels		lb/MMBtu	BACT-PSD
SC-0112	Nucor Steel - Berkeley	NUCOR STEEL	5/5/2008	58	MMBtu/hr	GCP, clean fuels	0.0840	lb/MMBtu	BACT-PSD
	United Decad Of Dublic Member - Fact 5th Struct	HOLLAND BOARD OF PUBLIC	42/4/2212			665	0.4100		DA CT DCD
MI-0412	Holland Board Of Public Works - East 5th Street	WORKS	12/4/2013	3.7	MMBtu/hr	GCP	0.1108	lb/MMBtu	BACT-PSD
	Helland Board Of Bublic Marker Frank Star Star	HOLLAND BOARD OF PUBLIC	10/5/0010			CCD	0.4400		DACT DCD
MI-0424	Holland Board Of Public Works - East 5th Street	WORKS	12/5/2016	3./	MMBtu/hr	GCP	0.1108	lb/MMBtu	BACI-PSD

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре	
NDEC ID			ases - Carbon Di	• •	Onits	Controls	Linission Linit	Onits	Type	
		Greenhouse G		UNICE					-	
LA-0311	Donaldsonville Nitrogen Complex	CF INDUSTRIES NITROGEN, LLC	7/15/2013	94.5	MMBtu/hr	GCP, clean fuels	117	lb/MMBtu	BACT-PSD	
		MIDWEST FERTILIZER								
IN-0263	Midwest Fertilizer Company LLC	COMPANY LLC	3/23/2017	70	MMBtu/hr	GCP	117	lb/MMBtu	BACT-PSD	
IA-0106	CF Industries Nitrogen, LLC - Port Neal Nitrogen Complex		7/12/2013		MMBtu/hr	GCP, clean fuels	117	lb/MMBtu	BACT-PSD	
	Greenhouse Gases - Carbon Dioxide Equivalents									
LA-0311	Donaldsonville Nitrogen Complex	CF INDUSTRIES NITROGEN, LLC	7/15/2013	94.5	MMBtu/hr	GCP, clean fuels	117	lb/MMBtu	BACT-PSD	
		COMMERCIAL METALS								
OK-0173	CMC Steel Oklahoma	COMPANY	1/19/2016	0		Clean fuels	120	lb/MMBtu	BACT-PSD	
IA-0106	CF Industries Nitrogen, LLC - Port Neal Nitrogen Complex	CF INDUSTRIES NITROGEN, LLC	7/12/2013	58.8	MMBtu/hr	GCP, clean fuels	345	tpy	BACT-PSD	
LA-0272	Ammonia Production Facility	DYNO NOBEL LOUISIANA AMMONIA, LLC	3/27/2013	EQ 4	MMBtu/hr	GCP	1,738	+01	BACT-PSD	
LA-0272		HOLLAND BOARD OF PUBLIC	5/2//2015	59.4		GCP	1,750	ιμγ	BACT-PSD	
MI-0412	Holland Board Of Public Works - East 5th Street	WORKS	12/4/2013	3.7	MMBtu/hr	GCP	1,934	tov	BACT-PSD	
		HOLLAND BOARD OF PUBLIC	12, 1, 2010				2,000	τ ρ γ	5,101,105	
MI-0424	Holland Board Of Public Works - East 5th Street	WORKS	12/5/2016	3.7	MMBtu/hr	GCP	1,934	tpy	BACT-PSD	
		INTERSTATE POWER AND								
IA-0107	Marshalltown Generating Station	LIGHT	4/14/2014	13.32	MMBtu/hr	None	6,860	tpy	BACT-PSD	
		INTERSTATE POWER AND								
IA-0107	Marshalltown Generating Station	LIGHT	4/14/2014		MMBtu/hr	None	6,860		BACT-PSD	
MI-0423	Indeck Niles, LLC	INDECK NILES, LLC	1/4/2017		MMBtu/hr	GCP, clean fuels	,		BACT-PSD	
MI-0421	Grayling Particleboard	ARAUCO NORTH AMERICA	8/26/2016		MMBtu/hr	GCP, clean fuels	,		BACT-PSD	
MI-0425	Grayling Particleboard	ARAUCO NORTH AMERICA	5/9/2017	38	MMBtu/hr	GCP, clean fuels	19,490	tpy	BACT-PSD	
		TINKER AIR FORCE BASE								
OK-0164	Midwest City Air Depot	LOGISTICS CENTER	1/8/2015	0	MMBtu/hr	GCP, clean fuels	153,716	tpy	BACT-PSD	
			ogen Oxides			-				
		INTERSTATE POWER AND								
IA-0107	Marshalltown Generating Station	LIGHT	4/14/2014	13.32	MMBtu/hr	None	0.0130	lb/MMBtu	BACT-PSD	
		CHUGACH ELECTRIC								
AK-0071	International Station Power Plant	ASSOCIATION, INC.	12/20/2010		MMBtu/hr	LNB, FGR		lb/MMBtu	BACT-PSD	
OK-0153	Rose Valley Plant	SEMGAS LP	3/1/2013		MMBtu/hr	LNB		lb/MMBtu	BACT-PSD	
OK-0153	Rose Valley Plant	SEMGAS LP	3/1/2013		MMBtu/hr	LNB		lb/MMBtu	BACT-PSD	
SC-0114	GP Allendale LP	GP ALLENDALE LP	11/25/2008	75	MMBtu/hr	LNB	0.0476	lb/MMBtu	BACT-PSD	
		PRYOR PLANT CHEMICAL								
OK-0134	Pryor Plant Chemical	COMPANY	2/23/2009	20	MMBtu/hr	LNB, GCP	0.0490	lb/MMBtu	BACT-PSD	
		PRYOR PLANT CHEMICAL								
OK-0135	Pryor Plant Chemical	COMPANY	2/23/2009	20	MMBtu/hr	LNB, GCP	0.0490	lb/MMBtu	BACT-PSD	
OR-0048	Carty Plant	PORTLAND GENERAL ELECTRIC	12/29/2010	91	MMBtu/hr	LNB	0.0495	lb/MMBtu	BACT-PSD	
MI-0425	Grayling Particleboard	ARAUCO NORTH AMERICA	5/9/2017		MMBtu/hr	LNB, GCP		lb/MMBtu	BACT-PSD	
MI-0421	Grayling Particleboard	ARAUCO NORTH AMERICA	8/26/2016		MMBtu/hr	LNB, GCP		lb/MMBtu	BACT-PSD	
	Whiting Clean Energy, Inc.	WHITING CLEAN ENERGY, INC.	8/2/2017	0		None		lb/MMBtu	BACT-PSD	
111-0200	whiting clean Ellergy, Illc.	WITHTING CLEAN EINERGY, INC.	0/2/201/	0		NUTIE	0.0500		BACI-PSD	

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
LA-0244	Lake Charles Chemical Complex - Lab Unit	SASOL NORTH AMERICA, INC.	11/29/2010	07.2	MMBtu/hr	LNB	0.0810	lb/MMBtu	BACT-PSD
SC-0114	GP Allendale LP	GP ALLENDALE LP	11/29/2010		MMBtu/hr	None		lb/MMBtu	BACT-PSD BACT-PSD
30-0114		LAKE CHARLES	11/25/2008	20.89		None	0.0955	ID/ IVIIVIBLU	BACT-PSD
LA-0231	Lake Charles Gasification Facility	COGENERATION, LLC	6/22/2009	24.2	MMBtu/hr	GCP	0.0080	lb/MMBtu	BACT-PSD
LA-0231		LAKE CHARLES	0/22/2009	54.2	IVIIVIBLU/III	GCF	0.0980	ID/ WIWIBLU	BACT-F3D
LA-0231	Lake Charles Gasification Facility	COGENERATION, LLC	6/22/2009	56.0	MMBtu/hr	GCP	0.0091	lb/MMBtu	BACT-PSD
MI-0423	Indeck Niles, LLC	INDECK NILES, LLC	1/4/2017		MMBtu/hr	GCP		-	BACT-PSD BACT-PSD
1011-0425		COMMERCIAL METALS	1/4/2017	27	WINVIBLU/III	GCF	0.0981	ID/ WIWIBLU	BACT-F3D
OK-0173	CMC Steel Oklahoma	COMPANY	1/19/2016	0		Clean fuels	0 1000	lb/MMBtu	BACT-PSD
01/01/0		COMPETITIVE POWER	1/15/2010	0	<u> </u>	clean lueis	0.1000	Ib/ WIWIBCO	DACI-F3D
		VENTURES, INC./CPV							
MD-0040	CPV St Charles	MARYLAND, LLC	11/12/2008	17	MMBtu/hr	None	0 1000	lb/MMBtu	BACT-PSD
SC-0112	Nucor Steel - Berkeley	NUCOR STEEL	5/5/2008		MMBtu/hr	LNB		lb/MMBtu	BACT-PSD
FL-0356	Okeechobee Clean Energy Center	FLORIDA POWER & LIGHT	3/9/2016		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
12 0350		LAKE CHARLES	5/5/2010	10	WINDER/III		0.1000	ib/ with btu	BACTISE
LA-0231	Lake Charles Gasification Facility	COGENERATION, LLC	6/22/2009	35	MMBtu/hr	GCP	0 1100	lb/MMBtu	BACT-PSD
LA 0231			0/22/2005		WINDER/III		0.1100	ib/ with btu	BACTTSD
LA-0244	Lake Charles Chemical Complex - Lab Unit	SASOL NORTH AMERICA, INC.	11/29/2010	21	MMBtu/hr	LNB	0 1290	lb/MMBtu	BACT-PSD
LA-0244		ASSOCIATED ELECTRIC	11/25/2010	21	Iviivi Dtu/III	LIND	0.1250	ID/ IVIIVID CO	DACI-F3D
OK-0129	Chouteau Power Plant	COOPERATIVE INC	1/23/2009	18.8	MMBtu/hr	None	0 1436	lb/MMBtu	BACT-PSD
010125		HOLLAND BOARD OF PUBLIC	1/23/2003	10.0	innibita, in	None	0.1150	15,1111510	Brief 1 3D
MI-0424	Holland Board Of Public Works - East 5th Street	WORKS	12/5/2016	37	MMBtu/hr	GCP	0 1486	lb/MMBtu	BACT-PSD
1011 0121		HOLLAND BOARD OF PUBLIC	12/3/2010	5.7	innibita, in		0.1100	15,1111510	Brief 1 3D
MI-0412	Holland Board Of Public Works - East 5th Street	WORKS	12/4/2013	37	MMBtu/hr	GCP	0 1486	lb/MMBtu	BACT-PSD
1111 0112		MIDWEST FERTILIZER	12/4/2013	5.7	initio cu / ini		0.1400	15/1111210	5/(01135
IN-0263	Midwest Fertilizer Company LLC	COMPANY LLC	3/23/2017	70	MMBtu/hr	GCP	0 1802	lb/MMBtu	BACT-PSD
111 0205		DYNO NOBEL LOUISIANA	5/25/2017		initio cu / ini		0.1002	15,1111210	5/(01135
LA-0272	Ammonia Production Facility	AMMONIA, LLC	3/27/2013	59.4	MMBtu/hr	GCP	0.2466	lb/MMBtu	BACT-PSD
2.0272		· · ·	ulate Matter			001	012100		
		MIDWEST FERTILIZER					[<u> </u>
IN-0263	Midwest Fertilizer Company LLC	COMPANY LLC	3/23/2017	70	MMBtu/hr	GCP	0.0019	lb/MMBtu	BACT-PSD
MI-0423	Indeck Niles, LLC	INDECK NILES, LLC	1/4/2017		MMBtu/hr	GCP		lb/MMBtu	BACT-PSD
			_/ ./ _ = = = :						
IA-0106	CF Industries Nitrogen, LLC - Port Neal Nitrogen Complex	CF INDUSTRIES NITROGEN, LLC	7/12/2013	58.8	MMBtu/hr	GCP, clean fuels	0.0024	lb/MMBtu	BACT-PSD
		COMPETITIVE POWER	, ,						
		VENTURES, INC./CPV							
MD-0040	CPV St Charles	MARYLAND, LLC	11/12/2008	1.7	MMBtu/hr	None	0.0070	lb/MMBtu	BACT-PSD
		HOLLAND BOARD OF PUBLIC	, ,		· · ·				1
MI-0424	Holland Board Of Public Works - East 5th Street	WORKS	12/5/2016	3.7	MMBtu/hr	GCP	0.0070	lb/MMBtu	BACT-PSD
		HOLLAND BOARD OF PUBLIC			· · ·				<u>† – – – – – – – – – – – – – – – – – – –</u>
MI-0412	Holland Board Of Public Works - East 5th Street	WORKS	12/4/2013	3.7	MMBtu/hr	GCP	0.0070	lb/MMBtu	BACT-PSD
SC-0114	GP Allendale LP	GP ALLENDALE LP	11/25/2008		MMBtu/hr	None		-	BACT-PSD
SC-0114	GP Allendale LP	GP ALLENDALE LP	11/25/2008		MMBtu/hr	None		lb/MMBtu	BACT-PSD
		CHUGACH ELECTRIC					[[
AK-0071	International Station Power Plant	ASSOCIATION, INC.	12/20/2010	12.5	MMBtu/hr	GCP	0.0072	lb/MMBtu	BACT-PSD
MI-0421	Grayling Particleboard	ARAUCO NORTH AMERICA	8/26/2016		MMBtu/hr	GCP	0.0075	lb/MMBtu	BACT-PSD
1011-0421									

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
		PRYOR PLANT CHEMICAL							
OK-0135	Pryor Plant Chemical	COMPANY	2/23/2009	20	MMBtu/hr	None	0.0075	lb/MMBtu	BACT-PSD
		INTERSTATE POWER AND							
IA-0107	Marshalltown Generating Station	LIGHT	4/14/2014	13.32	MMBtu/hr	None	0.0080	lb/MMBtu	BACT-PSD
	·		PM10		•				
OR-0048	Carty Plant	PORTLAND GENERAL ELECTRIC	12/29/2010	91	MMBtu/hr	Clean fuels	0.0024	lb/MMBtu	BACT-PSD
		COMPETITIVE POWER							
		VENTURES, INC./CPV							
MD-0040	CPV St Charles	MARYLAND, LLC	11/12/2008	1.7	MMBtu/hr	None	0.0070	lb/MMBtu	BACT-PSD
SC-0114	GP Allendale LP	GP ALLENDALE LP	11/25/2008	20.89	MMBtu/hr	None	0.0072	lb/MMBtu	BACT-PSD
SC-0114	GP Allendale LP	GP ALLENDALE LP	11/25/2008	75	MMBtu/hr	None	0.0072	lb/MMBtu	BACT-PSD
SC-0112	Nucor Steel - Berkeley	NUCOR STEEL	5/5/2008	58	MMBtu/hr	GCP, clean fuels	0.0076	lb/MMBtu	BACT-PSD
MI-0421	Grayling Particleboard	ARAUCO NORTH AMERICA	8/26/2016	34	MMBtu/hr	GCP	0.0005	lb/MMBtu	BACT-PSD
MI-0425	Grayling Particleboard	ARAUCO NORTH AMERICA	5/9/2017	38	MMBtu/hr	GCP	0.0005	lb/MMBtu	BACT-PSD
		LAKE CHARLES							
LA-0231	Lake Charles Gasification Facility	COGENERATION, LLC	6/22/2009	35	MMBtu/hr	GCP	0.0009	lb/MMBtu	BACT-PSD
IA-0106	CF Industries Nitrogen, LLC - Port Neal Nitrogen Complex	CF INDUSTRIES NITROGEN, LLC	7/12/2013	58.8	MMBtu/hr	GCP, clean fuels	0.0024	lb/MMBtu	BACT-PSD
		CHUGACH ELECTRIC							
AK-0071	International Station Power Plant	ASSOCIATION, INC.	12/20/2010	12.5	MMBtu/hr	GCP	0.0072	lb/MMBtu	BACT-PSD
		LAKE CHARLES							
LA-0231	Lake Charles Gasification Facility	COGENERATION, LLC	6/22/2009	34.2	MMBtu/hr	GCP	0.0073	lb/MMBtu	BACT-PSD
		LAKE CHARLES							
LA-0231	Lake Charles Gasification Facility	COGENERATION, LLC	6/22/2009	56.9	MMBtu/hr	GCP	0.0074	lb/MMBtu	BACT-PSD
MI-0423	Indeck Niles, LLC	INDECK NILES, LLC	1/4/2017	27	MMBtu/hr	GCP	0.0074	lb/MMBtu	BACT-PSD
		MIDWEST FERTILIZER							
IN-0263	Midwest Fertilizer Company LLC	COMPANY LLC	3/23/2017	70	MMBtu/hr	GCP	0.0075	lb/MMBtu	BACT-PSD
		HOLLAND BOARD OF PUBLIC							
MI-0412	Holland Board Of Public Works - East 5th Street	WORKS	12/4/2013	3.7	MMBtu/hr	GCP	0.0075	lb/MMBtu	BACT-PSD
		HOLLAND BOARD OF PUBLIC							
MI-0424	Holland Board Of Public Works - East 5th Street	WORKS	12/5/2016	3.7	MMBtu/hr	GCP	0.0075	lb/MMBtu	BACT-PSD
		PRYOR PLANT CHEMICAL							
OK-0134	Pryor Plant Chemical	COMPANY	2/23/2009	20	MMBtu/hr	Clean fuels	0.0075	lb/MMBtu	BACT-PSD
		PRYOR PLANT CHEMICAL							
OK-0135	Pryor Plant Chemical	COMPANY	2/23/2009	20	MMBtu/hr	None	0.0075	lb/MMBtu	BACT-PSD
		COMMERCIAL METALS							
OK-0173	CMC Steel Oklahoma	COMPANY	1/19/2016	0		Clean fuels	0.0076	lb/MMBtu	BACT-PSD
		DYNO NOBEL LOUISIANA	- (-					
LA-0272	Ammonia Production Facility	AMMONIA, LLC	3/27/2013	59.4	MMBtu/hr	GCP	0.0089	lb/MMBtu	BACT-PSD
				-					
LA-0244	Lake Charles Chemical Complex - Lab Unit	SASOL NORTH AMERICA, INC.	11/29/2010	87.3	MMBtu/hr	None	0.0099	lb/MMBtu	BACT-PSD
LA-0244	Lake Charles Chemical Complex - Lab Unit	SASOL NORTH AMERICA, INC.	11/29/2010	21	MMBtu/hr	None	0.0100	lb/MMBtu	BACT-PSD
		1	PM2.5			1		I	I
MI-0421	Grayling Particleboard	ARAUCO NORTH AMERICA	8/26/2016		MMBtu/hr	GCP	0.0004	lb/MMBtu	BACT-PSD
MI-0425	Grayling Particleboard	ARAUCO NORTH AMERICA	5/9/2017	38	MMBtu/hr	GCP	0.0004	lb/MMBtu	BACT-PSD

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	Emission Limit	Units	Туре
IA-0106	CF Industries Nitrogen, LLC - Port Neal Nitrogen Complex	CF INDUSTRIES NITROGEN, LLC	7/12/2013	58.8	MMBtu/hr	GCP, clean fuels	0.0024	lb/MMBtu	BACT-PSD
		CHUGACH ELECTRIC							
AK-0071	International Station Power Plant	ASSOCIATION, INC.	12/20/2010		MMBtu/hr	GCP		,	BACT-PSD
MI-0423	Indeck Niles, LLC	INDECK NILES, LLC	1/4/2017	27	MMBtu/hr	GCP	0.0074	lb/MMBtu	BACT-PSD
		MIDWEST FERTILIZER							
IN-0263	Midwest Fertilizer Company LLC	COMPANY LLC	3/23/2017	70	MMBtu/hr	GCP	0.0075	lb/MMBtu	BACT-PSD
		HOLLAND BOARD OF PUBLIC							
MI-0412	Holland Board Of Public Works - East 5th Street	WORKS	12/4/2013	3.7	MMBtu/hr	GCP	0.0075	lb/MMBtu	BACT-PSD
		HOLLAND BOARD OF PUBLIC							
MI-0424	Holland Board Of Public Works - East 5th Street	WORKS	12/5/2016	3.7	MMBtu/hr	GCP	0.0075	lb/MMBtu	BACT-PSD
		COMMERCIAL METALS							
OK-0173	CMC Steel Oklahoma	COMPANY	1/19/2016	0		Clean fuels	0.0076	lb/MMBtu	BACT-PSD
		DYNO NOBEL LOUISIANA							
LA-0272	Ammonia Production Facility	AMMONIA, LLC	3/27/2013	59.4	MMBtu/hr	GCP	0.0089	lb/MMBtu	BACT-PSD
		Volatile Or	ganic Compound	ds	-	-			
IA-0106	CF Industries Nitrogen, LLC - Port Neal Nitrogen Complex	CF INDUSTRIES NITROGEN, LLC	7/12/2013	58.8	MMBtu/hr	GCP, clean fuels	0.0014	lb/MMBtu	BACT-PSD
		SEMINOLE ELECTRIC							
FL-0364	Seminole Generating Station	COOPERATIVE, INC.	3/21/2018		MMBtu/hr	None			BACT-PSD
SC-0114	GP Allendale LP	GP ALLENDALE LP	11/25/2008		MMBtu/hr	GCP	0.0052	lb/MMBtu	BACT-PSD
SC-0114	GP Allendale LP	GP ALLENDALE LP	11/25/2008	20.89	MMBtu/hr	None	0.0053	lb/MMBtu	BACT-PSD
		ASSOCIATED ELECTRIC							
OK-0129	Chouteau Power Plant	COOPERATIVE INC	1/23/2009		MMBtu/hr	None	0.0053	lb/MMBtu	BACT-PSD
MI-0421	Grayling Particleboard	ARAUCO NORTH AMERICA	8/26/2016	34	MMBtu/hr	GCP	0.0054	lb/MMBtu	BACT-PSD
MI-0425	Grayling Particleboard	ARAUCO NORTH AMERICA	5/9/2017	38	MMBtu/hr	GCP	0.0054	lb/MMBtu	BACT-PSD
		MIDWEST FERTILIZER							
IN-0263	Midwest Fertilizer Company LLC	COMPANY LLC	3/23/2017	70	MMBtu/hr	GCP	0.0054	lb/MMBtu	BACT-PSD
		COMMERCIAL METALS							
OK-0173	CMC Steel Oklahoma	COMPANY	1/19/2016	0		Clean fuels	0.0055	lb/MMBtu	BACT-PSD
SC-0112	Nucor Steel - Berkeley	NUCOR STEEL	5/5/2008	58	MMBtu/hr	GCP, clean fuels	0.0055	lb/MMBtu	BACT-PSD
		PRYOR PLANT CHEMICAL							
OK-0134	Pryor Plant Chemical	COMPANY	2/23/2009	20	MMBtu/hr	GCP	0.0055	lb/MMBtu	BACT-PSD
		PRYOR PLANT CHEMICAL							
OK-0135	Pryor Plant Chemical	COMPANY	2/23/2009	20	MMBtu/hr	None	0.0055	lb/MMBtu	BACT-PSD
MI-0423	Indeck Niles, LLC	INDECK NILES, LLC	1/4/2017	27	MMBtu/hr	GCP	0.0056	lb/MMBtu	BACT-PSD
		DYNO NOBEL LOUISIANA							
LA-0272	Ammonia Production Facility	AMMONIA, LLC	3/27/2013	59.4	MMBtu/hr		0.0064	lb/MMBtu	BACT-PSD
		HOLLAND BOARD OF PUBLIC							
MI-0412	Holland Board Of Public Works - East 5th Street	WORKS	12/4/2013	3.7	MMBtu/hr	GCP	0.0081	lb/MMBtu	BACT-PSD
		HOLLAND BOARD OF PUBLIC			T	T			T
MI-0424	Holland Board Of Public Works - East 5th Street	WORKS	12/5/2016	3.7	MMBtu/hr	GCP	0.0081	lb/MMBtu	BACT-PSD
		TINKER AIR FORCE BASE							
01/ 01/04	Midwest City Air Depot	LOGISTICS CENTER	1/8/2015	0	MMBtu/hr	GCP, clean fuels	7.1	tov	BACT-PSD

						. 4	Emission		
RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls ^A	Limit	Units	Туре
				gen Oxides					
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020		MMBtu/hr	LNB/GCP		LB/MMBTU	BACT
*AL-0329	COLBERT COMBUSTION TURBINE PLANT	TENNESSEE VALLEY AUTHORITY	09/21/2021	10	MMBtu/hr		0.011	, -	BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018	C		LNB/CBF/GCP	0.095	, -	BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018		MMBTU/HR	LNB/CBF/GCP		LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018	53.7	MMBTU/HR	LNB/CBF/GCP	0.035	, .	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	C		LNB/CBF/GCP		LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	C		LNB/CBF/GCP	0.095		BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	C		LNB/CBF/GCP	0.035	1 -	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	C		SCR/LNB/CBF/GCP	0.035	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	C		LNB/CBF/GCP	0.035	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	C		LNB/CBF/GCP	0.08	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	C		LNB/CBF/GCP	0.035	LB/MMBTU	BACT
AR-0167	LION OIL COMPANY	DELEK US	12/01/2020	40	MMBtu/hr	Ultra-LNB/GCP	1.9	LB/HR	BACT
AR-0167	LION OIL COMPANY	DELEK US	12/01/2020	50	MMBtu/hr	GCP	5.3	LB/HR	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	C		LNB	0.063	LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	3	MMBTU/hr each	LNB	0.1	LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	50.4	MMBTU/hr	LNB	0.035	LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	15	MMBTU/hr each	LNB	0.1	LB/MMBTU	BACT
*AR-0172	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	09/01/2021	C		LNB	0.035	LB/MMBTU	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	40	MMBtu/hr. combined	LNB/GCP	70	LB/MMSCF	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	22	MMBtu/hr, combined	LNB/GCP	50	LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	40	MMBtu/hr, total	GCP	100	LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr	LNB/GCP	35	LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	18	MMBtu/hr, each	LNB/GCP	50	LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr	LNB/GCP		LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	14.5	MMBtu/hr, each	LNB/GCP	50	LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	3	MMBtu/hr	LNB/GCP	7(LB/MMSCF	BACT
LA-0364	FG LA COMPLEX	FG LA LLC	01/06/2020	0		LNB		LB/MMBTU	BACT
LA-0377	TOKAI ADDIS FACILITY	TOKAI CARBON CB LTD.	05/27/2020	12	MW	LNB/GCP		LB/MMBTU	BACT
LA-0377	TOKAI ADDIS FACILITY	TOKAI CARBON CB LTD.	05/27/2020		MM scf/h	LNB/FGR/GCP		PPM	BACT
MI-0440	MICHIGAN STATE UNIVERSITY	MICHIGAN STATE UNIVERSITY	05/22/2019		MMBTU/H	LNB/GCP	0.05		BACT
MI-0442	THOMAS TOWNSHIP ENERGY, LLC	THOMAS TOWNSHIP ENERGY, LLC	08/21/2019		MMBTU/H	LNB/GCP		LB/MMBTU	BACT
*MI-0445	INDECK NILES, LLC	INDECK NILES, LLC	11/26/2019	27	MMBTU/H	GCP		LB/H	BACT
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021		MMBTU/H	LNB/FGR/GCP		PPM	BACT
OH-0379	PETMIN USA INCORPORATED	PETMIN USA INCORPORATED	02/06/2019		MMBTU/H	LNB/CBF/GCP		LB/H	BACT
OH-0379	PETMIN USA INCORPORATED	PETMIN USA INCORPORATED	02/06/2019		MMBTU/H	GCP/CBF		LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019		MMBTU/H	GCP/CBF		LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019		MMBTU/H	GCP/CBF		LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019		mmbtu/hr	GCP/CBF		LB/H	BACT
OH-0381 OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019		MMBTU/H	LNB/CBF/GCP		LB/H	BACT
*WI-0291	GRAYMONT WESTERN LIME-EDEN	GRAYMONT WESTERN LIME-EDEN	01/28/2019			LNB/GCP		LB/HR	BACT
*WI-0291	GRAYMONT WESTERN LIME-EDEN	GRAYMONT WESTERN LIME-EDEN	01/28/2019			LNB/GCP		LB/HR	BACT
*WI-0291	GRAYMONT WESTERN LIME-EDEN	GRAYMONT WESTERN LIME-EDEN	01/28/2019	1 0	mmBTU/hr	GCP		LB/MMBTU	BACT
		F = clean burning fuels EGR = flue gas recirculation	01/20/2019	1.5		GCr	0.1		DACI

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls ^A	Emission Limit	Units	Туре
		I		n Monoxide	1		-	1	
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020		MMBtu/hr	GCP/CBF	0.087		BACT
*AL-0329	COLBERT COMBUSTION TURBINE PLANT	TENNESSEE VALLEY AUTHORITY	09/21/2021	10	MMBtu/hr			LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018	0		GCP/CBF		LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018		MMBTU/HR	GCP/CBF	0.0824		BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018	53.7	MMBTU/HR	GCP/CBF	0.0824		BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019			GCP/CBF GCP/CBF	0.0824		BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019			· ·	0.0824		BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019			GCP/CBF	0.0824		BACT
AR-0159 AR-0159	BIG RIVER STEEL LLC BIG RIVER STEEL LLC	BIG RIVER STEEL LLC BIG RIVER STEEL LLC	04/05/2019			GCP/CBF GCP/CBF	0.0824		BACT BACT
			04/05/2019			· ·	0.0824		
AR-0159 AR-0159	BIG RIVER STEEL LLC BIG RIVER STEEL LLC	BIG RIVER STEEL LLC BIG RIVER STEEL LLC	04/05/2019			GCP/CBF GCP/CBF	0.0824		BACT BACT
AR-0159 AR-0171			04/05/2019						BACT
	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019		MANADTIL/Ison and	GCP	0.084		
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019		MMBTU/hr each	GCP	0.084		BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019		MMBTU/hr	GCP	0.075	LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	15	MMBTU/hr each	GCP	0.084	1 -	BACT
*AR-0172	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	09/01/2021		D: ()	GCP		LB/MMBTU	BACT
IL-0130	JACKSON ENERGY CENTER	JACKSON GENERATION, LLC	12/31/2018		mmBtu/hour	GCP	0.08		BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020		MMBtu/hr, combined	GCP		LB/MMSCF	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020		MMBtu/hr, combined	GCP		LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr, total	GCP		LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr	GCP		LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr, each	GCP		LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr	GCP		LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	14.5	MMBtu/hr, each	GCP		LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	3	MMBtu/hr	GCP		LB/MMSCF	BACT
LA-0364	FG LA COMPLEX	FG LA LLC	01/06/2020	C		GCP	0.037	· ·	BACT
MI-0440	MICHIGAN STATE UNIVERSITY	MICHIGAN STATE UNIVERSITY	05/22/2019		MMBTU/H	GCP		LB/MMBTU	BACT
MI-0442	THOMAS TOWNSHIP ENERGY, LLC	THOMAS TOWNSHIP ENERGY, LLC	08/21/2019		MMBTU/H	GCP	0.037		BACT
*MI-0445	INDECK NILES, LLC	INDECK NILES, LLC	11/26/2019		MMBTU/H	GCP		LB/H	BACT
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021		MMBTU/H	GCP	50		BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019		MMBTU/H	GCP/CBF	0.02	'	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019		MMBTU/H	GCP/CBF	0.32	,	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019		mmbtu/hr	GCP/CBF	0.19		BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	30	MMBTU/H	CBF/baffle burners/GCP	2.1		BACT
SC-0192	CANFOR SOUTHERN PINE - CONWAY MILL	CANFOR SOUTHERN PINE	05/21/2019	C		Work Practice Standards	0.0375		BACT
*WI-0291	GRAYMONT WESTERN LIME-EDEN	GRAYMONT WESTERN LIME-EDEN	01/28/2019	C		GCP	58.3		BACT
*WI-0291	GRAYMONT WESTERN LIME-EDEN	GRAYMONT WESTERN LIME-EDEN	01/28/2019	C		GCP	45.8	,	BACT
*WI-0291	GRAYMONT WESTERN LIME-EDEN	GRAYMONT WESTERN LIME-EDEN	01/28/2019		mmBTU/hr	GCP	0.082	LB/MMBTU	BACT
				ganic Compounds	1		-	1	
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020	32	MMBtu/hr	GCP/CBF	0.0057		BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018	C		GCP/CBF	0.0054		BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018		MMBTU/HR	GCP/CBF	0.0054		BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018	53.7	MMBTU/HR	GCP/CBF	0.054	1	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	C		GCP/CBF	0.0054	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	C		GCP/CBF	0.0054		BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	C		GCP/CBF	0.0054		BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	C		GCP/CBF	0.0054		BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	C		GCP/CBF	0.0054		BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	C		GCP/CBF	0.0054	· ·	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	C		GCP/CBF		LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	C		GCP	0.0076	LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019		MMBTU/hr each	GCP	0.0076	LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019		MMBTU/hr	GCP	0.0026		BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	15	MMBTU/hr each	GCP	0.0055		BACT
*AR-0172	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	09/01/2021	C		GCP	0.0055		BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020		MMBtu/hr, combined	GCP	5.5	1	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020		MMBtu/hr, combined	GCP	5.5		BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr, total	GCP	5.5		BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr	GCP	5.5	1	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr, each	GCP		LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	23	MMBtu/hr	GCP	5.5	LB/MMSCF	BACT

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls ^A	Emission Limit	Units	Type
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr, each	GCP	5.5	LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	3	MMBtu/hr	GCP	5.5	LB/MMSCF	BACT
LA-0364	FG LA COMPLEX	FG LA LLC	01/06/2020	0		GCP	4.02	LB/H	BACT
MI-0440	MICHIGAN STATE UNIVERSITY	MICHIGAN STATE UNIVERSITY	05/22/2019	25	MMBTU/H	GCP	0.005	LB/MMBTU	BACT
MI-0442	THOMAS TOWNSHIP ENERGY, LLC	THOMAS TOWNSHIP ENERGY, LLC	08/21/2019	7	MMBTU/H	GCP	0.025	LB/MMBTU	BACT
*MI-0445	INDECK NILES, LLC	INDECK NILES, LLC	11/26/2019	27	MMBTU/H	GCP	0.07	LB/H	BACT
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021	50	MMBTU/H	GCP	0.3	LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	1.2	MMBTU/H	GCP/CBF	0.01	LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	16	MMBTU/H	GCP/CBF	0.09	LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	9.5	mmbtu/hr	GCP/CBF	0.05	LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	30	MMBTU/H	GCP/CBF	0.17	LB/H	BACT
SC-0192	CANFOR SOUTHERN PINE - CONWAY MILL	CANFOR SOUTHERN PINE	05/21/2019	0		Work Practice Standards	0.0054	LB/MMBTU	BACT
*WI-0292	GREEN BAY PACKAGING INC. â€"MILL DIVISION	GREEN BAY PACKAGING INC. â€"MILL DIVISION	04/01/2019	20	mmBTU/hr	LNB/GCP	0.0055	LB/MMBTU	BACT
		Gre	eenhouse Gases - C	Carbon Dioxide Equ	ivalents				
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020	32	MMBtu/hr	GCP/CBF	117.1	LB/MMBTU	BACT
*AL-0329	COLBERT COMBUSTION TURBINE PLANT	TENNESSEE VALLEY AUTHORITY	09/21/2021	10	MMBtu/hr		117.1	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	0		GCP	117	LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	0		GCP	121	LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	3	MMBTU/hr each	GCP	121	LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	50.4	MMBTU/hr	GCP	121	LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	15	MMBTU/hr each	GCP	121	LB/MMBTU	BACT
*AR-0172	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	09/01/2021	0		GCP	121	LB/MMBTU	BACT
IL-0130	JACKSON ENERGY CENTER	JACKSON GENERATION, LLC	12/31/2018	13	mmBtu/hour	GCP	6700	TONS/YEAR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	40	MMBtu/hr, combined	GCP	20734	TON/YR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	22	MMBtu/hr, combined	GCP	11404	TON/YR	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	40	MMBtu/hr, total	GCP	20734	TONS/YR	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	50.4	MMBtu/hr	GCP	26125	TONS/YR	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	18	MMBtu/hr, each	GCP	12675	TONS/YR	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr	GCP	11922	TONS/YR	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	14.5	MMBtu/hr, each	GCP	15032	TONS/YR	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	3	MMBtu/hr	GCP	30	TONS/YR	BACT
LA-0364	FG LA COMPLEX	FG LA LLC	01/06/2020	0		CBF/energy efficient design/GCP	5858	TONS/YR	BACT
MI-0440	MICHIGAN STATE UNIVERSITY	MICHIGAN STATE UNIVERSITY	05/22/2019	25	MMBTU/H	GCP/CBF	12822	T/YR	BACT
MI-0442	THOMAS TOWNSHIP ENERGY, LLC	THOMAS TOWNSHIP ENERGY, LLC	08/21/2019	7	MMBTU/H	Energy Efficiency	3590	T/YR	BACT
*MI-0445	INDECK NILES, LLC	INDECK NILES, LLC	11/26/2019	27	MMBTU/H	Energy Efficiency Measures/CBF	13848	T/YR	BACT
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021	50	MMBTU/H	Energy Efficiency Measures/CBF/GCP	25644	T/YR	BACT
OH-0379	PETMIN USA INCORPORATED	PETMIN USA INCORPORATED	02/06/2019	15.17	MMBTU/H	GCP/CBF	1784	LB/H	BACT
OH-0379	PETMIN USA INCORPORATED	PETMIN USA INCORPORATED	02/06/2019	15	MMBTU/H	GCP/CBF	1764	LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	1.2	MMBTU/H	CBF/Energy Efficient Design	140.22	LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	16	MMBTU/H	CBF/Energy Efficient Design	1869.65	LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	9.5	mmbtu/hr	CBF/Energy Efficient Design	1110.1	LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	30	MMBTU/H	CBF/Energy Efficient Design	3505.59	LB/H	BACT

				_			Emission		
RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls ⁴	Limit	Units	Туре
				1 ₁₀ (total)		-			
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020	32	MMBtu/hr	GCP/CBF		LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018	0		GCP/CBF		EB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018		MMBTU/HR	GCP/CBF		LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018	53.7	MMBTU/HR	GCP/CBF		X10^-4 LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	0		GCP/CBF	0.0075	1 -	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	0		GCP/CBF		LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	0		GCP/CBF	0.0012	2 LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	0		GCP/CBF	0.0019	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	0		GCP/CBF	0.0075	5 LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	0		GCP/CBF	0.0007	LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	0		GCP	0.0076	5 LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	3	MMBTU/hr each	GCP	0.0076	EB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	50.4	MMBTU/hr	GCP	0.0076	EB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	15	MMBTU/hr each	GCP	0.0076	LB/MMBTU	BACT
*AR-0172	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	09/01/2021	0		GCP	0.0076	GR/DSCF	BACT
*AR-0172	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	09/01/2021	0		Wet Scrubber System with mist eliminator	0.0013	B LB/MMBTU	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	40	MMBtu/hr, combined	GCP	7.6	B/MMSCF	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	22	MMBtu/hr, combined	GCP	7.6	B/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	40	MMBtu/hr, total	GCP	7.6	B/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	50.4	MMBtu/hr	GCP	7.6	B/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	18	MMBtu/hr, each	GCP	7.6	B/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	23	MMBtu/hr	GCP	7.6	b LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	14.5	MMBtu/hr, each	GCP	7.6	B/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	3	MMBtu/hr	GCP	7.6	b LB/MMSCF	BACT
LA-0364	FG LA COMPLEX	FG LA LLC	01/06/2020	0		GCP/CBF	0.03	B LB/H	BACT
MI-0440	MICHIGAN STATE UNIVERSITY	MICHIGAN STATE UNIVERSITY	05/22/2019	25	MMBTU/H	GCP	0.008	B LB/MMBTU	BACT
MI-0442	THOMAS TOWNSHIP ENERGY, LLC	THOMAS TOWNSHIP ENERGY, LLC	08/21/2019	7	MMBTU/H	GCP/CBF	7.6	B/MMSCF	BACT
*MI-0445	INDECK NILES, LLC	INDECK NILES, LLC	11/26/2019	27	MMBTU/H	GCP	0.1	LB/H	BACT
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021	50	MMBTU/H	GCP	0.74	LB/H	BACT
OH-0379	PETMIN USA INCORPORATED	PETMIN USA INCORPORATED	02/06/2019	15.17	MMBTU/H	GCP/CBF	0.113	B LB/H	BACT
OH-0379	PETMIN USA INCORPORATED	PETMIN USA INCORPORATED	02/06/2019	15	MMBTU/H	GCP/CBF	0.112	LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	1.2	MMBTU/H	GCP/CBF	0.004	LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	16	MMBTU/H	GCP/CBF	0.05	5 LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	9.5	mmbtu/hr	GCP/CBF	0.03	B LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	30	MMBTU/H	GCP/CBF	0.3	B LB/H	BACT
	•		PM ₁₀ (fi	ilterable only)	-		•	•	
*AL-0329	COLBERT COMBUSTION TURBINE PLANT	TENNESSEE VALLEY AUTHORITY	09/21/2021		MMBtu/hr		0.008	B LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	0		GCP/CBF	0.0075	LB/MMBTU	BACT

	.						Emission		
RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls"	Limit	Units	Туре
*** 0005		ALASKA CASUNE DEVELOPMENT CORPORATION		l _{2.5} (total)	A AD AD to a Unit		0.0070		DACT
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020		MMBtu/hr	GCP/CBF	0.0079		BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018		MMBTU/HR	GCP/CBF	0.0019		BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018	53.7	MMBTU/HR	GCP/CBF	6.8		BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	(GCP/CBF	0.0075	5 LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	(GCP/CBF	0.0019		BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	(GCP/CBF	0.0012	1 -	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	(GCP/CBF	0.0019	BLB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	(GCP/CBF	0.0075	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019			GCP/CBF	0.0007	7 LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	(GCP	0.0076		BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019		MMBTU/hr each	GCP	0.0076	LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019		MMBTU/hr	GCP	0.0076	LB/MMBTU	BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	15	MMBTU/hr each	GCP	0.0076	5 LB/MMBTU	BACT
*AR-0172	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	09/01/2021	(GCP	0.0076	GR/DSCF	BACT
*AR-0172	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	09/01/2021	(Wet Scrubber System with mist eliminator	0.0012	- 1	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020		MMBtu/hr, combined	GCP	7.6		BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020		MMBtu/hr, combined	GCP	7.6		BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021		MMBtu/hr, total	GCP		5 LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	50.4	MMBtu/hr	GCP	7.6	5 LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	18	MMBtu/hr, each	GCP	7.6	5 LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	23	MMBtu/hr	GCP	7.6	5 LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	14.5	MMBtu/hr, each	GCP	7.6	5 LB/MMSCF	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	3	MMBtu/hr	GCP	7.6	5 LB/MMSCF	BACT
LA-0364	FG LA COMPLEX	FG LA LLC	01/06/2020	(GCP/CBF	0.03	3 LB/H	BACT
MI-0440	MICHIGAN STATE UNIVERSITY	MICHIGAN STATE UNIVERSITY	05/22/2019	25	MMBTU/H	GCP	0.008	B LB/MMBTU	BACT
MI-0442	THOMAS TOWNSHIP ENERGY, LLC	THOMAS TOWNSHIP ENERGY, LLC	08/21/2019	7	MMBTU/H	GCP/CBF	7.6	5 LB/MMSCF	BACT
*MI-0445	INDECK NILES, LLC	INDECK NILES, LLC	11/26/2019	27	MMBTU/H	GCP	0.1	L LB/H	BACT
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021	50	MMBTU/H	GCP	0.4	1 LB/H	BACT
OH-0379	PETMIN USA INCORPORATED	PETMIN USA INCORPORATED	02/06/2019	15.17	MMBTU/H	GCP/CBF	0.113	3 LB/H	BACT
OH-0379	PETMIN USA INCORPORATED	PETMIN USA INCORPORATED	02/06/2019	15	MMBTU/H	GCP/CBF	0.112	2 LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	1.2	MMBTU/H	GCP/CBF	0.004	1 LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	16	MMBTU/H	GCP/CBF	0.05	5 LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	9.5	mmbtu/hr	GCP/CBF	0.03	3 LB/H	BACT
OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	30	MMBTU/H	GCP/CBF	0.3	3 LB/H	BACT
	•	• · · · · · · · · · · · · · · · · · · ·	PM _{2.5} (f	ilterable only)	•		•		
*AL-0329	COLBERT COMBUSTION TURBINE PLANT	TENNESSEE VALLEY AUTHORITY	09/21/2021		MMBtu/hr		0.008	B LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018	(GCP/CBF	0.0075	LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	(GCP/CBF	0.0075		BACT
				ases -Carbon Dioxi	de				
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018	(GCP/CBF	117	7 LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018	53.7	MMBTU/HR	GCP/Boiler Efficiency		7 LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018		MMBTU/HR	GCP/Boiler Efficiency		7 LB/MMBTU	BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	, , ,	GCP			7 LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	(GCP/Boiler Efficiency		LB/MMBTU	BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	(GCP	117		BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	(GCP/Boiler Efficiency	117		BACT
AR-0159 AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	(GCP		LB/MMBTU	BACT
AR-0159 AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019			GCP/Boiler Efficiency		LB/MMBTU	BACT
AN-0133				ic Acid Mist			1 117		BACI
IL-0130	JACKSON ENERGY CENTER	JACKSON GENERATION, LLC	12/31/2018		mmBtu/hour	GCP	0.01/	POUNDS/HOUR	BACT
12 0130	SHORSON ENERGY CENTER	PROBOR DENERATION, LEC	12/31/2010	13	ininista/nour	001	0.014	1001003/11001	DACI

							Emission		
RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls ^A	Limit	Units	Туре
				pacity					
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018	0		GCP/CBF	5 %		BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018	53.7	MMBTU/HR	GCP/CBF	5 %		BACT
AR-0155	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	11/07/2018	53.7	MMBTU/HR	GCP/CBF	5 %		BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	0		GCP/CBF	5 %		BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	0		GCP/CBF	5 %		BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	0		GCP/CBF	5 %		BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	0		GCP/CBF	5 %		BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	0		GCP/CBF	5 %		BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	0		GCP/CBF	5 %		BACT
AR-0159	BIG RIVER STEEL LLC	BIG RIVER STEEL LLC	04/05/2019	0		GCP/CBF	5 %		BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	0		GCP	5 %		BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	3	MMBTU/hr each	GCP	5 %		BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	50.4	MMBTU/hr	GCP	5 %		BACT
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	15	MMBTU/hr each	GCP	5 %		BACT
*AR-0172	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	09/01/2021	0		GCP	5 %		BACT
*AR-0172	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	09/01/2021	0		Wet Scrubber System with mist eliminator	10 %		BACT
*WI-0291	GRAYMONT WESTERN LIME-EDEN	GRAYMONT WESTERN LIME-EDEN	01/28/2019	0		GCP/LNB	15 %		BACT
*WI-0291	GRAYMONT WESTERN LIME-EDEN	GRAYMONT WESTERN LIME-EDEN	01/28/2019	0		GCP/LNB	15 %		BACT
*WI-0291	GRAYMONT WESTERN LIME-EDEN	GRAYMONT WESTERN LIME-EDEN	01/28/2019	1.5	mmBTU/hr	GCP	10 %		BACT

Emergency Generator Table D-5 - RBLC Results for Emergency Fire Pump

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Туре
	·		Carbon Mon	oxide					
		WESTERN FARMERS ELECTRIC							
OK-0154	Mooreland Generating Sta	COOPERATIVE	7/2/2013	1,341	HP	GCP	0.00	g/hp-hr	BACT-PSD
TX-0728	Peony Chemical Manufacturing Facility	BASF	4/1/2015	1,500	НР	NSPS Compliance	0.01	g/hp-hr	Other Case-by-Case
PA-0278	Moxie Liberty LLC/Asylum Power Pl T	MOXIE ENERGY LLC	10/10/2012			None	0.13	g/hp-hr	Other Case-by-Case
LA-0231	Lake Charles Gasification Facility	LAKE CHARLES COGENERATION, LLC	6/22/2009	1,341	НР	NSPS Compliance	0.21	g/hp-hr	BACT-PSD
NV-0047	Nellis Air Force Base	99 CIVIL ENGINEER SQUADRON OF USAF	2/26/2008	1,350	hP	Turbocharger	0.22	g/hp-hr	Other Case-by-Case
MI-0402	Sumpter Power Plant	WOLVERINE POWER SUPPLY COOPERATIVE INC.	11/17/2011	732	НР	GCP		g/hp-hr	BACT-PSD
NY-0104	CPV Valley Energy Center	CPV VALLEY LLC	8/1/2013			GCP		g/hp-hr	BACT-PSD
NV-0050	MGM Mirage	MGM MIRAGE	11/30/2009	2,206		Turbocharger		g/hp-hr	LAER
SC-0115	GP Clarendon LP	GP CLARENDON LP	2/10/2009	1,400		GCP		g/hp-hr	BACT-PSD
SC-0114	GP Allendale LP	GP ALLENDALE LP	11/25/2008	1,400		None		g/hp-hr	BACT-PSD
PA-0291	Hickory Run Energy Station	HICKORY RUN ENERGY LLC	4/23/2013	1,135	hP	None	2.31	g/hp-hr	Other Case-by-Case
NV-0049	Harrah's Operating Company, Inc.	HARRAH'S OPERATING COMPANY, INC.	8/20/2009	1,232		Turbocharger		g/hp-hr	Other Case-by-Case
AL-0301	Nucor Steel Tuscaloosa, Inc.	NUCOR STEEL TUSCALOOSA, INC.	7/22/2014	800	HP	None	2.49	g/hp-hr	BACT-PSD
OK-0128	Mid American Steel Rolling Mill	MID AMERICAN STEEL AND WIRE COMPANY	9/8/2008	1,200	HP	None	2.49	g/hp-hr	BACT-PSD
PR-0009	Energy Answers Arecibo Puerto Rico Renewable Energy Project	ENERGY ANSWERS ARECIBO, LLC	4/10/2014	670	hP	None	2 60	g/hp-hr	BACT-PSD
MI-0406	Renaissance Power LLC	LS POWER DEVELOPMENT LLC	11/1/2013	1,000		GCP		g/hp-hr	BACT-PSD
LA-0313	St. Charles Power Station	ENTERGY LOUISIANA, LLC	8/31/2016	2,584		NSPS Compliance		g/hp-hr	BACT-PSD
IN-0158	St. Joseph Energy Center, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012	1,006		GCP		g/hp-hr	BACT-PSD
IN-0158	St. Joseph Energy Center, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012	2,012		GCP		g/hp-hr	BACT-PSD
	Endicott Production Facility, Liberty	BRITISH PETROLEUM EXPLORATION	12,0,2012	2,012			2.00	8/	5,101 105
AK-0066	Development Project	ALASKA (BPXA)	6/15/2009	1,041	ΗР	GCP	2.60	g/hp-hr	BACT-PSD
MD-0044	Cove Point LNG Terminal	DOMINION COVE POINT LNG, LP	6/9/2014	1,550		GCP		g/hp-hr	BACT-PSD
LA-0254	Ninemile Point Electric Generating Plant	ENTERGY LOUISIANA LLC	8/16/2011	1,250	HP	GCP, Clean Fuel	2.60	g/hp-hr	BACT-PSD
CA-1191	Victorville 2 Hybrid Power Project	CITY OF VICTORVILLE	3/11/2010	2,000		None	2.60	g/hp-hr	BACT-PSD
CA-1212	Palmdale Hybrid Power Project	CITY OF PALMDALE	10/18/2011	2,683	HP	None		g/hp-hr	BACT-PSD
WV-0025	Moundsville Combined Cycle Power Plant	MOUNDSVILLE POWER, LLC	11/21/2014	2,016	НР	None	2.60	g/hp-hr	BACT-PSD
MA-0039	Salem Harbor Station Redevelopment	FOOTPRINT POWER SALEM HARBOR DEVELOPMENT LP	1/30/2014	750		None		g/hp-hr	Other Case-by-Case
AK-0082	Point Thomson Production Facility	EXXON MOBIL CORPORATION	1/23/2015	2,695	HP	None		g/hp-hr	BACT-PSD
LA-0288	Lake Charles Chemical Complex	SASOL CHEMICALS (USA) LLC	5/23/2014	2,682	HP	GCP	2.61	g/hp-hr	BACT-PSD
LA-0296	Lake Charles Chemical Complex LDPE Unit	SASOL CHEMICALS (USA) LLC	5/23/2014	2,682	НР	GCP	2.61	g/hp-hr	BACT-PSD
IN-0173	Midwest Fertilizer Corporation	MIDWEST FERTILIZER CORPORATION	6/4/2014	3,600	HP	GCP	2.61	g/hp-hr	BACT-PSD

on Clean Energy Center ly Hills Generating Station uteau Power Plant ding Particleboard ding Particleboard am Inc. Facility & Lyle Ingredients Americas, Inc. Priver Clean Fuels, LLC a Fertilizer Company dustries Nitrogen, LLC - Port Neal open Complex	OHIO VALLEY RESOURCES, LLC MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER COMPANY LLC ARCADIS, US, INC. SHADY HILLS POWER COMPANY ASSOCIATED ELECTRIC COOPERATIVE INC ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA FLOPAM INC. OHIO RIVER CLEAN FUELS, LLC IOWA FERTILIZER COMPANY	9/25/2013 6/4/2014 3/23/2017 6/18/2013 1/12/2009 1/23/2009 8/26/2016 5/9/2017 5/9/2017 4/26/2011 9/19/2008 11/20/2008	4,690 3,600 2,250 2,500 2,200 1,600 1,500 1,500 1,175 700	HP HP kW kW HP kW kW kW	GCP GCP NSPS Compliance NSPS Compliance None GCP GCP GCP None	3.50 8.50 3.50 3.50 3.50 3.50 3.50	g/hp-hr g/hp-hr g/hp-hr g/hp-hr g/hp-hr g/kW-hr g/kW-hr g/kW-hr	BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD
west Fertilizer Company LLC gon Clean Energy Center ly Hills Generating Station uteau Power Plant ding Particleboard ding Particleboard ding Particleboard am Inc. Facility & Lyle Ingredients Americas, Inc. PRiver Clean Fuels, LLC a Fertilizer Company dustries Nitrogen, LLC - Port Neal open Complex	MIDWEST FERTILIZER COMPANY LLC ARCADIS, US, INC. SHADY HILLS POWER COMPANY ASSOCIATED ELECTRIC COOPERATIVE INC ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA FLOPAM INC. OHIO RIVER CLEAN FUELS, LLC IOWA FERTILIZER COMPANY	3/23/2017 6/18/2013 1/12/2009 1/23/2009 8/26/2016 5/9/2017 5/9/2017 4/26/2011 9/19/2008 11/20/2008	3,600 2,250 2,500 2,200 1,600 1,500 1,500 1,175	HP kW kW HP kW kW kW	GCP NSPS Compliance NSPS Compliance None GCP GCP GCP	2.61 3.50 8.50 3.50 3.50 3.50 3.50 3.50 3.50	g/hp-hr g/hp-hr g/hp-hr g/kW-hr g/kW-hr g/kW-hr	BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD
west Fertilizer Company LLC gon Clean Energy Center ly Hills Generating Station uteau Power Plant ding Particleboard ding Particleboard ding Particleboard am Inc. Facility & Lyle Ingredients Americas, Inc. PRiver Clean Fuels, LLC a Fertilizer Company dustries Nitrogen, LLC - Port Neal open Complex	MIDWEST FERTILIZER COMPANY LLC ARCADIS, US, INC. SHADY HILLS POWER COMPANY ASSOCIATED ELECTRIC COOPERATIVE INC ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA FLOPAM INC. OHIO RIVER CLEAN FUELS, LLC IOWA FERTILIZER COMPANY	3/23/2017 6/18/2013 1/12/2009 1/23/2009 8/26/2016 5/9/2017 5/9/2017 4/26/2011 9/19/2008 11/20/2008	3,600 2,250 2,500 2,200 1,600 1,500 1,500 1,175	HP kW kW HP kW kW kW	GCP NSPS Compliance NSPS Compliance None GCP GCP GCP	2.61 3.50 8.50 3.50 3.50 3.50 3.50 3.50 3.50	g/hp-hr g/hp-hr g/hp-hr g/kW-hr g/kW-hr g/kW-hr	BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD
on Clean Energy Center ly Hills Generating Station uteau Power Plant ding Particleboard ding Particleboard am Inc. Facility & Lyle Ingredients Americas, Inc. Priver Clean Fuels, LLC a Fertilizer Company dustries Nitrogen, LLC - Port Neal open Complex	ARCADIS, US, INC. SHADY HILLS POWER COMPANY ASSOCIATED ELECTRIC COOPERATIVE INC ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA FLOPAM INC. OHIO RIVER CLEAN FUELS, LLC IOWA FERTILIZER COMPANY	6/18/2013 1/12/2009 1/23/2009 8/26/2016 5/9/2017 5/9/2017 4/26/2011 9/19/2008 11/20/2008	2,250 2,500 2,200 1,600 1,500 1,500 1,175	kW kW HP kW kW kW	NSPS Compliance NSPS Compliance None GCP GCP GCP	3.50 8.50 3.50 3.50 3.50 3.50 3.50	g/hp-hr g/hp-hr g/kW-hr g/kW-hr g/kW-hr	BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD
on Clean Energy Center ly Hills Generating Station uteau Power Plant ding Particleboard ding Particleboard am Inc. Facility & Lyle Ingredients Americas, Inc. Priver Clean Fuels, LLC a Fertilizer Company dustries Nitrogen, LLC - Port Neal open Complex	ARCADIS, US, INC. SHADY HILLS POWER COMPANY ASSOCIATED ELECTRIC COOPERATIVE INC ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA FLOPAM INC. OHIO RIVER CLEAN FUELS, LLC IOWA FERTILIZER COMPANY	6/18/2013 1/12/2009 1/23/2009 8/26/2016 5/9/2017 5/9/2017 4/26/2011 9/19/2008 11/20/2008	2,250 2,500 2,200 1,600 1,500 1,500 1,175	kW kW HP kW kW kW	NSPS Compliance NSPS Compliance None GCP GCP GCP	3.50 8.50 3.50 3.50 3.50 3.50 3.50	g/hp-hr g/hp-hr g/kW-hr g/kW-hr g/kW-hr	BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD
ly Hills Generating Station uteau Power Plant ding Particleboard ding Particleboard ding Particleboard am Inc. Facility & Lyle Ingredients Americas, Inc. River Clean Fuels, LLC a Fertilizer Company dustries Nitrogen, LLC - Port Neal open Complex	SHADY HILLS POWER COMPANY ASSOCIATED ELECTRIC COOPERATIVE INC ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA FLOPAM INC. OHIO RIVER CLEAN FUELS, LLC IOWA FERTILIZER COMPANY	1/12/2009 1/23/2009 8/26/2016 5/9/2017 5/9/2017 4/26/2011 9/19/2008 11/20/2008	2,500 2,200 1,600 1,500 1,500 1,175	kW HP kW kW	NSPS Compliance None GCP GCP GCP	8.50 3.50 3.50 3.50 3.50 3.50	g/hp-hr g/kW-hr g/kW-hr g/kW-hr	BACT-PSD BACT-PSD BACT-PSD BACT-PSD
uteau Power Plant ding Particleboard ding Particleboard ding Particleboard am Inc. Facility & Lyle Ingredients Americas, Inc. River Clean Fuels, LLC a Fertilizer Company dustries Nitrogen, LLC - Port Neal open Complex	ASSOCIATED ELECTRIC COOPERATIVE INC ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA FLOPAM INC. OHIO RIVER CLEAN FUELS, LLC IOWA FERTILIZER COMPANY	1/23/2009 8/26/2016 5/9/2017 5/9/2017 4/26/2011 9/19/2008 11/20/2008	2,200 1,600 1,500 1,500 1,175	HP kW kW kW	None GCP GCP GCP	3.50 3.50 3.50 3.50 3.50	g/kW-hr g/kW-hr g/kW-hr	BACT-PSD BACT-PSD BACT-PSD
uteau Power Plant ding Particleboard ding Particleboard ding Particleboard am Inc. Facility & Lyle Ingredients Americas, Inc. River Clean Fuels, LLC a Fertilizer Company dustries Nitrogen, LLC - Port Neal ogen Complex	INC ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA FLOPAM INC. OHIO RIVER CLEAN FUELS, LLC IOWA FERTILIZER COMPANY	8/26/2016 5/9/2017 5/9/2017 4/26/2011 9/19/2008 11/20/2008	1,600 1,500 1,500 1,175	kW kW kW	GCP GCP GCP	3.50 3.50 3.50	g/kW-hr g/kW-hr	BACT-PSD BACT-PSD
ling Particleboard ling Particleboard am Inc. Facility & Lyle Ingredients Americas, Inc. River Clean Fuels, LLC a Fertilizer Company Idustries Nitrogen, LLC - Port Neal ogen Complex	ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA FLOPAM INC. OHIO RIVER CLEAN FUELS, LLC IOWA FERTILIZER COMPANY	8/26/2016 5/9/2017 5/9/2017 4/26/2011 9/19/2008 11/20/2008	1,600 1,500 1,500 1,175	kW kW kW	GCP GCP GCP	3.50 3.50 3.50	g/kW-hr g/kW-hr	BACT-PSD BACT-PSD
ling Particleboard ling Particleboard am Inc. Facility & Lyle Ingredients Americas, Inc. River Clean Fuels, LLC Fertilizer Company Idustries Nitrogen, LLC - Port Neal ogen Complex	ARAUCO NORTH AMERICA ARAUCO NORTH AMERICA FLOPAM INC. OHIO RIVER CLEAN FUELS, LLC IOWA FERTILIZER COMPANY	5/9/2017 5/9/2017 4/26/2011 9/19/2008 11/20/2008	1,500 1,500 1,175	kW kW	GCP GCP	3.50 3.50	g/kW-hr	BACT-PSD
Aing Particleboard am Inc. Facility & Lyle Ingredients Americas, Inc. PRiver Clean Fuels, LLC Fertilizer Company Industries Nitrogen, LLC - Port Neal opgen Complex	ARAUCO NORTH AMERICA FLOPAM INC. OHIO RIVER CLEAN FUELS, LLC IOWA FERTILIZER COMPANY	5/9/2017 4/26/2011 9/19/2008 11/20/2008	1,500 1,175	kW	GCP	3.50	0.	
am Inc. Facility & Lyle Ingredients Americas, Inc. PRiver Clean Fuels, LLC Fertilizer Company Industries Nitrogen, LLC - Port Neal Opgen Complex	FLOPAM INC. OHIO RIVER CLEAN FUELS, LLC IOWA FERTILIZER COMPANY	4/26/2011 9/19/2008 11/20/2008	1,175				g/kW-hr	
& Lyle Ingredients Americas, Inc. River Clean Fuels, LLC a Fertilizer Company Idustries Nitrogen, LLC - Port Neal ogen Complex	OHIO RIVER CLEAN FUELS, LLC IOWA FERTILIZER COMPANY	9/19/2008 11/20/2008		hP	None			BACT-PSD
River Clean Fuels, LLC Fertilizer Company ndustries Nitrogen, LLC - Port Neal ogen Complex	IOWA FERTILIZER COMPANY	11/20/2008	700		NOTE	3.50	g/kW-hr	BACT-PSD
River Clean Fuels, LLC Fertilizer Company ndustries Nitrogen, LLC - Port Neal ogen Complex	IOWA FERTILIZER COMPANY	11/20/2008	700					
Fertilizer Company ndustries Nitrogen, LLC - Port Neal ogen Complex	IOWA FERTILIZER COMPANY			kW	None	3.50	g/kW-hr	BACT-PSD
ndustries Nitrogen, LLC - Port Neal ogen Complex		10/20/20/2	2,922	HP	GCP	3.50	g/kW-hr	BACT-PSD
ogen Complex		10/26/2012	2,000	kW	GCP	3.50	g/kW-hr	BACT-PSD
	CF INDUSTRIES NITROGEN, LLC	7/12/2013			GCP	3.50	g/kW-hr	BACT-PSD
Weadock Generating Complex	CONSUMERS ENERGY	12/29/2009	2,000	kW	GCP, Clean Fuel	3.50	g/kW-hr	BACT-PSD
ck Niles, LLC	INDECK NILES, LLC	1/4/2017	2,922	hP	GCP	3.50	g/kW-hr	BACT-PSD
lands Biorefinery And Cogeneration								
t	HIGHLANDS ENVIROFUELS (HEF), LLC	9/23/2011	2,682	hP	NSPS Compliance	3.50	g/kW-hr	BACT-PSD
ley Gulch Power Plant	IDAHO POWER COMPANY	6/25/2010	750	kW	GCP	3.50	g/kW-hr	BACT-PSD
us Chemicals, LLC	CRONUS CHEMICALS, LLC	9/5/2014	3,755	HP	NSPS Compliance	3.50	g/kW-hr	BACT-PSD
t Thomson Production Facility	EXXON MOBIL CORPORATION	8/20/2012	1,750	kW	None	3.50	g/kW-hr	BACT-PSD
et Sorghum-To-Ethanol Advanced	SOUTHEAST RENEWABLE FUELS (SRF),							
/	LLC	12/23/2010	2,000	kW	None	3.50	g/kW-hr	BACT-PSD
echobee Clean Energy Center	FLORIDA POWER & LIGHT	3/9/2016	3,300	kW	GCP	3.50	g/kW-hr	BACT-PSD
	DYNO NOBEL LOUISIANA AMMONIA,							
nonia Production Facility	LLC	3/27/2013	1,200	HP	GCP	3.50	g/kW-hr	BACT-PSD
	PYRAMAX CERAMICS, LLC	2/8/2012	757	HP	NSPS Compliance	3.50	g/kW-hr	BACT-PSD
lerdale Plant	FLORIDA POWER & LIGHT	4/22/2014	3,100	kW	GCP	3.50	g/kW-hr	BACT-PSD
uemine PVC Plant	SHINTECH LOUISIANA LLC	2/27/2009	1,389	HP	GCP	0.85	lb/MMBtu	BACT-PSD
	Greenh	ouse Gases - C	arbon Dioxide	2				<u></u>
west Fertilizer Corporation	MIDWEST FERTILIZER CORPORATION	6/4/2014			GCP	526.39	g/hp-hr	BACT-PSD
Valley Resources, LLC	OHIO VALLEY RESOURCES, LLC	9/25/2013	4,690	HP	GCP	526.39	g/hp-hr	BACT-PSD
west Fertilizer Corporation	MIDWEST FERTILIZER CORPORATION	6/4/2014	3,600	HP	GCP	526.39	g/hp-hr	BACT-PSD
Fastilian Cassan	IOWA FERTILIZER COMPANY	10/26/2012	2,000	kW	GCP	1.55	g/kW-hr	BACT-PSD
Fertilizer Company								
d Fertilizer Company Industries Nitrogen, LLC - Port Neal	CE INDUSTRIES NITROGEN LLC	7/12/2013			GCP	703.07	g/kW-hr	BACT-PSD
ndustries Nitrogen, LLC - Port Neal	ci indostnies nithoden, eec							
ndustries Nitrogen, LLC - Port Neal				HP	1		1	1
	ax Ceramics, LLC rdale Plant emine PVC Plant est Fertilizer Corporation /alley Resources, LLC est Fertilizer Corporation Fertilizer Company ustries Nitrogen, LLC - Port Neal	onia Production Facility LLC nax Ceramics, LLC PYRAMAX CERAMICS, LLC rdale Plant FLORIDA POWER & LIGHT emine PVC Plant SHINTECH LOUISIANA LLC Greenh est Fertilizer Corporation MIDWEST FERTILIZER CORPORATION /alley Resources, LLC OHIO VALLEY RESOURCES, LLC est Fertilizer Corporation MIDWEST FERTILIZER CORPORATION Fertilizer Corporation MIDWEST FERTILIZER CORPORATION valuest Fertilizer Corporation MIDWEST FERTILIZER CORPORATION valuest Fertilizer Corporation MIDWEST FERTILIZER CORPORATION valuesties Nitrogen, LLC - Port Neal IOWA FERTILIZER COMPANY	onia Production Facility LLC 3/27/2013 bax Ceramics, LLC PYRAMAX CERAMICS, LLC 2/8/2012 rdale Plant FLORIDA POWER & LIGHT 4/22/2014 emine PVC Plant SHINTECH LOUISIANA LLC 2/27/2009 Greenhouse Gases - C est Fertilizer Corporation MIDWEST FERTILIZER CORPORATION 6/4/2014 /alley Resources, LLC OHIO VALLEY RESOURCES, LLC 9/25/2013 est Fertilizer Corporation MIDWEST FERTILIZER CORPORATION 6/4/2014 rest Fertilizer Corporation MIDWEST FERTILIZER CORPORATION 6/4/2014 ustries Nitrogen, LLC - Port Neal IOWA FERTILIZER COMPANY 10/26/2012	onia Production FacilityLLC3/27/20131,200Jax Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/2012757rdale PlantFLORIDA POWER & LIGHT4/22/20143,100emine PVC PlantSHINTECH LOUISIANA LLC2/27/20091,389Greenhuse Gases - Carbon Dioxideest Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600/alley Resources, LLCOHIO VALLEY RESOURCES, LLC9/25/20134,690est Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600rest Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600est Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600est Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600est Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600est Fertilizer CorporationMIDWEST FERTILIZER COMPANY10/26/20122,000ustries Nitrogen, LLC - Port NealIOWA FERTILIZER COMPANY10/26/20122,000	Denia Production FacilityLLC3/27/20131,200HPDax Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/2012757HPrdale PlantFLORIDA POWER & LIGHT4/22/20143,100kWemine PVC PlantSHINTECH LOUISIANA LLC2/27/20091,389HPGreenhouse Gases - Carbon Dioxideest Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600HP/alley Resources, LLCOHIO VALLEY RESOURCES, LLC9/25/20134,690HPest Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600HPest Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600HPest Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600HPest Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600HPest Fertilizer CorporationMIDWEST FERTILIZER COMPANY10/26/20122,000kWustries Nitrogen, LLC - Port NealIOWA FERTILIZER COMPANY10/26/20122,000kW	Denia Production FacilityLLC3/27/20131,200HPGCPDax Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/2012757HPNSPS Compliancerdale PlantFLORIDA POWER & LIGHT4/22/20143,100kWGCPemine PVC PlantSHINTECH LOUISIANA LLC2/27/20091,389HPGCPGreenhouse Gases - Carbon Dioxideest Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600HPGCPAlley Resources, LLCOHIO VALLEY RESOURCES, LLC9/25/20134,690HPGCPest Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600HPGCPest Fertilizer CorporationMIDWEST FERTILIZER COMPANY10/26/20122,000kWGCPustries Nitrogen, LLC - Port NealIII	Denia Production FacilityLLC3/27/20131,200HPGCP3.50Iax Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/2012757HPNSPS Compliance3.50rdale PlantFLORIDA POWER & LIGHT4/22/20143,100kWGCP3.50emine PVC PlantSHINTECH LOUISIANA LLC2/27/20091,389HPGCP0.85Greenhuse Gases - Carbon Dioxideest Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600HPGCP526.39/alley Resources, LLCOHIO VALLEY RESOURCES, LLC9/25/20134,690HPGCP526.39est Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600HPGCP526.39est Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600HPGCP526.39est Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600HPGCP526.39est Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600HPGCP526.39fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600HPGCP526.39fertilizer CompanyIOWA FERTILIZER COMPANY10/26/20122,000kWGCP1.55ustries Nitrogen, LLC - Port NealIIIIII	Denia Production FacilityLLC3/27/20131,200HPGCP3.50g/kW-hrIax Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/2012757HPNSPS Compliance3.50g/kW-hrIndia PlantFLORIDA POWER & LIGHT4/22/20143,100kWGCP3.50g/kW-hrImage PVC PlantSHINTECH LOUISIANA LLC2/27/20091,389HPGCP0.85lb/MMBtuGreenhouse Gases - Carbon Dioxideest Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600HPGCP526.39g/hp-hrAlley Resources, LLCOHIO VALLEY RESOURCES, LLC9/25/20134,690HPGCP526.39g/hp-hrest Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600HPGCP526.39g/hp-hrest Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600HPGCP526.39g/hp-hrest Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600HPGCP526.39g/hp-hrest Fertilizer CorporationMIDWEST FERTILIZER CORPORATION6/4/20143,600HPGCP526.39g/hp-hrest Fertilizer CorporationMIDWEST FERTILIZER COMPANY10/26/20122,000kWGCP1.55g/kW-hrustries Nitrogen, LLC - Port NealImage dataImage dataImage dataImage dataImage data

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Туре
		WOLVERINE POWER SUPPLY							
MI-0402	Sumpter Power Plant	COOPERATIVE INC.	11/17/2011	732	HP	GCP	444.05	g/hp-hr	BACT-PSD
	Moundsville Combined Cycle Power								
WV-0025	Plant	MOUNDSVILLE POWER, LLC	11/21/2014	2,016	HP	None	543.67	g/hp-hr	BACT-PSD
		FOOTPRINT POWER SALEM HARBOR							
MA-0039	Salem Harbor Station Redevelopment	DEVELOPMENT LP	1/30/2014	750	kW	None	162.85	lb/MMBtu	BACT-PSD
			Sulfuric Acid	Mist					
		FOOTPRINT POWER SALEM HARBOR							
MA-0039	Salem Harbor Station Redevelopment	DEVELOPMENT LP	1/30/2014	750	kW	None	5.44E-04	g/kW-hr	BACT-PSD
NY-0101	Cornell Combined Heat & Power Project	CORNELL UNIVERSITY	3/12/2008	1,000	kW	Clean fuels	9.07E-04	g/kW-hr	BACT-PSD
NY-0104	CPV Valley Energy Center	CPV VALLEY LLC	8/1/2013			Clean fuels	3.00E-05	lb/MMBtu	BACT-PSD
			Nitrogen O	xides					
TX-0728	Peony Chemical Manufacturing Facility	BASF	4/1/2015	1,500	HP	NSPS Compliance	0.02	g/hp-hr	LAER
	Energy Answers Arecibo Puerto Rico								
PR-0009	Renewable Energy Project	ENERGY ANSWERS ARECIBO, LLC	4/10/2014		hP	None	2.85	g/hp-hr	BACT-PSD
CA-1221	Pacific Bell	PACIFIC BELL	12/5/2011			NSPS Compliance	3.50	g/hp-hr	Other Case-by-Case
SC-0115	GP CLARENDON LP	GP CLARENDON LP	2/10/2009	1,400	HP	GCP	3.70	g/hp-hr	BACT-PSD
SC-0114	GP Allendale LP	GP ALLENDALE LP	11/25/2008	1,400	HP	None	3.70	g/hp-hr	BACT-PSD
CA-1220	San Diego International Airport	SAN DIEGO INTERNATIONAL AIRPORT	10/3/2011	1,881	HP	NSPS Compliance	3.90	g/hp-hr	Other Case-by-Case
PA-0291	Hickory Run Energy Station	HICKORY RUN ENERGY LLC	4/23/2013	1,135	hP	None	3.95	g/hp-hr	Other Case-by-Case
		CITY OF SAN DIEGO PUD (PUMP							
CA-1219	City Of San Diego PUD (Pump Station 1)	STATION 1)	7/9/2012	2,722	HP	NSPS Compliance	4.00	g/hp-hr	Other Case-by-Case
IN-0263	Midwest Fertilizer Company LLC	MIDWEST FERTILIZER COMPANY LLC	3/23/2017	3,600	HP	GCP	4.42	g/hp-hr	BACT-PSD
IN-0173	Midwest Fertilizer Corporation	MIDWEST FERTILIZER CORPORATION	6/4/2014			GCP	4.46	g/hp-hr	BACT-PSD
IN-0179	Ohio Valley Resources, LLC	OHIO VALLEY RESOURCES, LLC	9/25/2013	4,690	HP	GCP	4.46	g/hp-hr	BACT-PSD
IN-0180	Midwest Fertilizer Corporation	MIDWEST FERTILIZER CORPORATION	6/4/2014	3,600	HP	GCP		g/hp-hr	BACT-PSD
CA-1191	Victorville 2 Hybrid Power Project	CITY OF VICTORVILLE	3/11/2010	2,000	kW	None	4.50	g/hp-hr	BACT-PSD
LA-0288	Lake Charles Chemical Complex	SASOL CHEMICALS (USA) LLC	5/23/2014	2,682	HP	GCP	4.63	g/hp-hr	BACT-PSD
	Lake Charles Chemical Complex LDPE								
LA-0296	Unit	SASOL CHEMICALS (USA) LLC	5/23/2014	2,682	HP	GCP	4.63	g/hp-hr	BACT-PSD
	Endicott Production Facility, Liberty	BRITISH PETROLEUM EXPLORATION							
AK-0066	Development Project	ALASKA (BPXA)	6/15/2009			GCP	4.70	g/hp-hr	BACT-PSD
WV-0027	Inwood	KNAUF INSULATION INC.	9/15/2017	900	HP	GCP, Clean Fuel	4.77	g/hp-hr	BACT-PSD
		LOUISIANA ENERGY AND POWER							
LA-0308	Morgan City Power Plant	AUTHORITY (LEPA)	9/26/2013		kW	GCP	4.78	g/hp-hr	BACT-PSD
MI-0406	Renaissance Power LLC	LS POWER DEVELOPMENT LLC	11/1/2013		kW	GCP	4.80	g/hp-hr	BACT-PSD
LA-0313	St. Charles Power Station	ENTERGY LOUISIANA, LLC	8/31/2016	2,584	HP	NSPS Compliance	4.80	g/hp-hr	BACT-PSD
LA-0292	Holbrook Compressor Station	CAMERON INTERSTATE PIPELINE LLC	1/22/2016			GCP, Clean Fuel	4.80	g/hp-hr	BACT-PSD
IN-0158	St. Joseph Energy Center, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012	1,006	HP	GCP	4.80	g/hp-hr	BACT-PSD

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Туре
IN-0158	St. Joseph Energy Center, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012	2,012		GCP	4.80	g/hp-hr	BACT-PSD
MD-0044	Cove Point LNG Terminal	DOMINION COVE POINT LNG, LP	6/9/2014	1,550	HP	GCP	4.80	g/hp-hr	LAER
		CONSTELLATION POWER SOURCE							
MD-0043	Perryman Generating Station	GENERATION, INC.	7/1/2014	1,300	HP	GCP	4.80	g/hp-hr	LAER
CA-1212	Palmdale Hybrid Power Project	CITY OF PALMDALE	10/18/2011	2,683	HP	None	4.80	g/hp-hr	BACT-PSD
	Moundsville Combined Cycle Power								
WV-0025	Plant	MOUNDSVILLE POWER, LLC	11/21/2014	2,016	HP	None	4.80	g/hp-hr	BACT-PSD
		FOOTPRINT POWER SALEM HARBOR							
MA-0039	Salem Harbor Station Redevelopment	DEVELOPMENT LP	1/30/2014	750	kW	None	4.80	g/hp-hr	LAER
AK-0082	Point Thomson Production Facility	EXXON MOBIL CORPORATION	1/23/2015	2,695	HP	None	4.80	g/hp-hr	BACT-PSD
		WOLVERINE POWER SUPPLY							
MI-0402	Sumpter Power Plant	COOPERATIVE INC.	11/17/2011	732	HP	GCP	4.85	g/hp-hr	BACT-PSD
PA-0278	Moxie Liberty LLC/Asylum Power Pl T	MOXIE ENERGY LLC	10/10/2012			None	4.93	g/hp-hr	Other Case-by-Case
	Blue Plains Advanced Wastewater	DISTRICT OF COLUMBIA WATER AND							
DC-0009	Treatment Plant	SEWER AUTHORITY	3/15/2012	2,682	HP	None	5.39	g/hp-hr	LAER
OH-0352	Oregon Clean Energy Center	ARCADIS, US, INC.	6/18/2013	2,250	kW	NSPS Compliance	5.60	g/hp-hr	BACT-PSD
LA-0231	Lake Charles Gasification Facility	LAKE CHARLES COGENERATION, LLC	6/22/2009	1,341	HP	NSPS Compliance	5.78	g/hp-hr	BACT-PSD
		MID AMERICAN STEEL AND WIRE							
OK-0128	Mid American Steel Rolling Mill	COMPANY	9/8/2008	1,200		None	5.90	g/hp-hr	BACT-PSD
NV-0050	MGM Mirage	MGM MIRAGE	11/30/2009	2,206	HP	Turbocharger	5.94	g/hp-hr	Other Case-by-Case
MD-0037	Medimmune Frederick Campus	MEDIMMUNE, INC.	1/28/2008	2,500	kW	None	6.06	0, 1	LAER
AL-0301	Nucor Steel Tuscaloosa, Inc.	NUCOR STEEL TUSCALOOSA, INC.	7/22/2014	800	HP	None	6.80	g/hp-hr	BACT-PSD
FL-0310	Shady Hills Generating Station	SHADY HILLS POWER COMPANY	1/12/2009	2,500	kW	NSPS Compliance	6.90	g/hp-hr	BACT-PSD
		99 CIVIL ENGINEER SQUADRON OF							
NV-0047	Nellis Air Force Base	USAF	2/26/2008	1,350	hP	Turbocharger	7.58	g/hp-hr	BACT-PSD
NV-0049	Harrah's Operating Company, Inc.	HARRAH'S OPERATING COMPANY, INC.	8/20/2009	1,232	HP	Turbocharger	10.89		BACT-PSD
NJ-0073	Trigen	TRIGEN - TRENTON ENERGY CORP	3/8/2008			None	12.00	0, 1	RACT
IL-0114	Cronus Chemicals, LLC	CRONUS CHEMICALS, LLC	9/5/2014	3,755	HP	NSPS Compliance	0.67	g/kW-hr	BACT-PSD
MI-0425	Grayling Particleboard	ARAUCO NORTH AMERICA	5/9/2017	1,500		GCP	1.33	g/kW-hr	BACT-PSD
SC-0113	Pyramax Ceramics, LLC	PYRAMAX CERAMICS, LLC	2/8/2012	757	HP	NSPS Compliance	4.00	g/kW-hr	BACT-PSD
		WESTERN FARMERS ELECTRIC							
OK-0154	Mooreland Generating Sta	COOPERATIVE	7/2/2013	1,341	HP	GCP	4.99	g/kW-hr	BACT-PSD
		GENERAL MOTORS TECHNICAL CENTER-							
MI-0394	Warren Technical Center	WARREN	2/29/2012	3,010	kW	GCP, ITR	5.98	g/kW-hr	BACT-PSD
		GENERAL MOTORS TECHNICAL CENTER-	-						
MI-0395	Warren Technical Center	-WARREN	7/13/2012	3,010		GCP, ITR	5.98	0,	BACT-PSD
IA-0105	Iowa Fertilizer Company	IOWA FERTILIZER COMPANY	10/26/2012	2,000	kW	GCP	6.00	g/kW-hr	BACT-PSD
IA-0095	Tate & Lyle Ingredients Americas, Inc.		9/19/2008	700	kW	None	6.20	g/kW-hr	BACT-PSD
		ASSOCIATED ELECTRIC COOPERATIVE							
OK-0129	Chouteau Power Plant	INC	1/23/2009	2,200	HP	None	6.40	g/kW-hr	BACT-PSD
LA-0251	Flopam Inc. Facility	FLOPAM INC.	4/26/2011	1,175		None	6.40	g/kW-hr	LAER
OH-0317	Ohio River Clean Fuels, LLC	OHIO RIVER CLEAN FUELS, LLC	11/20/2008	2,922	HP	GCP	6.40	g/kW-hr	BACT-PSD

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Туре
AK-0073	International Station Power Plant	CHUGACH ELECTRIC ASSOCIATION	12/20/2010	1,500	kW	GCP	6.40	g/kW-hr	BACT-PSD
MI-0423	Indeck Niles, LLC	INDECK NILES, LLC	1/4/2017	2,922	hP	GCP	6.40	g/kW-hr	BACT-PSD
	Highlands Biorefinery And Cogeneration								
FL-0332	Plant	HIGHLANDS ENVIROFUELS (HEF), LLC	9/23/2011	2,682	hP	NSPS Compliance	6.40	g/kW-hr	BACT-PSD
ID-0018	Langley Gulch Power Plant	IDAHO POWER COMPANY	6/25/2010	750	kW	GCP	6.40	g/kW-hr	BACT-PSD
AK-0076	Point Thomson Production Facility	EXXON MOBIL CORPORATION	8/20/2012	1,750	kW	None	6.40	g/kW-hr	BACT-PSD
	Sweet Sorghum-To-Ethanol Advanced	SOUTHEAST RENEWABLE FUELS (SRF),							
FL-0322	Biorefinery	LLC	12/23/2010	2,000	kW	None	6.40	g/kW-hr	BACT-PSD
		BENTELER STEEL / TUBE							
LA-0309	Benteler Steel Tube Facility	MANUFACTURING CORPORATION	6/4/2015	2,922	HP	NSPS Compliance	6.40	g/kW-hr	BACT-PSD
		DYNO NOBEL LOUISIANA AMMONIA,							
LA-0272	Ammonia Production Facility	LLC	3/27/2013	1,200	HP	GCP	6.40	g/kW-hr	BACT-PSD
MI-0421	Grayling Particleboard	ARAUCO NORTH AMERICA	8/26/2016	1,600	kW	GCP	6.41	g/kW-hr	BACT-PSD
MI-0425	Grayling Particleboard	ARAUCO NORTH AMERICA	5/9/2017	1,500	kW	GCP	6.41	g/kW-hr	BACT-PSD
		GENERAL MOTORS TECHNICAL CENTER-							
MI-0394	Warren Technical Center	WARREN	2/29/2012	2,280	kW	GCP, ITR	6.93	g/kW-hr	BACT-PSD
		GENERAL MOTORS TECHNICAL CENTER-							
MI-0395	Warren Technical Center	-WARREN	7/13/2012	2,500	kW	GCP, ITR	7.13	g/kW-hr	BACT-PSD
		GENERAL MOTORS TECHNICAL CENTER							
MI-0418	Warren Technical Center	- WARREN	1/14/2015	2,710	kW	GCP, ITR	7.13	g/kW-hr	BACT-PSD
		GENERAL MOTORS TECHNICAL CENTER							
MI-0418	Warren Technical Center	- WARREN	1/14/2015	3,490	kW	GCP, ITR	8.00	g/kW-hr	BACT-PSD
AK-0072	Dutch Harbor Power Plant	CITY OF UNALASKA	7/14/2011	4,400	kW	GCP	9.80	g/kW-hr	BACT-PSD
NH-0015	Concord Steam Corporation	CONCORD STEAM CORPORATION	2/27/2009			None	1.98	lb/MMBtu	LAER
NH-0015	Concord Steam Corporation	CONCORD STEAM CORPORATION	2/27/2009			None	1.98	lb/MMBtu	LAER
LA-0204	Plaquemine PVC Plant	SHINTECH LOUISIANA LLC	2/27/2009	1,389	HP	GCP	3.20	lb/MMBtu	BACT-PSD
			PM10 - filte	rable		•	•		-
TX-0728	Peony Chemical Manufacturing Facility	BASF	4/1/2015	1,500	HP	NSPS Compliance	0.05	g/hp-hr	Other Case-by-Case
NV-0050	MGM Mirage	MGM MIRAGE	11/30/2009	2,206	HP	Turbocharger	0.05	g/hp-hr	Other Case-by-Case
SC-0115	GP Clarendon LP	GP CLARENDON LP	2/10/2009	1,400	HP	GCP	0.06	g/hp-hr	BACT-PSD
SC-0114	GP Allendale LP	GP ALLENDALE LP	11/25/2008	1,400	HP	None	0.06	g/hp-hr	BACT-PSD
		99 CIVIL ENGINEER SQUADRON OF							
NV-0047	Nellis Air Force Base	USAF	2/26/2008	1,350	hP	Turbocharger	0.08	g/hp-hr	Other Case-by-Case
	St. Joseph Energy Center, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012	1,006	HP	GCP	0.15	g/hp-hr	BACT-PSD
IN-0158	St. Joseph Energy Center, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012	2,012		GCP	0.15	g/hp-hr	BACT-PSD
AK-0082	Point Thomson Production Facility	EXXON MOBIL CORPORATION	1/23/2015	2,695	HP	None	0.15	g/hp-hr	BACT-PSD
LA-0313	St. Charles Power Station	ENTERGY LOUISIANA, LLC	8/31/2016	2,584	HP	GCP	0.15	g/hp-hr	BACT-PSD
NV-0049	Harrah's Operating Company, Inc.	HARRAH'S OPERATING COMPANY, INC.	8/20/2009	1,232	HP	Turbocharger	0.32	g/hp-hr	Other Case-by-Case
IA-0095	Tate & Lyle Ingredients Americas, Inc.		9/19/2008		kW	None	0.20	g/kW-hr	BACT-PSD
OH-0317	Ohio River Clean Fuels, LLC	OHIO RIVER CLEAN FUELS, LLC	11/20/2008	2,922	HP	GCP	0.20	g/kW-hr	BACT-PSD
LA-0251	Flopam Inc. Facility	FLOPAM INC.	4/26/2011	1,175	hP	None	0.20	g/kW-hr	BACT-PSD
		LOUISIANA ENERGY AND POWER							
LA-0308	Morgan City Power Plant	AUTHORITY (LEPA)	9/26/2013	2,000	kW	GCP	0.24	g/kW-hr	BACT-PSD

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Туре
	1		PM10 - to	otal					-
PA-0278	Moxie Liberty LLC/Asylum Power Pl T	MOXIE ENERGY LLC	10/10/2012			None	0.02	g/hp-hr	Other Case-by-Case
			c /22 /2000				0.00		
LA-0231	Lake Charles Gasification Facility	LAKE CHARLES COGENERATION, LLC	6/22/2009			NSPS Compliance		g/hp-hr	BACT-PSD
AK-0073	International Station Power Plant	CHUGACH ELECTRIC ASSOCIATION	12/20/2010			Turbo Charging		g/hp-hr	BACT-PSD
LA-0288	Lake Charles Chemical Complex	SASOL CHEMICALS (USA) LLC	5/23/2014	2,682	нр	GCP	0.15	g/hp-hr	BACT-PSD
1 4 0200	Lake Charles Chemical Complex LDPE		5 /22 /201 A	2 602		6 6 D	0.45	- //	DACT DCD
LA-0296	Unit	SASOL CHEMICALS (USA) LLC	5/23/2014	2,682	нр	GCP	0.15	g/hp-hr	BACT-PSD
IN-0173	Midwest Fertilizer Corporation	MIDWEST FERTILIZER CORPORATION	6/4/2014	3,600	цп	GCP	0.15	g/hp-hr	BACT-PSD
IN-0173 IN-0179	Ohio Valley Resources, LLC	OHIO VALLEY RESOURCES, LLC	9/25/2014			GCP		g/hp-hr	BACT-PSD BACT-PSD
111-0179		OTHO VALLET RESOURCES, ELC	5/25/2013	4,090	LIF	GCF	0.15	g/11p-111	BACT-F3D
IN-0180	Midwest Fertilizer Corporation	MIDWEST FERTILIZER CORPORATION	6/4/2014	3,600	нр	GCP	0.15	g/hp-hr	BACT-PSD
MI-0406	Renaissance Power LLC	LS POWER DEVELOPMENT LLC	11/1/2013			GCP		g/hp-hr	BACT-PSD
111 0 100	Energy Answers Arecibo Puerto Rico		11/1/2013	1,000		36	0.15	6/ ···P ···	biller i ob
PR-0009	Renewable Energy Project	ENERGY ANSWERS ARECIBO, LLC	4/10/2014	670	hP	None	0.15	g/hp-hr	BACT-PSD
			., 20, 202 .	070			0110	6/	2.101.102
LA-0254	Ninemile Point Electric Generating Plant	ENTERGY LOUISIANA LLC	8/16/2011	1,250	ΗР	GCP, Clean Fuel	0.15	g/hp-hr	BACT-PSD
CA-1212	Palmdale Hybrid Power Project	CITY OF PALMDALE	10/18/2011	2,683		Clean fuels		g/hp-hr	BACT-PSD
-			-, -, -	,				0, 1	
IN-0263	Midwest Fertilizer Company LLC	MIDWEST FERTILIZER COMPANY LLC	3/23/2017	3,600	HP	GCP	0.15	g/hp-hr	BACT-PSD
		FOOTPRINT POWER SALEM HARBOR		-,				8/ ··· P	
MA-0039	Salem Harbor Station Redevelopment	DEVELOPMENT LP	1/30/2014	750	kW	None	0.15	g/hp-hr	BACT-PSD
MD-0044	Cove Point LNG Terminal	DOMINION COVE POINT LNG, LP	6/9/2014			GCP, Clean Fuel		g/hp-hr	BACT-PSD
		CONSTELLATION POWER SOURCE						<u>e</u> .	
MD-0043	Perryman Generating Station	GENERATION, INC.	7/1/2014	1,300	HP	GCP	0.17	g/hp-hr	BACT-PSD
OH-0352	Oregon Clean Energy Center	ARCADIS, US, INC.	6/18/2013			NSPS Compliance	0.20	g/hp-hr	BACT-PSD
		WOLVERINE POWER SUPPLY							
MI-0400	Wolverine Power	COOPERATIVE, INC.	6/29/2011	4,000	HP	None	0.20	g/hp-hr	BACT-PSD
WV-0027	Inwood	KNAUF INSULATION INC.	9/15/2017	900		Clean fuels	0.20	g/hp-hr	BACT-PSD
MI-0423	Indeck Niles, LLC	INDECK NILES, LLC	1/4/2017	2,922	hP	GCP	0.25	g/hp-hr	BACT-PSD
		MID AMERICAN STEEL AND WIRE							
OK-0128	Mid American Steel Rolling Mill	COMPANY	9/8/2008			None		g/hp-hr	BACT-PSD
FL-0310	Shady Hills Generating Station	SHADY HILLS POWER COMPANY	1/12/2009	2,500	kW	GCP, Clean Fuel	0.40	g/hp-hr	BACT-PSD
FL-0310	Shady Hills Generating Station	SHADY HILLS POWER COMPANY	1/12/2009	2,500	kW	Clean fuels		g/hp-hr	BACT-PSD
AR-0140	Big River Steel LLC	BIG RIVER STEEL LLC	9/18/2013			GCP		g/kW-hr	BACT-PSD
MI-0425	Grayling Particleboard	ARAUCO NORTH AMERICA	5/9/2017	1,500		GCP		g/kW-hr	BACT-PSD
IL-0114	Cronus Chemicals, LLC	CRONUS CHEMICALS, LLC	9/5/2014			NSPS Compliance		0,	BACT-PSD
MI-0425	Grayling Particleboard	ARAUCO NORTH AMERICA	5/9/2017	1,500	kW	GCP	0.20	g/kW-hr	BACT-PSD
		ASSOCIATED ELECTRIC COOPERATIVE							
OK-0129	Chouteau Power Plant	INC	1/23/2009			None		g/kW-hr	BACT-PSD
IA-0105	Iowa Fertilizer Company	IOWA FERTILIZER COMPANY	10/26/2012	2,000	kW	GCP	0.20	g/kW-hr	BACT-PSD
	CF Industries Nitrogen, LLC - Port Neal								
IA-0106	Nitrogen Complex	CF INDUSTRIES NITROGEN, LLC	7/12/2013			GCP	0.20	g/kW-hr	BACT-PSD

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Туре
		BENTELER STEEL / TUBE							
LA-0309	Benteler Steel Tube Facility	MANUFACTURING CORPORATION	6/4/2015	2,922	HP	NSPS Compliance	0.20	g/kW-hr	BACT-PSD
		DYNO NOBEL LOUISIANA AMMONIA,							
LA-0272	Ammonia Production Facility	LLC	3/27/2013	1,200		GCP		0,	BACT-PSD
MI-0421	Grayling Particleboard	ARAUCO NORTH AMERICA	8/26/2016	1,600	kW	GCP	0.40	g/kW-hr	BACT-PSD
MI-0389	Karn Weadock Generating Complex	CONSUMERS ENERGY	12/29/2009	2,000	kW	GCP, Clean Fuel	0.06	lb/MMBtu	BACT-PSD
		WOLVERINE POWER SUPPLY							
MI-0402	Sumpter Power Plant	COOPERATIVE INC.	11/17/2011	732		GCP		lb/MMBtu	
LA-0204	Plaquemine PVC Plant	SHINTECH LOUISIANA LLC	2/27/2009	1,389		GCP		lb/MMBtu	
IN-0166	Indiana Gasification, LLC	INDIANA GASIFICATION, LLC	6/27/2012	,	HP	Clean fuels	15.00	ppm Sulfur	BACT-PSD
		1	PM2.5 - filte	rable	1	1		1	
TV 0720		DAGE	4/4/2015	4 500			0.05	- //	
TX-0728	Peony Chemical Manufacturing Facility	BASE	4/1/2015	1,500		NSPS Compliance		g/hp-hr	Other Case-by-Case
IN-0158	St. Joseph Energy Center, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012	1,006		GCP		g/hp-hr	BACT-PSD
IN-0158	St. Joseph Energy Center, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012	2,012	HP	GCP	0.15	g/hp-hr	BACT-PSD
14/1/ 0025	Moundsville Combined Cycle Power		11/21/2011	2.046			0.45	- /l	DACT DCD
WV-0025	Plant	MOUNDSVILLE POWER, LLC	11/21/2014	2,016		None		g/hp-hr	BACT-PSD
AK-0082	Point Thomson Production Facility	EXXON MOBIL CORPORATION	1/23/2015	2,695		None		g/hp-hr	BACT-PSD
LA-0313	St. Charles Power Station	ENTERGY LOUISIANA, LLC	8/31/2016	2,584	HP	GCP	0.15	g/hp-hr	BACT-PSD
		DYNO NOBEL LOUISIANA AMMONIA,						<i></i>	
LA-0272	Ammonia Production Facility		3/27/2013	1,200	HP	GCP	0.20	g/kW-hr	BACT-PSD
LA-0308	Morgan City Power Plant	AUTHORITY (LEPA)	9/26/2013	2,000		GCP		Ŭ,	BACT-PSD
AK-0072	Dutch Harbor Power Plant	CITY OF UNALASKA	7/14/2011	4,400	kW	Positive Crankcase Ventilation	0.50	g/kW-hr	BACT-PSD
	[PM2.5 - to	otal	1	1			1
PA-0278	Moxie Liberty LLC/Asylum Power Pl T	MOXIE ENERGY LLC	10/10/2012			None	0.02	g/hp-hr	Other Case-by-Case
LA-0288	Lake Charles Chemical Complex	SASOL CHEMICALS (USA) LLC	5/23/2014	2,682	нр	GCP		g/hp-hr	BACT-PSD
LA 0200	Lake Charles Chemical Complex LDPE		5/25/2014	2,002			0.15	6/ HP 11	DACTIOD
LA-0296	Unit								
			5/22/201/	2 682	нр	GCP	0.15	g/hn_hr	BACT-DSD
		SASOL CHEMICALS (USA) LLC	5/23/2014	2,682	HP	GCP	0.15	g/hp-hr	BACT-PSD
		WESTERN FARMERS ELECTRIC							
OK-0154	Mooreland Generating Sta		5/23/2014	2,682		GCP GCP		g/hp-hr g/hp-hr	BACT-PSD BACT-PSD
OK-0154	Mooreland Generating Sta	WESTERN FARMERS ELECTRIC COOPERATIVE	7/2/2013	1,341	HP	GCP	0.15	g/hp-hr	BACT-PSD
		WESTERN FARMERS ELECTRIC			HP		0.15		
OK-0154 IN-0173	Mooreland Generating Sta Midwest Fertilizer Corporation	WESTERN FARMERS ELECTRIC COOPERATIVE MIDWEST FERTILIZER CORPORATION	7/2/2013 6/4/2014	1,341 3,600	нр нр	GCP GCP	0.15	g/hp-hr g/hp-hr	BACT-PSD BACT-PSD
OK-0154 IN-0173 IN-0180	Mooreland Generating Sta Midwest Fertilizer Corporation Midwest Fertilizer Corporation	WESTERN FARMERS ELECTRIC COOPERATIVE MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION	7/2/2013 6/4/2014 6/4/2014	1,341 3,600 3,600	нр нр нр	GCP GCP GCP	0.15	g/hp-hr g/hp-hr g/hp-hr	BACT-PSD BACT-PSD BACT-PSD
OK-0154 IN-0173	Mooreland Generating Sta Midwest Fertilizer Corporation Midwest Fertilizer Corporation Renaissance Power LLC	WESTERN FARMERS ELECTRIC COOPERATIVE MIDWEST FERTILIZER CORPORATION	7/2/2013 6/4/2014	1,341 3,600	нр нр нр	GCP GCP	0.15	g/hp-hr g/hp-hr	BACT-PSD BACT-PSD
OK-0154 IN-0173 IN-0180 MI-0406	Mooreland Generating Sta Midwest Fertilizer Corporation Midwest Fertilizer Corporation Renaissance Power LLC Energy Answers Arecibo Puerto Rico	WESTERN FARMERS ELECTRIC COOPERATIVE MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION LS POWER DEVELOPMENT LLC	7/2/2013 6/4/2014 6/4/2014 11/1/2013	1,341 3,600 3,600 1,000	HP HP HP kW	GCP GCP GCP GCP	0.15 0.15 0.15 0.15	g/hp-hr g/hp-hr g/hp-hr g/hp-hr	BACT-PSD BACT-PSD BACT-PSD BACT-PSD
OK-0154 IN-0173 IN-0180	Mooreland Generating Sta Midwest Fertilizer Corporation Midwest Fertilizer Corporation Renaissance Power LLC	WESTERN FARMERS ELECTRIC COOPERATIVE MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION	7/2/2013 6/4/2014 6/4/2014	1,341 3,600 3,600	HP HP HP kW	GCP GCP GCP	0.15 0.15 0.15 0.15	g/hp-hr g/hp-hr g/hp-hr	BACT-PSD BACT-PSD BACT-PSD
OK-0154 IN-0173 IN-0180 MI-0406 PR-0009	Mooreland Generating Sta Midwest Fertilizer Corporation Midwest Fertilizer Corporation Renaissance Power LLC Energy Answers Arecibo Puerto Rico Renewable Energy Project	WESTERN FARMERS ELECTRIC COOPERATIVE MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION LS POWER DEVELOPMENT LLC ENERGY ANSWERS ARECIBO, LLC	7/2/2013 6/4/2014 6/4/2014 11/1/2013 4/10/2014	1,341 3,600 3,600 1,000 670	HP HP kW hP	GCP GCP GCP GCP None	0.15 0.15 0.15 0.15 0.15	g/hp-hr g/hp-hr g/hp-hr g/hp-hr	BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD
OK-0154 IN-0173 IN-0180 MI-0406	Mooreland Generating Sta Midwest Fertilizer Corporation Midwest Fertilizer Corporation Renaissance Power LLC Energy Answers Arecibo Puerto Rico	WESTERN FARMERS ELECTRIC COOPERATIVE MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION LS POWER DEVELOPMENT LLC	7/2/2013 6/4/2014 6/4/2014 11/1/2013	1,341 3,600 3,600 1,000	HP HP kW hP	GCP GCP GCP GCP	0.15 0.15 0.15 0.15 0.15	g/hp-hr g/hp-hr g/hp-hr g/hp-hr	BACT-PSD BACT-PSD BACT-PSD BACT-PSD
OK-0154 IN-0173 IN-0180 MI-0406 PR-0009 LA-0292	Mooreland Generating Sta Midwest Fertilizer Corporation Midwest Fertilizer Corporation Renaissance Power LLC Energy Answers Arecibo Puerto Rico Renewable Energy Project Holbrook Compressor Station	WESTERN FARMERS ELECTRIC COOPERATIVE MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION LS POWER DEVELOPMENT LLC ENERGY ANSWERS ARECIBO, LLC CAMERON INTERSTATE PIPELINE LLC	7/2/2013 6/4/2014 6/4/2014 11/1/2013 4/10/2014 1/22/2016	1,341 3,600 3,600 1,000 670 1,341	HP HP kW hP	GCP GCP GCP GCP None GCP, Clean Fuel	0.15 0.15 0.15 0.15 0.15 0.15	g/hp-hr g/hp-hr g/hp-hr g/hp-hr g/hp-hr	BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD
OK-0154 IN-0173 IN-0180 MI-0406 PR-0009	Mooreland Generating Sta Midwest Fertilizer Corporation Midwest Fertilizer Corporation Renaissance Power LLC Energy Answers Arecibo Puerto Rico Renewable Energy Project	WESTERN FARMERS ELECTRIC COOPERATIVE MIDWEST FERTILIZER CORPORATION MIDWEST FERTILIZER CORPORATION LS POWER DEVELOPMENT LLC ENERGY ANSWERS ARECIBO, LLC	7/2/2013 6/4/2014 6/4/2014 11/1/2013 4/10/2014	1,341 3,600 3,600 1,000 670	HP HP kW hP HP	GCP GCP GCP GCP None	0.15 0.15 0.15 0.15 0.15 0.15 0.15	g/hp-hr g/hp-hr g/hp-hr g/hp-hr	BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Туре
IN-0263	Midwest Fertilizer Company LLC	MIDWEST FERTILIZER COMPANY LLC	3/23/2017	3,600	нр	GCP	0.15	g/hp-hr	BACT-PSD
111-0205		FOOTPRINT POWER SALEM HARBOR	3/23/2017	3,000			0.15	g/ 11p=111	DACI-13D
MA-0039	Salem Harbor Station Redevelopment	DEVELOPMENT LP	1/30/2014	750	k\W	None	0.15	g/hp-hr	BACT-PSD
MD-0044	Cove Point LNG Terminal	DOMINION COVE POINT LNG, LP	6/9/2014	1,550		GCP, Clean Fuel		g/hp-hr	BACT-PSD
NID 0044		WOLVERINE POWER SUPPLY	0/3/2014	1,550			0.17	6/ IIP III	BACTTOD
MI-0400	Wolverine Power	COOPERATIVE, INC.	6/29/2011	4,000	нр	None	0.20	g/hp-hr	BACT-PSD
MI-0423	Indeck Niles, LLC	INDECK NILES, LLC	1/4/2017	2,922		GCP		g/hp-hr	BACT-PSD
IN-0179	Ohio Valley Resources, LLC	OHIO VALLEY RESOURCES, LLC	9/25/2013	4,690		GCP		g/hp-hr	BACT-PSD
AR-0140	Big River Steel LLC	BIG RIVER STEEL LLC	9/18/2013	1,500		GCP		g/kW-hr	BACT-PSD
MI-0425	Grayling Particleboard	ARAUCO NORTH AMERICA	5/9/2017	1,500		GCP		g/kW-hr	BACT-PSD
IL-0114	Cronus Chemicals, LLC	CRONUS CHEMICALS, LLC	9/5/2014	3,755		NSPS Compliance		g/kW-hr	BACT-PSD
AK-0081	Point Thomson Production Facility	EXXONMOBIL CORPORATION	6/12/2013	610		GCP		g/kW-hr	Other Case-by-Case
MI-0425	Grayling Particleboard	ARAUCO NORTH AMERICA	5/9/2017	1,500		GCP		g/kW-hr	BACT-PSD
IA-0105	Iowa Fertilizer Company	IOWA FERTILIZER COMPANY	10/26/2012	2,000		GCP	0.20	g/kW-hr	BACT-PSD
	CF Industries Nitrogen, LLC - Port Neal		,,	_,				8/	
IA-0106	Nitrogen Complex	CF INDUSTRIES NITROGEN, LLC	7/12/2013			GCP	0.20	g/kW-hr	BACT-PSD
AK-0076	Point Thomson Production Facility	EXXON MOBIL CORPORATION	8/20/2012	1,750	kW	None		g/kW-hr	BACT-PSD
		BENTELER STEEL / TUBE	-,,					8/	
LA-0309	Benteler Steel Tube Facility	MANUFACTURING CORPORATION	6/4/2015	2,922	HP	NSPS Compliance	0.20	g/kW-hr	BACT-PSD
MI-0421	Grayling Particleboard	ARAUCO NORTH AMERICA	8/26/2016			GCP		g/kW-hr	BACT-PSD
		WOLVERINE POWER SUPPLY						0.	
MI-0402	Sumpter Power Plant	COOPERATIVE INC.	11/17/2011	732	HP	GCP	0.06	lb/MMBtu	BACT-PSD
IN-0166	Indiana Gasification, LLC	INDIANA GASIFICATION, LLC	6/27/2012	1,341		Clean fuels	15.00	, ppm Sulfu	r BACT-PSD
		· · · · · · · · · · · · · · · · · · ·	PM - filter						
NY-0104	CPV Valley Energy Center	CPV VALLEY LLC	8/1/2013			Clean fuels	0.03	g/hp-hr	BACT-PSD
	· · · ·								
TX-0728	Peony Chemical Manufacturing Facility	BASF	4/1/2015	1,500	HP	NSPS Compliance	0.05	g/hp-hr	Other Case-by-Case
		WOLVERINE POWER SUPPLY							
MI-0402	Sumpter Power Plant	COOPERATIVE INC.	11/17/2011	732	HP	GCP	0.05	g/hp-hr	BACT-PSD
IN-0173	Midwest Fertilizer Corporation	MIDWEST FERTILIZER CORPORATION	6/4/2014	3,600	HP	GCP	0.15	g/hp-hr	BACT-PSD
IN-0179	Ohio Valley Resources, LLC	OHIO VALLEY RESOURCES, LLC	9/25/2013	4,690	HP	GCP	0.15	g/hp-hr	BACT-PSD
IN-0180	Midwest Fertilizer Corporation	MIDWEST FERTILIZER CORPORATION	6/4/2014	3,600	HP	GCP	0.15	g/hp-hr	BACT-PSD
MI-0406	Renaissance Power LLC	LS POWER DEVELOPMENT LLC	11/1/2013	1,000	kW	GCP	0.15	g/hp-hr	BACT-PSD
	Energy Answers Arecibo Puerto Rico								
PR-0009	Renewable Energy Project	ENERGY ANSWERS ARECIBO, LLC	4/10/2014	670	hP	None	0.15	g/hp-hr	BACT-PSD
IN-0158	St. Joseph Energy Center, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012	1,006	HP	GCP	0.15	g/hp-hr	BACT-PSD
IN-0158	St. Joseph Energy Center, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012	2,012	HP	GCP		g/hp-hr	BACT-PSD
MD-0044	Cove Point LNG Terminal	DOMINION COVE POINT LNG, LP	6/9/2014	1,550	HP	GCP, Clean Fuel	0.15	g/hp-hr	BACT-PSD
		WOLVERINE POWER SUPPLY							
MI-0400	Wolverine Power	COOPERATIVE, INC.	6/29/2011	4,000	HP	None	0.15	g/hp-hr	BACT-PSD
AL-0301	Nucor Steel Tuscaloosa, Inc.	NUCOR STEEL TUSCALOOSA, INC.	7/22/2014	800		None		g/hp-hr	BACT-PSD
AR-0140	Big River Steel LLC	BIG RIVER STEEL LLC	9/18/2013	1,500		GCP		g/kW-hr	BACT-PSD
IL-0114	Cronus Chemicals, LLC	CRONUS CHEMICALS, LLC	9/5/2014	3,755	HP	NSPS Compliance	0.10	g/kW-hr	BACT-PSD

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Туре
			0 /10 /2000	700				4	
IA-0095	Tate & Lyle Ingredients Americas, Inc.		9/19/2008			None		g/kW-hr	BACT-PSD
ID-0018	Langley Gulch Power Plant		6/25/2010			GCP		g/kW-hr	BACT-PSD
MI-0421	Grayling Particleboard	ARAUCO NORTH AMERICA	8/26/2016			GCP		Ċ,	BACT-PSD
MI-0425	Grayling Particleboard	ARAUCO NORTH AMERICA	5/9/2017			GCP		g/kW-hr	BACT-PSD
MI-0425	Grayling Particleboard	ARAUCO NORTH AMERICA	5/9/2017			GCP		g/kW-hr	BACT-PSD
MI-0423		INDECK NILES, LLC	1/4/2017			GCP		g/kW-hr	BACT-PSD
IN-0166	Indiana Gasification, LLC	INDIANA GASIFICATION, LLC	6/27/2012	· · · ·	HP	Clean fuels	15.00	ppm Sulfu	r BACT-PSD
			PM - tot	-				•	
SC-0115	GP Clarendon LP	GP CLARENDON LP	2/10/2009			GCP		g/hp-hr	BACT-PSD
SC-0114	GP Allendale LP	GP ALLENDALE LP	11/25/2008	1,400	HP	None		g/hp-hr	BACT-PSD
CA-1191	Victorville 2 Hybrid Power Project	CITY OF VICTORVILLE	3/11/2010	,		Clean fuels	0.15	g/hp-hr	BACT-PSD
CA-1212	Palmdale Hybrid Power Project	CITY OF PALMDALE	10/18/2011	2,683	HP	Clean fuels	0.15	g/hp-hr	BACT-PSD
IN-0263	Midwest Fertilizer Company LLC	MIDWEST FERTILIZER COMPANY LLC	3/23/2017	3,600	НР	GCP	0.15	g/hp-hr	BACT-PSD
IA-0105	Iowa Fertilizer Company	IOWA FERTILIZER COMPANY	10/26/2012			GCP		g/kW-hr	BACT-PSD
	CF Industries Nitrogen, LLC - Port Neal		-, -, -	,				0,	
IA-0106	Nitrogen Complex	CF INDUSTRIES NITROGEN, LLC	7/12/2013			GCP	0.20	g/kW-hr	BACT-PSD
MI-0389	Karn Weadock Generating Complex	CONSUMERS ENERGY	12/29/2009		kW	GCP, Clean Fuel		g/kW-hr	BACT-PSD
	Highlands Biorefinery And Cogeneration		12/20/2000	2,000			0.20	6/	5,101 105
FL-0332		HIGHLANDS ENVIROFUELS (HEF), LLC	9/23/2011	2,682	hP	NSPS Compliance	0.20	g/kW-hr	BACT-PSD
12 0332		SOUTHEAST RENEWABLE FUELS (SRF),	5/25/2011	2,002			0.20	6/100	brief 1 5b
FL-0322	Biorefinery		12/23/2010	2,000	kW	None	0.20	g/kW-hr	BACT-PSD
FL-0356	Okeechobee Clean Energy Center	FLORIDA POWER & LIGHT	3/9/2016			Clean fuels		g/kW-hr	BACT-PSD
FL-0346	Lauderdale Plant	FLORIDA POWER & LIGHT	4/22/2014			GCP		g/kW-hr	BACT-PSD
12 0540			atile Organic (60	0.20	6/ KW 11	BACTTSD
					1		1		
PA-0278	Moxie Liberty LLC/Asylum Power Pl T	MOXIE ENERGY LLC	10/10/2012			None	0.01	g/hp-hr	Other Case-by-Case
SC-0115	GP Clarendon LP	GP CLARENDON LP	2/10/2009		Цр	GCP		g/hp-hr	BACT-PSD
SC-0113	GP Allendale LP	GP ALLENDALE LP	11/25/2008			None		g/hp-hr	BACT-PSD
NV-0050	MGM Mirage	MGM MIRAGE	11/30/2009			Turbocharger		g/hp-hr	Other Case-by-Case
110-0050	Lake Charles Chemical Complex LDPE		11/30/2009	2,200	ΠF	Turbocharger	0.14	g/np-m	Other Case-Dy-Case
LA-0296	Unit	SASOL CHEMICALS (USA) LLC	5/23/2014	2,682	цр	NSPS Compliance	0.14	g/hp-hr	BACT-PSD
	Lake Charles Chemical Complex								
LA-0288		SASOL CHEMICALS (USA) LLC	5/23/2014	2,682	ΠР	GCP	0.14	g/hp-hr	BACT-PSD
DD 0000	Energy Answers Arecibo Puerto Rico		4/40/2011	670			0.15	- //	DACT DCD
PR-0009	Renewable Energy Project	ENERGY ANSWERS ARECIBO, LLC	4/10/2014	670	n۲	None	0.15	g/hp-hr	BACT-PSD
		99 CIVIL ENGINEER SQUADRON OF	a /a c /a a						
NV-0047	Nellis Air Force Base	USAF	2/26/2008	1,350	nP	Turbocharger	0.20	g/hp-hr	Other Case-by-Case
TX-0728	Peony Chemical Manufacturing Facility	BASF	4/1/2015	1,500	Цр	NSPS Compliance	0.21	g/hp-hr	Other Case-by-Case
IN-0158	St. Joseph Energy Center, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012	2,012	нР	GCP	0.23	g/hp-hr	BACT-PSD

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Туре
	Moundsville Combined Cycle Power								
WV-0025	Plant	MOUNDSVILLE POWER, LLC	11/21/2014	2,016	HP	None	0.28	g/hp-hr	BACT-PSD
PA-0291	Hickory Run Energy Station	HICKORY RUN ENERGY LLC	4/23/2013	1,135	hP	None	0.28	g/hp-hr	Other Case-by-Case
LA-0292	Holbrook Compressor Station	CAMERON INTERSTATE PIPELINE LLC	1/22/2016	1,341	HP	GCP	0.28	g/hp-hr	BACT-PSD
MI-0423	Indeck Niles, LLC	INDECK NILES, LLC	1/4/2017	2,922	hP	GCP	0.29	g/hp-hr	BACT-PSD
		MID AMERICAN STEEL AND WIRE							
OK-0128	Mid American Steel Rolling Mill	COMPANY	9/8/2008	1,200	HP	None	0.29	g/hp-hr	BACT-PSD
VA-0327	Perdue Grain And Oilseed, LLC	PERDUE AGRIBUSINESS, LLC	7/12/2017	760	hP	None	0.29	g/hp-hr	BACT-PSD
IN-0173	Midwest Fertilizer Corporation	MIDWEST FERTILIZER CORPORATION	6/4/2014			GCP	0.31	g/hp-hr	BACT-PSD
IN-0179	Ohio Valley Resources, LLC	OHIO VALLEY RESOURCES, LLC	9/25/2013	4,690	HP	GCP	0.31	g/hp-hr	BACT-PSD
IN-0180	Midwest Fertilizer Corporation	MIDWEST FERTILIZER CORPORATION	6/4/2014	3,600	HP	GCP	0.31	g/hp-hr	BACT-PSD
NV-0049	Harrah's Operating Company, Inc.	HARRAH'S OPERATING COMPANY, INC.	8/20/2009			Turbocharger	0.32	g/hp-hr	Other Case-by-Case
AK-0082	Point Thomson Production Facility	EXXON MOBIL CORPORATION	1/23/2015	2,695	HP	None	0.32	g/hp-hr	BACT-PSD
		WESTERN FARMERS ELECTRIC							
OK-0154	Mooreland Generating Sta	COOPERATIVE	7/2/2013	1,341	HP	GCP	0.32	g/hp-hr	BACT-PSD
		ASSOCIATED ELECTRIC COOPERATIVE							
OK-0129	Chouteau Power Plant	INC	1/23/2009	2,200	HP	GCP	0.32	g/hp-hr	BACT-PSD
IN-0263	Midwest Fertilizer Company LLC	MIDWEST FERTILIZER COMPANY LLC	3/23/2017			GCP		g/hp-hr	BACT-PSD
IN-0158	St. Joseph Energy Center, LLC	ST. JOSEPH ENERGY CENTER, LLC	12/3/2012			GCP	0.47	g/hp-hr	BACT-PSD
OH-0352	Oregon Clean Energy Center	ARCADIS, US, INC.	6/18/2013	2,250	kW	NSPS Compliance	0.79	g/hp-hr	BACT-PSD
LA-0254		ENTERGY LOUISIANA LLC	8/16/2011			GCP, Clean Fuel	1.00	0. 1	BACT-PSD
OK-0175	Wildhorse Terminal	WILDHORSE TERMINAL LLC	6/29/2017			GCP		g/hp-hr	BACT-PSD
LA-0313	St. Charles Power Station	ENTERGY LOUISIANA, LLC	8/31/2016			GCP		g/hp-hr	BACT-PSD
MD-0044	Cove Point LNG Terminal	DOMINION COVE POINT LNG, LP	6/9/2014	1,550	HP	GCP, Clean Fuel	4.80	g/hp-hr	LAER
IA-0095	Tate & Lyle Ingredients Americas, Inc.		9/19/2008			None		g/kW-hr	BACT-PSD
IA-0105	Iowa Fertilizer Company		10/26/2012			GCP	0.40	0.	BACT-PSD
IL-0114	Cronus Chemicals, LLC	CRONUS CHEMICALS, LLC	9/5/2014	3,755	HP	NSPS Compliance	0.40	g/kW-hr	BACT-PSD
	CF Industries Nitrogen, LLC - Port Neal		7/10/00:					4	
IA-0106	Nitrogen Complex	CF INDUSTRIES NITROGEN, LLC	7/12/2013			GCP		g/kW-hr	BACT-PSD
SC-0113	Pyramax Ceramics, LLC	PYRAMAX CERAMICS, LLC	2/8/2012			NSPS Compliance		g/kW-hr	BACT-PSD
OH-0317	Ohio River Clean Fuels, LLC	OHIO RIVER CLEAN FUELS, LLC	11/20/2008			GCP		g/kW-hr	BACT-PSD
SC-0159		MICHELIN NORTH AMERICA, INC.	7/9/2012			NSPS Compliance		g/kW-hr	BACT-PSD
ID-0018	Langley Gulch Power Plant		6/25/2010	750	kW	GCP	6.40	g/kW-hr	BACT-PSD
		DYNO NOBEL LOUISIANA AMMONIA,	a /a= /a : : -					<i></i>	
LA-0272	Ammonia Production Facility		3/27/2013		ΗР	GCP		g/kW-hr	BACT-PSD
NY-0104	CPV Valley Energy Center	CPV VALLEY LLC	8/1/2013			GCP	0.03	lb/MMBtu	LAEK

Table D-5 Addendum: RBLC Results for Emergency Generator Updated Data: November 2018 to October 2021

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls ^A	Emission Limit Units	Туре
			Nitrogen Oxio	des				
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	1073	bhp	GCP	2 G/KW-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	920	HP	GCP	4.77 G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	700	HP	GCP	4.77 G/HP-HR	BACT
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018	1500	HP	GCP	6.4 G/KW-H	BACT
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	1341	HP	GCP	14.96 LB/H	BACT
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	HR/YR	GCP/high efficiency design/CBF	3 G/HP-HR	BACT
	-		Carbon Mono			•		
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	1073	bhp	GCP	4 G/KW-HR	BACT
IL-0130	JACKSON ENERGY CENTER	JACKSON GENERATION, LLC	12/31/2018	1500	kW		3.5 G/KW-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	920	HP	GCP	2.61 G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	700	HP	GCP	2.61 G/HP-HR	BACT
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018	1500	HP	GCP	3.5 G/KW-H	BACT
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021	4474.2	KW	GCP	3.5 G/KW-H	BACT
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	1341	HP	GCP	7.7 LB/H	BACT
*PA-0326	SHELL POLYMERS MONACA SITE	SHELL CHEMICAL APPALACHIA LLC	02/18/2021	0		GCP/engine design	0.5 G	BACT
*PA-0326	SHELL POLYMERS MONACA SITE	SHELL CHEMICAL APPALACHIA LLC	02/18/2021	0		GCP/engine design	0.5 G	BACT
*PA-0326	SHELL POLYMERS MONACA SITE	SHELL CHEMICAL APPALACHIA LLC	02/18/2021	0		GCP/engine design	387 GRAM	BACT
TX-0889	SWEENY OLD OCEAN FACILITIES	CHEVRON PHILLIPS CHEMICAL COMPANY LP	08/08/2020	0		GCP/engine design	100 HR/YR	BACT
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	HR/YR	GCP/high efficiency design/CBF	2.6 G/HP-H	BACT
		Volat	tile Organic Co	mpounds				
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	1073	bhp	GCP	1 G/KW-HR	BACT
LA-0366	HOLDEN WOOD PRODUCTS MILL	WEYERHAEUSER NR COMPANY	02/03/2021	0		GCP	804.6 HP	BACT
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	1341	HP	GCP	14.96 LB/H	BACT
OK-0181	WILDHORSE TERMINAL	KEYERA ENERGY INC	09/11/2019	0		GCP	3 GM/HP-HR	BACT
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	HR/YR	GCP/high efficiency design/CBF	0.11 G/HP-HR	BACT
			PM ₁₀ (total)				
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	1073	bhp	GCP	0.2 G/KW-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	920	HP	GCP	0.15 G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	700	HP	GCP	0.15 G/HP-HR	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	700	HP	GCP	0.15 G/HP-HR	BACT
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018	1500	HP	GCP/CBF	0.69 LB/H	BACT
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021	4474.2	KW	GCP/CBF	1 LB/H	BACT
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	1341	HP	GCP	0.44 LB/H	BACT
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	HR/YR	GCP/high efficiency design/CBF	0.15 G/HP-HR	BACT
			PM _{2.5} (total)				
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	1073	bhp	GCP	0.2 G/KW-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	920	HP	GCP	0.15 G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	700	HP	GCP	0.15 G/HP-HR	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	700	HP	GCP	0.15 G/HP-HR	BACT
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018	1500	HP	CBF	0.69 LB/H	BACT
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021	4474.2	KW	CBF	1 LB/H	BACT
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	1341	HP	GCP	0.44 LB/H	BACT
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	HR/YR	GCP/high efficiency design/CBF	0.15 G/HP-HR	BACT
VA-0332			use Gases - CO		TINY TR	der/fligh entdency design/cbi	0.15 0/11 111	DACI
AR-0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	02/14/2019	1073	bhp	GCP	163 LB/MMBTU	BACT
IL-0130	JACKSON ENERGY CENTER	JACKSON GENERATION, LLC	12/31/2019	1500	kW		225 TONS/YEAR	BACT
MI-0130	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018	1500	HP	GCP/energy efficiency measures.	406 T/YR	BACT
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021	4474.2	KW	GCP/CBF/energy efficiency measures.	590 T/YR	BACT
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	1341	HP	GCP	80 T/YR	BACT
*PA-0326		SHELL CHEMICAL APPALACHIA LLC	02/18/2021	1541	115	GCP	10 TONS	BACT
*PA-0326 *PA-0326		SHELL CHEMICAL APPALACHIA LLC	02/18/2021	0		GCP	10 TONS	BACT
VA-0326	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	HR/YR	GCP/high efficiency design/CBF	10 TONS 106 T/YR	BACT
vA-0552			Sulfuric Acid N			GCF/IIIgh efficiency design/CBF	100 1/1K	BACI
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	HR/YR	GCP/high efficiency design/CBF	0.0001 LB/MMBTU	BACT
VA-0352				500	nn/ m	Ger / High eniciency design/CDF	0.0001 LB/ WIVIB TU	BACT
AR 0171	NUCOR STEEL ARKANSAS	NUCOR CORPORATION	Opacity 02/14/2019	1073	bhp	GCP	20 %	BACT
(.) ccp	INDEOR STEEL ARRANSAS	NOCON CORFORATION	02/14/2019	10/3	nih	00	20 /0	DACI

(a) GCP = good combustion practices, CBF = clean burning fuels

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Туре
		-	Carbon	Monoxide					1 71
		AVENAL POWER CENTER							
CA-1192	Avenal Energy Project	LLC	6/21/2011	288	НР	Turbocharger, aftercooler	0.45	g/HP-hr	BACT-PSD
	5, 7,	CRICKET VALLEY ENERGY						0,	
NY-0103	Cricket Valley Energy Center	CENTER LLC	2/3/2016	460	НР	GCP	0.53	g/HP-hr	BACT-PSD
	Flopam Inc. Facility	FLOPAM INC.	4/26/2011	444		GCP		g/HP-hr	BACT-PSD
		GRAIN PROCESSING	.,,					8,	
IN-0234	Grain Processing Corporation	CORPORATION	12/8/2015	425	нр	GCP	2 01	g/HP-hr	BACT-PSD
	Oregon Clean Energy Center	ARCADIS, US, INC.	6/18/2013	300		NSPS		g/HP-hr	BACT-PSD
011 0332	oregon cican Energy center	/	0/10/2013	500			2.57	6/	B/(CT + SB
NIL-0085	Middlesex Energy Center, LLC	STONEGATE POWER, LLC	7/19/2016	327	нр	Clean Fuels	2 50	g/HP-hr	BACT-PSD
101-0000	Widdlesex Energy Center, LEC	ASSOCIATED ELECTRIC	7/15/2010	527			2.55	g/111 -111	BACI-I 3D
OK-0120	Chouteau Power Plant	COOPERATIVE INC	1/23/2009	267	Пр	None	2 60	g/HP-hr	BACT-PSD
0K-0129		COMPETITIVE POWER	1/23/2009	207	nr	None	2.00	g/ 11F-111	BACT-PSD
		VENTURES, INC./CPV							
			11/12/2008	200		Nere	2.00		DACT DOD
	CPV St Charles	MARYLAND, LLC	11/12/2008	300		None		g/HP-hr	BACT-PSD
MD-0041	CPV St. Charles	CPV MARYLAND, LLC	4/23/2014	300	нр	GCP, Clean Fuels	2.60	g/HP-hr	BACT-PSD
	Energy Answers Arecibo Puerto Rico	ENERGY ANSWERS						<i>(</i>	
	Renewable Energy Project	ARECIBO, LLC	4/10/2014	335		None		g/HP-hr	BACT-PSD
MI-0423	Indeck Niles, LLC	INDECK NILES, LLC	1/4/2017	260	HP	GCP, NSPS	2.60	g/HP-hr	BACT-PSD
	Lake Charles Chemical Complex Ethylene 2	SASOL CHEMICALS (USA)							
LA-0301	Unit	LLC	5/23/2014	500	HP	GCP, NSPS	2.60	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER							
IN-0173	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	2.60	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER							
IN-0173	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	2.60	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER							
IN-0180	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	2.60	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER							
IN-0180	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	НР	GCP	2.60	g/HP-hr	BACT-PSD
LA-0254	Ninemile Point Electric Generating Plant	ENTERGY LOUISIANA LLC	8/16/2011	350	НР	GCP, Clean Fuels	2.60	g/HP-hr	BACT-PSD
		OHIO RIVER CLEAN						-	
OH-0317	Ohio River Clean Fuels, LLC	FUELS, LLC	11/20/2008	300	НР	GCP	2.60	g/HP-hr	BACT-PSD
		OHIO VALLEY						0.	
IN-0179	Ohio Valley Resources, LLC	RESOURCES, LLC	9/25/2013	481	НР	GCP	2.60	g/HP-hr	BACT-PSD
			-,,					8,	
NI-0081	PSEG Fossil LLC Sewaren Generating Station	PSEG FOSSIL LLC	3/7/2014	250	нр	None	2 60	g/HP-hr	BACT-PSD
10 0001			5///2011				2.00	8/	B/(CT + SB
14-0313	St. Charles Power Station	ENTERGY LOUISIANA, LLC	8/31/2016	282	нр	GCP, NSPS	2 60	g/HP-hr	BACT-PSD
27 0313		ST. JOSEPH ENERGY	0, 51/2010	202			2.00	6/11/-11	5761-150
	St. Joseph Energy Center, LLC	CENTER, LLC	12/3/2012	371	цр	GCP	2 50	g/HP-hr	BACT-PSD
111-0120	St. Joseph Energy Center, LLC	CLIVIEN, LLC	12/3/2012	5/1	115		2.60	8/ 11-111	DACI-PSU
	Sweet Sorahum To Etheral Advanced								
FL 0222	Sweet Sorghum-To-Ethanol Advanced	SOUTHEAST RENEWABLE	12/22/2010	c		Neze	2.00		
FL-0322	Biorefinery	FUELS (SRF), LLC	12/23/2010	600	нР	None	2.60	g/HP-hr	BACT-PSD

ord Generating Station Indsville Combined Cycle Power Plant Point LNG Terminal Inal Hill Power Plant Ind Board Of Public Works - East 5th t Ind Board Of Public Works - East 5th t Is Chemicals, LLC Im Inc. Facility Fertilizer Company Energy Center	CONSUMERS ENERGY COMPANY MOUNDSVILLE POWER, LLC DOMINION COVE POINT LNG, LP SOUTHWEST ELECTRIC POWER COMPANY (SWEPCO) HOLLAND BOARD OF PUBLIC WORKS HOLLAND BOARD OF PUBLIC WORKS CRONUS CHEMICALS, LLC FLOPAM INC. IOWA FERTILIZER COMPANY KEYS ENERGY CENTER,	7/25/2013 11/21/2014 6/9/2014 3/20/2008 12/4/2013 12/5/2016 9/5/2014 4/26/2011 10/26/2012	315 251 350 310 165 165 373 193	нр нр нр нр нр	GCP, Clean Fuels None GCP GCP, Clean Fuels GCP GCP GCP, NSPS None	2.60 3.00 3.03 3.70 3.70 3.50	g/HP-hr g/HP-hr g/HP-hr g/HP-hr g/HP-hr g/HP-hr	BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD
ndsville Combined Cycle Power Plant Point LNG Terminal nal Hill Power Plant nd Board Of Public Works - East 5th t nd Board Of Public Works - East 5th t us Chemicals, LLC m Inc. Facility Fertilizer Company	MOUNDSVILLE POWER, LLC DOMINION COVE POINT LNG, LP SOUTHWEST ELECTRIC POWER COMPANY (SWEPCO) HOLLAND BOARD OF PUBLIC WORKS HOLLAND BOARD OF PUBLIC WORKS CRONUS CHEMICALS, LLC FLOPAM INC. IOWA FERTILIZER COMPANY KEYS ENERGY CENTER,	11/21/2014 6/9/2014 3/20/2008 12/4/2013 12/5/2016 9/5/2014 4/26/2011	251 350 310 165 165 373	нр нр нр нр нр	None GCP GCP, Clean Fuels GCP GCP GCP, NSPS	2.60 3.00 3.03 3.70 3.70 3.50	g/HP-hr g/HP-hr g/HP-hr g/HP-hr g/HP-hr	BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD
Point LNG Terminal nal Hill Power Plant nd Board Of Public Works - East 5th t nd Board Of Public Works - East 5th t us Chemicals, LLC m Inc. Facility Fertilizer Company	LLC DOMINION COVE POINT LNG, LP SOUTHWEST ELECTRIC POWER COMPANY (SWEPCO) HOLLAND BOARD OF PUBLIC WORKS HOLLAND BOARD OF PUBLIC WORKS CRONUS CHEMICALS, LLC FLOPAM INC. IOWA FERTILIZER COMPANY KEYS ENERGY CENTER,	6/9/2014 3/20/2008 12/4/2013 12/5/2016 9/5/2014 4/26/2011	350 310 165 165 373	нр нр нр нр	GCP GCP, Clean Fuels GCP GCP GCP, NSPS	3.00 3.03 3.70 3.70 3.50	g/HP-hr g/HP-hr g/HP-hr g/HP-hr g/KW-hr	BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD
Point LNG Terminal nal Hill Power Plant nd Board Of Public Works - East 5th t nd Board Of Public Works - East 5th t us Chemicals, LLC m Inc. Facility Fertilizer Company	DOMINION COVE POINT LNG, LP SOUTHWEST ELECTRIC POWER COMPANY (SWEPCO) HOLLAND BOARD OF PUBLIC WORKS HOLLAND BOARD OF PUBLIC WORKS CRONUS CHEMICALS, LLC FLOPAM INC. IOWA FERTILIZER COMPANY KEYS ENERGY CENTER,	6/9/2014 3/20/2008 12/4/2013 12/5/2016 9/5/2014 4/26/2011	350 310 165 165 373	нр нр нр нр	GCP GCP, Clean Fuels GCP GCP GCP, NSPS	3.00 3.03 3.70 3.70 3.50	g/HP-hr g/HP-hr g/HP-hr g/HP-hr g/KW-hr	BACT-PSD BACT-PSD BACT-PSD BACT-PSD BACT-PSD
nal Hill Power Plant nd Board Of Public Works - East 5th t nd Board Of Public Works - East 5th t us Chemicals, LLC m Inc. Facility Fertilizer Company	LNG, LP SOUTHWEST ELECTRIC POWER COMPANY (SWEPCO) HOLLAND BOARD OF PUBLIC WORKS HOLLAND BOARD OF PUBLIC WORKS CRONUS CHEMICALS, LLC FLOPAM INC. IOWA FERTILIZER COMPANY KEYS ENERGY CENTER,	3/20/2008 12/4/2013 12/5/2016 9/5/2014 4/26/2011	310 165 165 373	нр нр нр	GCP, Clean Fuels GCP GCP GCP, NSPS	3.03 3.70 3.70 3.50	g/HP-hr g/HP-hr g/HP-hr g/KW-hr	BACT-PSD BACT-PSD BACT-PSD BACT-PSD
nal Hill Power Plant nd Board Of Public Works - East 5th t nd Board Of Public Works - East 5th t us Chemicals, LLC m Inc. Facility Fertilizer Company	SOUTHWEST ELECTRIC POWER COMPANY (SWEPCO) HOLLAND BOARD OF PUBLIC WORKS HOLLAND BOARD OF PUBLIC WORKS CRONUS CHEMICALS, LLC FLOPAM INC. IOWA FERTILIZER COMPANY KEYS ENERGY CENTER,	3/20/2008 12/4/2013 12/5/2016 9/5/2014 4/26/2011	310 165 165 373	нр нр нр	GCP, Clean Fuels GCP GCP GCP, NSPS	3.03 3.70 3.70 3.50	g/HP-hr g/HP-hr g/HP-hr g/KW-hr	BACT-PSD BACT-PSD BACT-PSD BACT-PSD
nd Board Of Public Works - East 5th t nd Board Of Public Works - East 5th t us Chemicals, LLC m Inc. Facility Fertilizer Company	POWER COMPANY (SWEPCO) HOLLAND BOARD OF PUBLIC WORKS HOLLAND BOARD OF PUBLIC WORKS CRONUS CHEMICALS, LLC FLOPAM INC. IOWA FERTILIZER COMPANY KEYS ENERGY CENTER,	12/4/2013 12/5/2016 9/5/2014 4/26/2011	165 165 373	нр нр нр	GCP GCP GCP, NSPS	3.70 3.70 3.50	g/HP-hr g/HP-hr g/kW-hr	BACT-PSD BACT-PSD BACT-PSD
nd Board Of Public Works - East 5th t nd Board Of Public Works - East 5th t us Chemicals, LLC m Inc. Facility Fertilizer Company	(SWEPCO) HOLLAND BOARD OF PUBLIC WORKS HOLLAND BOARD OF PUBLIC WORKS CRONUS CHEMICALS, LLC FLOPAM INC. IOWA FERTILIZER COMPANY KEYS ENERGY CENTER,	12/4/2013 12/5/2016 9/5/2014 4/26/2011	165 165 373	нр нр нр	GCP GCP GCP, NSPS	3.70 3.70 3.50	g/HP-hr g/HP-hr g/kW-hr	BACT-PSD BACT-PSD BACT-PSD
nd Board Of Public Works - East 5th t nd Board Of Public Works - East 5th t us Chemicals, LLC m Inc. Facility Fertilizer Company	HOLLAND BOARD OF PUBLIC WORKS HOLLAND BOARD OF PUBLIC WORKS CRONUS CHEMICALS, LLC FLOPAM INC. IOWA FERTILIZER COMPANY KEYS ENERGY CENTER,	12/4/2013 12/5/2016 9/5/2014 4/26/2011	165 165 373	нр нр нр	GCP GCP GCP, NSPS	3.70 3.70 3.50	g/HP-hr g/HP-hr g/kW-hr	BACT-PSD BACT-PSD BACT-PSD
t nd Board Of Public Works - East 5th t us Chemicals, LLC m Inc. Facility Fertilizer Company	PUBLIC WORKS HOLLAND BOARD OF PUBLIC WORKS CRONUS CHEMICALS, LLC FLOPAM INC. IOWA FERTILIZER COMPANY KEYS ENERGY CENTER,	12/5/2016 9/5/2014 4/26/2011	165	НР	GCP GCP, NSPS	3.70	g/HP-hr g/kW-hr	BACT-PSD BACT-PSD
nd Board Of Public Works - East 5th t us Chemicals, LLC m Inc. Facility Fertilizer Company	HOLLAND BOARD OF PUBLIC WORKS CRONUS CHEMICALS, LLC FLOPAM INC. IOWA FERTILIZER COMPANY KEYS ENERGY CENTER,	12/5/2016 9/5/2014 4/26/2011	165	НР	GCP GCP, NSPS	3.70	g/HP-hr g/kW-hr	BACT-PSD BACT-PSD
t us Chemicals, LLC m Inc. Facility Fertilizer Company	PUBLIC WORKS CRONUS CHEMICALS, LLC FLOPAM INC. IOWA FERTILIZER COMPANY KEYS ENERGY CENTER,	9/5/2014 4/26/2011	373	НР	GCP, NSPS	3.50	g/kW-hr	BACT-PSD
us Chemicals, LLC m Inc. Facility Fertilizer Company	CRONUS CHEMICALS, LLC FLOPAM INC. IOWA FERTILIZER COMPANY KEYS ENERGY CENTER,	9/5/2014 4/26/2011	373	НР	GCP, NSPS	3.50	g/kW-hr	BACT-PSD
m Inc. Facility Fertilizer Company	FLOPAM INC. IOWA FERTILIZER COMPANY KEYS ENERGY CENTER,	9/5/2014 4/26/2011	373	НР			0.	
m Inc. Facility Fertilizer Company	FLOPAM INC. IOWA FERTILIZER COMPANY KEYS ENERGY CENTER,	4/26/2011					0.	
m Inc. Facility Fertilizer Company	IOWA FERTILIZER COMPANY KEYS ENERGY CENTER,		193	HP	None	3 50		
Fertilizer Company	IOWA FERTILIZER COMPANY KEYS ENERGY CENTER,					5.50	g/kW-hr	BACT-PSD
· · · · · · · · · · · · · · · · · · ·	KEYS ENERGY CENTER,	10/26/2012					0.	
· · · · · · · · · · · · · · · · · · ·			235	kW	GCP	3.50	g/kW-hr	BACT-PSD
Energy Center							0.	
01	LLC	10/31/2014	300	НР	GCP, Clean Fuels	3.50	g/kW-hr	BACT-PSD
	KEYS ENERGY CENTER,						0.	
Energy Center	LLC	10/31/2014	1500	кw	GCP, Clean Fuels	3.50	g/kW-hr	BACT-PSD
0,							0.	
erdale Plant	FLORIDA POWER & LIGHT	4/22/2014	300	НР	GCP	3.50	g/kW-hr	BACT-PSD
		, , -					0,	
erdale Plant	FLORIDA POWER & LIGHT	8/25/2015	300	НР	Clean Fuels	3.50	g/kW-hr	BACT-PSD
		-, -,					0,	
awoman Energy Center	LLC	11/13/2015	305	НР	GCP. Clean Fuels	3.50	g/kW-hr	BACT-PSD
57		, -,					0,	
chobee Clean Energy Center	FLORIDA POWER & LIGHT	3/9/2016	422	НР	GCP	3.50	g/kW-hr	BACT-PSD
07	SOLID WASTE						0,	
	AUTHORITY OF PALM							
Beach Renewable Energy Park		12/23/2010	250	kW	GCP. Clean Fuels	3.50	g/kW-hr	BACT-PSD
dale Hybrid Power Project	CITY OF PALMDALE				None		-	BACT-PSD
, ,							0.	
nax Ceramics. LLC	PYRAMAX CERAMICS, LLC	2/8/2012	500	НР	NSPS	3.50	g/kW-hr	BACT-PSD
							0.	BACT-PSD
							0.	BACT-PSD
		,,					8,	
nax Ceramics, LLC	PYRAMAX CERAMICS, LLC	2/8/2012	29	НР	GCP	5.50	g/kW-hr	BACT-PSD
· · · · · · · · · · · · · · · · · · ·		_, _, _, _,					0,	
mont Terminal	PHILLIPS 66 PIPFI INF LLC	6/8/2016			GCP	0.01	lb/HP-hr	BACT-PSD
		0, 0, 2010						
Fossil LLC Sewaren Generating Station	PSEG FOSSIL	3/10/2016	2.6	MMBtu/hr	Clean Fuels	0 42	lb/MMBtu	BACT-PSD
			2.0				-	
er av ch B da na rv W na m	dale Plant woman Energy Center nobee Clean Energy Center each Renewable Energy Park	dale Plant FLORIDA POWER & LIGHT MATTAWOMAN ENERGY, MATTAWOMAN ENERGY, woman Energy Center FLORIDA POWER & LIGHT nobee Clean Energy Center FLORIDA POWER & LIGHT SOLID WASTE AUTHORITY OF PALM each Renewable Energy Park BEACH COUNTY ale Hybrid Power Project CITY OF PALMDALE ax Ceramics, LLC PYRAMAX CERAMICS, LLC /eadock Generating Complex CONSUMERS ENERGY ax Ceramics, LLC PYRAMAX CERAMICS, LLC oont Terminal PHILLIPS 66 PIPELINE LLC ossil LLC Sewaren Generating Station PSEG FOSSIL LLC	dale PlantFLORIDA POWER & LIGHT8/25/2015woman Energy CenterLLC11/13/2015nobee Clean Energy CenterFLORIDA POWER & LIGHT3/9/2016SOLID WASTESOLID WASTEAUTHORITY OF PALMBEACH COUNTY12/23/2010ale Hybrid Power ProjectCITY OF PALMDALE10/18/2011ax Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/2012rille 2 Hybrid Power ProjectCITY OF VICTORVILLE3/11/2010// eadock Generating ComplexCONSUMERS ENERGY12/29/2009ax Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/2012ont TerminalPHILLIPS 66 PIPELINE LLC6/8/2016ossil LLC Sewaren Generating StationPSEG FOSSIL LLC3/10/2016	dale PlantFLORIDA POWER & LIGHT8/25/2015300woman Energy CenterLLC11/13/2015305nobee Clean Energy CenterFLORIDA POWER & LIGHT3/9/2016422SOLID WASTEAUTHORITY OF PALM4000000000000000000000000000000000000	dale PlantFLORIDA POWER & LIGHT8/25/2015300HPMATTAWOMAN ENERGY, uoman Energy CenterMATTAWOMAN ENERGY, LLC11/13/2015305HPnobee Clean Energy CenterFLORIDA POWER & LIGHT3/9/2016422HPSOLID WASTE AUTHORITY OF PALM3/9/2016422HPeach Renewable Energy ParkBEACH COUNTY12/23/2010250kWale Hybrid Power ProjectCITY OF PALMDALE10/18/2011182HPax Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/2012500HPrille 2 Hybrid Power ProjectCITY OF VICTORVILLE3/11/2010135KWax Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/201229HPont TerminalPHILLIPS 66 PIPELINE LLC6/8/20160581LLC Sewaren Generating StationPSEG FOSSIL LLC3/10/20162.6MMBtu/hr	dale PlantFLORIDA POWER & LIGHT4/22/2014300HPGCPdale PlantFLORIDA POWER & LIGHT8/25/2015300HPClean Fuelswoman Energy CenterLLC11/13/2015305HPGCP, Clean Fuelsnobee Clean Energy CenterFLORIDA POWER & LIGHT3/9/2016422HPGCPsolut Dower Solut DwasteAUTHORITY OF PALM3/9/2016422HPGCPeach Renewable Energy ParkBEACH COUNTY12/23/2010250kWGCP, Clean Fuelsale Hybrid Power ProjectCITY OF PALMDALE10/18/2011182HPNoneax Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/2012500HPNSPSax Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/201240KWGCP, Clean Fuelsax Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/201229HPGCPont TerminalPHILLIPS 66 PIPELINE LLC6/8/2016GCPGCPossil LLC Sewaren Generating StationPSEG FOSSIL LLC3/10/20162.6MMBtu/hr	dale PlantFLORIDA POWER & LIGHT4/22/2014300HPGCP3.50dale PlantFLORIDA POWER & LIGHT8/25/2015300HPClean Fuels3.50dale PlantMATTAWOMAN ENERGY, LLC11/13/2015305HPGCP, Clean Fuels3.50nobee Clean Energy CenterLLC11/13/2015305HPGCP, Clean Fuels3.50nobee Clean Energy CenterFLORIDA POWER & LIGHT3/9/2016422HPGCP3.50nobee Clean Energy CenterFLORIDA POWER & LIGHT3/9/2016422HPGCP, Clean Fuels3.50nobee Clean Energy CenterFLORIDA POWER & LIGHT3/9/2016422HPGCP, Clean Fuels3.50nobee Clean Energy ParkBEACH COUNTY12/23/2010250kWGCP, Clean Fuels3.50ack Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/2012500HPNSPS3.50ax Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/2012500HPNSPS3.50ax Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/201229HPGCP, Clean Fuels5.00ax Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/201229HPGCP5.50ont TerminalPHILLIPS 66 PIPELINE LLC6/8/2016GCP0.01ossil LLC Sewaren Generating StationPSEG FOSSIL LLC3/10/20162.6MMBtu/hr Clean Fuels0.42	dale PlantFLORIDA POWER & LIGHT4/22/2014300HPGCP3.50g/kW-hrdale PlantFLORIDA POWER & LIGHT8/25/2015300HPClean Fuels3.50g/kW-hrdale PlantFLORIDA POWER & LIGHT8/25/2015300HPClean Fuels3.50g/kW-hrwoman Energy CenterLLC11/13/2015305HPGCP, Clean Fuels3.50g/kW-hrnobee Clean Energy CenterFLORIDA POWER & LIGHT3/9/2016422HPGCP3.50g/kW-hrnobee Clean Energy CenterFLORIDA POWER & LIGHT3/9/2016422HPGCP3.50g/kW-hrnobee Clean Energy CenterFLORIDA POWER & LIGHT3/9/2016422HPGCP3.50g/kW-hracch Renewable Energy ParkBEACH COUNTY12/23/2010250kWGCP, Clean Fuels3.50g/kW-hrale Hybrid Power ProjectCITY OF PALMDALE10/18/2011182HPNone3.50g/kW-hrax Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/2012500HPNSPS3.50g/kW-hrax Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/201220HPGCP5.50g/kW-hrax Ceramics, LLCPYRAMAX CERAMICS, LLC2/8/201229HPGCP5.50g/kW-hront TerminalPHILLIPS 66 PIPELINE LLC6/8/2016GCP0.01lb/HP-hrossil LLC Sewaren Generating StationPSEG FOSSIL LLC3/10/20162.6MMBtu/hr/Clean Fuels

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Туре
AK-0083	Kenai Nitrogen Operations	AGRIUM U.S. INC.	1/6/2015	2.7	MMBtu/hr	None	0.95	lb/MMBtu	BACT-PSD
LA-0204	Plaquemine PVC Plant	SHINTECH LOUISIANA LLC	2/27/2009	420	HP	GCP, Clean Fuels	0.95	lb/MMBtu	BACT-PSD
			reenhouse Gas	es - Carbon Di	oxide				
		MIDWEST FERTILIZER							
IN-0173	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	527.40	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER							
IN-0173	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	527.40	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER							
IN-0180	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	527.40	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER							
IN-0180	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	527.40	g/HP-hr	BACT-PSD
		OHIO VALLEY							
IN-0179	Ohio Valley Resources, LLC	RESOURCES, LLC	9/25/2013	481	HP	GCP	527.40	g/HP-hr	BACT-PSD
		IOWA FERTILIZER							
IA-0105	Iowa Fertilizer Company	COMPANY	10/26/2012	235	kW	GCP	1.55	g/kW-hr	BACT-PSD
LA-0254	Ninemile Point Electric Generating Plant	ENTERGY LOUISIANA LLC	8/16/2011	350		GCP	163.00	lb/MMBtu	BACT-PSD
			ouse Gases - Ca	arbon Dioxide	Equivalents	5			r
		MOUNDSVILLE POWER,							
WV-0025	Moundsville Combined Cycle Power Plant	LLC	11/21/2014	251	HP	None	558.41	g/HP-hr	BACT-PSD
		LOWER COLORADO							
TX-0612	Thomas C. Ferguson Power Plant	RIVER AUTHORITY	11/10/2011	617	HP	GCP	5,166.54	g/HP-hr	BACT-PSD
		FOOTPRINT POWER							
		SALEM HARBOR							
MA-0039	Salem Harbor Station Redevelopment	DEVELOPMENT LP	1/30/2014		MMBtu/hr	None	162.85	lb/MMBtu	BACT-PSD
		<u> </u>		Acid Mist	1			1	1
		MATTAWOMAN ENERGY,							
	Mattawoman Energy Center	LLC	11/13/2015	305	HP	GCP, Clean Fuels	7.00E-03	-	BACT-PSD
NY-0104	CPV Valley Energy Center	CPV VALLEY LLC	8/1/2013			Clean Fuels	3.00E-05	lb/MMBtu	BACT-PSD
		CRICKET VALLEY ENERGY							
NY-0103	Cricket Valley Energy Center	CENTER LLC	2/3/2016	460	НР	Clean Fuels	1.00E-04	lb/MMBtu	BACT-PSD
		FOOTPRINT POWER							
		SALEM HARBOR							
MA-0039	Salem Harbor Station Redevelopment	DEVELOPMENT LP	1/30/2014	2.7	MMBtu/hr	None	1.11E-04	lb/MMBtu	BACT-PSD
							45.00	6 16	
FL-0354	Lauderdale Plant	FLORIDA POWER & LIGHT			НР	Clean Fuels	15.00	ppm Sulfu	BACT-PSD
			Nitroge	en Dioxide					1
		LOUISIANA ENERGY AND							
		POWER AUTHORITY	0/06/06/0					(115.1	DAGT DGT
	Morgan City Power Plant	(LEPA)	9/26/2013	380		GCP		g/HP-hr	BACT-PSD
OH-0352	Oregon Clean Energy Center	ARCADIS, US, INC.	6/18/2013	300	нр	NSPS	2.57	g/HP-hr	BACT-PSD
101 04 70		MIDWEST FERTILIZER						(115.1	DAGT DGT
IN-0173	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	нр	GCP	2.83	g/HP-hr	BACT-PSD

Emergency Fire Pump

Table D-6 - RBLC Results for Emergency Generator

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Туре
	-	MIDWEST FERTILIZER		· · ·					
IN-0173	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	НР	GCP	2.83	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER							
IN-0180	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	2.83	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER							
IN-0180	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	2.83	g/HP-hr	BACT-PSD
	Energy Answers Arecibo Puerto Rico	ENERGY ANSWERS							
PR-0009	Renewable Energy Project	ARECIBO, LLC	4/10/2014	335	HP	None	2.85	g/HP-hr	BACT-PSD
		OHIO VALLEY							
IN-0179	Ohio Valley Resources, LLC	RESOURCES, LLC	9/25/2013	481	HP	GCP	2.86	g/HP-hr	BACT-PSD
	Lake Charles Chemical Complex Ethylene 2	SASOL CHEMICALS (USA)							
LA-0301	Unit	LLC	5/23/2014	500	HP	GCP, NSPS	2.91	g/HP-hr	BACT-PSD
	Sweet Sorghum-To-Ethanol Advanced	SOUTHEAST RENEWABLE							
FL-0322	Biorefinery	FUELS (SRF), LLC	12/23/2010	600	HP	None	3.00	g/HP-hr	BACT-PSD
		BENTELER STEEL / TUBE							
		MANUFACTURING							
LA-0309	Benteler Steel Tube Facility	CORPORATION	6/4/2015	288	HP	NSPS	3.00	g/HP-hr	BACT-PSD
		COMPETITIVE POWER							
		VENTURES, INC./CPV							
	CPV St Charles	MARYLAND, LLC	11/12/2008	300		None		g/HP-hr	BACT-PSD
LA-0251	Flopam Inc. Facility	FLOPAM INC.	4/26/2011	444	HP	None	3.00	g/HP-hr	BACT-PSD
	Holland Board Of Public Works - East 5th	HOLLAND BOARD OF							
MI-0412		PUBLIC WORKS	12/4/2013	165	HP	GCP	3.00	g/HP-hr	BACT-PSD
	Holland Board Of Public Works - East 5th	HOLLAND BOARD OF							
MI-0424		PUBLIC WORKS	12/5/2016	165		GCP		g/HP-hr	BACT-PSD
MI-0423	Indeck Niles, LLC	INDECK NILES, LLC	1/4/2017	260	HP	GCP, NSPS	3.00	g/HP-hr	BACT-PSD
		MOUNDSVILLE POWER,	/ /					<i>i</i>	
WV-0025	Moundsville Combined Cycle Power Plant	LLC	11/21/2014	251	нр	None	3.00	g/HP-hr	BACT-PSD
1 4 0242			0/24/2016	202			2.00		DACT DCD
LA-0313	St. Charles Power Station	ENTERGY LOUISIANA, LLC	8/31/2016	282	нР	GCP, NSPS	3.00	g/HP-hr	BACT-PSD
	St. Joseph Energy Conter, LLC	ST. JOSEPH ENERGY	12/2/2012	271	цъ	GCP	2.00	a/UD hr	BACT-PSD
IN-0158	St. Joseph Energy Center, LLC	CENTER, LLC CONSUMERS ENERGY	12/3/2012	371	пР	GCP	3.00	g/HP-hr	BACT-PSD
MI 0410	Thetford Generating Station	COMPANY	7/25/2013	315	цр	GCP, Clean Fuels	2.00	g/HP-hr	BACT-PSD
1011-0410	Therord Generating Station	WOLVERINE POWER	//25/2015	515	пг	GCP, Clear Fuels	5.00	g/ nP-III	BACT-PSD
		SUPPLY COOPERATIVE,							
MI 0400	Wolverine Power	INC.	6/29/2011	420	цр	None	2 00	g/HP-hr	BACT-PSD
1011-0400		AVENAL POWER CENTER	0/23/2011	420		None	3.00	g/11F-111	BACT-F3D
CA-1102	Avenal Energy Project	LLC	6/21/2011	288	нр	Turbocharger, aftercooler	3 10	g/HP-hr	BACT-PSD
CN-1192		99 CIVIL ENGINEER	0/21/2011	200			5.40	8/117-111	DACI-FOD
	Nellis Air Force Base	SQUADRON OF USAF	2/26/2008	500	нр	GCP, NSPS	2 00	g/HP-hr	BACT-PSD
1117-0047		ASSOCIATED ELECTRIC	2/20/2008	500			3.00	8/117-111	DACI-FOD
OK-0120	Chouteau Power Plant	COOPERATIVE INC	1/23/2009	267	нр	None	7 00	g/HP-hr	BACT-PSD
01-0129		COOPERATIVE INC	1/23/2009	207	115	INOTIC	7.80	5/ HF-III	BACI-F3D

Emergency Fire Pump

Table D-6 - RBLC Results for Emergency Generator

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Type
		OHIO RIVER CLEAN							.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
OH-0317	Ohio River Clean Fuels, LLC	FUELS, LLC	11/20/2008	300	НР	GCP, ITR, Turbocharger, aftercooler	7.80	g/HP-hr	BACT-PSD
	,	GRAIN PROCESSING	, ,					0,	
IN-0234	Grain Processing Corporation	CORPORATION	12/8/2015	425	НР	GCP	9.50	g/HP-hr	BACT-PSD
		SOUTHWEST ELECTRIC						0.	
		POWER COMPANY							
LA-0224	Arsenal Hill Power Plant	(SWEPCO)	3/20/2008	310	НР	GCP, Clean Fuels	14.06	g/HP-hr	BACT-PSD
IL-0114	Cronus Chemicals, LLC	CRONUS CHEMICALS, LLC	9/5/2014	373	HP	GCP, NSPS	3.50	g/kW-hr	BACT-PSD
		IOWA FERTILIZER							
IA-0105	Iowa Fertilizer Company	COMPANY	10/26/2012	235	kW	GCP	3.75	g/kW-hr	BACT-PSD
CA-1191	Victorville 2 Hybrid Power Project	CITY OF VICTORVILLE	3/11/2010	135	KW	None	3.80	g/kW-hr	BACT-PSD
LA-0251	Flopam Inc. Facility	FLOPAM INC.	4/26/2011	193	HP	None	4.00	g/kW-hr	BACT-PSD
		KEYS ENERGY CENTER,							
MD-0046	Keys Energy Center	LLC	10/31/2014	300	HP	GCP, Clean Fuels	4.00	g/kW-hr	BACT-PSD
		IDAHO POWER							
ID-0018	Langley Gulch Power Plant	COMPANY	6/25/2010	235	KW	GCP, NSPS	4.00	g/kW-hr	BACT-PSD
FL-0354	Lauderdale Plant	FLORIDA POWER & LIGHT	8/25/2015	300	HP	Clean Fuels	4.00	g/kW-hr	BACT-PSD
		SOLID WASTE							
		AUTHORITY OF PALM							
FL-0324	Palm Beach Renewable Energy Park	BEACH COUNTY	12/23/2010	250	kW	GCP, Clean Fuels	4.00	g/kW-hr	BACT-PSD
CA-1212	Palmdale Hybrid Power Project	CITY OF PALMDALE	10/18/2011	182	HP	None	4.00	g/kW-hr	BACT-PSD
SC-0113	Pyramax Ceramics, LLC	PYRAMAX CERAMICS, LLC	2/8/2012	500	HP	NSPS	4.00	g/kW-hr	BACT-PSD
		KEYS ENERGY CENTER,							
MD-0046	Keys Energy Center	LLC	10/31/2014	1500	KW	GCP, Clean Fuels	6.40	g/kW-hr	BACT-PSD
	Pyramax Ceramics, LLC	PYRAMAX CERAMICS, LLC	2/8/2012		HP	GCP		g/kW-hr	BACT-PSD
AK-0083	Kenai Nitrogen Operations	AGRIUM U.S. INC.	1/6/2015	2.7	MMBtu/hr	None	4.41	lb/MMBtu	BACT-PSD
LA-0204	Plaquemine PVC Plant	SHINTECH LOUISIANA LLC			HP	GCP, Clean Fuels	4.41	lb/MMBtu	BACT-PSD
	F		PM10	- Filerable	1			r	
		COMPETITIVE POWER							
		VENTURES, INC./CPV						<i>6</i>	
	CPV St Charles	MARYLAND, LLC	11/12/2008	300		None		g/HP-hr	BACT-PSD
LA-0251	Flopam Inc. Facility	FLOPAM INC.	4/26/2011	444	НР	None	0.15	g/HP-hr	BACT-PSD
			0/01/201-				• -=	(115.1	DA OT SOS
LA-0313	St. Charles Power Station	ENTERGY LOUISIANA, LLC	8/31/2016	282	нр	GCP, NSPS	0.15	g/HP-hr	BACT-PSD
IN 0150		ST. JOSEPH ENERGY	42/2/2012				0.15	-/110	DACT DOD
IN-0158	St. Joseph Energy Center, LLC	CENTER, LLC	12/3/2012	371	нР	GCP	0.15	g/HP-hr	BACT-PSD
011 024-	Ohio Divers Chars Fuel 110	OHIO RIVER CLEAN	44/20/2022	222				-/110	DACT DOD
UH-031/	Ohio River Clean Fuels, LLC	FUELS, LLC	11/20/2008	300	нү	GCP	0.40	g/HP-hr	BACT-PSD

Emergency Fire Pump

Table D-6 - RBLC Results for Emergency Generator

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Туре
		SOUTHWEST ELECTRIC							
		POWER COMPANY							
LA-0224	Arsenal Hill Power Plant	(SWEPCO)	3/20/2008	310	HP	GCP, Clean Fuels	0.99	g/HP-hr	BACT-PSD
LA-0251	Flopam Inc. Facility	FLOPAM INC.	4/26/2011	193	HP	None	0.20	g/kW-hr	BACT-PSD
			PM1	0 - Total	1			1	1
NU 0005		CTONICOTE DOWED INC	7/10/2016	227		Classe Fuels	0.45		DACT DOD
NJ-0085	Middlesex Energy Center, LLC	STONEGATE POWER, LLC	7/19/2016	327	нр	Clean Fuels	0.15	g/HP-hr	BACT-PSD
		BENTELER STEEL / TUBE MANUFACTURING							
1 1 0200	Benteler Steel Tube Facility	CORPORATION	6/4/2015	288	ЦП	NSPS	0.15	g/HP-hr	BACT-PSD
	CPV St. Charles	CPV MARYLAND, LLC	4/23/2013	300		GCP, Clean Fuels		g/HP-hr	BACT-PSD BACT-PSD
1010-0041	Energy Answers Arecibo Puerto Rico	ENERGY ANSWERS	4/23/2014	300	nr	GCF, Clean Fuels	0.15	g/ mF-III	BACI-F3D
PR-0009	Renewable Energy Project	ARECIBO, LLC	4/10/2014	335	нр	None	0.15	g/HP-hr	BACT-PSD
111-0005	Gateway Cogeneration 1, LLC - Smart Water	GATEWAY GREEN	4/10/2014			None	0.15	g/111 -111	DACI-13D
VA-0319		ENERGY	8/27/2012	1.86	MMBtu/hr	GCP, Clean Fuels	0.15	g/HP-hr	BACT-PSD
	Lake Charles Chemical Complex Ethylene 2	SASOL CHEMICALS (USA)	0/2//2012	2.00			0.20	6/	5.101.105
LA-0301		LLC	5/23/2014	500	НР	GCP, NSPS	0.15	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER						0,	
IN-0173	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	НР	GCP	0.15	g/HP-hr	BACT-PSD
	· · · · · · · · · · · · · · · · · · ·	MIDWEST FERTILIZER							
IN-0173	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	НР	GCP	0.15	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER							
IN-0180	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	0.15	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER							
IN-0180	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	0.15	g/HP-hr	BACT-PSD
LA-0254	Ninemile Point Electric Generating Plant	ENTERGY LOUISIANA LLC	8/16/2011	350	HP	GCP, Clean Fuels	0.15	g/HP-hr	BACT-PSD
		OHIO VALLEY						<i>u</i>	
IN-0179	Ohio Valley Resources, LLC	RESOURCES, LLC	9/25/2013	481	НР	GCP	0.15	g/HP-hr	BACT-PSD
NI_0081	PSEG Fossil LLC Sewaren Generating Station	PSEG FOSSIL LLC	3/7/2014	250	цр	Clean Fuels	0.15	g/HP-hr	BACT-PSD
INJ-0001	rsed rossil Lee sewaren Generating station	FOOTPRINT POWER	5/7/2014	250	ΠF		0.15	g/ mF-III	DACI-F3D
		SALEM HARBOR							
MA-0039	Salem Harbor Station Redevelopment	DEVELOPMENT LP	1/30/2014	27	MMBtu/hr	None	0.15	g/HP-hr	BACT-PSD
WIA 0055		THE EMPIRE DISTRICT	1/30/2014	2.7	iviivibca/iii	None	0.15	<u>6/111 111</u>	BACTISE
KS-0029	The Empire District Electric Company	ELECTRIC COMPANY	7/14/2015	750	кw	Clean Fuels	0.15	g/HP-hr	BACT-PSD
	Oregon Clean Energy Center	ARCADIS, US, INC.	6/18/2013	300		NSPS		g/HP-hr	BACT-PSD
		WOLVERINE POWER						0,	
		SUPPLY COOPERATIVE,							
MI-0400	Wolverine Power	INC.	6/29/2011	420	HP	None	0.15	g/HP-hr	BACT-PSD
		GRAIN PROCESSING							
IN-0234	Grain Processing Corporation	CORPORATION	12/8/2015	425	HP	GCP	0.16	g/HP-hr	BACT-PSD
		DOMINION COVE POINT							
MD-0044	Cove Point LNG Terminal	LNG, LP	6/9/2014	350	HP	GCP, Clean Fuels	0.17	g/HP-hr	BACT-PSD

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Туре
		LOUISIANA ENERGY AND							
		POWER AUTHORITY							
LA-0308	Morgan City Power Plant	(LEPA)	9/26/2013	380	HP	GCP	0.18	g/HP-hr	BACT-PSD
		KEYS ENERGY CENTER,							
MD-0046	Keys Energy Center	LLC	10/31/2014	300	HP	GCP, Clean Fuels	0.18	g/HP-hr	BACT-PSD
		KEYS ENERGY CENTER,							
MD-0046	Keys Energy Center	LLC	10/31/2014	1500	KW	GCP, Clean Fuels	0.18	g/HP-hr	BACT-PSD
		MATTAWOMAN ENERGY,							
MD-0045	Mattawoman Energy Center	LLC	11/13/2015	305	HP	GCP, Clean Fuels	0.18	g/HP-hr	BACT-PSD
		ASSOCIATED ELECTRIC							
OK-0129	Chouteau Power Plant	COOPERATIVE INC	1/23/2009	267	НР	None	0.40	g/HP-hr	BACT-PSD
		CONSUMERS ENERGY							
MI-0410	Thetford Generating Station	COMPANY	7/25/2013	315	НР	GCP, Clean Fuels	0.86	g/HP-hr	BACT-PSD
MI-0423	Indeck Niles, LLC	INDECK NILES, LLC	1/4/2017	260	HP	GCP	0.99	g/HP-hr	BACT-PSD
IL-0114	Cronus Chemicals, LLC	CRONUS CHEMICALS, LLC	9/5/2014	373	НР	GCP, NSPS	0.10	g/kW-hr	BACT-PSD
	·	IOWA FERTILIZER						0,	
IA-0105	Iowa Fertilizer Company	COMPANY	10/26/2012	235	kW	GCP	0.20	g/kW-hr	BACT-PSD
	Palmdale Hybrid Power Project	CITY OF PALMDALE	10/18/2011	182		Clean Fuels		g/kW-hr	BACT-PSD
								8/	
NI-0084	PSEG Fossil LLC Sewaren Generating Station	PSEG FOSSIL LLC	3/10/2016	2.6	MMBtu/hr	Clean Fuels	0.04	lb/MMBtu	BACT-PSD
	Holland Board Of Public Works - East 5th	HOLLAND BOARD OF	0/10/2010	2.0					5,101 105
MI-0412		PUBLIC WORKS	12/4/2013	165	нр	GCP	0.09	lb/MMBtu	ΒΔCΤ-ΡSD
1011 0412	Holland Board Of Public Works - East 5th	HOLLAND BOARD OF	12/4/2015	105			0.05		DACTIOD
MI-0424		PUBLIC WORKS	12/5/2016	165	нр	GCP	0.09	lb/MMBtu	
-	Karn Weadock Generating Complex	CONSUMERS ENERGY	12/29/2009		KW	GCP, Clean Fuels		lb/MMBtu	
	Kenai Nitrogen Operations	AGRIUM U.S. INC.	1/6/2015		MMBtu/hr			lb/MMBtu	
AK-0003		Addition 0.5. Inc.	1/0/2013	2.7	IVIIVIDCU/III	None	0.51		DACI-I JD
1 0 0 2 0 4	Plaquemine PVC Plant	SHINTECH LOUISIANA LLC	2/27/2009	420	ЦП	GCP, Clean Fuels	0.21	lb/MMBtu	
LA-0204				420 5 - Total	ΠF	GCP, Clean Fuels	0.51	וט/ ויוויושנט	BACT-F3D
			FIVIZ.	5 - 10tai			T	1	[
	Middlesex Energy Center, LLC	STONEGATE POWER, LLC	7/19/2016	327	ЦП	Clean Fuels	0.15	g/HP-hr	BACT-PSD
NJ-0065	Middlesex Energy Center, ELC	BENTELER STEEL / TUBE	//19/2010	527	nr		0.15	g/ 🗆 F - 111	BACT-P3D
		MANUFACTURING							
1 4 0 2 0 0	Dontolor Stool Tubo Facility		6/4/2015	200	ЦБ	NSPS	0.15	a/UD hr	
LA-0309	Benteler Steel Tube Facility		6/4/2015	288	нр	11325	0.15	g/HP-hr	BACT-PSD
DD 0000	Energy Answers Arecibo Puerto Rico	ENERGY ANSWERS	4/40/2014	225		Nese	0.45	- /UD ha	DACT DCD
PR-0009	Renewable Energy Project	ARECIBO, LLC	4/10/2014	335	нр	None	0.15	g/HP-hr	BACT-PSD
	Gateway Cogeneration 1, LLC - Smart Water	GATEWAY GREEN	0/07/0010	1.00			0.45	(115.1	
VA-0319		ENERGY	8/27/2012	1.86	MMBtu/hr	GCP, Clean Fuels	0.15	g/HP-hr	BACT-PSD
	Lake Charles Chemical Complex Ethylene 2	SASOL CHEMICALS (USA)	- ((<i>u</i>	
LA-0301	Unit	LLC	5/23/2014	500	нр	GCP, NSPS	0.15	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER					_	(
IN-0173	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	0.15	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER						.	
IN-0173	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	0.15	g/HP-hr	BACT-PSD

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Туре
		MIDWEST FERTILIZER		· · ·					
IN-0180	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	НР	GCP	0.15	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER							
IN-0180	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	НР	GCP	0.15	g/HP-hr	BACT-PSD
LA-0254	Ninemile Point Electric Generating Plant	ENTERGY LOUISIANA LLC	8/16/2011	350	НР	GCP, Clean Fuels	0.15	g/HP-hr	BACT-PSD
		OHIO VALLEY							
IN-0179	Ohio Valley Resources, LLC	RESOURCES, LLC	9/25/2013	481	НР	GCP	0.15	g/HP-hr	BACT-PSD
		FOOTPRINT POWER							
		SALEM HARBOR							
MA-0039	Salem Harbor Station Redevelopment	DEVELOPMENT LP	1/30/2014	2.7	MMBtu/hr	None	0.15	g/HP-hr	BACT-PSD
		THE EMPIRE DISTRICT							
KS-0029	The Empire District Electric Company	ELECTRIC COMPANY	7/14/2015	750	KW	Clean Fuels	0.15	g/HP-hr	BACT-PSD
		WOLVERINE POWER							
		SUPPLY COOPERATIVE,							
MI-0400	Wolverine Power	INC.	6/29/2011	420	НР	None	0.15	g/HP-hr	BACT-PSD
		DOMINION COVE POINT							
MD-0044	Cove Point LNG Terminal	LNG, LP	6/9/2014	350	НР	GCP, Clean Fuels	0.17	g/HP-hr	BACT-PSD
		MATTAWOMAN ENERGY,							
MD-0045	Mattawoman Energy Center	LLC	11/13/2015	305	НР	GCP, Clean Fuels	0.18	g/HP-hr	BACT-PSD
		CONSUMERS ENERGY							
MI-0410	Thetford Generating Station	COMPANY	7/25/2013	315		GCP, Clean Fuels	0.86	g/HP-hr	BACT-PSD
MI-0423	Indeck Niles, LLC	INDECK NILES, LLC	1/4/2017	260	HP	GCP	0.99	g/HP-hr	BACT-PSD
IL-0114	Cronus Chemicals, LLC	CRONUS CHEMICALS, LLC	9/5/2014	373	HP	GCP, NSPS	0.10	g/kW-hr	BACT-PSD
		IOWA FERTILIZER							
	Iowa Fertilizer Company	COMPANY	10/26/2012	235		GCP		g/kW-hr	BACT-PSD
	Palmdale Hybrid Power Project	CITY OF PALMDALE	10/18/2011	182		Clean Fuels		g/kW-hr	BACT-PSD
CA-1191	Victorville 2 Hybrid Power Project	CITY OF VICTORVILLE	3/11/2010	135	KW	None	0.20	g/kW-hr	BACT-PSD
NJ-0084	PSEG Fossil LLC Sewaren Generating Station	PSEG FOSSIL LLC	3/10/2016	2.6	MMBtu/hr	Clean Fuels	0.04	lb/MMBtu	BACT-PSD
	Holland Board Of Public Works - East 5th	HOLLAND BOARD OF							
MI-0412		PUBLIC WORKS	12/4/2013	165	HP	GCP	0.09	lb/MMBtu	BACT-PSD
	Holland Board Of Public Works - East 5th	HOLLAND BOARD OF							
MI-0424		PUBLIC WORKS	12/5/2016			GCP		lb/MMBtu	
AK-0083	Kenai Nitrogen Operations	AGRIUM U.S. INC.	1/6/2015		MMBtu/hr	None	0.31	lb/MMBtu	BACT-PSD
			PM2.5	- filterable	1	l .		r	
			0 10 - 1					()	
LA-0313	St. Charles Power Station	ENTERGY LOUISIANA, LLC	8/31/2016	282	ΗΡ	GCP, NSPS	0.14	g/HP-hr	BACT-PSD
		MOUNDSVILLE POWER,		_				()	
WV-0025	Moundsville Combined Cycle Power Plant	LLC	11/21/2014	251	HP	None	0.15	g/HP-hr	BACT-PSD
		ST. JOSEPH ENERGY						(115.1	
IN-0158	St. Joseph Energy Center, LLC	CENTER, LLC	12/3/2012	371	нр	GCP	0.15	g/HP-hr	BACT-PSD

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Туре
		LOUISIANA ENERGY AND							
		POWER AUTHORITY							
LA-0308	Morgan City Power Plant	(LEPA)	9/26/2013	380	HP	GCP	0.18	g/HP-hr	BACT-PSD
			PM - f	ilterable	-			T	1
		CRICKET VALLEY ENERGY							
NY-0103	Cricket Valley Energy Center	CENTER LLC	2/3/2016	460	HP	GCP	0.09	g/HP-hr	BACT-PSD
NJ-0085	Middlesex Energy Center, LLC	STONEGATE POWER, LLC	7/19/2016	327	HP	Clean Fuels	0.15	g/HP-hr	BACT-PSD
		DOMINION COVE POINT							
MD-0044	Cove Point LNG Terminal	LNG, LP	6/9/2014	350	HP	GCP, Clean Fuels	0.15	g/HP-hr	BACT-PSD
		COMPETITIVE POWER							
		VENTURES, INC./CPV							
MD-0040	CPV St Charles	MARYLAND, LLC	11/12/2008	300		None		g/HP-hr	BACT-PSD
MD-0041	CPV St. Charles	CPV MARYLAND, LLC	4/23/2014	300	НР	GCP, Clean Fuels	0.15	g/HP-hr	BACT-PSD
	Energy Answers Arecibo Puerto Rico	ENERGY ANSWERS							
PR-0009	Renewable Energy Project	ARECIBO, LLC	4/10/2014	335	HP	None	0.15	g/HP-hr	BACT-PSD
MI-0423	Indeck Niles, LLC	INDECK NILES, LLC	1/4/2017	260	HP	GCP, NSPS	0.15	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER							
IN-0173	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	0.15	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER							
IN-0173	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	0.15	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER							
IN-0180	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	0.15	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER							
IN-0180	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	0.15	g/HP-hr	BACT-PSD
		OHIO VALLEY							
IN-0179	Ohio Valley Resources, LLC	RESOURCES, LLC	9/25/2013	481	HP	GCP	0.15	g/HP-hr	BACT-PSD
NJ-0081	PSEG Fossil LLC Sewaren Generating Station	PSEG FOSSIL LLC	3/7/2014	250	HP	Clean Fuels	0.15	g/HP-hr	BACT-PSD
		ST. JOSEPH ENERGY						0.	
IN-0158	St. Joseph Energy Center, LLC	CENTER, LLC	12/3/2012	371	НР	GCP	0.15	g/HP-hr	BACT-PSD
		CONSUMERS ENERGY							
MI-0410	Thetford Generating Station	COMPANY	7/25/2013	315	ΗΡ	GCP, Clean Fuels	0.15	g/HP-hr	BACT-PSD
		WOLVERINE POWER							
		SUPPLY COOPERATIVE,							
MI-0400	Wolverine Power	INC.	6/29/2011	420	ΗΡ	None	0.15	g/HP-hr	BACT-PSD
		GRAIN PROCESSING							
IN-0234	Grain Processing Corporation	CORPORATION	12/8/2015	425	HP	GCP	0.16	g/HP-hr	BACT-PSD
	Holland Board Of Public Works - East 5th	HOLLAND BOARD OF							
MI-0412	Street	PUBLIC WORKS	12/4/2013	165	НР	GCP	0.22	g/HP-hr	BACT-PSD
	Holland Board Of Public Works - East 5th	HOLLAND BOARD OF							
MI-0424	Street	PUBLIC WORKS	12/5/2016	165	НР	GCP	0.22	g/HP-hr	BACT-PSD
IL-0114	Cronus Chemicals, LLC	CRONUS CHEMICALS, LLC	9/5/2014	373	HP	GCP, NSPS	0.10	g/kW-hr	BACT-PSD

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Туре
-	•	KEYS ENERGY CENTER,							71* -
MD-0046	Keys Energy Center	LLC	10/31/2014	300	НР	GCP, Clean Fuels	0.20	g/kW-hr	BACT-PSD
		KEYS ENERGY CENTER,							
MD-0046	Keys Energy Center	LLC	10/31/2014	1500	кw	GCP, Clean Fuels	0.20	g/kW-hr	BACT-PSD
		IDAHO POWER							
ID-0018	Langley Gulch Power Plant	COMPANY	6/25/2010	235	KW	GCP, NSPS	0.20	g/kW-hr	BACT-PSD
		MATTAWOMAN ENERGY,							
MD-0045	Mattawoman Energy Center	LLC	11/13/2015	305	HP	GCP, Clean Fuels	0.20	g/kW-hr	BACT-PSD
			2/10/2016						
	PSEG Fossil LLC Sewaren Generating Station	PSEG FOSSIL LLC	3/10/2016	2.6	MMBtu/hr	Clean Fuels		lb/MMBtu	
NY-0104	CPV Valley Energy Center	CPV VALLEY LLC	8/1/2013	- total	<u> </u>	Clean Fuels	0.04	lb/MMBtu	BACI-PSD
			PIM	- total	1				
	Sweet Sorghum-To-Ethanol Advanced	SOUTHEAST RENEWABLE							
EL-0322	Biorefinery	FUELS (SRF), LLC	12/23/2010	600	нр	None	0.15	g/HP-hr	BACT-PSD
16-0322	bloteinery	THE EMPIRE DISTRICT	12/23/2010	000		None	0.15	g/111 -111	DACI-I JD
KS-0029	The Empire District Electric Company	ELECTRIC COMPANY	7/14/2015	750	кw	Clean Fuels	0.15	g/HP-hr	BACT-PSD
			.,,					8,	
FL-0346	Lauderdale Plant	FLORIDA POWER & LIGHT	4/22/2014	300	НР	GCP	0.20	g/HP-hr	BACT-PSD
		IOWA FERTILIZER						0.	
IA-0105	Iowa Fertilizer Company	COMPANY	10/26/2012	235	kW	GCP	0.20	g/kW-hr	BACT-PSD
FL-0354	Lauderdale Plant	FLORIDA POWER & LIGHT	8/25/2015	300	HP	Clean Fuels	0.20	g/kW-hr	BACT-PSD
FL-0356	Okeechobee Clean Energy Center	FLORIDA POWER & LIGHT	3/9/2016	422	HP	Clean Fuels	0.20	g/kW-hr	BACT-PSD
		SOLID WASTE							
		AUTHORITY OF PALM							
	Palm Beach Renewable Energy Park	BEACH COUNTY	12/23/2010		kW	GCP, Clean Fuels		g/kW-hr	BACT-PSD
	Palmdale Hybrid Power Project	CITY OF PALMDALE	10/18/2011	182		Clean Fuels		g/kW-hr	BACT-PSD
	Victorville 2 Hybrid Power Project	CITY OF VICTORVILLE	3/11/2010		KW KW	None GCP, Clean Fuels		g/kW-hr	BACT-PSD
	Karn Weadock Generating Complex Kenai Nitrogen Operations	CONSUMERS ENERGY AGRIUM U.S. INC.	12/29/2009 1/6/2015		KVV MMBtu/hr		0.40	g/kW-hr lb/MMBtu	BACT-PSD
AK-0065		AGRIOWI 0.3. INC.	1 - 1	nic Compound		None	0.31	ID/ IVIIVIBLU	DACI-PSD
	Holland Board Of Public Works - East 5th	HOLLAND BOARD OF	volatile orga		us 				
MI-0412		PUBLIC WORKS	12/4/2013	165	нр	GCP	2.75E-03	g/HP-hr	BACT-PSD
1011 0412		GRAIN PROCESSING	12/4/2013	105	1		2.752.05	6/111 11	BACTTOD
IN-0234	Grain Processing Corporation	CORPORATION	12/8/2015	425	нр	GCP	0.05	g/HP-hr	BACT-PSD
	Lake Charles Chemical Complex Ethylene 2	SASOL CHEMICALS (USA)	12/0/2020				0.00	6/	5.101.105
LA-0301		LLC	5/23/2014	500	НР	GCP, NSPS	0.09	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER						<u>.</u>	
IN-0173	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	0.14	g/HP-hr	BACT-PSD
	·	MIDWEST FERTILIZER							
IN-0173	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	0.14	g/HP-hr	BACT-PSD
		MIDWEST FERTILIZER							
IN-0180	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	0.14	g/HP-hr	BACT-PSD

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls	EmissionLimit	Units	Туре
		MIDWEST FERTILIZER							
IN-0180	Midwest Fertilizer Corporation	CORPORATION	6/4/2014	500	HP	GCP	0.14	g/HP-hr	BACT-PSD
		OHIO VALLEY							
IN-0179	Ohio Valley Resources, LLC	RESOURCES, LLC	9/25/2013	481	НР	GCP	0.14	g/HP-hr	BACT-PSD
	Energy Answers Arecibo Puerto Rico	ENERGY ANSWERS							
PR-0009	Renewable Energy Project	ARECIBO, LLC	4/10/2014	335	HP	None	0.15	g/HP-hr	BACT-PSD
		ST. JOSEPH ENERGY							
IN-0158	St. Joseph Energy Center, LLC	CENTER, LLC	12/3/2012	371	НР	GCP	0.20	g/HP-hr	BACT-PSD
		MOUNDSVILLE POWER,							
WV-0025	Moundsville Combined Cycle Power Plant	LLC	11/21/2014	251	НР	None	0.31	g/HP-hr	BACT-PSD
OH-0352	Oregon Clean Energy Center	ARCADIS, US, INC.	6/18/2013	300	HP	NSPS	0.38	g/HP-hr	BACT-PSD
LA-0254	Ninemile Point Electric Generating Plant	ENTERGY LOUISIANA LLC	8/16/2011	350	НР	GCP, Clean Fuels	1.00	g/HP-hr	BACT-PSD
	Indeck Niles, LLC	INDECK NILES, LLC	1/4/2017	260		GCP		g/HP-hr	BACT-PSD
	·	ASSOCIATED ELECTRIC						0,	
OK-0129	Chouteau Power Plant	COOPERATIVE INC	1/23/2009	267	НР	GCP	1.12	g/HP-hr	BACT-PSD
		SOUTHWEST ELECTRIC	, , ,					0,	
		POWER COMPANY							
LA-0224	Arsenal Hill Power Plant	(SWEPCO)	3/20/2008	310	НР	GCP, Clean Fuels	1.13	g/HP-hr	BACT-PSD
2	Holland Board Of Public Works - East 5th	HOLLAND BOARD OF	0,20,2000	010				8/	5.101.105
MI-0424		PUBLIC WORKS	12/5/2016	165	НР	GCP	1.29	g/HP-hr	BACT-PSD
		WILDHORSE TERMINAL	12, 0, 2020	100			2.23	8/	5.101.105
OK-0175	Wildhorse Terminal	LLC	6/29/2017	500	НР	GCP, NSPS	3.00	g/HP-hr	BACT-PSD
011 0270			0/20/2021				0.00	8/	5.101.105
I A-0313	St. Charles Power Station	ENTERGY LOUISIANA, LLC	8/31/2016	282	НР	GCP	3 01	g/HP-hr	BACT-PSD
2770313		OHIO RIVER CLEAN	0/01/2010	202			5.01	6/111 111	biller i Sb
OH-0317	Ohio River Clean Fuels, LLC	FUELS, LLC	11/20/2008	300	НР	GCP	7.80	g/HP-hr	BACT-PSD
0.1.001/			11,20,2000				,	8/	5.101.105
		TINKER AIR FORCE BASE							
OK-0164	Midwest City Air Depot	LOGISTICS CENTER	1/8/2015	300	НР	GCP	0.15	g/kW-hr	BACT-PSD
010101		IOWA FERTILIZER	1,0,2013				0.15	6/ KW 111	biter 15b
IA-0105	Iowa Fertilizer Company	COMPANY	10/26/2012	235	kW	GCP	0.25	g/kW-hr	BACT-PSD
			10/10/1011	200			0.20	8/	5.101.105
II-0114	Cronus Chemicals, LLC	CRONUS CHEMICALS, LLC	9/5/2014	373	НР	GCP, NSPS	0.40	g/kW-hr	BACT-PSD
		IDAHO POWER	5/5/2021	0.0			00	6/	5.101.105
ID-0018	Langley Gulch Power Plant	COMPANY	6/25/2010	235	кw	GCP, NSPS	4 00	g/kW-hr	BACT-PSD
10 0010			0/23/2010	235			4.00	6/ KW 111	DACTIOD
SC-0113	Pyramax Ceramics, LLC	PYRAMAX CERAMICS, LLC	2/8/2012	500	нр	GCP, NSPS	4.00	g/kW-hr	BACT-PSD
30-0113		MICHELIN NORTH	2/0/2012	500			4.00	g/ K VV - 111	DACITIOD
SC-0159	US10 Facility	AMERICA, INC.	7/9/2012	211	кw	NSPS	4.00	g/kW-hr	BACT-PSD
36-0139	0010 Fucinity		77572012	211	1.44		4.00	5/ NV -11	5701-130
SC-0112	Pyramax Ceramics, LLC	PYRAMAX CERAMICS, LLC	2/8/2012	20	НР	GCP	7 50	g/kW-hr	BACT-PSD
26-0112			2/0/2012	29	1.05		7.50	5/ NV-11	DACI-F3D
TY_0700	Beaumont Terminal	PHILLIPS 66 PIPELINE LLC	6/8/2016			GCP	2 505 02	lb/HP-hr	BACT-PSD
			1/6/2015	2 7					
AK-0083	Kenai Nitrogen Operations	AGRIUM U.S. INC.	1/0/2015	2.7	MMBtu/h	livone	0.36	ID/IVIIVIBLU	BACT-PSD

Table D-6 Addendum: RBLC Results for Emergency Diesel Fire Pump Updated Data: November 2018 to October 2021

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls ^A	Emission Limit	Units	Туре
			Nitrogen Dioxide	2					
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020	19.4	gph	GCP	3.6	G/HP-HR	BACT
*AK-0086	KENAI NITROGEN OPERATIONS	AGRIUM U.S. INC.	03/26/2021	2.7	MMBtu/hr	GCP	4.41	LB/MMBTU	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	260	HP	GCP	2.98	G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	190	HP	GCP	2.98	G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	440	HP	GCP	2.98	G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	190	HP	GCP	2.98	G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	61	HP	GCP	3.5	G/HP-HR	BACT
*LA-0370	WASHINGTON PARISH ENERGY CENTER	WASHINGTON PARISH ENERGY CENTER LLC	04/27/2020	1.1	MM BTU/hr	CBF	1.15	LB/HR	BACT
*MI-0445	INDECK NILES, LLC	INDECK NILES, LLC	11/26/2019	1.66	MMBTU/H	GCP	3	G/BHP-H	BACT
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	402	HP	GCP	2.64	LB/H	BACT
OH-0379	PETMIN USA INCORPORATED	PETMIN USA INCORPORATED	02/06/2019	158	HP		0.104	LB/H	BACT
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	H/YR	GCP/high efficiency design/CBF	4.8	G/HP-H	BACT
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	HR/YR	GCP/high efficiency design/CBF	3	G/HP-HR	BACT
*WI-0291	GRAYMONT WESTERN LIME-EDEN	GRAYMONT WESTERN LIME-EDEN	01/28/2019	0.22	mmBTU/hr	GCP	4.7	G/KWH	BACT
	· · · · · · · · · · · · · · · · · · ·	I	Carbon Monoxid						
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020	19.4	gph (GCP	3.3	G/HP-HR	BACT
*AK-0086	KENAI NITROGEN OPERATIONS	AGRIUM U.S. INC.	03/26/2021	2.7	MMBtu/hr	GCP	0.95	LB/MMBTU	BACT
IL-0130	JACKSON ENERGY CENTER	JACKSON GENERATION, LLC	12/31/2018	420	horsepower		3.5	G/KW-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	260	HP	GCP	2.61	G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	190	HP	GCP	2.61	G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	440	HP	GCP	2.61	G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	190	HP	GCP	2.61	G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	61	HP	GCP	3.73	G/HP-HR	BACT
*LA-0370	WASHINGTON PARISH ENERGY CENTER	WASHINGTON PARISH ENERGY CENTER LLC	04/27/2020	1.1	MM BTU/hr	GCP	0.4	LB/HR	BACT
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018	2.5	MMBTU/H	GCP	2.6	G/HP-H	BACT
*MI-0445	INDECK NILES, LLC	INDECK NILES, LLC	11/26/2019	1.66	MMBTU/H	GCP	2.6	G/BHP-H	BACT
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021	2.5	MMBTU/H	GCP	2.6	G/HP-H	BACT
OH-0378 *PA-0326	PTTGCA PETROCHEMICAL COMPLEX	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018 02/18/2021	402 0	HP	GCP GCP	2.31	LB/H	BACT BACT
*PA-0326 *PA-0326	SHELL POLYMERS MONACA SITE SHELL POLYMERS MONACA SITE	SHELL CHEMICAL APPALACHIA LLC SHELL CHEMICAL APPALACHIA LLC	02/18/2021	0		GCP	0.5	G	BACT
*PA-0326 *PA-0326	SHELL POLYMERS MONACA SITE SHELL POLYMERS MONACA SITE	SHELL CHEMICAL APPALACHIA LLC SHELL CHEMICAL APPALACHIA LLC	02/18/2021	0		GCP	387	GRAM	BACT
TX-0889	SWEENY OLD OCEAN FACILITIES	CHEVRON PHILLIPS CHEMICAL COMPANY LP	02/18/2021	0		GCP	100	HR/YR	BACT
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	H/YR	GCP/high efficiency design/CBF	2.6	G/HP-H	BACT
VA-0332 VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	HR/YR	GCP/high efficiency design/CBF	2.6	G/HP-H	BACT
*WI-0291	GRAYMONT WESTERN LIME-EDEN	GRAYMONT WESTERN LIME-EDEN	01/28/2019	0.22	mmBTU/hr	GCP	5	G/KWH	BACT
VVI-0291	GRATIMONT WESTERN LIME-EDEN		platile Organic Comp		ппвто/п	GCF	5	G/KWH	BACT
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020	19.4	gph	GCP/CBF	0.19	G/HP-HR	BACT
*AK-0085	KENAL NITROGEN OPERATIONS	AGRIUM U.S. INC.	03/26/2021	2.7	MMBtu/hr	GCP	0.36	LB/MMBTU	BACT
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	402	HP	GCP	2.64	LB/H	BACT
OK-0181	WILDHORSE TERMINAL	KEYERA ENERGY INC	09/11/2019	0		GCP	3	GM/HP-HR	BACT
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	HR/YR	GCP/high efficiency design/CBF	0.11	G/HP-HR	BACT
*WI-0292	GREEN BAY PACKAGING INC. â€"MILL DIVISION	GREEN BAY PACKAGING INC. â€"MILL DIVISION	04/01/2019	0	THY IX	Ger might enterer vesign/ebr	200	HOURS	BACT
WI OZSZ	GREEN DATTACKAGING INC. IC MILE DIVISION		e Gases - Carbon Dio	-	1		200	1100113	BACT
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020	19.4	gph	GCP	163.6	LB/MMBTU	BACT
*AK-0086	KENAI NITROGEN OPERATIONS	AGRIUM U.S. INC.	03/26/2021	2.7	MMBtu/hr	GCP	164	LB/MMBTU	BACT
IL-0130	JACKSON ENERGY CENTER	JACKSON GENERATION. LLC	12/31/2018	420	horsepower		241	TONS/YEAR	BACT
*LA-0370	WASHINGTON PARISH ENERGY CENTER	WASHINGTON PARISH ENERGY CENTER LLC	04/27/2020	1.1	MM BTU/hr	GCP	9	ТРҮ	BACT
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018	2.5	MMBTU/H	GCP/energy efficiency measures.	20	T/YR	BACT
*MI-0445	INDECK NILES, LLC	INDECK NILES, LLC	11/26/2019	1.66	MMBTU/H	GCP	13.58	T/YR	BACT
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021	2.5	MMBTU/H	CBF/GCP/energy efficiency measures.	20	T/YR	BACT
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	402	HP	GCP	23	T/YR	BACT
OH-0379	PETMIN USA INCORPORATED	PETMIN USA INCORPORATED	02/06/2019	158	HP	GCP	181.7	LB/H	BACT
*PA-0326	SHELL POLYMERS MONACA SITE	SHELL CHEMICAL APPALACHIA LLC	02/18/2021	0		GCP	10	TONS	BACT
*PA-0326	SHELL POLYMERS MONACA SITE	SHELL CHEMICAL APPALACHIA LLC	02/18/2021	0		GCP	10	TONS	BACT
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	H/YR	GCP/high efficiency design/CBF	1203	T/YR	BACT
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	HR/YR	GCP/high efficiency design/CBF	106	T/YR	BACT
*WI-0292	GREEN BAY PACKAGING INC. â€"MILL DIVISION	GREEN BAY PACKAGING INC. â€"MILL DIVISION	04/01/2019	0			200	HOURS	BACT
(a) CCP = good co	ombustion practices. CBE = clean burning fuels								,

(a) GCP = good combustion practices, CBF = clean burning fuels

Table D-6 Addendum: RBLC Results for Emergency Diesel Fire Pump Updated Data: November 2018 to October 2021

RBLC ID	Facility Name	Company Name	Permit Date	Throughput	Units	Controls ^A	Emission Limit	Units	Туре
			PM ₁₀ (total)						
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020	19.4	gph	GCP/CBF	0.19	G/HP-HR	BACT
*AK-0086	KENAI NITROGEN OPERATIONS	AGRIUM U.S. INC.	03/26/2021	2.7	MMBtu/hr	GCP	0.31	LB/MMBTU	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	260	HP	GCP	0.15	G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	190	HP	GCP	0.15	G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	440	HP	GCP	0.15	G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	190	HP	GCP	0.15	G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	61	HP	GCP	0.3	G/HP-HR	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	350	HP	GCP	0.15	G/HP-HR	BACT
*LA-0370	WASHINGTON PARISH ENERGY CENTER	WASHINGTON PARISH ENERGY CENTER LLC	04/27/2020	1.1	MM BTU/hr	CBF	0.04	LB/HR	BACT
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018	2.5	MMBTU/H	CBF/GCP	0.12	LB/H	BACT
*MI-0445	INDECK NILES, LLC	INDECK NILES, LLC	11/26/2019	1.66	MMBTU/H	GCP	0.57	LB/H	BACT
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021	2.5	MMBTU/H	CBF/GCP	0.12	LB/H	BACT
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	402	HP	GCP	0.13	LB/H	BACT
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	H/YR	GCP/high efficiency design/CBF	0.15	G/HP-HR	BACT
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	HR/YR	GCP/high efficiency design/CBF	0.15	G/HP-HR	BACT
		·	PM ₁₀ (filterable on	ly)					
OH-0379	PETMIN USA INCORPORATED	PETMIN USA INCORPORATED	02/06/2019	158	HP	GCP	5.22	X10-3 LB/H	BACT
			PM _{2.5} (total)						
*AK-0085	GAS TREATMENT PLANT	ALASKA GASLINE DEVELOPMENT CORPORATION	08/13/2020	19.4	gph	GCP/CBF	0.19	G/HP-HR	BACT
*AK-0086	KENAI NITROGEN OPERATIONS	AGRIUM U.S. INC.	03/26/2021	2.7	MMBtu/hr	GCP	0.31	LB/MMBTU	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	260	HP	GCP	0.15	G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	190	HP	GCP	0.15	G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	440	HP	GCP	0.15	G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	190	HP	GCP	0.15	G/HP-HR	BACT
KY-0110	NUCOR STEEL BRANDENBURG	NUCOR	07/23/2020	61	HP	GCP	0.3	G/HP-HR	BACT
KY-0115	NUCOR STEEL GALLATIN, LLC	NUCOR STEEL GALLATIN, LLC	04/19/2021	350	HP	GCP	0.15	G/HP-HR	BACT
*LA-0370	WASHINGTON PARISH ENERGY CENTER	WASHINGTON PARISH ENERGY CENTER LLC	04/27/2020	1.1	MM BTU/hr	CBF	0.04	LB/HR	BACT
MI-0441	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	12/21/2018	2.5	MMBTU/H	CBF/GCP	0.12	LB/H	BACT
*MI-0445	INDECK NILES, LLC	INDECK NILES, LLC	11/26/2019	1.66	MMBTU/H	GCP	0.57	LB/H	BACT
MI-0447	LBWLERICKSON STATION	LANSING BOARD OF WATER AND LIGHT	01/07/2021	2.5	MMBTU/H	CBF/GCP	0.12	LB/H	BACT
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	402	HP	GCP	0.13	LB/H	BACT
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	H/YR	GCP/high efficiency design/CBF	0.15	G/HP-HR	BACT
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	HR/YR	GCP/high efficiency design/CBF	0.15	G/HP-HR	BACT
			PM _{2.5} (Filterable						
OH-0379	PETMIN USA INCORPORATED	PETMIN USA INCORPORATED	02/06/2019	158	HP	GCP	5.22	X10-3 LB/H	BACT
			Sulfuric Acid Mis	t			•		
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	H/YR	GCP/high efficiency design/CBF	0.0001	LB/MMBTU	BACT
VA-0332	CHICKAHOMINY POWER LLC	CHICKAHOMINY POWER LLC	06/24/2019	500	HR/YR	GCP/high efficiency design/CBF	0.0001	LB/MMBTU	BACT
			Opacity						
*WI-0291	GRAYMONT WESTERN LIME-EDEN	GRAYMONT WESTERN LIME-EDEN	01/28/2019	0.22	mmBTU/hr	GCP	10	% OPACITY	BACT

(a) GCP = good combustion practices, CBF = clean burning fuels

Table D-7

Table 2-4. RBLC Listings for Circuit Breaker Equipment Leaks

RBLC ID	Facility Name	State	Permit Date	Pollutant	BACT Level	BACT Units	Control
*VA-0332	Chickahominy Power LLC	VA	6/24/2019	CO ₂ e	0.5	% Leak Rate	Low-pressure detection system (with alarm)
TX-0748	FGE Power, FGE Texas Project	TX	4/28/2014	CO ₂ e	0.5	% Leak Rate	Low pressure alarm and a low
VA-0319	Gateway Cogeneration 1, LLC - Smart Water Project	VA	8/27/2012	CO ₂ e	1.0	% Leak Rate	Enclosed pressure circuit breaker.
VA-0328	C4GT, LLC	VA	4/26/2018	CO ₂ e	0.5	% Leak Rate	Enclosed-pressure design with low- pressure detection system (with alarm).
*IL-0130	Jackson Energy Center	IL	12/31/2018	SF ₆	0.5	% Leak Rate	Not specified
FL-0355	Fort Myers Plant	FL	9/10/2015	SF ₆	0.5	% Leak Rate	Leakage detection systems and alarms.
FL-0356	Okeechobee Clean Energy Center	FL	3/9/2016	SF ₆	0.5	% Leak Rate	Leakage detection systems and alarms.
IA-0107	Marshalltown Generating Station	IA	4/14/2014	SF ₆	0.5	% Leak Rate	Not specified
IL-0129	CPV Three Rivers Energy Center	IL	7/30/2018	SF ₆	0.5	% Leak Rate	Not specified
IN-0158	St. Joseph Energy Center, LLC	IN	12/3/2012	SF_6	0.5	% Leak Rate	A density alarm for leak detection and the use of totally enclosed and pressurized circuit breakers
MD-0041	CPV St. Charles	MD	4/23/2014	SF ₆	0.5	% Leak Rate	Designed to meet ANSI c37.013 or equivalent to detect and minimize SF6 leaks
TX-0612	Thomas C. Ferguson Power Plant	TX	11/10/2011	SF_6	0.006	lb/hr	Not specified
CA-1212	Palmdale Hybrid Power Project	CA	10/18/2011	CO ₂ e	0.85	lbs SF ₆ /yr	Not specified
CA-1223	Pio Pico Energy Center	CA	11/19/2012	CO ₂ e	3.56	lbs SF ₆ /yr	Enclosed
KS-0029	The Empire District Electric Company	KS	7/14/2015	CO ₂ e	0.61	lbs SF ₆ /yr	Density (leak detection) alarms
TX-0824	Jackson County Generating Facility	TX	6/30/2017	CO ₂ e	3.04	lbs SF ₆ /yr	Totally enclosed insulation systems equipped with a low pressure alarm and low pressure lockout
PA-0309	Lackawanna Energy Ctr/Jessup	РА	12/23/2015	SF ₆	6.00	lbs SF ₆ /yr	State-of-the-art sealed enclosed- pressure circuit breakers with leak detection
PA-0310	CPV Fairview Energy Center	PA	9/2/2016	SF ₆	1500	ppm	Not specified

PSD Air Construction Permit Application

RBLC ID	Facility Name	State	Permit Date	Pollutant	BACT Level	BACT Units	Control
TX-0749	Golden Spread Electric Cooperative, Antelope Station	TX	6/2/2014	CO ₂ e	Not	specified	Pressure lockout.
TX-0753	Guadalupe Generating Station	TX	12/2/2014	CO ₂ e	Not	specified	Low pressure alarm and a low pressure lockout
TX-0757	Indeck Wharton Energy Center	TX	5/12/2014	CO ₂ e	Not specified		Low pressure alarm and a low pressure lockout
TX-0758	Ector County Energy Center	TX	8/1/2014	CO ₂ e	Not specified		Low pressure alarm and a low pressure lockout
*MD- 0042	Wildcat Point Generation Facility	MD	4/8/2014	SF_6	-	nufacturer Provided ak Rate	State-of-the-art circuit breakers
MD-0045	Mattawoman Energy Center	MD	11/13/2015	SF_6	Unspecified Manufacturer Provided Leak Rate		Designed to meet ANSI c37.013 or equivalent to detect and minimize SF6 leaks
MD-0046	Keys Energy Center	MD	10/31/2014	SF_6	Unspecified Manufacturer Provided Leak Rate		Designed to meet ANSI c37.013 or equivalent to detect and minimize SF6 leaks

Table D-7 Addendum: RBLC Listings for Circuit Breaker Equipment Leaks Updated Data: February 2020 to October 2021

From December 2021 Application

RBLC ID	Facility Name	State	Permit Date	Pollutant	BACT Level	BACT Units	Controls
IL-0130	JACKSON ENERGY CENTER	IL	12/31/2018	Sulfur Hexafluoride	0.5% Le	ak Rate	
VA-0332	CHICKAHOMINY POWER LLC	VA	06/24/2019	Carbon Dioxide Equivalent (CO2e)	0.5% Le	ak Rate	Enclosed-pressure design with low-pressure detection system (with alarm).

RBLC ID	Facility Name	Permit Date	Process Name	Pollutant	Control Method	Emission Limit	Limit Units
TX-0633	CHANNEL ENERGY ENERGY CENTER, LLC	11/29/2012	Natural Gas Fugitives	CO2		0.29	tpy
TX-0753	GUADALUPE GENERATING STATION	12/2/2014	Components Fugitive Leak Emissions	CO2e	AVO		
TX-0757	INDECK WHARTON ENERGY CENTER	5/12/2014	Components Fugitive Leak Emissions	CO2e	AVO		
TX-0758	ECTOR COUNTY ENERGY CENTER	8/1/2014	Components Fugitive Leaks	CO2e	AVO		
MD-0042	WILDCAT POINT GENERATION FACILITY	4/8/2014	Equipment Leaks	CO2e	AVO		
MD-0045	MATTAWOMAN ENERGY CENTER	11/13/2015	Equipment Leaks	CO2e	AVO		
MD-0046	KEYS ENERGY CENTER	10/31/2014	Equipment Leaks	CO2e	AVO		
MD-0041	CPV ST. CHARLES	4/23/2014	Fugitive Emissions	CO2e	AVO	72.7	tpy
TX-0824	JACKSON COUNTY GENERATING FACILITY	6/30/2017	Natural Gas Fugitives	CO2e	AVO	693.3	tpy
VA-0328	C4GT, LLC	4/26/2018	Equipment Leaks from Natural Gas Components	CO2e	LDAR		
TX-0748	FGE POWER, FGE TEXAS PROJECT	4/28/2014	Natural Gas Fugitive Emission Sources	CO2e	LDAR		
TX-0633	CHANNEL ENERGY ENERGY CENTER, LLC	11/29/2012	Natural Gas Fugitives	Methane		7.44	tpy
IL-0130	JACKSON ENERGY CENTER	12/31/2018	Natural Gas Piping and Components	Methane	LDAR	4.3	tpy

Table D-8 Addendum: RBLC Results for Piping Fugitives Updated Data: February 2021 to October 2021

RBLC ID	Facility Name	Permit Date	Process Name	Pollutant	Control Method	Emission Limit	Limit Units
IL-0130	JACKSON ENERGY CENTER	12/31/2018	Natural Gas Piping and Components	Methane	(LDAR)/, use of ''leakless'' components.	4.3	TONS/YEAR
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	Fugitive Emissions (P807)	Volatile Organic Compounds (VOC)	Enhanced connector monitoring requirements to the most stringent leak detection and repail	99.38	T/YR
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	Fugitive Emissions (P807)	Carbon Dioxide Equivalent (CO2e)	i.an LDAR program for leaks of methane from equipment and piping components in tail gas (f	35	T/YR
TX-0886	MONT BELVIEU NGL FRACTIONATION UNIT			Volatile Organic Compounds (VOC)	28 LAER leak detection and repair (LDAR) program	0	
VA-0332	CHICKAHOMINY POWER LLC	06/24/2019	Equipment Leaks from Natural Gas Components	Carbon Dioxide Equivalent (CO2e)	Best management practices to prevent, detect and repair leaks of natural gas from the pipin	0	
*TX-0908	NEWMAN POWER STATION	08/27/2021	Fugitives	Volatile Organic Compounds (VOC)	weekly AVO	0	
*TX-0908	NEWMAN POWER STATION	08/27/2021	Fugitives	Carbon Dioxide Equivalent (CO2e)	weekly AVO	0	
TX-0864	EQUISTAR CHEMICALS CHANNELVIEW COMPLEX	09/09/2019	Fugitive Components	Volatile Organic Compounds (VOC)	28LAER & 28PI	500	PPMV
TX-0864	EQUISTAR CHEMICALS CHANNELVIEW COMPLEX	09/09/2019	Fugitive Components	Carbon Dioxide Equivalent (CO2e)	LDAR	500	PPMV

RBLC ID	Facility Name	Permit Date	Process Name	Pollutant	Control Method	Emission Limit	Limit Units
SC-0181	RESOLUTE FP US INC CATAWBA LUMBER MILL	11/3/2017	Haul Roads	PM10-filterable	Good Housekeeping Practices	0.03	LB/VMT
OH-0376	IRONUNITS LLC - TOLEDO HBI	2/9/2018	Haul Roads-Paved	PM10-filterable	Water Flushing and Sweeping	0.63	T/YR
IA-0105	IOWA FERTILIZER COMPANY	10/26/2012	Haul Roads	PM10-total	Paving, wet/chemical suppression		
IA-0106	CF INDUSTRIES NITROGEN, LLC - PORT NEAL NITROGEN COMPLEX	7/12/2013	Haul Roads	PM10-total	Paving, wet/chemical suppression		
IN-0263	MIDWEST FERTILIZER COMPANY LLC	3/23/2017	Paved Roads and Parking Lots	PM10-total	Paving, wet/chemical suppression		
MD-0046	KEYS ENERGY CENTER	10/31/2014	Haul Roads-Paved and Unpaved	PM10-total	Water Flushing and Sweeping		
IN-0166	INDIANA GASIFICATION, LLC	6/27/2012	Haul Roads-Paved	PM10-total	Paving, wet/chemical suppression	90	% CONTROL
IN-0173	MIDWEST FERTILIZER CORPORATION	6/4/2014	Paved Roads and Parking Lots	PM10-total	Paving, wet/chemical suppression	90	% CONTROL
IN-0179	OHIO VALLEY RESOURCES, LLC	9/25/2013	Paved Roads and Parking Lots	PM10-total	Paving, wet/chemical suppression	90	% CONTROL
IN-0180	MIDWEST FERTILIZER CORPORATION	6/4/2014	Paved Roads and Parking Lots	PM10-total	Paving, wet/chemical suppression	90	% CONTROL
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	Haul Roads	PM10-total	Paving, wet/chemical suppression, speed re	0.38	T/YR
OH-0368	PALLAS NITROGEN LLC	4/19/2017	Haul Roads-Paved	PM10-total	Paving	2.6	T/YR
SC-0181	RESOLUTE FP US INC CATAWBA LUMBER MILL	11/3/2017	Haul Roads	PM2.5-filterable	Good Housekeeping Practices	0.01	LB/VMT
OH-0376	IRONUNITS LLC - TOLEDO HBI	2/9/2018	Haul Roads-Paved	PM2.5-filterable	Water Flushing and Sweeping	0.15	T/YR
IA-0105	IOWA FERTILIZER COMPANY	10/26/2012	Haul Roads	PM2.5-total	Paving, wet/chemical suppression		
IA-0106	CF INDUSTRIES NITROGEN, LLC - PORT NEAL NITROGEN COMPLEX	7/12/2013	Haul Roads	PM2.5-total	Paving, wet/chemical suppression		
IN-0263	MIDWEST FERTILIZER COMPANY LLC	3/23/2017	Paved Roads and Parking Lots	PM2.5-total	Paving, wet/chemical suppression		
IN-0166	INDIANA GASIFICATION, LLC	6/27/2012	Haul Roads-Paved	PM2.5-total	Paving, wet/chemical suppression	90	% CONTROL
IN-0173	MIDWEST FERTILIZER CORPORATION	6/4/2014	Paved Roads and Parking Lots	PM2.5-total	Paving, wet/chemical suppression	90	% CONTROL
IN-0179	OHIO VALLEY RESOURCES, LLC	9/25/2013	Paved Roads and Parking Lots	PM2.5-total	Paving, wet/chemical suppression	90	% CONTROL
IN-0180	MIDWEST FERTILIZER CORPORATION	6/4/2014	Paved Roads and Parking Lots	PM2.5-total	Paving, wet/chemical suppression	90	% CONTROL
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	Haul Roads	PM2.5-total	Paving, wet/chemical suppression, speed re	0.09	T/YR
MD-0046	KEYS ENERGY CENTER	10/31/2014	Haul Roads-Paved and Unpaved	PM-filterable	Water Flushing and Sweeping		
MO-0089	OWENS CORNING INSULATION SYSTEMS, LLC	5/12/2016	Haul Roads	PM-filterable	Vacuum sweeping/washing		
IN-0166	INDIANA GASIFICATION, LLC	6/27/2012	Haul Roads-Paved	PM-filterable	Paving, wet/chemical suppression	90	% CONTROL
IN-0173	MIDWEST FERTILIZER CORPORATION	6/4/2014	Paved Roads and Parking Lots	PM-filterable	Paving, wet/chemical suppression	90	% CONTROL
IN-0179	OHIO VALLEY RESOURCES, LLC	9/25/2013	Paved Roads and Parking Lots	PM-filterable	Paving, wet/chemical suppression	90	% CONTROL
IN-0180	MIDWEST FERTILIZER CORPORATION	6/4/2014	Paved Roads and Parking Lots	PM-filterable	Paving, wet/chemical suppression	90	% CONTROL
SC-0181	RESOLUTE FP US INC CATAWBA LUMBER MILL	11/3/2017	Haul Roads	PM-filterable	Good Housekeeping Practices	0.13	LB/VMT
KY-0100	J.K. SMITH GENERATING STATION	4/9/2010	Haul Roads	PM-fugitive	Paving, wet/chemical suppression		
MD-0041	CPV ST. CHARLES	4/23/2014	Haul Roads	PM-fugitive			
OK-0156	NORTHSTAR AGRI IND ENID	7/31/2013	Haul Roads	PM-fugitive	Paving		
MD-0042	WILDCAT POINT GENERATION FACILITY	4/8/2014	Haul Roads-Paved and Unpaved	PM-fugitive	Reasonable precautions		
OH-0332	MIDDLETOWN COKE COMPANY	2/9/2010	Paved Roads and Parking Lots	PM-fugitive	Watering	1.08	T/YR
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	Haul Roads	PM-fugitive	Paving, wet/chemical suppression, speed re	1.88	T/YR
OH-0368	PALLAS NITROGEN LLC	4/19/2017	Haul Roads-Paved	PM-fugitive	Paving	13.2	T/YR
OH-0345	DP&L J.M. STUART GENERATING STATION	8/16/2011	Haul Roads-Paved	PM-fugitive	Watering, speed restrictions	110.96	T/YR
IA-0105	IOWA FERTILIZER COMPANY	10/26/2012	Haul Roads	PM-total	Paving, wet/chemical suppression		
IA-0106	CF INDUSTRIES NITROGEN, LLC - PORT NEAL NITROGEN COMPLEX	7/12/2013	Haul Roads	PM-total	Paving, wet/chemical suppression		
IN-0263	MIDWEST FERTILIZER COMPANY LLC	3/23/2017	Paved Roads and Parking Lots	PM-total	Paving, wet/chemical suppression		
IL-0129	CPV THREE RIVERS ENERGY CENTER	7/30/2018	Haul Roads	PM-total	Paving	10	% OPACITY
IL-0130	JACKSON ENERGY CENTER	12/31/2018	Haul Roads	PM-total		10	% OPACITY

Table D-9 Addendum: RBLC Results for Haul Road Fugitives Updated Data: February 2021 to October 2021

RBLC ID	Facility Name	Permit Date	Process Name	POLLUTANT	Control Method	Emission Limit	Limit Units
IL-0130	JACKSON ENERGY CENTER	12/31/2018	Roadways	Particulate matter, total (TPM)		10	PERCENT OPACITY
KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	EP 14-01 - Paved Roadways	Particulate matter, fugitive	surface improvements/sweeping & watering	C	
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	Paved Roads & amp; Satellite Coil Yard (EPs 04-01 & amp; 04-04)	Particulate matter, filterable (FPM)	Sweeping & Watering	C	
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	Paved Roads & amp; Satellite Coil Yard (EPs 04-01 & amp; 04-04)	Particulate matter, total < 10 µ (TPM10)	Sweeping & Watering	C	
KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	Paved Roads & amp; Satellite Coil Yard (EPs 04-01 & amp; 04-04)	Particulate matter, total < 2.5 µ (TPM2.5)	Sweeping & Watering	C	
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	Facility Roadways (F001)	Particulate matter, fugitive	Paving/Sweeping & Watering	1.88	T/YR
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	Facility Roadways (F001)	Particulate matter, total < 10 µ (TPM10)	Paving/Sweeping & Watering	0.38	T/YR
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	Facility Roadways (F001)	Particulate matter, total < 2.5 µ (TPM2.5)	Paving/Sweeping & Watering	0.09	T/YR
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	12/21/2018	Facility Roadways (F001)	Visible Emissions (VE)	Paving/Sweeping & Watering	C	
OH-0379	PETMIN USA INCORPORATED	02/06/2019	Plant Roadways (F001)	Particulate matter, total < 10 µ (TPM10)	Watering	0.21	T/YR
OH-0379	PETMIN USA INCORPORATED	02/06/2019	Plant Roadways (F001)	Particulate matter, total < 2.5 µ (TPM2.5)	Watering	0.02	T/YR
OH-0379	PETMIN USA INCORPORATED	02/06/2019	Plant Roadways (F001)	Visible Emissions (VE)	Watering	C	

APPENDIX E – ECONOMIC TABLES

Item	Value	Basis
Direct Costs		
Purchased Equipment Cost		
Equipment cost + auxiliaries [A]	\$350,000	A = SCR system cost
Instrumentation	\$35,000	0.10 x (A)
Sales taxes	\$0	Pollution Control Equipment Exempt
Freight	\$17,500	0.05 x (A)
Total Purchased Equipment Cost (PEC) [B]	\$402,500	B = 1.15 x (A)
Direct Installation Costs		
Total Direct Installation Cost	\$120,750	0.30 x B
Site Preparation (SP)	\$0	As required
Buildings (Bldg.)	\$0	As required
Total Direct Cost (DC)	\$523,250	1.30B + SP + Bldg.
Indirect Costs (Installation)		
Engineering	\$40,250	0.10 x B
Construction and field expenses	\$20,125	0.05 x B
Contractor fees	\$40,250	0.10 x B
Start-up	\$8,050	0.02 x B
Performance test	\$7,500	Stack Test Vendor Quote
Contingencies	\$20,125	0.05 x B
Other	\$0	As required
Total Indirect Cost (IC)	\$136,300	0.32B + Other + Perf. Test
Total Capital Investment (TCI) = DC + IC	\$659,550	1.62B + Performance test + Other + SP + Bldg

 Table E-1a

 SCR System Capital Cost Analysis - Auxiliary Boiler

	ual Cost Analysis -	
Item	Value	Basis
Direct Annual Costs (DC)		
Electricity		
Press. Drop (in W.C.)	3.0	Pressure drop - catalyst bed
Power output of Gas Heater (kW)	23,429	ISO Rating
Power Loss Due to Pressure Drop (%)	0.30%	0.1% for every 1" pressure drop
Power Loss Due to Pressure Drop (kW)	70.29	
Unit cost (\$/kWh)	\$0.045	Estimated market value
Cost of Power Loss (\$/yr)	\$27,707	Based on operation 8760 hours/yr
Operating Labor		
Catalyst labor req.	\$16,425	1/2 hr/shift @ \$30/hr
Ammonia delivery requirement (SCR)	\$720	24 hr/yr (3 deliveries per year) @ \$30/hr
Ammonia recordkeeping and reporting (SCR)	\$1,200	40 hours per year @ \$30/hr
Catalyst cleaning	\$1,200	40 hours per year @ \$30/hr
Supervisor	\$2,464	15% Operating labor
Total Cost (\$/yr)	\$22,009	
Maintenance		
Catalyst replacement labor	\$3,200	107 hr/yr (8 workers, 40 hr, every 3 years, \$30/hr)
Catalyst system maintenance labor req.	\$16,425	1/2 hr/shift @ \$30/hr
Ammonia system maintenance labor req.	\$10,950	1 hr/day @ \$30/hr
Material	\$27,375	100% of maintenance labor
Total Cost (\$/yr)	\$57,950	
Ammonia		
Requirement (tons/yr)	33.7	29% aqueous ammonia @ \$375/ton
Unit Cost (\$/ton)	\$375	Estimate
Total Cost (\$/yr)	\$12,654	
Process Air		
Requirement (scf/lb NH ₃)	350	
Requirement (mscf/yr)	103,463	
Unit Cost (\$/mscf)	\$0.20	\$0.20 per 1000 scf
Total Cost (\$/yr)	\$20,693	
Catalyst		
Catalyst Cost (\$)	\$35,000	Catalyst modules
Catalyst Disposal Cost (\$)	\$38	Disposal of catalyst modules
Sales Tax (\$)	\$0	Pollution Control Equipment Exempt
Catalyst Life (yrs)	3	n
Interest Rate (%)	7.0%	i
CRF	0.381	Amortization of catalyst for 3 yrs
Total Cost (\$/yr)	\$13,351	(Volume) * (Unit Cost) * (CRF)
Indirect Annual Costs (IC)	+ - /	
Overhead	\$0	OAQPS SCR Assumption
Administrative charges	\$0	OAQPS SCR Assumption
Annual Contingency	\$0 \$0	OAQPS SCR Assumption
Property taxes	\$0 \$0	OAQPS SCR Assumption
Insurance	\$0 \$0	OAQPS SCR Assumption
Capital Recovery	\$62,257	CRF x TCI (20 yr life, 7.0% interest)
Total Indirect Costs (\$/yr)		
	\$62,257 \$216,620	
Total Annualized Costs (TAC) (\$)	\$216,620	00% reduction
Total NOx Controlled (ton/yr)	14.2	90% reduction
	¢45.004	
COST EFFECTIVENESS (\$/ton)	\$15,264	

Table E-1b SCR System Annual Cost Analysis - Auxiliary Boiler

Item	Value	Basis
Direct Costs		
Purchased Equipment Cost		
Equipment cost + auxiliaries [A]	\$115,000	A
Instrumentation	\$11,500	0.10 x A
Sales taxes	\$0	Pollution Control Equipment Exempt
Freight	\$5,750	0.05 x A
Total Purchased Equipment Cost (PEC) [B]	\$132,250	B = 1.15 x A
Direct Installation Costs		
Electrical	\$5,290	0.04 x B
Insulation for ductwork	\$1,323	0.01 x B
Painting	\$1,323	0.01 x B
Total Direct Installation Cost	\$7,935	0.06 x B
Total Direct Cost (DC)	\$140,185	1.06B
Indirect Costs (Installation)		
Start-up	\$2,645	0.02 x B
Performance test	\$1,323	0.01 x B
Contingencies	\$6,613	0.05 x B
Other	\$0	As required
Total Indirect Cost (IC)	\$10,580	0.08B + Other
Total Capital Investment (TCI) = DC + IC	\$150,765	1.14B + Other

Table E-2aUltra-Low NOx Burner System Capital Cost Analysis - Auxiliary Boiler

ltem	Value	Basis
Direct Annual Costs (DC)		
Operating Labor		
Operating Labor	\$19,163	1/2 hr/shift @ \$35/hr, 375 shifts/year
Supervisor	\$2,874	15% Operating labor
Total Cost (\$/yr)	\$22,037	
Maintenance		
Auxiliary boiler burner maintenance labor req.	\$3,210	107 hr/y (8 worker, 40 hr, every 3 years), \$30/hr
Material	\$3,210	100% of maintenance labor
Total Cost (\$/yr)	\$6,420	
Indirect Annual Costs (IC)		
Overhead	\$13,222.13	60% labor
Administrative charges	\$3,015	2% TCI
Annual Contingency	\$7,009	5% of DC
Property taxes	\$1,508	1% TCI
Insurance	\$1,508	1% TCI
Capital Recovery	\$12,150	CRF x TCI (30 yr life, 7.0% interest)
Total Indirect Costs (\$/yr)	\$38,412	
Total Annualized Costs (TAC) (\$)	\$66,868	
Total Pollutant Controlled (ton/yr) (Natural Gas)	11.3	30 ppm controlled to 9 ppm
COST EFFECTIVENESS (\$/ton)	\$5,895	

 Table E-2b

 Ultra-Low Nox Burner System Annual Cost Analysis - Auxiliary Boiler

Oxidation Catalyst Capital Cost Analysis - Auxiliary Boiler					
Item	Value	Basis			
Direct Costs					
Purchased Equipment Cost					
Equipment cost + auxiliaries [A]	\$75,000	A			
Instrumentation	\$7,500	0.10 x (A)			
Sales taxes	\$0	Pollution Control Equipment Exempt			
Freight	\$3,750	0.05 x (A)			
Total Purchased Equipment Cost (PEC) [B]	\$86,250	B = 1.15 x (A)			
Direct Installation Costs					
Foundations and supports	\$6,900.00	0.08 x B			
Handling and erection	\$12,075	0.14 x B			
Electrical	\$3,450	0.04 x B			
Piping	\$1,725	0.02 x B			
Insulation for ductwork	\$863	0.01 x B			
Painting	\$863	0.01 x B			
Total Direct Installation Cost	\$25,875	0.30 x B			
Site Preparation (SP)	\$0	As required			
Buildings (Bldg.)	\$0	As required (5-18% PEC)			
Total Direct Cost (DC)	\$112,125	1.3B + SP + Bldg.			
Indirect Costs (Installation)					
Engineering	\$8,625	0.10 x B			
Construction and field expenses	\$4,313	0.05 x B			
Contractor fees	\$8,625	0.10 x B			
Start-up	\$1,725	0.02 x B			
Performance test	\$7,500	Stack Test Vendor Quote			
Contingencies	\$4,313	0.05 x B			
Other	\$0	As required			
Total Indirect Cost (IC)	\$35,100	0.32B + Other + Perf. Test			
Total Capital Investment (TCI) = DC + IC	\$147,225	1.62B + Performance test + Other + SP + Bldg			

Table E-3a ridation Catalyst Canital Cost Analysis - Auviliany Boile

Table E-3b
Oxidation Catalyst Annual Cost Analysis - Auxiliary Boiler

Item	Value	Basis
Direct Annual Costs (DC)		
Steam		
Press. Drop (in W.C.)	3.0	Pressure drop - catalyst bed
Power output of Gas Heater (kW)	23,429	ISO Rating
Output Loss Due to Pressure Drop (%)	0.30%	0.1% for every 1" pressure drop
Output Loss Due to Pressure Drop (kW)	70.29	
Unit cost (\$/kWh)	\$0.05	Current Purchase Price
Cost of Heat Rate Loss (\$/yr)	\$27,707	Based on operation 8,760 hours/yr
Operating Labor		Assumed \$30/hr
Catalyst labor req.	\$16,425	216 hr/yr (1/2 hr/shift. 1095 shifts/yr)
Supervisor	\$2,464	15% Operating labor
Total Cost (\$/yr)	\$18,889	
Maintenance		
Catalyst replacement labor	\$3,200	107 hr/yr(8 worker, 40 hr, every 3 years)
Material	\$3,200	100% of maintenance labor
Total Cost (\$/yr)	\$6,400	
Catalyst		
Catalyst Cost (\$)	\$35,000	Catalyst modules
Catalyst Disposal Cost (\$)	\$1,500	Disposal of catalyst modules
Sales Tax (\$)	\$0	Assume exempt from taxes
Catalyst Life (yrs)	3	n
Interest Rate (%)	7%	I
CRF	0.381	Amortization of catalyst over 3 yrs
Total Cost (\$/yr)	\$13,908	(Volume)(Unit Cost)(CRF)
Indirect Annual Costs (IC)		
Overhead	\$0	OAQPS SCR Assumption
Administrative charges	\$0	OAQPS SCR Assumption
Annual Contingency	\$0	OAQPS SCR Assumption
Property taxes	\$0	OAQPS SCR Assumption
Insurance	\$0	OAQPS SCR Assumption
Capital Recovery	\$13,897	CRF x TCI (20 yr life, 7.0% interest)
Total Indirect Costs (\$/yr)	\$13,897	
Total Annualized Costs (TAC) (\$)	\$80,801	
Total CO Controlled (ton/yr)	14.6	90% removal
Total VOC Controlled (ton/yr)	1.2	50% removal
COST EFFECTIVENESS (\$/ton)	\$5,125	

ltem	Value	Basis
Direct Costs		
Purchased Equipment Cost		
Equipment cost + auxiliaries [A]	\$20,000	А
Instrumentation	\$2,000	0.10 x A
Sales taxes	\$0	Pollution Control Equipment Exempt
Freight	\$1,000	0.05 x A
Total Purchased Equipment Cost (PEC) [B]	\$23,000	B = 1.15 x A
Direct Installation Costs		
Electrical	\$920	0.04 x B
Insulation for ductwork	\$230	0.01 x B
Painting	\$230	0.01 x B
Total Direct Installation Cost	\$1,380	0.06 x B
Total Direct Cost (DC)	\$24,380	1.06 x B
Indirect Costs (Installation)		
Start-up	\$460	0.02 x B
Performance test	\$0	Assumed not required
Contingencies	\$1,150	0.05 x B
Other	\$0	As required
Total Indirect Cost (IC)	\$1,610	0.07B + Other
Total Capital Investment (TCI) = DC + IC	\$25,990	1.13B + Other

	Table 1a	
Ultra-Low NOx Burner System	n Capital Cost Anal	ysis - Natural Gas Heater
ltem	Value	Basis

Item	Value	Basis
Direct Annual Costs (DC)		
Operating Labor		
Operating Labor	\$6,388	1/2 hr/shift @ \$35/hr, 365 shifts/year
Supervisor	\$958	15% Operating labor
Total Cost (\$/yr)	\$7,346	
Maintenance		
Heater burner maintenance labor req.	\$3,210	107 hr/y (8 worker, 40 hr, every 3 years), \$30/hr
Material	\$3,210	100% of maintenance labor
Total Cost (\$/yr)	\$6,420	
Indirect Annual Costs (IC)		
Overhead	\$4,407.38	60% labor
Administrative charges	\$520	2% TCI
Annual Contingency	\$1,219	5% of DC
Property taxes	\$260	1% TCI
Insurance	\$260	1% TCI
Capital Recovery	\$2,094	CRF x TCI (30 yr life, 7.0% interest)
Total Indirect Costs (\$/yr)	\$8,760	
Total Annualized Costs (TAC) (\$)	\$22,526	
Total Pollutant Controlled (ton/yr) (Natural Gas)	1.7	80% Reduction
COST EFFECTIVENESS (\$/ton)	\$13,187	

Table 1b Ultra-Low NOx Burner System Annual Cost Analysis - Natural Gas Heater

Item	Value	Basis
Direct Costs		
Purchased Equipment Cost		
Equipment cost + auxiliaries [A]	\$70,000	A (SCR system cost)
Instrumentation	\$7,000	0.10 x (A)
Sales taxes	\$0	Pollution Control Equipment Exempt
Freight	\$3,500	0.05 x (A)
Total Purchased Equipment Cost (PEC) [B]	\$80,500	B = 1.15 x (A)
Direct Installation Costs		
Total Direct Installation Cost	\$24,150	0.30 x B
Site Preparation (SP)	\$0	As required
Buildings (Bldg.)	\$0	As required
Total Direct Cost (DC)	\$104,650	1.30B + SP + Bldg.
Indirect Costs (Installation)		
Engineering	\$8,050	0.10 x B
Construction and field expenses	\$4,025	0.05 x B
Contractor fees	\$8,050	0.10 x B
Start-up	\$1,610	0.02 x B
Performance test	\$7,500	Stack Test Vendor Quote
Contingencies	\$4,025	0.05 x B
Other	\$0	As required
Total Indirect Cost (IC)	\$33,260	0.32B + Other + Perf. Test
Total Capital Investment (TCI) = DC + IC	\$137.910	1.62B + Performance test + Other + SP + Bld

Table	e E-3a
SCR System Capital Co	st Analysis - Gas Heater

ltem	ital Cost Analysis - (Value	Basis
Direct Annual Costs (DC)	Value	Dasis
Electricity		
Press. Drop (in W.C.)	3.0	Pressure drop - catalyst bed
Power output of Gas Heater (kW)	2,343	ISO Rating
Power Loss Due to Pressure Drop (%)	0.30%	0.1% for every 1" pressure drop
		0.1% for every 1 pressure drop
Power Loss Due to Pressure Drop (kW)	7.03	
Unit cost (\$/kWh)	\$0.045	Estimated market value
Cost of Power Loss (\$/yr)	\$2,771	Based on operation 8,760 hours/yr
Operating Labor	¢40,405	1/2 h-/
Catalyst labor req.	\$16,425	1/2 hr/shift @ \$30/hr
Ammonia delivery requirement (SCR)	\$720	24 hr/yr (3 deliveries per year) @ \$30/hr
Ammonia recordkeeping and reporting (SCR)	\$1,200	40 hours per year @ \$30/hr
Catalyst cleaning	\$1,200	40 hours per year @ \$30/hr
Supervisor	\$2,464	15% Operating labor
Total Cost (\$/yr)	\$22,009	
Maintenance	• • • • •	
Catalyst replacement labor	\$3,200	107 hr/yr (8 workers, 40 hr, every 3 years)
Catalyst system maintenance labor req.	\$16,425	1/2 hr/shift @ \$30/hr
Ammonia system maintenance labor req.	\$10,950	1 hr/day @ \$30/hr
Material	\$27,375	100% of maintenance labor
Total Cost (\$/yr)	\$57,950	
Ammonia		
Requirement (tons/yr)	4.6	29% aqueous ammonia @ \$375/ton
Unit Cost (\$/ton)	\$375	Estimate
Total Cost (\$/yr)	\$1,722	
Process Air		
Requirement (scf/lb NH ₃)	350	
Requirement (mscf/yr)	14,082	
Unit Cost (\$/mscf)	\$0.20	\$0.20 per 1000 scf
Total Cost (\$/yr)	\$2,816	
Catalyst		
Catalyst Cost (\$)	\$8,500	Catalyst modules
Catalyst Disposal Cost (\$)	\$38	Disposal of catalyst modules
Sales Tax (\$)	\$0	Pollution Control Equipment Exempt
Catalyst Life (yrs)	3	n
Interest Rate (%)	7.0%	i
CRF	0.381	Amortization of catalyst for 3 yrs
Total Cost (\$/yr)	\$3,253	(Volume) * (Unit Cost) * (CRF)
Indirect Annual Costs (IC)		
Overhead	\$0	OAQPS SCR Assumption
Administrative charges	\$0	OAQPS SCR Assumption
Annual Contingency	\$0	OAQPS SCR Assumption
Property taxes	\$0	OAQPS SCR Assumption
Insurance	\$0	OAQPS SCR Assumption
Capital Recovery	\$13,018	CRF x TCI (20 yr life, 7.0% interest)
Total Indirect Costs (\$/yr)	\$13,018	
Total Annualized Costs (TAC) (\$)	\$103.539	
Total NOx Controlled (ton/yr)	1.9	90% reduction
COST EFFECTIVENESS (\$/ton)	\$53,604	

Table E-3b SCR System Capital Cost Analysis - Gas Heater

CO Catalyst Capital Cost Analysis - Gas Heater		
Item	Value	Basis
Direct Costs		
Purchased Equipment Cost		
Equipment cost + auxiliaries [A]	\$14,000	А
Instrumentation	\$1,400	0.10 x (A)
Sales taxes	\$0	Pollution Control Equipment Exempt
Freight	\$700	0.05 x (A)
Total Purchased Equipment Cost (PEC) [B]	\$16,100	B = 1.15 x (A)
Direct Installation Costs		
Foundations and supports	\$1,288.00	0.08 x B
Handling and erection	\$2,254	0.14 x B
Electrical	\$644	0.04 x B
Piping	\$322	0.02 x B
Insulation for ductwork	\$161	0.01 x B
Painting	\$161	0.01 x B
Total Direct Installation Cost	\$4,830	0.30 x B
Site Preparation (SP)	\$0	As required
Buildings (Bldg.)	\$0	As required (5-18% PEC)
Total Direct Cost (DC)	\$20,930	1.3B + SP + Bldg.
Indirect Costs (Installation)		
Engineering	\$1,610	0.10 x B
Engineering Construction and field expenses	\$805	0.05 x B
Contractor fees	\$805 \$1,610	0.05 X B 0.10 X B
Start-up	\$322	0.10 x B 0.02 x B
Performance test		0.02 X B Stack Test Vendor Quote
	\$7,500 \$805	0.05 x B
Contingencies Other	\$005 \$0	
Oulei	Ф О	As required
Total Indirect Cost (IC)	\$12,652	0.32B + Other + Perf. Test
Total Capital Investment (TCI) = DC + IC	\$33,582	1.62B + Performance test + Other + SP + Bldg.

Table E-4a Catalvst Capital Cost Analvsis - Gas Heate

	nnual Cost Analysis -	
Item	Value	Basis
Direct Annual Costs (DC)		
Steam		
Press. Drop (in W.C.)	3.0	Pressure drop - catalyst bed
Power output of Gas Heater (kW)	2,343	ISO Rating
Output Loss Due to Pressure Drop (%)	0.30%	0.1% for every 1" pressure drop
Output Loss Due to Pressure Drop (kW)	7.03	
Unit cost (\$/kWh)	\$0.05	Current Purchase Price
Cost of Heat Rate Loss (\$/yr)	\$2,771	Based on operation 8,760 hours/yr
Operating Labor		Accuracy \$20/br
Operating Labor	¢16 405	Assumed \$30/hr
Catalyst labor req.	\$16,425	216 hr/yr (1/2 hr/shift. 431 shifts/yr)
Supervisor	\$2,464	15% Operating labor
Total Cost (\$/yr)	\$18,889	
Maintenance		
Catalyst replacement labor	\$3,200	107 hr/yr(8 worker, 40 hr, every 3 years)
Material	\$3,200	100% of maintenance labor
Total Cost (\$/yr)	\$6,400	
Catalyst		
Catalyst Cost (\$)	\$8,000	Catalyst modules
Catalyst Disposal Cost (\$)	\$1,500	Disposal of catalyst modules
Sales Tax (\$)	\$0	Assume exempt from taxes
Catalyst Life (yrs)	3	n
Interest Rate (%)	7%	
CRF	0.381	Amortization of catalyst over 3 yrs
Total Cost (\$/yr)	\$3,620	(Volume)(Unit Cost)(CRF)
Indirect Annual Costs (IC)	<u></u>	
Overhead	\$0 \$0	OAQPS SCR Assumption
Administrative charges	\$0 \$0	OAQPS SCR Assumption
Annual Contingency	\$0 \$0	OAQPS SCR Assumption
Property taxes	\$0	OAQPS SCR Assumption
Insurance	\$0	OAQPS SCR Assumption
Capital Recovery	\$3,170	CRF x TCI (20 yr life, 7.0% interest)
Total Indirect Costs (\$/yr)	\$3,170	
Total Annualized Costs (TAC) (\$)	\$34,849	
Total CO Controlled (ton/yr)	3.2	90% removal
Total VOC Controlled (ton/yr)	0.07	
COST EFFECTIVENESS (\$/ton)	\$10,550	

Table E-4b CO Catalyst Annual Cost Analysis - Gas Heater

Oxidation Catalyst Capital Cost Analysis - Emergency Fire Pump		
Item	Value	Basis
Direct Costs		
Purchased Equipment Cost		
Equipment cost + auxiliaries [A]	\$11,895	A
Instrumentation	\$1,190	0.10 x A
Sales taxes	\$0	Pollution Control Equipment Exempt
Freight	\$595	0.05 x A
Fotal Purchased Equipment Cost (PEC) [B]	\$13,679	B = 1.15 x A
Direct Installation Costs		
Foundations and supports	\$1,094	0.08 x B
Handling and erection	\$1,915	0.14 x B
Electrical	\$547	0.04 x B
Piping	\$274	0.02 x B
Insulation for ductwork	\$137	0.01 x B
Painting	\$137	0.01 x B
Total Direct Installation Cost	\$4,104	0.30 x B
Site Preparation (SP)	\$0	As required
Buildings (Bldg.)	\$0	As required (5-18% PEC)
Fotal Direct Cost (DC)	\$17,783	1.3B + SP + Bldg.
ndirect Costs (Installation)		
Engineering	\$1,368	0.10 x B
Construction and field expenses	\$684	0.05 x B
Contractor fees	\$1,368	0.10 x B
Start-up	\$274	0.02 x B
Performance test	\$1,500	Stack Test Vendor Quote
Contingencies	\$684	0.05 x B
Other	\$0	As required
Total Indirect Cost (IC)	\$5,877	0.32B + Other + Performance Test
Fotal Capital Investment (TCI) = DC + IC	\$23,660	1.62B + Performance Test + SP + Bldg

Table 1 A ridation Catalyst Capital Cost Analysis - Emergency Fire Pum

Value	Basis
3.0	Pressure drop - catalyst bed
450	ISO Rating
0.30%	0.1% for every 1" pressure drop
1.35	
\$0.059	Current Purchase Price
\$40	Based on operation of 500 hours/yr
•	Assumed \$30/hr
	1/2 hr per shift
	100% of maintenance labor
	15% Operating labor
\$2,016	
\$827	Catalyst modules
	Disposal of catalyst modules
	107 hr/yr (8 worker, 40 hr, every 3 years)
	Assume exempt from taxes
	n
	I.
	Amortization of catalyst over 3 yrs
	(Material + Labor Costs) * CRF
. ,	
	OAQPS SCR Assumption
	CRF x TCI (20 yr life, 7.0% interest)
\$2,233	
\$5,838	
0.32	80% removal
0.09	50% removal
\$14,326	
	3.0 450 0.30% 1.35 \$0.059 \$40 \$938 \$938 \$938 \$141 \$2,016 \$827 \$38 \$141 \$2,016 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$1,549 \$1,549 \$1,549 \$1,549 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$1,549\$1,549\$1

Table 2

ltem	Value	Basis
Direct Costs		
Purchased Equipment Cost		
Equipment cost + auxiliaries [A]	\$42,601	A
Instrumentation	\$4,260	0.10 x (A)
Sales taxes	\$0	Pollution Control Equipment Exempt
Freight	\$2,130	0.05 x (A)
Total Purchased Equipment Cost (PEC) [B]	\$48,991	B = 1.15 x (A)
Direct Installation Costs		
Total Direct Installation Cost	\$14,697	0.30 x B
Site Preparation (SP)	\$0	As required
Buildings (Bldg.)	\$0	As required
Total Direct Cost (DC)	\$63,688	B + SP + Bldg. + Total Direct Install. Cos
Indirect Costs (Installation)		
Engineering	\$4,899	0.10 x B
Construction and field expenses	\$2,450	0.05 x B
Contractor fees	\$4,899	0.10 x B
Start-up	\$980	0.02 x B
Performance test	\$1,500	Stack Test Vendor Quote
Contingencies	\$2,450	0.05 x B
Other	\$0	As required
Total Indirect Cost (IC)	\$17,177	0.32B + Other + Performance Test
Total Capital Investment (TCI) = DC + IC	\$80,866	1.32B + Perf. Test + SP + Bldg + DC

 Table 3

 SCR System Capital Cost Analysis - Emergency Generator

Table 4 SCR System Annual Cost Analysis - Emergency Generator

Item	Value	Basis
Direct Annual Costs (DC)		
Electricity		
Press. Drop (in W.C.)	3.0	Pressure drop - catalyst bed
Power output of Black Start (kW)	450	ISO Rating
Power Loss Due to Pressure Drop (%)	0.30%	0.1% for every 1" pressure drop
Power Loss Due to Pressure Drop (kW)	1.35	
Unit cost (\$/kWh)	\$0.059	Estimated market value
Cost of Power Loss (\$/yr)	\$40	Based on operation of 500 hours/yr
Operating Labor		
Catalyst labor req.	\$938	1/2 hr/shift @ \$30/hr
Ammonia delivery requirement (SCR)	\$720	24 hr/yr (3 deliveries per year) @ \$30/hr
Ammonia recordkeeping and reporting (SCR)	\$1,200	10 hours per year @ \$30/hr
Catalyst cleaning	\$1,200	10 hours per year @ \$30/hr
Supervisor	\$141	15% Operating labor
Total Cost (\$/yr)	\$4,198	1 0
Maintenance	. ,	
Catalyst replacement labor	\$3,210	107 hr/yr (8 workers, 40 hr, every 3 years)
Catalyst system maintenance labor req.	\$938	1/2 hr/shift @ \$30/hr
Ammonia system maintenance labor req.	\$10,950	1 hr/day @ \$30/hr
Material	\$11,888	100% of maintenance labor
Total Cost (\$/yr)	\$26,985	
Ammonia	• -,	
Requirement (tons/yr)	7.9	29% aqueous ammonia @ \$375/ton
Unit Cost (\$/ton)	\$375	Estimate
Total Cost (\$/yr)	\$2,975	
Process Air		
Requirement (scf/lb NH ₃)	350	
Requirement (mscf/yr)	24,323	
Unit Cost (\$/mscf)	\$0.20	\$0.20 per 1000 scf
Total Cost (\$/yr)	\$4,865	
Catalyst		
Catalyst Cost (\$)	\$5,173	Catalyst modules
Catalyst Disposal Cost (\$)	\$38	Disposal of catalyst modules
Sales Tax (\$)	\$0	Pollution Control Equipment Exempt
Catalyst Life (yrs)	3	n
Interest Rate (%)	7.0%	i
CRF	0.381	Amortization of catalyst for 3 yrs
Total Cost (\$/yr)	\$1,986	(Volume) * (Unit Cost) * (CRF)
Indirect Annual Costs (IC)	. , -	
Overhead	\$0	OAQPS SCR Assumption
Administrative charges	\$0	OAQPS SCR Assumption
Annual Contingency	\$0	OAQPS SCR Assumption
Property taxes	\$0	OAQPS SCR Assumption
Insurance	\$0	OAQPS SCR Assumption
Capital Recovery	\$7,633	CRF x TCI (20 yr life, 7.0% interest)
Total Indirect Costs (\$/yr)	\$7,633	
Total Annualized Costs (TAC) (\$)	\$48,681	
Total Pollutant Controlled (ton/yr) (Natural gas)	3.3	85% reduction (Based on 500 hrs/yr)
	0.0	ce / reduction (Dased on out ins/yr)
COST EFFECTIVENESS (\$/ton)	\$14,592	

State of Wisconsin Department of Natural Resources

Information Request

FID/Docket Number: 816127840

Date of Request: March 26, 2019

Requested From: WDNR

Response Due: April 10, 2019

Contact Requesting Information: Megan Corrado, Air Management Engineer

If you feel your responses are trade secret or privileged, please indicate this on your response.

Request No.	
017 (3.)	
	For the diesel generator, please provide the cost difference between a Tier 2
	and Tior 4 anging as well as the appropriated dollar parton of controlled

and Tier 4 engine as well as the associated dollar per ton of controlled emissions.

Response:

017 (3.)

For the diesel generator, the cost difference between a Tier 2 and a Tier 4 engine is summarized below and shown in detail in Attachment 2.

Parameter	Tier 2 Engine	Tier 4 Engine	Difference
Initial Capital Cost	\$500,000	\$950,000	\$450,000
Total Capital Investment	\$635,375	\$1,207,213	\$571,838
Total Annualized Costs	\$105,368	\$200,198	\$94,831
Emissions Sum of NOx, PM, and VOC)	4.3 tons	3.1 tons	1.3 ton decrease
Cost per Ton for change from Tier 2 to Tier 4			\$74,993

Due to the limited usage of the emergency generator and the cost of the Tier 4 engine, it is economically infeasible to install a Tier 4 engine.

Response by:	Minda Nelson, P.E.	List Sources of Information:
Title:	Associate Environmental Engineer	
Department:	Burns & McDonnell	
Telephone:	(816) 822-4208	

WDNR IR 015 – 019 (F D: 816127840)

Item	Value	Basis
Direct Costs		
Purchased Equipment Cost		
Equipment cost + auxiliaries [A]	\$500,000	A
Instrumentation	\$50,000	0.10 x A
Sales taxes	\$0	Pollution Control Equipment Exemp
Freight	\$25,000	0.05 x A
Total Purchased Equipment Cost (PEC) [B]	\$575,000	B = 1.15 x A
Direct Installation Costs		
Not applicable		
Total Direct Cost (DC)	\$575,000	В
Indirect Costs (Installation)		
Start-up	\$11,500	0.02 x B
Performance test	\$0	Assumed not required
Contingencies	\$28,750	0.05 x B
Other	\$0	As required
Construction Period	0.5	Years (n)
Interest Rate	7.0	Percent (i)
Interest during construction (Int.)	\$20,125	DC x i x n
Total Indirect Cost (IC)	\$60,375	0.07B + Other + Int
Total Capital Investment (TCI) = DC + IC	\$635,375	1.07B + Other + Int.

Table 2a				
Tier 2	Generator Capital Co	st Analysis		

Tier 4 Generator Capital Cost Analysis ltem Value Basis Direct Costs Purchased Equipment Cost Equipment cost + auxiliaries [A] \$950,000 А 0.10 x A Instrumentation \$95,000 Sales taxes \$0 Pollution Control Equipment Exempt Freight \$47,500 0.05 x A Total Purchased Equipment Cost (PEC) [B] B = 1.15 x A \$1,092,500 **Direct Installation Costs** Not applicable \$1,092,500 Total Direct Cost (DC) В Indirect Costs (Installation) \$21,850 0.02 x B Start-up Performance test Assumed not required \$0 Contingencies \$54,625 0.05 x B As required Other \$0 **Construction Period** 0.5 Years (n) Interest Rate 7.0 Percent (i) Interest during construction (Int.) \$38,238 DCxixn \$114,713 Total Indirect Cost (IC) 0.07B + Other + Int Total Capital Investment (TCI) = DC + IC \$1,207,213 1.07B + Other + Int.

Tier 2 Generator	able 2b Annual Cost A	nalysis
Item	Value	Basis
Direct Annual Costs (DC)		
Operating Labor		
Not applicable		
Maintenance		
Not applicable		
Indirect Annual Costs (IC)		
Overhead	\$0	60% labor + materials
Administrative charges	\$12,708	2% TCI
Annual Contingency	\$28,750	5% of DC
Property taxes	\$6,354	1% TCI
Insurance	\$6,354	1% TCI
Capital Recovery	\$51,203	CRF x TCI (30 yr life, 7.0% interest)
Total Indirect Costs (\$/yr)	\$105,368	(), ,
Total Annualized Costs (TAC) (\$)	\$105,368	
	•	
Tier 4 Generator		nalvsis
Item	Value	Basis
Direct Annual Costs (DC)		
Operating Labor		
Operating Labor		
Operating Labor Not applicable		
Operating Labor Not applicable Maintenance		
Operating Labor Not applicable Maintenance		
Operating Labor Not applicable Maintenance Not applicable		
Operating Labor Not applicable Maintenance Not applicable	\$0	60% labor + materials
Operating Labor Not applicable Maintenance Not applicable Indirect Annual Costs (IC) Overhead		60% labor + materials 2% TCI
Operating Labor Not applicable Maintenance Not applicable Indirect Annual Costs (IC) Overhead Administrative charges	\$0 \$24,144 \$54,625	
Operating Labor Not applicable Maintenance Not applicable Indirect Annual Costs (IC) Overhead	\$24,144	2% TCI
Operating Labor Not applicable Maintenance Not applicable Indirect Annual Costs (IC) Overhead Administrative charges Annual Contingency	\$24,144 \$54,625 \$12,072	2% TCI 5% of DC
Operating Labor Not applicable Maintenance Not applicable Indirect Annual Costs (IC) Overhead Administrative charges Annual Contingency Property taxes	\$24,144 \$54,625	2% TCI 5% of DC 1% TCI
Operating Labor Not applicable Maintenance Not applicable Indirect Annual Costs (IC) Overhead Administrative charges Annual Contingency Property taxes Insurance Capital Recovery	\$24,144 \$54,625 \$12,072 \$12,072	2% TCI 5% of DC 1% TCI 1% TCI
Operating Labor Not applicable Maintenance Not applicable Indirect Annual Costs (IC) Overhead Administrative charges Annual Contingency Property taxes Insurance Capital Recovery Total Indirect Costs (\$/yr)	\$24,144 \$54,625 \$12,072 \$12,072 \$97,285	2% TCI 5% of DC 1% TCI 1% TCI
Operating Labor Not applicable Maintenance Not applicable Indirect Annual Costs (IC) Overhead Administrative charges Annual Contingency Property taxes Insurance	\$24,144 \$54,625 \$12,072 \$12,072 \$97,285 \$200,198	2% TCI 5% of DC 1% TCI 1% TCI
Operating Labor Not applicable Maintenance Not applicable Indirect Annual Costs (IC) Overhead Administrative charges Annual Contingency Property taxes Insurance Capital Recovery Total Indirect Costs (\$/yr) Total Annualized Costs (TAC) (\$)	\$24,144 \$54,625 \$12,072 \$12,072 \$97,285 \$200,198 \$200,198	2% TCI 5% of DC 1% TCI 1% TCI
Operating Labor Not applicable Maintenance Not applicable Indirect Annual Costs (IC) Overhead Administrative charges Annual Contingency Property taxes Insurance Capital Recovery Total Indirect Costs (\$/yr) Total Annualized Costs (TAC) (\$) Increase in Annualized Costs (Tier 2 vs Tier 4)	\$24,144 \$54,625 \$12,072 \$12,072 \$97,285 \$200,198 \$200,198 \$200,198	2% TCI 5% of DC 1% TCI 1% TCI CRF x TCI (30 yr life, 7.0% interest)
Operating Labor Not applicable Maintenance Not applicable Indirect Annual Costs (IC) Overhead Administrative charges Annual Contingency Property taxes Insurance Capital Recovery Total Indirect Costs (\$/yr) Total Annualized Costs (TAC) (\$) Increase in Annualized Costs (Tier 2 vs Tier 4) Nitrogen Oxides (NOx)	\$24,144 \$54,625 \$12,072 \$12,072 \$97,285 \$200,198 \$200,198 \$200,198 \$200,198 \$200,198	2% TCI 5% of DC 1% TCI 1% TCI CRF x TCI (30 yr life, 7.0% interest) % Reduction
Operating Labor Not applicable Maintenance Not applicable Indirect Annual Costs (IC) Overhead Administrative charges Annual Contingency Property taxes Insurance Capital Recovery Total Indirect Costs (\$/yr) Total Indirect Costs (\$/yr) Total Annualized Costs (TAC) (\$) Increase in Annualized Costs (Tier 2 vs Tier 4) Nitrogen Oxides (NOx) Particulate	\$24,144 \$54,625 \$12,072 \$97,285 \$200,198 \$200,198 \$200,198 \$200,198 \$200,198 \$200,198	2% TCI 5% of DC 1% TCI 1% TCI CRF x TCI (30 yr life, 7.0% interest) % Reduction % Reduction
Operating Labor Not applicable Maintenance Not applicable Indirect Annual Costs (IC) Overhead Administrative charges Annual Contingency Property taxes Insurance Capital Recovery Total Indirect Costs (\$/yr) Total Annualized Costs (TAC) (\$) Increase in Annualized Costs (Tier 2 vs Tier 4) Nitrogen Oxides (NOx) Particulate Volatile Organic Compounds (VOC)	\$24,144 \$54,625 \$12,072 \$97,285 \$200,198 \$200,198 \$200,198 \$200,198 \$200,198 \$200,198 \$200,198	2% TCI 5% of DC 1% TCI 1% TCI CRF x TCI (30 yr life, 7.0% interest) % Reduction % Reduction % Reduction % Reduction
Operating Labor Not applicable Maintenance Not applicable Indirect Annual Costs (IC) Overhead Administrative charges Annual Contingency Property taxes Insurance Capital Recovery Total Indirect Costs (\$/yr) Total Annualized Costs (TAC) (\$) Increase in Annualized Costs (Tier 2 vs Tier 4) Nitrogen Oxides (NOx) Particulate	\$24,144 \$54,625 \$12,072 \$97,285 \$200,198 \$200,198 \$200,198 \$200,198 \$200,198 \$200,198	2% TCI 5% of DC 1% TCI 1% TCI CRF x TCI (30 yr life, 7.0% interest) % Reduction % Reduction

Cost Evaluation for Natural Gas Piping Leak Detection and Repair (LDAR)

LDAR Cost Item	1992 D	olla	rs	
Annualized Capital Charges - Instrumenta	I LDAR			
Control Equipment				
Monitoring instrument	\$1,495.00			
Compressor seal vent system	-			
Rupture disk (i.e., pressure relief device) (Unit A model cost)	\$90.00	2	disks	
Rupture disk	\$360.00	8	disks	
Rupture disk assembly	\$1,256.00	2	disks	
Closed-loop sampling (assume none)	\$5,024.00	8	disks	
Subtotal Annualized Capital Charges (\$/year)	\$6,879.00			
Operating Costs				
Annual Maintenance Charges - Instrument	al LDAR			
Monitoring instrument	\$4,280.00			
Compressor seal vent system				
Rupture disk (Unit A model cost)	\$8.00			
Rupture disk	\$32.00			
Rupture disk assembly (Unit A model cost)	\$385.00	2	disks	
Rupture disk assembly	\$1,540.00	8	disks	
Caps for open-ended lines (assume none)	\$0.00	2	disks	
Closed-loop sampling (assume none)	\$0.00	8	disks	
Replacement pump seals (assume none)	\$0.00			
Subtotal Annual Maintenance Charges (\$/year)	\$5,852.00			
Annual Miscellaneous Charges (taxes, insurance, administra	ation) - Instrumental LDAI	R		
Monitoring instrument	\$260.00			
Compressor seal vent system				
Rupture disk assembly (Unit A model cost)	\$314.00	2	disks	
Rupture disk	\$1,256.00	8	disks	
Caps for open-ended lines (assume none)	\$0.00			
Closed-loop sampling (assume none)	\$0.00			
Replacement pump seals (assume none)	\$0.00			
Subtotal Annual Miscellaneous Charges (\$/year)	\$1,516.00			
Labor Charges - Instrumental LDAR				
LDAR monitoring	\$12,940			
Subsequent repair	\$7,369			
Administrative and support	\$8,124			
Subtotal Labor Charges (\$/year)	\$28,433			
Grand Total (\$/year) - Jan. 1992 dollars - Instrumental LDAR	\$42,680			
Total Annual Cost	2020 D	olla	's ^b	
Grand Total Cost of Instrumental LDAR (\$/year)	\$79,726			

(a) Cost information is from (Table 6-12) of Hazardous Air Pollutant Emissions from Process Units in the Synthetic Organic Chemical Manufacturing Industry – Background Information for Proposed Standards. Volume 1C: Model Emission Sources (EPA-453/D-92-016c). Nov. 1992. U.S. EPA. Unit A model facility costs utilized in the calculations. Costs are presented in 1992 dollars.

(b) Annual costs converted from 1992 to January 2020 values using the consumer price index. Web site used to compute 2020 dollars is located at:

https://inflationdata.com/Inflation/Inflation_Calculators/Cumulative_Inflation_Calculator.aspx

Cost Evaluation for Natural Gas Piping Leak Detection and Repair (LDAR)

Cost Effectiveness Calculations	
Uncontrolled emission rate, CO ₂ e (ton/year)	976.6
Uncontrolled emission rate, mass greenhouse gas (GHG) (ton/year) [CO ₂ e/ GWP CH ₄]	39.1
Uncontrolled emission rate, VOC (ton/year)	2.8
Total Uncontrolled emission rate, VOC + mass greenhouse gas (GHG) (ton/year) ^a	41.9
Average assumed control efficiency of instrumental LDAR (range is 30-97%)	56%
Mass GHG emission reduction from instrumental LDAR (ton/year)	23.45
Density of natural gas (pounds/standard cubic foot) ^b	0.0420
Volume GHG emission reduction from instrumental LDAR (standard cubic feet/year)	1,116,037
Value of natural gas (\$/1000 standard cubic feet - 2019) ^c	2.99
Instrumental LDAR Cost Effectiveness	
Natural gas recovery savings from instrumental LDAR (\$/year)	\$3,337
Net annual cost of instrumental LDAR (grand total cost - savings) (\$/year)	\$76,389
Cost effectiveness of instrumentation LDAR, mass basis (\$/ton GHG)	\$3,258
Cost effectiveness of instrumental LDAR, carbon dioxide equivalent (CO ₂ e) basis (ton CO ₂ e) ^d	\$130

(a) Total emissions evaluated does not include fuel oil VOC. The overall natural gas emissions (41.9 tpy) is greater than fuel oil emissions (7.58 tpy).

(b) Density of natural gas obtained from Compilation of Air Pollutant Emission Factors, Volume I: Stationary Point and Area Sources (AP-42). Appendix A. January 1995. U.S. EPA.

(c) 2019 value of natural gas for electric power production obtained from the United States Energy Information Administration: https://www.eia.gov/dnav/ng/ng_pri_sum_dcu_nus_a.htm. Accessed on 15 January 2021

(d) Global warming potential (GWP) for methane used to convert the cost effectiveness from a mass basis to a CO_2e basis by dividing the mass based cost effectiveness by the GWP of methane. The GWP of methane is 25 according to 40 Code of Federal Regulations Part 98, Subpart A, Table A-1.

From Post Application BACT evaluation on "leak-proof" Piping Components

Cost Analysis

Item	Value	Low Leaking Valve Basis	Item
nem	value	Dasis	
Discut Ocata			Direct Annual Costs (DC)
Direct Costs			Operating Labor Inspection labor reg.
Purchased Equipment Cost			Supervisor
Equipment cost + auxiliaries [A]	\$100.000	А	Cost for inspection infrastructure
Instrumentation	\$10,000	0.10 x (A)	Total Cost \$/yr
Sales taxes	\$0	Pollution Control Equipment Exempt	Maintenance
Freight	\$5,000	0.05 x (A)	Valve replacement labor
Total Purchased Equipment Cost (PEC) [B]	\$115,000	B = 1.15 x (A)	Material
			Cost for replacement infrastructure
Direct Installation Costs			Total Cost \$/yr
Total Direct Installation Cost	\$34,500	0.30 x B	Indirect Annual Costs (IC
Inspection access infrastructure	\$475,037		Capital Recovery
Total Direct Cost (DC)	\$624,537		Total Indirect Costs \$/yr
			Total Annualized Costs (TAC) (\$
Indirect Costs (Installation)			
,			Total Pollutant Controlled ton/yr VOC
Engineering	\$11,500	0.10 x B	
Construction and field expenses	\$5,750	0.05 x B	COST EFFECTIVENESS \$/ton
Contractor fees	\$11,500	0.10 x B	
Start-up	\$2,300	0.02 x B	
Contingencies	\$5,750	0.05 x B	
Other	\$0	As required	
Construction Period	0	Years (n)	
Interest Rate	7.0	Percent (i)	
Interest during construction (Int.)	\$0	DCxixn	
Total Indirect Cost (IC)	\$36,800	0.32B + Other	
Total Capital Investment (TCI) = DC + IC	\$661.337	1.32B + SP + Bldg + DC	

Table 2						
VOC Annual Cost Analysis - Certified Low Leaking Valve						
Item	Value	Basis				
Direct Annual Costs (DC)						
Operating Labor						
Inspection labor req.	\$57,350	5 min to inspect a valve monthly @ \$50 /hr				
Supervisor	\$8,603	15% Operating labor				
Cost for inspection infrastructure	\$2,500	lifts and temporary scaffolding				
Total Cost \$/yr	\$68,453					
Maintenance						
Valve replacement labor	\$0	All valves replaced over 5 years, 10 hr/replacement				
Material	\$0	\$2500 replacement cost/valve				
Cost for replacement infrastructure	\$0	lifts and temporary scaffolding				
Total Cost \$/yr	\$0					
Indirect Annual Costs (IC						
Capital Recovery	\$161,294	CRF x TCI 5 yr life, 7.0% interest				
Total Indirect Costs \$/yr	\$161,294					
Total Annualized Costs (TAC) (\$	\$229,746					
Total Pollutant Controlled ton/yr VOC	7.7	80% reduction				
COST EFFECTIVENESS \$/ton	\$29,826	\$/ton VOC				

95.58	inspection hours/month
\$50	labor cost/hr
1,147	total valve count (NG and Oil)
229.40	valve/year replaced with 5 year life
5	year life
2,500	\$/valve total for replacements not needed on baseline valves
80%	reduction
10	hr/replace a valve
	Capital Recovery Factor
Interest	7.0%
Years	5
CRF =	i * (1+i)^n
CRF =	1+i)^n - 1 0.243890694

100Low leak valve ppm guarantee500Standard valve ppm guarantee

From Post Application BACT evaluation on "leak-proof" Piping Components

Cost Analysis

		Table 2			
eaking Valve	Methane Annual Cos	t Analysis - C	ertified Low Leaking Valve		
Basis	Item	Value	Basis		
	Direct Annual Costs (DC)				
	Operating Labor				
	Inspection labor req.	\$42,800	5 min to inspect a valve monthly @ \$50 /hr	71.33 inspec	tion hours/month
	Supervisor	\$6,420	15% Operating labor	\$50 labor c	:ost/hr
A	Cost for inspection infrastructure	\$2,500	lifts and temporary scaffolding	856 total va	alve count (NG)
0.10 x (A)	Total Cost (\$/yr)	\$51,720		171.20 valve/	ear replaced with 5 year life
Control Equipment Exempt	Maintenance			5 year lif	e
0.05 x (A)	Valve replacement labor	\$0 A	Il valves replaced over 5 years, 10 hr/replacement	2,500 \$/valve	e total for replacements not ne
B = 1.15 x (A)	Material	\$0	\$2500 replacement cost/valve		
	Cost for replacement infrastructure	\$0	lifts and temporary scaffolding		
	Total Cost (\$/yr)	\$0			
0.30 x B	Indirect Annual Costs (IC			80% reducti	ion
	Capital Recovery	\$161,294	CRF x TCI (5 yr life, 7.0% interest	10 hr/repl	ace a valve
	Total Indirect Costs (\$/yr)	\$161,294			
	Total Annualized Costs (TAC) (\$)	\$213,014		Capital R	ecovery Factor
				Interest	7.0%
	Total Pollutant Controlled (ton/yr) Methane	36.3	80% reduction	Years	5
0.10 x B					
0.05 x B	COST EFFECTIVENESS \$/ton	\$5,874 \$	/ton Methane	CRF =	i * (1+i)^n
0.10 x B		\$234.95 \$	/ton CO2e		1+i)^n - 1
0.02 x B				CRF =	0.243890694
0.05 x B					
As required					
Years (n)				100 Low le	ak valve ppm guarantee
Percent (i)				500 Standa	ard valve ppm guarantee
DCxixn					

Item	Value	Basis
Direct Costs		
Purchased Equipment Cost		
Equipment cost + auxiliaries [A]	\$100,000	А
Instrumentation	\$10,000	0.10 x (A)
Sales taxes	\$0	Pollution Control Equipment Exempt
Freight	\$5,000	0.05 x (A)
Total Purchased Equipment Cost (PEC) [B]	\$115,000	B = 1.15 x (A)
Direct Installation Costs		
Total Direct Installation Cost	\$34,500	0.30 x B
Inspection access infrastructure	\$475,037	
Total Direct Cost (DC)	\$624,537	
Indirect Costs (Installation)		
Engineering	\$11,500	0.10 x B
Construction and field expenses	\$5,750	0.05 x B
Contractor fees	\$11,500	0.10 x B
Start-up	\$2,300	0.02 x B
Contingencies	\$5,750	0.05 x B
Other	\$0	As required
Construction Period	0	Years (n)
Interest Rate	7.0	Percent (i)
Interest during construction (Int.)	\$0	DC x i x n
Total Indirect Cost (IC)	\$36,800	0.32B + Other
Total Capital Investment (TCI) = DC + IC	\$661,337	1.32B + SP + Bldg + DC

APPENDIX F – Additional Information

Post Application NTEC Response #7

State of Wisconsin Department of Natural Resources

Information Request

FID/Docket Number: 816127840

Requested From: WDNR

Date of Request: February 1, 2019

Response Due: February 14, 2019

Contact Requesting Information: Megan Corrado, Air Management Engineer

If you feel your responses are trade secret or privileged, please indicate this on your response.

Request	
No.	
007	
	Please propose allowable emission rates (lb/hr) of sulfur oxides for the
	relevant emissions units so that the department may determine whether or
	not the proposed project causes or exacerbates an exceedance of the
	Ambient Air Quality Standards [s. NR 404.04(2), Wis. Adm. Code] or
	increment [s. NR 404.05, Wis. Adm. Code].

Response:

007 The allowable emission rates of sulfur oxides (lb/hr and tpy) emitted for the relevant emissions units are listed in Table 1 below.

		SC	D ₂
Source ID	Source Description	(lb/hr)	(tpy)
S01_DBNG	Turbine NG DB	6.4	28.2
S01_100NG	Turbine NG 100	5.1	28.2
S01_75NG	Turbine NG 75	4.0	28.2
S01_LWNG	Turbine NG 35	2.4	28.2
S01_SSNG	Turbine NG Starts	5.1	28.2
S01_DBFO	Turbine NG DB/FO	6.1	28.2
S01_100FO	Turbine FO 100	4.6	28.2
S01_75FO	Turbine FO 75	3.6	28.2
S01_LWFO	Turbine FO 46	2.8	28.2
S01_SSFO	Turbine FO Starts	4.6	28.2
S02_AUXB	Auxiliary Boiler	0.06	0.3
S04_DPH1	Natural Gas Heater	5.9E-03	0.03
S05_DPT2	Natural Gas Heater	5.9E-03	0.03

Table 1	$1 \cdot SO_2$	Emission	Rates
	1.002		raico

Response by:	Minda Nelson, P.E.	List Sources of Information:
Title:	Associate Environmental Engineer	
Department:	Burns & McDonnell	
Telephone:	(816) 822-4208	

WDNR IR 007 – 010 (FID: 816127840)

Information Request Response

September 1, 2020

Megan Corrado Air Management Engineer-Adv State of Wisconsin Department of Natural Resources 101 S. Webster Street Madison, WI 53707-7921

Re: Nemadji Trail Energy Center Primary Site: FID No. 816127840 / Draft Permit 18-MMC-168 Alternate Site: FID No. 816121350 / Draft Permit 18-MMC-169 Air Pollution Control Construction Permit Request for Additional Information

Dear Ms. Corrado:

On behalf of South Shore Energy and Dairyland Power Cooperative ("Applicants," collectively), Burns & McDonnell Engineering Company hereby submits its response to the request for additional information for permits 18-MMC-168 and 18-MMC-169.

This response addresses WDNR's request for information confirming that the circuit breakers selected are consistent with the best that is presently available and are 'state of the art' and addresses why a 0.1% leakage rate is not achievable.

Circuit Breaker Performance Details

The below information presents data that supports the installation of three 345-kilovolt (kV) and two 19 kV low-side generator enclosed pressure SF_6 circuit breakers with a guaranteed loss rate of 0.5% by weight or less per year.

1) Circuit Breaker Industry Requirements

The current industry standard requirements of Institute of Electrical and Electronics Engineers (IEEE) is 0.5%. The requirements are listed in IEEE C37.122.3 "IEEE Guide for Sulphur Hexafluoride (SF₆) Gas Handling for High-Voltage Equipment."

IEEE C37.122.3-2011, Part 4.3.2

4.3.2 Closed-pressure systems

In closed-pressure systems, a volume is replenished only periodically by manual connection to an external gas source. High-voltage (above 72.5 kV) SF_6 single-pressure circuit breakers are examples of closed-pressure systems. It is recommended that:

- The leakage rate be kept lower than 0.5% per annum (p.a.) per gas compartment.

- When SF_6 conditions are checked, that gas be recaptured from analysis equipment.

-Appropriate record-keeping procedures are used.

A leakage rate of 0.5% listed in the permit is in compliance with the IEEE industry standards.

2) Manufacturer Data

The contacted manufacturers indicated their lab tests demonstrated leakage rates below 0.1% per year. The manufacturers will guarantee this maximum leakage rate only during the warranty period of between 2 to 4 years, depending on the manufacturer.

This demonstrates that the best breakers presently available and 'state-of-the-art' breakers will be installed for the project and the installed breakers will meet permit conditions I.C.1.a.(1)(a) and I.C.1.c.(1)(b).

I.C.1.a.(1)(a) Circuit breakers containing SF_6 shall be pressurized and have a manufacturer guaranteed loss rate not to exceed 0.5%, by weight, per year: and

I.C.1.c.(1)(b) documentation from the manufacturer demonstrating that the circuit breakers installed are enclosed pressure SF_6 circuit breakers with a guaranteed loss rate of 0.5 percent by weight or less by year,

3) Leak Rates

EPA performed research on SF_6 leak rates from high voltage circuit breakers (See Attachment 1). The study evaluated a fleet of circuit breakers installed between 1998 and 2002 and found the average leakage range was between 0.2% to 2.5% per year over the study period.

The lower bound is overly optimistic relative to leakage over the life of fleet in that it did not include all leakage actually experienced in the fleet (only leakage that triggered the safety alarm) and further the study only evaluated breakers over a period of 2 to 7 years from initial installation versus a typical 30 year life. Even with these extremely optimistic characteristics, the average fleet leakage was found to be higher than the 0.1% per year levels.

It should also be noted that the upper bound (2.5%) is larger than the IEEC requirements (0.5%). The lower bound (0.2%) is higher than the manufacturer guarantees (0.1%), but lower than the IEEC requirement (0.5%).

While NTEC acknowledges that this study is slightly dated and it is possible that the circuit breakers for the project could perform better than those included in the study, it can also be concluded from the study that breakers leak more as they age. In the study, the 6 year old breakers exhibited more leakage than the younger breakers.

Based on this information, the 0.1% lifetime loss rate is not practical.

4) Measurements

Density analyzers will be used to determine compliance with condition I.C.1.c.(1)(i). Specifications for a density monitor is shown in Attachment 2, which shows an overall density measurement accuracy of 0.6% of its range.

This accuracy is not sufficient to measure the SF_6 gas loss of a single year with a permit limit at the 0.5% leakage loss rate and it would take more than 6 years of leakage for the accuracy of the instruments to measure the loss at a 0.1% level. As such, the instruments would not be suitable to provide an early indication of leaks to allow for preemptive maintenance to prevent exceedance of the permit limits if established at the 0.1% level.

Based on this information a 0.1% leakage loss rate limit is not practical.

5) Lifetime Performance

Manufacturer guarantees generally expire after 2 to 4 years of issuance. Manufacturers expect leakage rates will increase over the lifetime (30+ years) of the circuit breakers as components degrade, necessitating periodic overhauls to attempt to restore leakage levels. However, even with the overhauls, it is uncertain whether the leakage rates could be returned to the 0.1% per year level.

A leakage rate permit condition of 0.1% is not economically feasible as the circuit breakers will need to be overhauled and/or replaced more frequently to meet the permit condition.

Additionally, over the life of the equipment the leakage rate will not consistently meet the timelimited manufacturer guaranteed loss rate of 0.1% by weight per year value within the parameters of the permit condition presented in I.C.1.c.(1)(i).

I.C.1.c.(1)(*i*) an inventory of the initial SF_6 quantity and SF_6 replaced in the breakers each calendar year. The SF_6 replaced is assumed equal to the SF_6 that has lost to demonstrate compliance with *I.C.1.a.*(1)(*a*).

6) Economic

The economic impacts of installing circuit breakers with different loss rates was evaluated. For both the switchyard breakers (345 kV) and generator breakers (19 kV), a 0.1% loss rate is not maintainable over the 30-year life of the breakers. The cost analysis assumes that to meet a 0.1% loss rate, each breaker will need to be replaced every five years and for the 0.5% loss rate case the breakers will be replaced at the end of the 30-year life of the breakers.

Switchyard Breakers Economic Analysis

The initial capital costs associated with the switchyard breakers for both a 0.5% loss rate and a 0.1% loss rate is approximately \$250,000. This cost is also the cost to replace the breakers every five years to achieve a 0.1% loss rate. The difference in SF₆ losses from a 0.5% and 0.1% loss rate is 0.04 tons SF₆ over 30 years or 0.0014 tons SF₆ per year. On an annual basis, the 0.5% rate would cost approximately \$4,852,000 per ton SF₆ over a 30-year life and the 0.1% rate would cost approximately \$145,560,000 per ton SF₆ over a 30-year life.

Generator Breakers Economic Analysis

The initial capital costs associated with the generator breakers for both a 0.5% loss rate and a 0.1% loss rate is approximately \$700,000. This cost is also the cost to replace the breakers every five years to achieve a 0.1% loss rate. The difference in SF₆ losses from a 0.5% and 0.1% loss rate is 0.0014 tons SF₆ over 30 years or 0.000046 tons SF₆ per year. On an annual basis, the 0.5% rate would cost approximately \$405,797,000 per ton SF₆ over a 30-year life and the 0.1% rate would cost approximately \$12,173,913,000 per ton SF₆ over a 30-year life.

The details of the cost analysis is shown in Attachment 3. A 0.1% leakage rate results in costs that are economically infeasible due to the cost to replace the circuit breakers. BACT is a 0.5% leakage rate for the circuit breakers.

Conclusion

Based on the above information the conclusions are as follows:

- The circuit breakers will meet industry requirements (0.5% loss rate)
- The best circuit breakers available and 'State-of-the-art' breakers will be installed (Timelimited manufacturer guaranteed loss rate of 0.1% by weight per year.)
- Based on the EPA study the 0.1% lifetime loss rate is not practical.
- Due to density measurement accuracy limitations a 0.1% loss rate limit is not practical.
- Over the life of the equipment the leakage rate will not consistently meet the time-limited manufacturer guaranteed loss rate of 0.1% by weight per year value within the parameters of the permit condition presented in I.C.1.c.(1)(i).
- A leakage rate of 0.1% is not economically feasible due to the cost to continuously replace the circuit breakers over the plant lifetime.

Please note, a 0.1% leakage rate is unprecedented in WDNR permits and would drastically lower the BACT rate to a level that, as described in this response, is not demonstrated over the long term.

In conclusion, the circuit breakers selected are consistent with the best that is presently available and are 'state of the art' and a 0.1% leakage rate is not achievable.

Please contact me at (816) 822-4208 or email me at mnelson@burnsmcd.com if you have any questions.

Sincerely,

Minda Nelson

Minda Nelson, P.E. Associate Environmental Engineer

cc: Tim Barton, Burns & McDonnell Robynn Andracsek, Burns & McDonnell Daniel McCourtney, Minnesota Power Melissa Weglarz, Minnesota Power Erik Hoven, Dairyland Power Cooperative Brad Foss, Dairyland Power Cooperative Josh Skelton, South Shore Energy, LLC

ATTACHMENT 1 – EPA STUDY

SF₆ Leak Rates from High Voltage CircuitBreakers - U.S. EPA Investigates PotentialGreenhouse Gas Emissions Source

J. Blackman, Program Manager, U.S. Environmental Protection Agency, M. Averyt, ICF Consulting, and Z. Taylor, ICF Consulting

Abstract—This paper highlights a recent collaborative study between the EPA's SF_6 Emission Reduction Partnership for Electric Power Systems and the electric power industry to investigate SF_6 leak rates from high voltage circuit breakers manufactured and installed between 1998 and 2002. Information from over 2,300 circuit breakers were analyzed to quantify the frequency of leaks and to estimate the weighted average annual leak rate for this population of circuit breakers. The methodology, data, and results of this study are presented.

Index Terms-- SF₆, annual leak rate, greenhouse gas emissions, circuit breaker.

I. INTRODUCTION

 \mathbf{C} ULFUR hexafluoride (SF₆) is a gaseous dielectric used in Dhigh voltage electrical equipment as an insulator and/or arc quenching medium. SF_6 is the most potent greenhouse gas with a global warming potential that is 23,900 times greater than that of carbon dioxide (CO_2) ; it is also very persistent in the atmosphere with a lifetime of 3,200 years [1]. Potential sources of SF₆ emissions occur from: 1) losses through poor gas handling practices during equipment installation, maintenance and decommissioning; and 2) leakage from SF₆containing equipment. The operation and maintenance of SF₆ gas carts, which are used to remove, store, clean, and re-fill SF_6 gas to high-voltage equipment, are considered a major source of handling-related losses. Equipment leakage, on the other hand, is the result of the deterioration of SF₆-containing equipment fittings and materials with time and use through chemical, hardening, and corrosion effects.

Equipment leakage is one of the two potential sources of SF_6 emissions. Leak detection surveys have noted that approximately 10 percent of circuit breaker populations may leak [2, 3], and of these leaking populations, 15 percent of the breaker leaks were minor, with repairs that could be conducted immediately, while the remaining 85 percent were considered significant and had to be referred to operations for scheduled repairs [3]. In terms of where these leaks typically

occur, studies have noted that the majority occurs at gas mechanisms (73 percent), 21 percent from worn or broken bushings, and 6 percent from gas tanks [4]. Typically, such losses can only be mitigated through equipment repair or replacement. As electrical equipment ages and reaches the end of its operational service life, replacement rather than equipment repair may provide the more attractive SF_6 mitigation strategy. Many equipment manufacturers now guarantee minimal to zero leak rates for new equipment. Additionally, industry standards recommend that new equipment be built to low leakage limits [5]. Since there is little published information on new equipment leak rates, in a study initiated in 2004, EPA sought to obtain an improved understanding of average leak rates associated with newly manufactured equipment (i.e., installed between 1998 and 2002).

This paper provides a brief review of the data and results of an equipment study funded by EPA [6]. The remainder of this paper is organized into four sections:

- <u>Section II</u> describes the methodology of the field study, including study scope and data parameters.
- <u>Section III</u> provides a summary of the data compiled from utilities participating in the study.
- <u>Section IV</u> presents the results of the equipment leak rate analyses.
- <u>Section V</u> summarizes the conclusions drawn from the study.

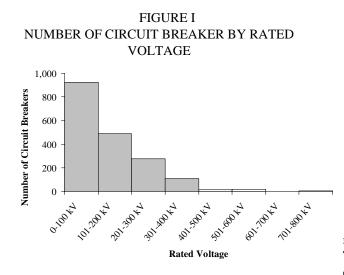
II. FIELD STUDY METHODOLOGY

Section II defines the scope of the study and describes the data collection and compilation process.

A. Study Scope and Data Parameters

The scope of the study was limited to data from three Partner utilities. Information was requested on high voltage circuit breakers manufactured and installed between 1998 and 2002. SF_6 equipment can take the form of sealed or closed pressure systems. Only closed pressure system breakers were included in the study; circuit breakers that are defined as "sealed-for-life" were not addressed by this study. The period in which equipment leakage was assessed was defined as from 1998 through 2005. For purposes of this study, a circuit breaker was classified as leaking if it had documented "top-ups" of SF_6 , which occur after a density alarm is sounded, indicating that 10 percent of the circuit breaker gas volume

J. Blackman is with U.S. EPA, Washington, D.C., USA (e-mail: Blackman.Jerome@epa.gov). M. Averyt and Z. Taylor are with ICF Consulting, Washington, D.C. USA (e-mail: maveryt@icfconsulting.com; ztaylor@icfconsulting.com).


has been emitted.

B. Data Collection and Compilation

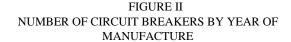
The data collection was undertaken through a survey form via telephone and email correspondence. The form requested information on the utilities entire inventory of SF_6 breakers, defined by the study scope, including makes, models and installed quantities, number of breaker operations, and for leaking breakers, the quantity of SF_6 gas used during the "top-up" operation.

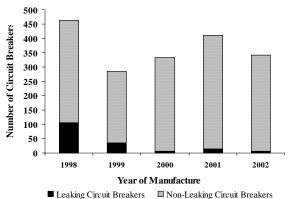
III. DATA SUMMARY

To ensure confidentiality, the names of the utilities involved in the study are not listed. The data provided covered equipment ranging from 33kV to 800kV. In total, information was provided on 2,329 circuit breakers. Figure I illustrates the proportion of circuit breakers size by standard rated voltage. As shown, the majority of the equipment included in the study fell into the range of less than 100 kV. Only 148 breakers were greater 300 kV.

Of the 2,329 circuit breakers, 170 (7.3 percent) were reported as leaking.

Table I and Figure II present a summary of the number of circuit breakers, leaking and non-leaking, included in the study.


TABLE I SUMMARY OF LEAKING/NON-LEAKING CIRCUIT BREAKERS


Year of Manufacture	Leaking CB ^a	Non- Leaking CB ^b	Total CB	Leaking CB/Total CB	Leaking as % of Overall Total Leaking
1998	106	357	463	23%	62%
1999	35	250	285	12%	21%
2000	7	326	333	2%	4%
2001	15	396	411	4%	9%
2002	7	334	341	2%	4%
Total	170	1,663	1,833 ^c		100%

^aCB – Circuit Breakers

^bNo alarm triggered

^cNumber of circuit breakers does not total 2,329 because year of CB manufacture data are not available for all non-leaking circuit breakers.

For the circuit breakers in the data set that were manufactured in 1998, 23 percent were identified as leaking. These circuit breakers account for approximately 62 percent of the total number of leaking breakers. This result is intuitive considering the natural deterioration of seals and equipment over time. Table II presents emissions data related to the leaking circuit breakers for each year of manufacture. Total emissions of SF_6 are indicated for the leaking circuit breakers manufactured in each year. Total emissions as a percent of total nameplate capacity associated with the leaking circuit breakers are also presented.

 TABLE II

 SF₆ EMISSIONS FROM LEAKING CIRCUIT BREAKERS

Total	No.	
Emissions	Leaking	Total Emissions as % of
(lbs. SF ₆)	CBs	Nameplate Capacity ^a
2,859	106	6%
302	35	0.96%
24	7	0.07%
140	15	0.29%
81	7	0.12%
3,407	170	
	Emissions (lbs. SF ₆) 2,859 302 24 140 81	Emissions (lbs. SF ₆) Leaking CBs 2,859 106 302 35 24 7 140 15 81 7

^aNameplate capacity of leaking circuit breakers only.

Consistent with the observations in Table I, circuit breakers manufactured in 1998 were also the largest contributors to SF_6 emissions reported in the study. Their emissions as a function of total SF_6 -contained in the equipment (nameplate capacity), is approximately 6 percent, significantly larger than the values reported for leaking breakers manufactured in 1999 through 2002.

IV. LEAK RATE RESULTS AND ANALYSIS

Section IV presents the results of an analysis to define circuit breaker leak rates (as a percent of nameplate capacity) that are representative of the entire reported dataset. These estimates are referred to as the lower and upper bound leak rates, respectively, and are intended to illustrate potential industry trends. The key variables used to perform this analysis are 1) circuit breaker nameplate capacity, 2) total circuit breaker SF₆ leakage (lbs), and 3) the number of years that circuit breaker has been in operation.

Specifically, three leak rates (as a percent of nameplate capacity) were estimated. The first analysis generated a lower bound, or best case scenario, of an average circuit breaker leak rate estimate. The second two analyses both generated upper bound, or worst case scenario circuit breaker leak rate estimates, that are based on different methodologies and assumptions.

A. Lower Bound Weighted-Average Leak Rate

For the lower bound estimate, the weighted-average circuit breaker leak rate is approximately 0.2 percent per year. The lower bound leak rate was calculated by applying the raw reported data to Equation (1) and assuming that 1) through 2005, no additional "top-ups" have occurred after the last reported "top-up" (e.g., if the last reported "top-up was in 2003, it was assumed that no additional leakage occurred through 2005), and 2) for circuit breakers that have not reported any "top-ups" (i.e., they have not reached the 10 percent leakage threshold, and thus have not triggered a notification alarm), their emissions are zero. This estimate is defined as the weighted average of circuit breaker annual leak rates as a percentage of SF_6 nameplate capacity, across all circuit breakers both leaking and non-leaking. The calculation for the weighted average annual leak rate per nameplate capacity is provided in Equation (1):

$$LC = \frac{\sum \frac{Q_{SF6_i}}{Y_i}}{\sum c_i} \quad (1)$$

Where:

- LC = Weighted average annual leak rate per nameplate capacity (percent/year)
- Q_{SF6i} = Total mass (i.e., lbs) of SF₆ for all top-up operations since installation for circuit breaker, i
- Y_i = Number of years the circuit breaker, i, has been in use
- C_i = Individual nameplate capacity for circuit breaker i (lbs SF_6)

B. Upper Bound Weighted-Average Leak Rate – Method 1

For the lower bound estimate, it was assumed that equipment that had not reported "top-ups" were not leaking; however, since "top-ups" are defined by density alarm triggers, it is possible that many more breakers had leaked, but had not reached the 10 percent density alarm leak threshold. To account for potential leakage under the density alarm threshold, an upper bound leak rate estimate was developed based on the following assumptions:

- (1) All circuit breakers that have not indicated an alarm trigger leaked slightly less than 10 percent of their capacity between their installation date and 2005. Thus, the 2,159 circuit breakers (93 percent) in the dataset which have no documented "top-ups" (and are assumed for the lower bound to have a leak rate of zero percent) are scaled to assume a leakage rate of 10 percent (this is an asymptotic upper bound).
- (2) The second adjustment assumed that for previously identified leaking breakers (those that have reported "top-ups"), an additional 10 percent of capacity (i.e., another "top-up") occurred between the last documented service call and 2005. For example, a circuit breaker with an annual leak rate of 5 percent whose last reported service call occurred one year before the company data submittal is assumed to have 10 percent additional leakage during that last year.

Based on these assumptions and the application of equation (1) the weighted-average upper bound estimate for circuit breaker leak rate is estimated to be 2.5 percent. This result represents a *worst case* upper bound leak rate.

C. Upper Bound Weighted-Average Leak Rate – Method 2

Since the second assumption listed in the prior section, may overestimate emissions from documented leaking circuit breakers, an additional upper bound estimate was calculated by redefining how additional "top-ups" for these circuit breakers are treated. That is, it was assumed that circuit breakers which are currently leaking will continue to leak at their current rate. That is, if a circuit breaker is calculated to have an existing leak rate of 2 percent per year per nameplate capacity between its installation and last reported top-up date, then it was assumed that this rate continues through the end of the study period. This alternative approach maintains the original assumptions for non-leaking circuit breakers by assuming a leakage of just under 10 percent has occurred since circuit breaker installation.

Based on these assumptions and the application of equation (1), the alternate weighted-average upper bound leak rate estimate is 2.4 percent.

V. CONCLUSION

For the study dataset, the lower and upper bound weightedaverage leak rate estimates of 0.2 and 2.5 percent, respectively, represent the best and worst case scenarios for circuit breaker leakage. To put this into some context, NEMA's SF₆ management guidelines state, "...Over a 50 year service life the emission of SF₆ gas due to its use in electrical equipment will not exceed... 5% equipment leakage..." (i.e., 0.1 percent/year) [7]. Also, the IEC standard for new equipment leakage is 0.5 percent per year [5]. While the upper bound is significantly larger than both the NEMA and IEC guidelines, the lower bound leak rate estimate is comparable, and sits between the NEMA and IEC recommendations.

VI. ACKNOWLEDGMENT

The authors would like to acknowledge representatives from Eastern Research Group, Inc (ERG), the Electric Power Research Institute (EPRI), and the electric utilities, and original equipment manufacturers that assisted EPA in undertaking this study.

VII. REFERENCES

[1] IPCC, Climate Change 1995: The Science of Climate Change. Intergovernmental Panel on Climate Change; J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell, eds; Cambridge University Press. Cambridge, U.K. [2] McCreary, J.D., "AEP: A Case Study," presented at the International Conference on SF₆ and the Environment: Emission Reduction Technologies, November 2-3, 2000, San Diego, CA. [Online]. Available: http://www.epa.gov/electricpower-sf6/pdf/mccrearyppt.pdf [3] D. Keith, J. Fisher, and T. McRae, "Experience with Infrared Leak Detection on FPL Switchgear," presented at the International Conference on SF₆ and the Environment: Emission Reduction Technologies, November 2-3, 2000, San Diego, CA. [Online]. Available: http://www.epa.gov/electricpower-sf6/pdf/fischerp.pdf [4] Salinas, A. and Flores, M., "Southern California Edison: SF₆ Gas Management Program Update," presented at the International Conference on SF₆ and the Environment: Emission Reduction Technologies, December 1-3, 2004, Scottsdale, AZ. [Online]. Available: http://www.epa.gov/electricpower-sf6/pdf/dec04/Salinas_ok2use.pdf [5] IEC, International Electrotechnical Commission Standard 62271-1, 2004.

[6] EPA, "High Voltage Circuit Breakers Field Study," prepared by EPRI and the Eastern Research Group, July, 2005.

[7] NEMA, "Management of SF₆ Gas for Use in Electrical Power Equipment," Ad-Hoc Task Group on SF₆, Switchgear Section (8-SG), February, 1998.

VIII. BIOGRAPHY

Jerome Blackman is Program Manager for EPA's SF_6 Emission Reduction Partnership for Electric Power Systems. Mr. Blackman joined EPA in 1995 and has work in several commercial/industrial non-regulatory voluntary pollution prevention programs within the Office of Atmospheric Programs.

Mollie Averyt is an Associate at ICF Consulting. Ms. Averyt specializes in environmental policy analyses related to climate change and ozone depletion issues; and provides support for EPA's SF_6 Emission Reduction Partnership.

Zephyr Taylor is a Research Assistant at ICF Consulting. Mr. Taylor specializes in quantitative modeling and analysis specifically related to climate change issues. Mr. Taylor provides technical support for EPA's SF_6 Emission Reduction Partnership. ATTACHMENT 2 – DENSITY MONITOR SPECIFICATIONS

Transmitter For density, temperature, pressureand humidity of SF₆ gas Model GDHT-20, with MODBUS[®] output

WIKA data sheet SP 60.14

for further approvals see page 3

Applications

- Permanent monitoring of the relevant gas condition parameters in closed tanks
- For internal and external SF₆ gas-insulated equipment

Special features

- High-accuracy sensor technology
- MODBUS[®] output protocol via RS-485 interface
- Ingress protection IP65
- Very good long-term stability and EMC characteristics
- Compact dimensions

Transmitter, model GDHT-20

Description

The model GDHT-20 transmitter is a multi-sensor system with digital output for the measurands of pressure, temperature and humidity. Based on these measured values, the condition-related data can be determined.

Permanent monitoring

In order to prevent system failures in switchgear and, with that, network outages, the permanent monitoring of the gas density and moisture content is essential.

The GDHT-20 transmitter calculates the current gas density from the pressure and temperature using a complex virial equation in the transmitter's powerful microprocessor. Pressure changes resulting from thermal effects will be compensated by this and will not affect the output value.

In addition, the GDHT-20 transmitter delivers humidity or dew point information, which enables monitoring within the terms of the Cigré directives and IEC standards.

MODBUS® fieldbus

The RS-485 interface communicates using the MODBUS[®] RTU protocol. The instrument's output parameters and their units can be configured and read according to requirements. The GDHT-20 transmitter can be configured later by the customer for each defined SF₆ gas mixture with N₂ or CF₄.

Signal stability

Due to its high long-term stability, the transmitter is maintenance-free and requires no recalibration.

Due to the hermetically sealed weld seam and a measuring cell design without sealing elements, the permanent sealing of the measuring cell is ensured.

The EMC characteristics fulfil the IEC 61000-4-2 through to IEC 61000-4-6 standards and guarantee an interference-free data output.

Part of your business

Specifications

Measuring ranges

Dew point at ambient pressure: Density:

Temperature:-Pressure at 20 °C:0Pressure:0Burst pressure:5Overload safety:0Pressure reference:7

-50 ... +30 °C 0 ... 60 g/litre (8.87 bar abs. SF_6 gas at 20 °C) -40 ... +80 °C 0 ... 8,87 bar abs. SF_6 gas 0 ... 16 bar abs. 52 bar abs. up to 30 bar abs. Absolute

Accuracy¹⁾

Long-term stability at reference conditions ²⁾

Temperature:	$\leq \pm 0.10$ % of span/year
Pressure:	$\leq \pm 0.05$ % of span/year
Dew point:	$\leq \pm 0.50$ % of span/year

Refresh rate

Density:20 msTemperature:20 msPressure:20 msDew point:2 s (typical), auto-adjustment cycle every 30 min.

Permissible ambient temperature

Selectable versions

Standard	-40 +80 °C -40 +176 °F	-40 +80 °C -40 +176 °F
Option	-60 +80 °C -76 +176 °F	-60 +80 °C -76 +176 °F

Power supply U_B⁺

DC 17 ... 30 V

Power consumption

max. 0.5 W (max. 3 W during the heating phase of the humidity sensor)

Electrical connection

Circular connector M12 x 1 (5-pin) MODBUS[®] RTU via RS-485 interface

Circular connector M12 x 1 (5-pin)

1) Following DIN EN 60770-2 2) per IEC 61298-2

Functionality MODBUS®

Mixture ratio of SF_6 to N_2 or CF_4 (default 100 % SF_6 gas) Customer-specific sensor name

Measured values with alternative units can be retrieved directly in the MODBUS[®] registers.

- Density: g/litre, kg/m³
- Temperature: °C, °F, K
- Pressure: mbar, Pa, kPa, MPa, psi, N/cm², bar (at 20 °C)
- Humidity: ppmv, ppmw
- Dew point: °C
- Freezing point: °C
- Relative humidity: %

Process connections

Selectable versions
G 1 B, male thread, stainless steel
DN20, female thread
G 1/2 B, male thread
Malmkvist®
G ¾ JIS
Flange D40
M10 x 0.5
Via measuring chamber (see page 5)
DN8, female thread
Other connections on request

Case

Stainless steel

Permissible air humidity

≤ 90 % r. h. (non-condensing)

Ingress protection

IP65, only when plugged in and using mating connectors with the corresponding ingress protection

Electrical safety

Protected against reverse polarity, protected against overvoltage

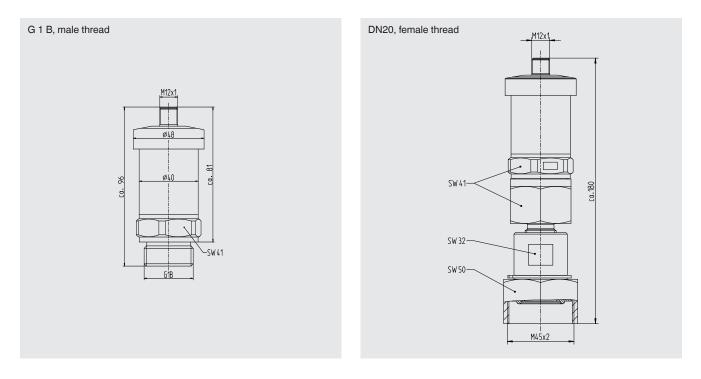
Dimensions

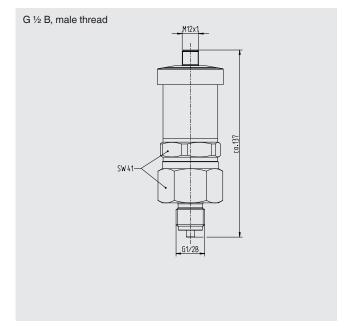
Diameter: 48 mm Height: 96 mm

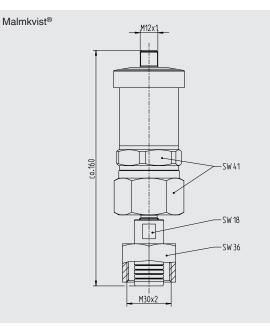
Weight approx. 0.40 kg

EMC tests

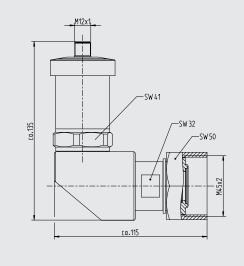
For EMC, observe the installation instructions of the operating instructions.

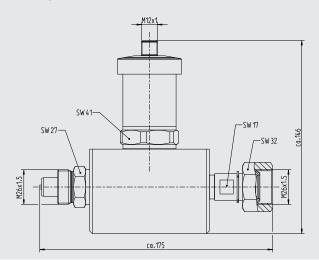

- Immunity per IEC 61000-4-3: 30 V/m (80 MHz ... 2.7 GHz)
- Burst per IEC 61000-4-4: 4 kV
- Surge immunity per IEC 61000-4-5: 1 kV conductor to ground, 1 kV conductor to conductor
- **ESD per IEC 61000-4-2:** 8 kV/15 kV, contact/air
- High-frequency fields per IEC 61000-4-6: 3 V


Approvals

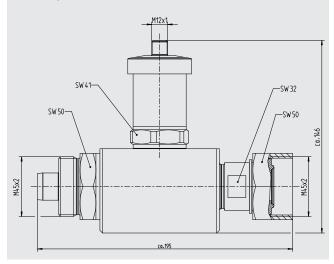

Logo	Description	Country
CE	 EU declaration of conformity EMC directive, EN 61326 emission (group 1, class B) and immunity (industrial application) RoHS directive 	European Union
EAC	EAC EMC directive	Eurasian Economic Community

Approvals and certificates, see website

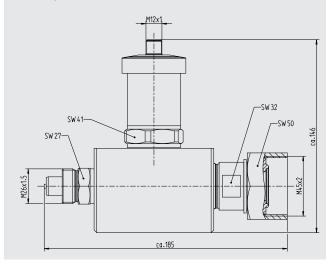

Dimensions in mm



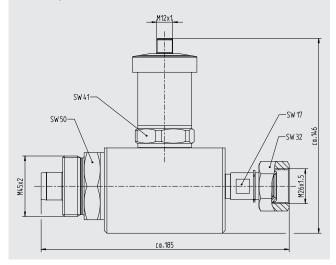
Measuring chamber, DN20, 90° angled

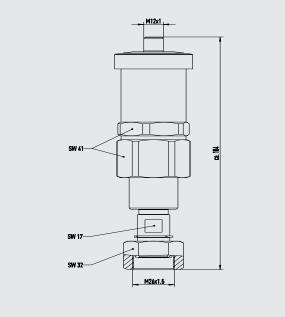


Measuring chamber, DN8 male thread / DN8 female thread



Measuring chamber, DN20


Measuring chamber, DN20 male thread / DN20 female thread

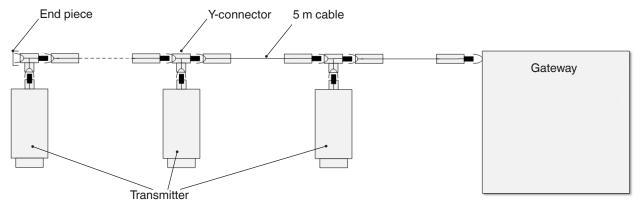

Measuring chamber, DN8 male thread / DN20 female thread

Measuring chamber, DN20 male thread / DN8 female thread

DN8, female thread

Accessories

Designation	Order number
 Modbus® startup kit for measured value recording and configuration, consisting of: Power supply unit for transmitter Cable with M12 x 1 connector Interface converter (RS-485 to USB) USB cable type A to type B Modbus® tool software 	14075896
WIKAsoft-GD for configuration and testing of the sensor	Free download from: www.wika.com/Download


Cable shielded, M12 x 1, AWG20	Order number
Length 1 m	14372501
Length 2 m	14372502
Length 3 m	14372503
Length 4 m	14372504
Length 5 m	14372505
Length 6 m	14372506
Length 7 m	14372507
Length 8 m	14372500
Length 9 m	14372509
Length 10 m	14372510
Length 15 m	14372511
Length 20 m	14372513
Length as required	on request

Conector	Shield	Order number
Y-connector, M12 x 1 (5-pin)	Sensor side unshielded	14294061
T-connector, M12 x 1 (5-pin)	Sensor side unshielded	14294063
Y-connector, M12 x 1 (5-pin)	Sensor side shielded	14271396
T-connector, M12 x 1 (5-pin)	Sensor side shielded	14109450
End piece, M12 x 1	-	14299963

If no cable will be installed between connector and sensor, we recommend using connectors which are unshielded on the sensor side.

Spare parts	Order number
Sealing for process connection G 1 B, male thread, (included in the standard scope of delivery.)	14046738

Installation example

Ordering information

Model / Permissible ambient temperature / Process connection / Accessories

© 08/2013 WIKA Alexander Wiegand SE & Co. KG, all rights reserved. The specifications given in this document represent the state of engineering at the time of publishing. We reserve the right to make modifications to the specifications and materials.

WIKA data sheet SP 60.14 · 01/2020

01/2020 EN

WIKA Alexander Wiegand SE & Co. KG Alexander-Wiegand-Straße 30 63911 Klingenberg/Germany Tel. +49 9372 132-0 Fax +49 9372 132-406 info@wika.com www.wika.de

Page 6 of 6

ATTACHMENT 3 – COST ANALYSIS

Switchyard (345 kV) Breakers

0.5% Loss Rate	
Cost	\$ 250,000.00
Replacement interval (yr)	30.00
Replacements over life	1.00
Life (years)	30.00
Annual leak rate	0.5%
SF6 lb/yr	3.44
SF6 lb/30 yr	103.05
SF6 ton/30 yr	0.05
Cost over 30 years/ton SF6	\$ 4,852,014
Additional SF6 tons removed over 30 years	0.04
Additional SF6 tons removed per year	0.0014
Global Warming Potential (SF6)	22,800
CO2e lb/30 yr	2,349,540.00
CO2e ton/30 yr	1,174.77
Cost over 30 years/ton CO2e	\$ 213
Additional CO2e tons removed over 30 years	939.82
Additional CO2e tons removed per year	31.33

0.1% Loss Rate		
Cost	\$	250,000.00
Replacement interval (yr)		5.00
Replacements over life		6.00
Life years		30.00
annual leak rate (low)		0.1%
SF6 lb/yr		0.69
SF6 lb/30 yr		20.61
SF6 ton/30 yr		0.01
Cost over 30 years/ton SF6	\$	145,560,408
Global Warming Potential (SF6)		22,800
CO2e lb/30 yr		469,908.00
CO2e ton/30 yr		234.95
cost over 30 years/ton CO2e	\$	6,384

Generator (19 kV) Breakers

0.5% Loss Rate		
Cost	\$ 700,000.00	
Replacement interval (yr)	30.00	
Replacements over life	1.00	
Life (years)	30.00	
Annual leak rate	0.5%	
SF6 lb/yr	0.12	
SF6 lb/30 yr	3.45	
SF6 ton/30 yr	0.0017	
Cost over 30 years/ton SF6	\$ 405,797,101	
Additional SF6 tons removed over 30 years	0.0014	
Additional SF6 tons removed per year	0.000046	
Global Warming Potential (SF6)	22,800	
CO2e lb/30 yr	78,660.00	
CO2e ton/30 yr	39.33	
Cost over 30 years/ton CO2e	\$ 17,798	
Additional CO2e tons removed over 30 years	31.46	
Additional CO2e tons removed per year	1.05	

0.1% Loss Rate		
cost	\$ 700,000.00	
Replacement interval (yr)	5.00	
Replacements over life	6.00	
Life years	30.00	
Annual leak rate	0.19	
SF6 lb/yr	0.023	
SF6 lb/30 yr	0.69	
SF6 ton/30 yr	0.0003	
Cost over 30 years/ton SF6	\$ 12,173,913,043	
Global Warming Potential (SF6)	22,800	
CO2e lb/30 yr	15,732.00	
CO2e ton/30 yr	7.87	
Cost over 30 years/ton CO2e	\$ 533,944	

Auxiliary Boiler Vendor Quote Post Application NTEC Response #3 Robynn Andracsek 816-822-3596 \ 816-377-1288 randracsek@burnsmcd.com

From: Clayton M. Young <cmyoung@rentechboilers.com>
Sent: Wednesday, October 31, 2018 9:11 AM
To: Andracsek, Robynn <RAndracsek@burnsmcd.com>
Cc: Jason Hayes (jason@jchrep.com) <jason@jchrep.com>
Subject: RE: Cost for controls on an aux boiler

An oxidation catalyst (CO catalyst) would be in the around \$75,000 or so. We'd have to build the catalyst housing which adds the to the expense.

Clayton Young Rentech Boiler Systems, Inc. Phone: (325) 794-5631

From: Andracsek, Robynn <<u>RAndracsek@burnsmcd.com</u>>
Sent: Wednesday, October 31, 2018 8:29 AM
To: Clayton M. Young <<u>cmyoung@rentechboilers.com</u>>
Cc: Jason Hayes (jason@jchrep.com) <jason@jchrep.com>
Subject: RE: Cost for controls on an aux boiler

Clayton

One more question. If we just put on a oxidation catalyst without an SCR, would it just be \$50,000 or would it be more?

Thank you.

Robynn Andracsek 816-822-3596 \ 816-377-1288 randracsek@burnsmcd.com

From: Clayton M. Young <<u>cmyoung@rentechboilers.com</u>>
Sent: Friday, October 19, 2018 4:22 PM
To: Andracsek, Robynn <<u>RAndracsek@burnsmcd.com</u>>
Cc: Jason Hayes (jason@jchrep.com) <jason@jchrep.com>
Subject: RE: Cost for controls on an aux boiler

Individually, the SCR and CO catalyst run about \$35,000 (each).

Clayton Young Rentech Boiler Systems, Inc. Phone: (325) 794-5631

From: Andracsek, Robynn <<u>RAndracsek@burnsmcd.com</u>>
Sent: Friday, October 19, 2018 1:50 PM
To: Clayton M. Young <<u>cmyoung@rentechboilers.com</u>>
Cc: Jason Hayes (jason@jchrep.com) <jason@jchrep.com>
Subject: RE: Cost for controls on an aux boiler

Clayton

A follow-up question. Do you have a rough cost for SCR and CO catalyst replacement?

Robynn Andracsek 816-822-3596 \ 816-377-1288 randracsek@burnsmcd.com

From: Clayton M. Young <<u>cmyoung@rentechboilers.com</u>>
Sent: Friday, October 19, 2018 11:38 AM
To: Andracsek, Robynn <<u>RAndracsek@burnsmcd.com</u>>
Cc: Jason Hayes (jason@jchrep.com) <jason@jchrep.com>
Subject: RE: Cost for controls on an aux boiler

Robynn,

Here are the responses for the additional equipment as requested below. I added a little contingency to the oxidation catalyst number than what I stated on the phone to ensure coverage.

Adder to supply SCR / aqueous ammonia skids & manifold equipment, with a 90% reduction in NOx:

• \$350,000.00

Adder to supply CO / Oxidation Catalyst (90% reduction of CO & 50% reduction of VOC's):

• \$50,000.00

Thanks and hope you have a great weekend.

Clayton Young Rentech Boiler Systems, Inc. Phone: (325) 794-5631

From: Craig Young
Sent: Thursday, October 18, 2018 1:20 PM
To: Clayton M. Young <<u>cmyoung@rentechboilers.com</u>>
Subject: FW: Cost for controls on an aux boiler

CREATE AMAZING.

Burns & McDonnell World Headquarters 9400 Ward Parkway Kansas City, MO 64114 **O** 816-333-9400 **F** 816-333-3690 www.burnsmcd.com